
Communications of the IIMA

Volume 6 | Issue 1 Article 2

2006

Learning to Improve Software Processes: Making
Sense of Practice
Ian Allison
Nottingham Trent University

Yasmin Merali
University of Warwick

Follow this and additional works at: http://scholarworks.lib.csusb.edu/ciima

Part of the Management Information Systems Commons

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Communications of the IIMA by
an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Allison, Ian and Merali, Yasmin (2006) "Learning to Improve Software Processes: Making Sense of Practice," Communications of the
IIMA: Vol. 6: Iss. 1, Article 2.
Available at: http://scholarworks.lib.csusb.edu/ciima/vol6/iss1/2

http://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol6%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol6?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol6%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol6/iss1?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol6%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol6/iss1/2?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol6%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol6%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol6%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol6/iss1/2?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol6%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


Learning to Improve Software Processes; Making Sense of Practice Allison & Merali 

Learning to Improve Software Processes: Making Sense of Practice 

Ian Allison 
Nottingham Trent University, Nottingham, NGl 1 8NS, UK. 

Yasmin Merali 
University of Warwick, Coventrj', CV4 7AL, UK. 

ABSTRACT 

Software Process Improvement (SPI) programs are frequently considered to be planned in nature. 
However, there is recent evidence to suggest that SPI can be understood as a form of learning. Drawing 
on the organizational learning literature, this paper proposes an active learning perspective of 
improvements in processes. This view recognizes the various actors in the project to be reflective in their 
actions, making sense of the current context and thus designing their use of the process to best suit their 
needs at the time. The changes in the processes emerge through ongoing adjustments, experimentation 
and improvisation as developers and managers seek to improve their product development. 

Key words: Software Process Improvement; Reflective Practitioners; Organizational Learning; 
Sensemaking 

INTRODUCTION 

The robustness of an organization's software processes are often considered to be a key factor in the resultant 
quality of an organization's information systems. Through software process improvement (SPI) programs the 
current methods used are refined or altered to enstrre future systems are developed to a high standard. Traditionally, 
following the Software Engineering Institute (SBI)'s lead, programs of improvement were determined from a 
predefined model (e.g. the Capability Maturity Model (CMM)). Evidence shows that a number of organizations 
achieved benefits as a result of this adoption (Herbselb, 1997). Consequently, the majority of the literature has 
focused on developing such models (Hansen, 2004). 

Not all companies have fotmd this approach to software process improvement to be beneficial with many 
abandoning SPI programs or avoiding norm-based models like CMM (Herbselb, 1997; Comadi and Fugetta, 2002). 
These models are also the subject of criticism for the rigidity of the process areas and their underlying deterministic 
assumptions about implementation (Bollinger and McGowan, 1991). They are also seen to be inflexible and lack an 
emphasis on people (McFeeley, 1996). 

The SPI literature, therefore, has started to explore how processes change through time by consideiring process 
improvement in practice. So, building upon this recent literature, this paper will show that processes emerge through 
situated practice, as the various actors make sense of their own actions, thus enabling the leaming required to 
improve the processes to achieve better quality products. A longitudinal case study based on a software vendor is 
dratvn upon to provide evidence and examples of how processes improve through improvisation as practitioners 
reflect on their actions, and in doing so enhance the resilience of the end products. 

LEARNING IN SPI 

The SPI literature has begun to recognize that both competence of an organization's members and their ability to 
leam are important aspects of improving the quality of products and processes. Mathiassen et al (2002, p.7), for 
instance, suggest that: 

SPI is driven by knowledge about practices and perceived needs, insights gained during the improvement 
process, software industry standards, and state-of-the art methodologies and tools. SPI efforts also depend 

Communications of the LIMA 17 2006 Volume 6 Issue I 



Learning to Improve Software Processes: Making Sense of Practice Allison <6 Merali 

on the implicit, individual knowledge of participants. However, the general idea is to make knowledge 
explicit and to share knowledge. 

This section discusses how organizational learning theory informs our understanding of how process improvements 
occur. An understanding of teaming and the use of knowledge as a process will be explored, showing that to 
understand how process improvements occur we need to encapsulate the way that organizations leam to improve 
over time. An action based view of knowledge helps us to see SPI as a process of sensemaking, where agents are 
seen to draw on their knowledge during the action, and leam through reflection on their experience. 

Lyytinen and Robey (1999) cite the failure of organizations to leam from their own previous experience as a reason 
for the recurrence of problems in IS development. They argue that teaming from experience mns against the 
common practice because the incentives are not there to do this. When failure occurs the pressure is on IS 
management to extemalize the problem, identifying deficiencies in the infrastmcture, or its supply, rather than poor 
intemal application. The result of this pressure is that improvements in systems development approaches have 
focused on the adoption of new tools, technologies and techniques from outside, such new development methods. 
Lyytinen and Robey (1999) argue though that extemal knowledge may not be transferable into an organization as it 
is based on the experience of others and, even when it is transferable, extemal knowledge often adds little 
competitive benefit as it is in the public domain. So, this extemal emphasis does not produce the experiential 
leaming necessary to avoid making the same mistakes with the next set of tools and technologies. To deliver 
improvement an organization needs to create knowledge from the inside and thereby feed the continuous 
improvement activity (Nonaka and Takeuchi, 1995). 

