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Jna yumuposanusn. AdayurykypoB A.A., CaiidymioeBa I.C. AcuMnToTHyYeckue CBOICTBA MOAM(MUIIMPOBAHHBIX
sMnupHyeckux npoueccoB Kama B o6uieil Mogenu ciyuaiiHoro ueHsypupoBanus / Bectuuk Tomckoro rocynap-
CTBEHHOTO YHHBEPCHUTETa. YIpAaBJICHHE, BBIUMCIUTENIbHAS TeXHUKAa W nHpopmaruka. 2022. Ne 61. C. 26-36. doi:
10.17223/19988605/61/3

The empirical distribution function has been widely used as an estimator for the distribution function
of the elements of a random sample. It is not, however, appropriate when the observations are incomplete.
Developing the corresponding theory of convergence of considered empirical and concentrated processes to
a Gaussian process has been obtained by many scientists. A generalization of these results for the case of
competing risks or when present various types of censorship considered by authors [see, for example, [1-3]].
These results have numerous statistical application in areas such as medical follow-up studies, life testing,
actuarial sciences and demography (see, also, [4—6]). A general scheme of random censorship was considered
by authors includes an competing risks model and random censoring from both sides.

1. Mathematical model

Let Z be a real random variable (r.v.) with distribution function (d.f.) H(x)=P(Z<x), xeR. For
a fixed integer k>1 let A® ..., A% be pairwise disjoint random events, and define the subdistribution func-
tions H(x;i)=P(Z<x AY), ie3I={L,...,k}. Suppose that when observing Z we are interested in the joint

behaviour of the pairs (2,A"), ie3. Let {(z;,A,...A), j>1} be a sequence of independent replicas

of the (Z,A%,..., AV) defined on some probability space {Q, A, P}. We assume throughout that the func-
tions H(x),H(x;1),...,H(x;k) are continuous. Let H,(x) denote the ordinary empirical d.f. of Z,,...,Z,
and introduce the empirical sub d.f. H  (x;i), ieJ

Hn(x;i)zﬁzn:é}(j‘)l (Z,<x), (xi)eRxS,
i1
where R =[—;e0], 8{ =1(A") is an indicator of event A}’ and

H, (1) +...+ Hn(x;k)z%jzn_;l (Z,<x)=H,(x), xeR,

is the ordinary empirical d.f. Properties of many biometrical estimates depends on limit behaviours of pro-
posed empirical statistics.

The following results are a straightforward consequences of exponential inequality of Dvoretzky-
Kiefer-Wolfowits with exactly constant D = 2 from [7, 8]:

Forall n=1,2,... and ¢>0:

(L+e) | 12
P sup|Hn(X)_H(X)|>[—.wj SZn‘(“g), (1)
|X|<o0 2 n
and
1/2
P| sup|H, (x:i)—H (x;i)|> 2[(“8)—'09 ”j <an @), @
|x|<o0 2 n
A crucial role is played the vector-valued empirical process
fa,(0)= (2 (1), (1), (1), t= (it ) e R
where
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The results of our approximation theorems presented here is, quite naturally, the approximation theo-
rems of Komlos—Major—Tusnady’s, for the ordinary empirical process with the approximation with the rate

of order n¥?logn. We will construct the approximation Gaussian processes in terms of Wiener sequences.

The following theorem of Burke-Csorgé-Horvath [9, 10] is an extended analogue of Komlos—Major—
Tusnady’s result [11, 12].