New methods or development technology are readily identified when employees are knowledgeable about current 
processes. Fichman and Kemerer (1997) confirm that organizations are more likely to innovate or take on innovation 
when the skills required are close to those in the organization. Successful application of ideas increases confidence 
and knowledge, encouraging further changes (Allison, 1999). Competence of software developers can encourage 
commitment to projects and process improvement. When software practitioners 'understand and appreciate the 
process, they are empowered to use their discretion and adapt the process to meet the needs of both the situation and 
their customers' (Aaen et al, 2002, p.34). Without such ability or readiness to leam, an organization is likely to face 
difficulties in delivering change and adapting to the demands of the market, and will therefore lose out in a 
competitive environment. Ravichandran and Rai (2000), for instance, suggest that an IS group's ability to leam 
needs to be nurtured, as acquiring technical know-how places significant demands on developers. Organizations 
seek to address this leaming by developing programs and incentives to encourage this to happen. 

These human resource management strategies do not offer immediate solutions. Rather, Scarbrough (1998, p.221) 
states that whilst this resource based view of knowledge traces 'a clear and compelling causal path from endogenous 
characteristics of the firm through its product and innovation portfolio to competitive performance', there are 
problems with tapping knowledge as knowledge is distributed and embedded in different social groups 
(communities-of-practice). So, he challenges the desire to orchestrate the distribution of knowledge in a formalized 
way, arguing that it tends to institutionalize the communities-of-practice from which competence emerges. The 
problem, therefore, is one of integration and not just a problem of combining, sharing or making data commonly 
available (Scarbrough, 1999). 

Many recognize the separation of tacit understanding of individuals from the explicitly documented knowledge 
captured in formal systems, such as software process models and standards. The problem with seeing knowledge as 
only the explicit dimension is that much of organizational knowledge is not in its formal systems (the espoused 
theory) but in its beliefs, habits, routines, and memory of its members (the theory-in-use) (Argyris and Schon, 1996). 
This is why Choo (1998) encourages organizations to find ways to move the tacit to the explicit through sharing 
experiences, stories, reconfiguring existing knowledge and through intemalization of the tacit by experience. 
Pourkomeylian (2001) suggests that extemalization through socialization occurs in software process improvement, 
for instance through the creation of SPI plans and process descriptors. Whether it is possible to consciously share 
tacit knowledge in this way is debatable, but it recognizes the importance of the dynamic, social element in the 
sharing of knowledge. What it misses is the reflective nature of leaming through action. Senge (1990) states that 
organizations are continuously changing through active implementation and reflection on their theory-in-use. 
Argyris and Schon (1996, p. 16), likewise, state that: 

individuals within an organization experience a problematic situation and inquire into it on an 
organization's behalf. They experience a surprising mismatch between expected and actual results of 
action and respond to that mismatch throuvh a process of thought and further action that leads them to 

Communications of the IIMA 18 2006 Volume 6 Issue 1 



Learning to Improve Software Processes; Making Sense of Practice Allison & Merali 

modify their images of organization or their understanding of organizational phenomena and to restructure 
their activities so as to bring outcomes and expectations into line, thereby changing organizational theory-
in-use. 

McGuire and Randall (1999), also, argue that the software development activities involve multiple iterations and 
feedback loops that result in a mamring sequence of mental models for the human actors. Process models and 
software engineering features can be understood as frameworks for teaming (Mathiassen, 1998). These can be 
dra^wn on the developers in sharing and adopting ideas. Mathiassen (1998) uses Schon's concept of reflection-in
action to show how software developers leam by making use of their past experiences and adapting these to fit the 
cuiTent situation. Reflection-in-action assists organizational actors to gain insight into the background context of the 
change, thus it helps to reshape and restracture the organizational context. Schon (1983) considers that we show 
oui-selves to be knowledgeable through our intuitive actions and decisions in everyday life. Our knowing is often 
tacit, as seen in our pattems of action and feeling for the given activity. Schon (1983, p.49) therefore posits that 'our 
Itnowing is in our action'. So our work life depends upon our tacit knowing-in action: the ability to recognize 
phenomena, pattems and symptoms. So the know-how is in the action. 

If we recognize knowing-in-action, Schon (1983) claims that we should also recognize that we sometimes think 
about what we are doing. This thinking implies that we consider what we are doing during the action so as to 
improvise and respond to the context. This 'reflection-in-action hinges on the experience of surprise' (Schon, 1983, 
p.56); when things please us or lead to undesired results we may respond by reflecting-in-action. At such moments, 
Schon considers that reflection interactively focuses on the intuitive knowing that is implicit in the action. A 
practitioner's reflection helps to surface and correct previous tacit understanding; they may reflect on the tacit norms 
and appreciations which support a decision. Practitioners also reflect on their knowing-in-practice through a post-
activity review: they think back on a project. March and Olsen (1976, p.56) see this experiential leaming as 
sensemaking, in which 'individuals and organizations make sense of their experience and modify behavior in terms 
of their interpretations.' 

So, successful improvement involves leaming, iteration and the emergence of new ideas, because processes 'are 
improvisational in that they combine real-time leaming through design iterations and testing' (Eisenhardt and 
Tabuzi, 1995, p.l08). The integration of any new innovation is not simple and requires intensive leaming; the 
adoption should not be seen as a stand alone action (Lyytinen and Damsgaard, 2001). Lyytinen and Damsgaard 
(2001) also point out that the timescales in the implementation of any innovation are not necessarily short, so 
recognizing the time-based factors in the emergent change is necessary. So we need a context and process based 
model that helps us to understand this emergent change as occurring through reflective leaming. It is therefore 
necessary to accommodate iterative experimentation, use, and leaming in any model of change. 

SPI AS SENSEMAIONG 

The challenge, then, is to understand process change as an emergent, active leaming process developed from the 
relationship between people and their context. Orlikowski (1996, p.65) argues that a situated change perspective 
helps to explore the ongoing practices of organizational actors that emerge 'out of their (tacit and not so tacit) 
accommodations to and experiments with everyday contingencies, breakdown, exceptions, opportunities, and 
unintended consequences that they encounter'. Each action either changes or reproduces existing organizational 
properties and practices. As these amendments are sustained over time then fundamental changes occur: 

The recurring story is one of autonomous initiatives that bubble up internally; continuous emergent 
change; steady learning from both failure and success; strategy implementation that is replaced by strategy 
making; the appearance of innovations that are unplanned, unforeseen, and unexpected; and small actions 
that have surprisingly large consequences. (Weick, 2000, p.225) 

The concepts of situated change are founded on the social theories of sensemaking and improvisation. To engage in 
sensemaking is to frame the boundaries of the problem, and impose coherence upon it to allow us to decide how the 
situation needs to be changed. We are always in the middle of complex situations as there are no absolute starting 
points: sensemaking is an ongoing activity. In improvised change the solution applied is refined to fit the need on 
each occasion. To do this, organizations need to create new knowledge and to draw on the competencies available. 
Sensemaking helps us to understand situated, purposeful change in dynamic organizations in a different way to the 
deterministic view. Taking this perspective can help us to understand the unfolding changes in SPI through the 

Communications of the UMA 19 2006 Volume 6 Issue 1 



Learning to Improve Software Processes: Making Sense of Practice Allison & Merali 

actions of the human actors, whether intended or not. The intention of the key actors and their design for the change 
are important aspects of imderstanding the reasons for and the consequences of the changes. 

Weick (1995) considers sensemaking to be the process of constructing an interpretation of the unknown by active 
agents. Whilst not all authors agree, he argues that action results from sensemaking, as interpretation is only part of 
sensemaking not synonymous with it: 'sensemaking is about authoring as well as reading' (Weick, 1995, p.7). It is 
an activity or process of invention not simply a discovery of 'the interpretation' (ibid). Individuals try to make sense 
of their experience. Even when the experience is complex and ambiguous they impose order, attribute meaning and 
provide explanations (March and Olsen, 1976). 

Sensemaking is an ongoing activity. We are always in the middle of complex situations; there are no absolute 
starting points. Weick (1995) shows that problems do not present themselves as givens, but need to be constructed 
from complex, fuzzy, puzzling and uncertain situations. To engage in sensemaking is to frame the boundaries of the 
problem, and impose coherence upon it to allow us to decide in what direction the situation needs to be changed: 
There is a strong reflexive quality to this process. People make sense of things by seeing a world on which they have 
already imposed what they believe. People discover their own inventions, which is why sensemaking understood as 
invention, and interpretation imderstood as discovery, can be complementary ideas (Weick, 1995, p. 15). 

Interpretation and invention, or improvisation, are at different ends of a continuum (Weick, 2001). With 
improvisation greater modification of the original model is implied than with interpretation which is seen as just 
giving meaning to the original. Improvisation is a mixture of the pre-composed and the spontaneous (Weick, 2001). 
It does not materialize out of nothing: Ciborra (1999) points out that the improvisation is planned not haphazard, as 
people practice they develop the skills and understanding necessary. Weick (1995) develops the idea of enactment to 
show that we receive stimuli as a result of our own action. We do something (say to improve our context) which 
then helps us to do our job better so we continue to improve it. Sensemaking is, therefore, more than simply a 
cognitive process, but one that exists within the body. Mingers (2001, p.l23) therefore argues that the physical 
embodiment of our action 'suggests that much that we "know", in the sense that we are able to undertake particular 
actions and activities, is essentially tacit, habitual, and beneath our consciousness'. Knowledge is therefore leamt 
through action by practice and habituation. 
The integration of any new innovation is not simple and requires intensive learning; the adoption should not be seen 
as a stand alone action (Lyytinen and Damsgaard, 2001). Software process improvement technologies and methods 
require interpretation and will evolve through time (Swanson, 1994). Lyytinen and Damsgaard (2001) point out that 
technologies do not diffuse in a homogenous and fixed social ether but that a complex set of contextual constraints 
shape these changes. Thus, this paper explores how continuous change occurs by taking into account the 
contextually situated actions of the various actors and how these interacted to enable the improvement in the 
process. 