Theorem A [9, 10]. If the underlying probability space {Q,A,P} is rich enough, then one can

define k+1 sequences of Gaussian processes B (x),BY(x),..,B!(x) such that for a,(t) and

n

B, (1)=(B” (%), B (%), B (%)), t=(to,-t, ), we have

P{ up |la, (t)-B,(t) () >n7%(M (logn)+ z)}g K exp(-Az), 3)

for all real z, where M =(2k +1)A, K=(2k+1)A, and L=A,/(2k+1) with A,A, and A, are absolute
constants. Moreover, B, itself is a (k+1) dimensional vector-valued Gaussian process having the same

covariance structure as the vector a,(t), namely EB!’(x)=0, (x,i)eRx3I=3Iu{0} and for any
i,jel, i#]j, x,yeR:
EB§°>(X)B§°)(y)=min{H X),H ( }—H (x)-H(
EBrEi)(x)Br(]i)(y)zmin{ y;i)}—H |)
EBﬁ”(X)Bﬁ”(yF—H(X:')-H(y;j),

EBL” (x)BY" (y)=min{H (x;i),H (y; )} =H (x)-H (y;i)-
Note that in proving of theorem A (theorem 3.1 in [10]) authors constructed sequence of two —

(4)

parametrical Gaussian processes Q(O)(x;n),@(z)(x;n),...,Q(k)(x;n) such that for a,(t) and

tion have used

an(t)—n_%@(t;n) (s ( ylog n)

D
where Q(t;n) isthe (k +1) dimensional vector-valued Gaussian process that Q(t;n)=n"?a, (t). Hence

EQY(xn)=0, (x,i)eRx3J

andforany i,je3, i#j, x,yek:

EQ ()@ (y;m)=min(n,m){min{H (x),H (y)} -H (x)H (y)},

E@(O)(X;n)@w(y;m):min(n,m){min{H(x;i), (y; )} H(x)H (v; )} )
£ (sn) 2 (yim) = min () {min {H (xi),H (1)} ~H ()M (3: 1),
EQ" (xin)@" (y;m)=—min(n,m)H (x;i)- H (y; ).
Observe that {@(i) e 5} are Kiefer processes and they satisfying the distributional equality
Q" ()2 (H (xi)in) - H (xiw (&), ©

i . . i i . (i)
where {W v (y; n), 0<y<lnx>lie S} itself are two-parametrical Wiener processes with EW  (y;n)=0 and
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Ew" (y;n)w v (u;m)=min(n,m)min(y,u), ieJ.
It is important to note that though Kiefer processes {@(”,i e:;} are dependent processes, but corre-
sponding Wiener processes are independent. Indeed, from proof of theorem A are follows that
Qv (X;n)iK(H (x:1);n),
Q(Z)(x;n)zK(H (%:2) = H (+0,1);n) = K (H (+00;1);n),
(@“)(x;n)iK(H (X1)+H (+00;1) + ...+ H (+00;i =1);n) = K (H (+00;1) + ...+ H (+o0;i =1);n), i €3,
where H (+o0;i)= xlm H(xi), H(+0;1)+...+H (+o0;k)=1.
The Kiefer processes {K(y;n), 0<y<], nzl} are represented through two-parametrical Wiener

processes {W(y; n), 0<y<1, n 21} by distributional equality

{K(y;n), 0<y<1, nzl}z{w(y;n)— yW(Ln), 0<y<l n 21}. (7)
Consequently, in view of (6) and (7) the Wiener process {W(‘),i € S} also admits representations for
all (x;i)e@xs:
D

W (H (x:1);n)=W (H (x;1);n),

w® (H (x;2);n)2W (H (x:2)+ H (+00;1);n) =W (H (+00;1);n),

w' (H (x;i);n)zw (H(xi)+H (+00;i =1);n) =W (H (+00;1) + ...+ H (+o0;i —1);n).
Now by directly calculations of covariance of processes {W“) e S} it is easy to believing on its independency.

This paper further structured as follows. In section 1 we introduce the classical Kac processes analogues
and their modifications. For its we prove approximation results. Then in section 2 we propose corresponding
estimators of hazard functions. For them we also prove approximation results.

2. Kac processes under general censoring

Authors [9] proved the general theorems to obtain approximation for the usual empirical and corre-
sponding cumulative hazard estimates by Gaussian processes for the competing risk generalizations. We
prove these results for a corresponding Kac-type processes.