RESEARCH METHODOLOGY 

A single-case study was adopted for exploratory research and to develop theory. The case organization, InfoServ (a 
pseudonym), is a leading global information services company with over 13,000 employees and an annual turnover 
of £1.2 billion. This study focuses on the Market Analysis Package (MAP) software team based in the 
GeoMarketing (UK) division over a ten year period. The division combines data and software products for the 
market analysis purposes. The MAP product is the division's flagship product and directly contributes half of their 
sales. As the purpose of this study was to understand the process of improving the software process, the unit of 
analysis was taken as the continuous software process improvement activity rather than the organizational unit, 
allowing the case to be compared at a later date with another improvement initiative (Miles and Huberman, 1984). 

The methodology for this study has been based on longitudinal study and processual analysis (e.g. Pettigrew, 1997). 
The overall stages of the research were based on Eisenhardfs (1989) roadmap of how to undertake case study 
research, thus enfolding the literature rather than being theory led. Both in-flight and historical data was captured 
through participant-observation for over a year enabling the development of a more holistic response to the events 
(Jogensen, 1989). In this case wide-ranging access was given to people and information. The role was undertaken 
overtly, also enabling open interviews to be conducted, attendance at meetings, access to a wide range of documents, 
notes to be taken immediately and interviews to be taped for later transcription. Two forms of interview were used: a 
set of 29 formal semi-structured interviews covering all the development staff within the software development team 
and their line management and a set of 27 review meetings software managers to discover their intentions for, and 

Communications of the LIMA 20 2006 Volume 6 Issue 1 



Learning to Improve Software Processes: Making Sense of Practice Allison & Merali 

reactions to, product and process developments. Intemal data collected by the software group was also acquired for 
use in the analysis of the perceived efficacy of the SPl activities. 

The analysis was based upon a contextual, structurational framework (see Allison and Merali, 2003 for details). The 
concepts and themes developed were drawn from the data using an inductive approach. The findings in this paper 
were therefore grounded in the data and supported by the literature rather than been literamre driven. To ensure that 
the account is plausible two forms of feedback have been sought: on the case accuracy and interpretations, and the 
framework and analysis. Informants have reviewed the accuracy of the case study data and agreed the interpretation 
of the data. 

PROCESS EMERGENCE: A LEARNING PERSPECTIVE 

The organization established an SPl program following two years' experience of using processes defined as part of 
an ISO 9000 initiative. These processes had been defined in a group quality manual. Over the two years from the 
definition of the process individual teams had returned to previous practice, had devised or adopted additional 
practices, and had adapted the processes in the manual to suit their needs. However, one key reason for initiating the 
SPl program was that a major release of a new package had significant defects. Here though we will focus on what 
happened after this point, by looking at how the processes changed and individuals leamed through practice. The 
nature of process improvement at InfoServ has been shown to fall into three types of change: planned, improvised 
and unintentional (Allison and Merali, 2006). 

A Brief Synopsis 

Planned changes occurred through action teams following an initial SPl meeting to identify areas for change, such as 
the need to introduce an automated testing tool. Improvisation came about through personal desire to change aspects 
of the development process. This happened when individuals saw an opportunity to try something different and so 
would experiment with the idea to test it and to communicate the benefits to others. Additionally, through ongoing 
practice changes to the process would 'bubble-up', often unintentionally, as people leamed to do things differently. 
Small adjustments were made as a consequence of the ongoing interpretation and application of practiced processes 
to develop new software products. They occur as a consequence of the ongoing interpretation and application of 
practiced processes to develop new software products. So, whilst the actor is conscious of their action, they do not 
design the action to change the process. Innovations in the software process were based on the reflective 
considerations of the individuals involved during the practice of developing the software. 

The analysis of the case illustrated that the teaming occurs through reflection-in-action during the enactment of the 
software process. Individuals leam, share lessons and draw on this shared knowledge to undertake the process of 
developing products. Figure 1 identifies separate elements of the teaming activity to be discussed. This is not to 
imply that these elements can be separated other than for analytical purposes, rather that teaming and practice occur 
together, synergistically informing each other. The model reflects the dualistic view of action and context, where the 
individual draws on the organizational context to undertake their practice and through that practice changes the 
context. The discussion highlights the linkage between the two facets. 

Communications of the LIMA 21 2006 Volume 6 Issue I 



Learning to Improve Software Processes: Making Sense of Practice Allison & Merali 

Shared understanding explicitly and tacitly developed 

Individual 
learning 

Software 
Process 

Improvement 

Organisational 
Learning 

Reflection makes 
k sense of practice 

Knowledge 
In action 

Software 
Practice nforms future 

practice 

Figure 1; SPI as learning 

As discussed above, sensemaking is considered to be more than a cognitive process, but rather it is embodied in our 
physical action: actors improve their software process which helps to improve the product development, and so 
continue to refine their process. Actors therefore leam through action, bringing prior experience and conceptual 
knowledge from other sources to support their action. This learning is akin to the model of leaming through use 
developed by Daft and Weick (1984), and Kolb's (1984) experiential leaming model. 

Leaming to change is often taken to be a transfer of information from those who know to those who do not. This 
'reifies knowledge and de-emphasizes its collective nature as well as social processes of knowing' (Swan and 
Newell, 2000, p.592). This view implies that prior knowledge is the only thing that is important, which tends to 
reinforce what is already done in the organization. MacDonald (1998, p.40) argues, on the contrary, that this 
knowledge sharing is 'a process which cannot be directed and controlled'. At InfoServ their local adoption was 
influenced by the context, the desire of the developer, and the perceived relevance of the innovation for the product 
development. The assimilation and application of ideas in the case, whether from intemal or external sources, were 
seen to be related to the perceived value of the method or idea. The value related to their level of tmst of the sources 
as well as the perceived usefulness or applicability of the technique. 

At InfoServ, product and process innovation occurred through individual experimentation. One example was the 
creation of a component from the MAP software that encouraged the software management to explore the adoption 
of component-based development. More specifically in the area of process irmovation the adoption of both the 
Critical Chain planning and test estimation approaches followed extemal training. In each case these ideas were 
assimilated through an individual who was able to identify how these approaches would help to resolve existing 
issues that they were facing. The techniques were introduced through improvisation and experimentation: each idea 
was reinvented for the needs of the team, debated with other members of their community-of-practice before 
exposing it to members of the wider team, and then evaluated in given instances to test its usefulness. The 
willingness to put their own resources into trying out new ideas combined with the creativeness to achieve a useful 
result were critical personal attributes. The experimentation often allowed the individual to explore an idea without 
the pressure to succeed: the result could be thrown away if it did not work out. Experimentation can be encouraged, 
but the instances observed did not result from any organizational scheme but from individual capability and desire. 
In both the examples above it was the motive to change the current approach that encouraged them to put their own 
time into the experiment. This type of successful assimilation reflects Ciborra's (1999, p.137) understanding of 

Communications of the LIMA 22 2006 Volume 6 Issue 1 



Learning to Improve Software Processes: Making Sense of Practice Allison & Merali 

smart improvisation as an action 'which contributes to the individual or organizational effectiveness rather than that 
of a novice or someone just acting extemporaneously which has no effective link with the demands of the situation. 

Formal training and development programs are not required to enable external ideas to be incorporated into an 
organization. Merali (2002) shows that individuals who are part of a fluid, external network of professionals will 
reflect on those interactions and seek to apply ideas appropriate to the perceived needs of their own software 
processes and products. The danger is when extemal innovations are introduced en-masse because they have worked 
elsewhere. Lefebvre et al (1995) show that the level of benefits derived from the adoption of new ideas is dependent 
upon the level of penetration of those approaches within the organization, which requires that the solution applied is 
refined to fit the need on each occasion. This is a form of bricolage; that is, it makes use of whatever resources and 
skills are at hand, and therefore contrasts to the engineering view of change where projects are not started until all 
resources are identified and available (Weick, 2001). 

Bricolage encourages the use of existing tools and routines by people at the operational level to solve new problems. 
Local cues are used to obtain ad hoc solutions that bubble-up serendipitously from the normal daily activity. Thus, 
these changes 'emerge from the enactment and reinforcement of local innovation' (Ciborra, 1994, p. 16). However, 
this is not to suggest that the development of the process or product is entirely random. By combining the 
approaches of bricoleurs with those of engineers there are no limits to the possible implementations of software 
engineering ideas (Dahlbom and Mathiassen, 1995). 

Ciborra (1994) finds that only by encouraging improvisation through tinkering, or bricolage, and having a 
willingness to fail will innovation occur. When new ideas were introduced at InfoServ not everyone fully tmderstood 
them, not even those who were introducing the idea, but people were willing to experiment with ideas to see if they 
had value. The changes to the software process therefore continued to emerge as individuals considered how their 
actions were supporting the development of the software products. 

Individuals' mental models matured through the enactment of the process, as highlighted by the technical architect, 
who recognized that he had a maturing view of design that took into account perceived mistakes as well as 
successes: 'I know a lot more about designing large, relatively large software projects in C++ than I did before 
doing this one. There is a whole host of design approaches which I would no longer take (sic.)'. This maturing of 
understanding was evident across the team. Individual learning is linked to the organizational learning that takes 
place as a result of the organization's experience with any innovation (Lefebvre et al, 1995). 