Following of [12] we introduce the modified empirical d.f. of Kac by the following way. Along with

sequence {Zj, j 21} on a probability space {Q, A,P} consider also a sequence {v,,n>1} of r.v.-s having
Poisson distribution with parameter Ev,=n, n=12,... Assume throughout that the two sequences

{Zj, j 21} and {v,,n>1} are independent. Kac’s empirical d.f. is

1 ]
HE (x) = E;I(stx)’ if v, >1as.,

0, if v, =0 as,
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while the empirical sub-d.f. one is
1 Z, <XA e, if v, 21as,
H, (xi)= n; ( )
0,iel3 if v, ,=0as,
with H; (x;1)+...+ H (x;k)=H.(x) forall xeR. Here we suppose that sequence {v,,n>1} is independent
of random vectors {(Z 6J . ,6 ) J>1} where 6(ji):|(A§i)). Note that statistics H, (x;i) (consequently

also H, (x)) are unbiased estimators of H (x;i), i e 3 (consequently also of H(x)):

E(H,(xi) ):—E{ZE[ZS }v —m}

:%E{iE[i5E) (Z, <x)lv, = m] P(v,= m)}:
m=1 k=1

1 z, n"e™

=E;H(x,|)mP(vn:m)zﬁH(x,l);m- ——
=H(x |)e‘”zw:n—l H(xi), (xi)eRx3J
m=o M:
Consequently,
k Kk

Let’s define aﬁi)*(x)zx/ﬁ(H:(x;i)—H (x;i)), ie3 and aﬁo)*(x)zﬁ(H;(x)—H (x)) the empirical Kac
processes.
Theorem 1. If the underlying probability space {Q, A P} is rich enough, then one can define k +1

sequences of Gaussian processes W,* (x),W," (x),...w.") (x) such that for a:(t)z(aﬁ‘))* (t,),a" (t,),....a"" (¢, ))

n n

and W, (t) :(Wn(o) (t).W (1), W (tk)), t=(ty, b, t, ), We have

- a: (t)_Wn* (t)

where r >2 is an arbitrary integer, C* =C"(r)-depends only on r and K is an absolute constant. Moreover,

‘e log n} <K'n™, (8)

W, (t) itself is a (k+1)-dimensional vector-valued Gaussian process with expectation EWn(‘)(x)zo,
(xi)eRx3J andforany i,je3, i#j, x,yeR:

EW,” (X)W, (y)=min{H (x),H (y)},

EW“)( )Wn“’(y)=min{ (x:i).H (y:J)}, ©)
W, ()W, (y)=min{H (x;i), H (y)}

The basic relation between a,_ (t ) and a, (t) is the following easily checked identity

()= (Va0 )
a (x)=,— X)+H(x1)——=, 1€3 10
()= )T R(XI)=== e (10)
Hence the approximating sequence have respectively the form
WO (x)= B0 (x)+ H (i) e,

n
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where BS?(X) is a Poisson indexed Brownian bridge type process of Teorem A and {W(*)(x), xzo} is

D

a Wiener process. Easy to verify that {Wn(‘)(x), (xi)e Rx%} {W*(H (x;i)),(x,i)e@xg}. The proof of
Teorem 1 is coincides with the proof of theorem 1 of Stute in [13] hence it is omitted.

Inso far as lim H, (x) = H; (+0) = Y then by Stirlings formula
X140 n

p(vn=n)=p(H;(+oo)=1)=n":!‘”ZJZ%(Ho(l)), n— o,
and
P(H: (+0) >1) = P(v, >n)= 3 ”kkel_n —0(1), n—ow.

Thus H, (x) with positive probability t, be greater than 1. In order to avoid these undesirable properties, we
propose following modifications of Kac statistics:
Ha(x)=1-(1-H,; (x))I(H;(x)<1), xeR,
Ha(x;i) =1—(1— H;(x;i))l (H;(x;i) <1), (xi)eRxS.
The following inequalities are useful in investigating of Kac processes.
Theorem 2. Let {v,,n>1} be a sequence of Poisson r.v.-s with Ev, =n. Then forany >0 such that

(11)

T (12)
logn  8(1+¢/3)
we have
1(¢ V2
P - =| =nl <2n™, 13
(|Vn n|>2(2nogn) J n (13)
o . elogn V2 aew i~
P sup|Hn(x,|)—H(x,|)|>2 5 <An e S, (14)
‘X‘<oo n
y y glogn"” dew i e
P| sup Hn(X,I)—H(X,I)‘>2 o <4n™ ied, (15)
‘X‘<w

-1

where w=[16(1+¢/3)]
Proof. Let vy,,v,,... be a sequence of Poisson r.v.-s with Ey,=1 for all k=12,... Then
= ()

S,=v,-Vv= Zn:(yk -1) =Zn:§k and  Eexp(tg, )=e"exp(ty,)=exp(—(t+1))>"

D =exp{e' - (t+1)}.

Using Taylor expansion for e', we get

Eexp(t@k)=exp{1+t+§+\y(t)—(t+1)}=exp{§+w(t)},

3

where \y(t)z%exp(et), 0<6<1. Estimate w(t) taking into account that t°<t® under 0<t<I:

3 2 2
\p(t)S%eSe%. Thus, Eexp(tgk):exp{%(u%j}, 0<t<l.

The following result (theorem from [14]) is necessary for our further investigations.
Lemma 1 [14]. Let {&,,n>1} be a sequence of independent r.v.-s with EE =0, n=12,.. Sup-

pose that U,A,,...,A, positive real numbers such that
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Eexp(t&k)<exp[ At j for k=12,...,n [t|<U. (16)

Let A=A, +..+A,. Then

2

2exp[—z—} if 0<z<AU,
2A
P(lg,+..+&]= 7)< y

2exp(—7z), if z>AU.

1/2

. 1 v .
Letinlemmal A, =1+¢/3, U =1, z =E(§nlog nJ , then we obtain (13). Here 0<z :%[%nlog nj <

<(1+e/3)n=AU. Consider probability in (14). By total probability formula

P(x<w H, (xi) - H (X;i)‘ﬂ(glggnsz

=P(sup L (i) =H(xi) +—ZS slogn / J P(v,>n)+

‘X‘<°° N Zh

+P[sup H(xi)-H(xi)-= Z 8y Iogn / J P(v,<n)<
[x|<o0 kv+l

max(n,v, )

i logn 2
y 5<k>|(zkgx)‘>(822 j <

n k=min(n,v,)+1

: p{
‘X<oc

H, (x;i)—H (x;i)|>(8|;£jm}r P| sup 1

n ‘X‘<oo

<2n7* + P[

12
vy =1 S| B logn <2n 4+ 2nMe <An ™™ je
n | 2n

where we applied (2) and (13) that proves (14). Let’s define T." = inf {x: Hn(x;i) :1} Jded. If x >T" and

sup

‘X‘<oo

H;(x;i)—H(x;i)|,sup

v, >n, then Ha(xi)=1and H; (x;i)—H(xi)>H,(xi)-H, (xi)>0. Thenassuming v, >n, we obtain
XZT(ni)

Hn(x;i)—H(x;i)‘z{max[ Hn(x;i)—H(x;i)H}s
{ { H, (%)= H (xi), ot (X:i>—H(X:i)I}}—x<w

Under v, <n, itis obvious that Hn(x;i)=H, (x;i), forall (x;i)eﬁxs.

Now taking into account last two relations, total probability formula and (14) we obtain (15). Theo-
rem 2 is proved.

Let an(t)z(a(no)(to),a(nl)(tl) ..... a(nk)(tk)), where a(no)(x)zﬁ(Hn(x)—H(x)), a(ni)(x)zxm(Hn(x;i)—

-H (x;i)), (xi)e R x 3. We shall prove an approximation theorem of the vector-valued modified empirical

x<T(ni)

17)

H.(xi)—H (x;i)|, ied.