Such organizational leaming is more than simply documenting new processes but is about improving the knowledge 
of members of the organization by sharing experiences. Indeed, Conradi and Fuggetta (2002) fotmd that developers 
considered formally documenting processes ineffective in transferring knowledge. So whilst, software process 
models documented in manuals can be changed to reflect current practice, to incorporate new ideas from outside or 
in an attempt to develop a more mature process, such manuals at best only reflect the desired practice of a software 
development group. Truex et al (2000) suggest that methods are discarded early in the development process and 
practice is often inconsistent with the defined methodology. So, even if we assume that teams attempt to instantiate 
the process as defined in a particular project, by looking at the defined processes our understanding of the process is 
limited to the espoused theory. 

Argyris and Schon (1996) show that individuals maintain their own theory-in-use by interpreting the espoused 
theory and other previous experience. It is the theory-in-use that the individual draws on to respond to the particular 
problem faced. We therefore caimot assume that the espoused theory is the same as the theory-in-use, and that it is 
the same as the action within the development activity. However, it is as the theory-in-use changes and becomes the 
noirm that the espoused theory also changes, in the way that the defined processes were rewritten or communicated 
to new members of the team, reflecting Argyris and Schdn's (1996) concept of double loop leaming. 

Sharing understanding can therefore be supported through process documentation but this has a limited role in 
communicating imderstanding. We therefore need to recognize that knowledge emerges from 'patterns of social 
relations and d)mamic practice' (Scarbrough, 1998, p.227). Knowledge can be viewed as an emergent property of 
organizational interaction with the wider environment, and in terms of social practice and relations. As organizations 
leam through practice the norms of their communities-of-practice emerge. As practice unfolds it challenges those 
norms and refines them through individual leaming, and then future practice (and related process change) is 
informed by the norms as individuals draw on them to sanction actions. 

Communications of the LIMA 23 2006 Volume 6 Issue 1 



Learning to Improve Software Processes: Making Sense of Practice Allison & Merali 

These norms can be seen in terms of individuals learning to routinely follow the process. Whilst there was some 
resistance to following the processes as defined, as the actual processes used became the norm people knew what 
was expected of them and therefore as one developer put it: 'it gets instinctive...[and so they] follow [the] 
method...despite themselves'. The application of object oriented programming was a good example of this 
routinization. 

The move to a C-H- development environment was difficult because knowledge and skills in this area were in short 
supply. The level of prior understanding varied and therefore some developers found the abstraction and 
encapsulation discipline difficult, sometimes retuming to old habits. However, through repeated use, listening to 
others in design meetings and subsequent inspection meetings, and both formal and informal training their personal 
understanding developed, albeit to a varying extent. The improvement was evident to those looking back at software 
developed at different times. 

So as ideas are shared across a group, tacitly and explicitly, the degree of systemness increases within the 
communities-of-practice through shared meaning. Giddens (1999) defines social systems as the reproduced relations 
between actors or collectives, organized as regular social practices. These collectives are not unified, but draw on 
commonly understood rules to communicate and act. So there is a greater ability to draw on similar rules as ideas are 
shared across communities-of-practice. This shared knowledge resides with individuals, but the team's capability 
increases through an improved ability to access knowledge held within the community and a greater understanding 
of its relevance to their needs. As this capability improves, so the team's agility to respond to development triggers 
improves. As norms are drawn on within the practice, then further experience will challenge the understanding 
embedded in those norms - at the individual level but through discussion and negotiation the norms will evolve -
and those norms will be used to inform participants' future practice. The case showed that sharing ideas to develop 
group solutions is difficult, as individual motives tend to engender a personal perspective. Trust between the 
participants enables this sharing and teaming to happen. 

CONCLUSION 

Previously, SPI has been mainly understood as something to be engineered. Even continuous process improvement 
approaches, such as IDEAL, take little account of the organizational context. Thus, if we are to understand how 
continuous change occurs we need to take into account the organizational context it is occurring in, the actions of 
the various actors and how these interact to enable the leaming and knowledge creation said to be required to 
improve the process. 

The improvement at InfoServ was shown to be a process of emergent change. Reflection by developers during their 
development tasks informed their process improvement. The changes were derived from iimovations they felt to be 
directly relevant to their work, and would address problems in the software or the life cycle. Ideas that were tried out 
as experiments to address a particular need during a development activity were communicated to other developers 
through a shared experience of the product development. 

Future work must therefore continue to develop this understanding of software process improvement as emergent 
change. To do so it will be necessary to develop a stronger theoretical framework to understand how this change 
happens so as to draw out the different features of the change in a more precise and theoretically informed way. To 
achieve this further empirical data will be required. The lessons from this study also need to be taken on in terms of 
what the impact of a more emergent, agile perspective of SPI would mean for practice and how this can be best 
supported (Allison, 2005). An agile perspective that highlights the need to leam to improve through situated practice 
within an organizational framework would support the ongoing needs of the business, reflecting the leaming 
intensive nature of SPI. 