Kac process an (t) by the appropriate Gaussian vector-valued process W, (t).te R from theorem 2.
Theorem 3. Let {Tn,n 21} be a numerical sequence satisfying, for each n, the condition
T, <T, =inf{x:H (x)=1} <co such that

min{P(A”)=H(T,.i)} >1-H (Tn)zz(rz'(\:\?n”jm. (18)
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If for any ¢ >0 condition (12) hold, then on a probability space of theorem 2 one can define k +1 sequences
of mean zero Gaussian processes W\ (x),W.% (x),...W") (x) with the covariance structure (9) such that for

n

an (1) and W (1) = (W (1, ), W (t,),... W\ (t,)) we have

n n n

P< sup
'(e(—oo;Tn]lH1

where K is an absolute constant, C =C(e) and p=min(r,ew) forany ¢>0.

an () =W, (t)

(k+1) B
>Cn /2 log n}s Kn™®, (19)

Proof. It is easy to seen that probability in (19) can be estimated by sum

k H .
P{sup v >Cn " log n}+ZP£sup ar (x)-W. (x)
X<T, i=1 X<T,

an (x)-W, (x)

Taking into account that for any x<T,, H,(x)<H,(T,) and if H (T,)<1, then a(no)(x)za(no)*(x) and by
formula of total probability

> Cnf% log n} =Q, +0,,- (20)

qlnsP(sup ay (x)=W.% (x)| > Cn "2 logn/H; (T <lj+P(H (T,)>1)<
SP(sup al%" (x)-W,* (x )‘>Cn }/IognJ+ P(H,(T,)>1)<
X<T, (21)
<K +P(H, (T,)-H(T,)>1-H(T, ))

<Kn" +P(sup|H H(x)|>(flogn) JSLnr’

[¥|<o0 2wn

where we have used theorem 1 and analogue of (14) for H, —H, L =K +4. Analogously,

q2n<ZP(§l<JTp a) (x)-w (x)| > Cn 2 Iognj+_zk:P(H:(Tn;i)>p(A(U))S
giP(sup W (x )‘>Cn ylogn}rZP(sup

i X<T, [x]<o0

+kP{|V” 1 > %(M log nj ] <kLn™ +2kn™,

"(x )—Wn(i)(x)‘>Cn7% log nJ+ (22)

n 2wn

where we also have used inequalities (13), (15) and theorem 1. Now from (21) and (22) follows (19). Theo-
rem 3 is proved.

3. Estimation of hazard function

In many practical situations, when we are interested in the joint behaviors of the pairs

{(Z,A“)), ieS}, a crucial role is played by the so-called cumulative hazard functions

—o0 (—o0ix]

{S(i)(x)zexp(—A(‘)(x)), iei}, where A" (x) is the i-th hazard function {T = j:

JX‘ H(U| )

ith A [ d"' i :
with AY (x)+...+ A% (x) = = j - is the corresponding hazard function of d.f. H (x).
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Consider two important special cases of considered generalized censorship model:
a) Let {X,,X,,...} be a sequence of independent r.v.-s with common continuous d.f. F. These are

censored on the right by {Y,,Y,,...} a sequence of independent r.v.-s, independent of the X — sequence, with
common continuous d.f. G. One can only observe the sequence of pairs {(Zk,ak),kzl,_n}, where

ZJ.:min(Xj,Yj) and 5,=8" is the indicator of event AjzAgl)z{ijxj}. In this case

(=2 1-H(0=(-F0)A-C(), HD= ] (1-6())dF(v). ths S9(x)=5()-1-F(x)

The useful special case when 1-G(x)=(1- F(x))ﬁ, B >0, which corresponds to independence of r.v.-s
Z,and §;,j>1.

b) For k>1 consider independent sequences {Yl“),Yz(‘),...} (i=1,...k) of independent r.v.-s with

common continuous d.f. F and let Z; = min(Yj(l),...,Yj(k)). One observes the sequences {(Zj ,6(1.‘)),i :L_k}
j=1

where 8! is the indicator of the event A}”:{Zj :Yj(‘)}. This is the competing risks model with
sU(x)=1-FY(x), ie.