REFERENCES 

Aaen, I., Arent, J., Mathiassen, L. & Ngwenyama, O. (2002), Mapping SPI Ideas and Practices, In: 
Mathiassen, L. Pries-Heje, J. & Ngwenyama, O. (eds.) Improving Software Organizations, 23-46, Upper Saddle 
River, NJ: Addison-Wesley. 

Allison, I. & Merali, Y. (2003) Software Process Improvement: Towards an Emergent Perspective, In: 
Levy, M. Martin, A. & Schweighart, C. (eds.). Proceedings of the 8"' UKAIS Conference, 9 - II"" April, University 
nf Wanifirk 

Communications of the LIMA 24 2006 Volume 6 Issue 1 



Learning to Improve Software Processes: Making Sense of Practice Allison & Merali 

Allison, I. & Merali, Y. (2006) Intra-team Software Process Emergence: Resilence Through Improvisation, 
In: Hapeshi, K. & Tomlinson, A. (eds.). Proceedings of the ll"" UKAIS Conference, 10- 11*^ April, University of 
Gloucestershire. 

Allison, I. (1999) Information Systems Professional Development: A Work-Based Learning Model, 
Journal of Continuing Professional Development, 2(3), 86-92. 

Allison, I. (2004) Software Process Improvement as Emergent Change: a Structurational Analysis, PhD 
Thesis, Uni\rersity of Warwick. 

Arj^is, C. & Schon, D.A. (1996) Organizational Learning II: Theory, Method and Practice, Reading: MA 
: Addison-Wesley. 

Bollinger, T. B. & McGowan, C. (1991) A Critical Look at Software Capability Evaluations, IEEE 
Software, 8(4), 25-41. 

Choo, C.W. (1998) The Knowing Organization: How Organizations Use Information To Construct 
Meaning, Create Knowledge and Make Decisions, New York: Oxford University Press. 

Ciborra, C. (1994) The Grassroots of IT and Strategy, In: Ciborra, C. & Jelassi, T. (eds) Strategic 
Information Systems: a European Perspective, 3-24, Chichester: John Wiley & Sons. 

Ciborra, C.U. (1999) A Theory of Information Systems Based on Improvisation, In: Currie, W.L. and 
Galliers, R. (eds.). Rethinking Management Information Systems, 136-155, Oxford: Oxford University Press. 

Conradi, R.& Fugetta, A. (2002) Improving Software Process Improvement, IEEE Software, 19(4), 92-99. 

Daft, R.L. & Weick, K.E. Toward a Model of Organizations as Interpretation Systems, Academy of 
Management Review, 9(2), 284-295. 

Dahlbom, B. & Mathiassen, L. (1995) Computers in Context: the Philosophy and Practice of Systems 
Design, Cambridge, MA: Oxford : NCC Blackwell. 

Eisenhardt, K.M. (1989) Building Theories from Case Study Research, Academy of Management Review, 
14(4), 532-550. 

Fichman, R.G. & Kemerer, C.F. (1997) The Assimilation of Software Process Innovations: an 
Organizatio:nal Teaming Perspective, Management Science, 43(10), 1345-1363. 

Gasston, J. & Halloran, P. (1999) Continuous Software Process Improvement Requires Organizational 
Teaming: An Australian Case Study, Software Quality Journal, 8(1), 37-51. 

Giddens, A. (1999) Elements of the Theory of Structuration, In: Elliott, A. (ed.) The Blackwell Reader in 
Contemporary Social Theory, 119-130, Oxford: Blackwell Publishers Ltd. 

Gray, E.M. & Smith, W.L. (1998) On the Limitations of Software Process Assessment and the Recognition 
of a Required Re-orientation for Global Process Improvement, Software Quality Journal, 7(1), 21-34. 

Hansen, B.H., Rose, J. & Tjomehoj, G. (2004) Prescription, description, reflection: the shape of the 
software process improvement field, International Journal of Information Management, 24,457-472. 

Herbselb, J., Zubrow, D., Goldenson, D., Hayes, W., & Paulk, M. (1997) Software Quality and the 
Capability Maturity Model, Communications of the ACM, 40(6), 30-40. 

Communications of the LIMA 25 2006 Volume 6 Issue 1 



Learning to Improve Software Processes: Making Sense of Practice Allison & Merali 

Hollenbach, C., Young, R., Pflugrad, A. & Smith, D. (1997) Combining Quality and Software 
Improvement, Communications of the ACM, 40(6) 41-45. 

Jorgensen, D.L. (1989) Participant Observation. Newbury Park, CA: Sage Publications Inc. 

Kolb, D.A. (1984) Experiential Leaming, Englewood Cliffs, NJ: Prentice Hall. 

Lefebvre, E, Lefebvre, L A, & Roy, M (1995) Technological penetration and organizational leaming in 
SMEs: The cumulative effect, Technovation, 15 (8), 511-522. 

Lyytinen, K. & Damsgaard, J. (2001) What's Wrong with the Diffusion of Iimovation Theory? In: Ardis , 
M.A and Marcolin, B.L. (eds.) Diffusing Software Products and Process Innovations (IFIP TC8 WG8.6 Fourth 
Working Conference, 173-204, April 7-10®, Banff, Canada), Norwell, MA: Kluwer Academic Publishers. 

Lyytinen, K. & Robey, D. (1999) Leaming Failure In Information Systems Development, Information 
Systems Journal, 9, 85-101. 

MacDonald, S. (1998) Information For Iimovation: Managing Change Form An Information Perspective, 
Oxford: Oxford University Press. 

March, J.G. & Olsen, LP. (1976) Ambiguity and Choice in Organizations, Olso, Norway: Scandinavian 
University Press. 

Mathiassen, L. (1998) Reflective Systems Development, Online at httD://www.cs.auc.dk/~larsm/rsd.html. 
Accessed on 5/12/2001. 

Mathiassen, L., Pries-Heje, J. & Ngwenyama, O. (2002) Improving Software Organizations: from 
principles to practice, Boston, MA: Addison-Wesley. 

McFeeley.B (1996) IDEAL: A User's Guide For Software Process Improvement (CMU/SEI-96-HB-OOI), 
Pittsburgh, PA: Software Engineering Institute/ Carnegie Mellon University. 

Merali, Y. (2002) The Role of Boundaries in Knowledge Processes, European Journal of Information 
Systems, 11(1), 47-60 

Miles, M.B. & Huberman, A.M. (1994) Qualitative Data Analysis: An Expanded Sourcebook (2nd ed.). 
Thousand Oaks, CA : Sage Publications, Inc.. 

Mingers, J. (2001) Embodying information systems: the contribution of phenomenology. Information and 
Organization, \\,\Q3i-\l% 

Nonaka, I. & Takeuchi, H. (1995) The Knowledge-Creating Company, New York: Oxford University 
Press. 

Orlikowski, W.J. (1996) Improvising Organizational Transformation Over Time: A Situated Change 
Perspective, Information Systems Research, 7(1), 63-92. 

Pettigrew, A.M. (1997) What is Processual Analysis? Scandinavian Journal of Management, 13(4), 337-
348. 

Pourkomeylian, P. (2001) Knowledge Creation in Improving a Software Organisation, In: Ardis, M. & 
Marcolin, B. (eds.) IFIP TC8 WG8.6 Fourth Conference, 205-224, Norwell, MA: Kluwer Academic Publishers. 

Ravichandran, T. & Rai, A. (2000) Software Process Management: An Organizational Leaming 
Perspective. In: Hansen. H.R.. Bichler. M.. & Mahrer. H. (eds.) Proceedings of the 8th European Conference on 

Communications of the LIMA 26 2006 Volume 6 Issue I 

http://www.cs.auc.dk/~larsm/rsd.html


Learning to Improve Software Processes; Making Sense of Practice Allison & Merali 

Information Systems, 202-209, 3rd-5th July, Vienna, Austria: Vienna University of Economics and Business 
Administration. 

Scarbrough, H. (1998) Path(ological) Dependency? Core Competencies from an Organizational 
Perspective, British Journal of Management, 9(3), 219-232. 

Scarbrough, H. (1999) The Management of Knowledge Workers, In: Currie, W.L. and Galliers, R. (eds.). 
Rethinking Management Information Systems, 474-496, Oxford : Oxford University Press. 

Schon, D.A. (1983) The Reflective Practitioner: How Professionals Think In Action, New York: Basic 
Books. 

Suchman, L.A. (1987) Plans and Situated Actions: the Problem Of Human-Machine Communication, 
Cambridge: Cambridge University Press. 

Swan, J. A. & Newell, S. (2000). Linking Knowledge Management and Innovation, In: Hansen, H.R., 
Bichler, M.,, and Mahrer, H. (eds.) Proceedings of the 8th European Conference on Information Systems, 591-598, 
3rd-5th July , Vienna, Austria: Vienna University of Economics and Business Administration. 

Swanson, E.B. (1994) Information Systems Iimovation among Organizations, Management Science, 40(9), 
1069-1092. 

Tmex, D., Baskerville, R. & Travis, J. (2000) Amethodical Systems Development: The Defened Meaning 
Of Systems Development Methods, ̂ cco««frng. Management, and Information Technology, 10,53-79. 

Weick, K.E. (1995) Sensemaking in Organizations, Thousand Oaks, CA: Sage Publications Inc. 

Weick, K.E. (2000) Emergent Change as a Universal in organizations, In: Beer, M. and Nohria, N. (eds.) 
Breaking the code of change, 223-242, Boston, MA: Harvard Business School Press. 

Weick, K.E. (2001) Making Sense of the Organization, Oxford: Blackwell Publishers. 

Communications of the LIMA 27 2006 Volume 6 Issue 1 



Learning to Improve Software Processes: Making Sense of Practice Allison & Merali 

Communications of the IIMA 28 2006 Volume 6 Issue 1 


	Communications of the IIMA
	2006

	Learning to Improve Software Processes: Making Sense of Practice
	Ian Allison
	Yasmin Merali
	Recommended Citation


	Learning to Improve Software Processes: Making Sense of Practice