Define the natural Kac-type estimator
(i) x dH (u;i)

A= ]

y | :’
,ool_Hn(u) €

of AY(x), ie3. Let W(i)(x)zx/ﬁ(A(ni)(x)—A(i)(x)), ieI is an Kac-type hazard process and

W, (8) = (W (1), W9 (1)), 1= (ot ) s Yo (©)=(Y,2 (1), Y, (t,)) corresponding vector process with
i Wn(o)(u)dH(u;i)+ w(x) _I— (u)dH (u)

= (-HU) ARG S (-H )

and {W(O (x),W ( )i ,W(k)(x)} are Wiener processes with the covariance structure (9). Then for

n n

ie3

ie3, EY"(x)=0 and

EYn“)(X)Yn“)(y)=C(x,y),

where X,y <T,, =inf{x:H (x)=1} <o
n>

Theorem 4. Let {T, 1} be a numerical sequence satisfying for each n, the condition T, <T,, such

that

2 2
"5 max {328W by 2£b }, (23)
logn wow

where b, =(1-H (T, ))71, £>0, r>2. Then on a probability space of theorem 2

P( sup [w, (t)-Y, (t)||(k) > r(n)] <ko,n”, (24)
tE(—oc'T ](k)

where r(n)=d.bZn**logn, @, =®,(e,r), @, — (absolute) constants.
Proof. It is enough to prove that for each i€ 3

P(sup(wﬁi) (x)-Y" (x)) > r(n)j <on’, (25)

X<T,
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For difference we have representation for each i € 3:

\ (a(no)(u)—Wn(o)(U))dH(U i) a(n' (x)-W."(x)

W(i)(x)—Y(i)(x)zj -

" " : (1- u) 1-H(x)
(u)

JEOM, o () e
°, (1-H(u)) _w(l H(u)) (1 Hn ( ))

.0 (i) .
e an (u)dan (u) _STRO(x),
L(l—H(u))(l—Hn(u)) o=
For sum R (x)+R{ (x)+ R\ (x) using (15) and (19) we have

4
P (sup
X<T,

> Rin(x)
m=1
Rewrite R as

>3Cn*?logn +en %% log n]sSKnﬁ #2Ln ™ <(3K+2L)n", €S (26)

© ) J .
an)(x):nwj(an (u)) d(H(u,I)—H(u,l))Jrn]/zj'M R4n( )+E§'§(X) (27)

S (1=H(u)) (1-Ha(u)) % (1-H(u))

Then by (15) for ie 3
P[sup R (x)
X<T,

There exists an absolute constant A such that

P (sup Rin ()
X<T,

+P| supn¥?

X<T,

> 2en™%p? log nj <2Ln™ <2Ln. (28)

>3An"*p? log nj <P(H,;(T,)>1)+

(29)

I % 0(1( |)_| ? I))Z( )| >3An"?h?logn |<Ln"" + p,,

so that for any x<T,H,(x)<H;(T,) and if H,(T,)<1, then H,(xi)<H,(T,) and hence

a(ni)( x)=a ,E' (x) for ieJ. Itis enough to estimate probability p,. According to proof of theorem 1 in [13],

supposing aVn (x):JZ(H:n (x)-H (x)) aﬁ?(x):ﬁ(Hw(x;l)—H(x;i)), ie3J and using representa-
tion (10), we have proved the theorem 4.

Conclusion

We consider Kac processes in a general censorship scheme, including competing risks model and ran-
dom censoring from both sides. Our results uses strong approximation method. Cumulative hazard processes
also investigated in a similar manner in the general setting. In paper we obtain corresponding approximation
results for ordinary empirical processes, for a Kac processes and their modifications and for hazard processes.

All results are new and have approximation rates of order n™*2 logn.
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