
Communications of the IIMA

Volume 5 | Issue 1 Article 5

2005

The Development of a Thorough Test Plan in the
Analysis Phase Leading to more Successful
Software Development Projects
Jim Nindel-Edwards
Seattle Pacific University

Gerhard Steinke
Seattle Pacific University

Follow this and additional works at: http://scholarworks.lib.csusb.edu/ciima

Part of the Management Information Systems Commons

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Communications of the IIMA by
an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Nindel-Edwards, Jim and Steinke, Gerhard (2005) "The Development of a Thorough Test Plan in the Analysis Phase Leading to more
Successful Software Development Projects," Communications of the IIMA: Vol. 5: Iss. 1, Article 5.
Available at: http://scholarworks.lib.csusb.edu/ciima/vol5/iss1/5

http://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol5%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol5?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol5%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol5/iss1?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol5%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol5/iss1/5?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol5%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol5%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol5%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol5/iss1/5?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol5%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


Development of a Thorough Test Plan Jim Nindel-Edwards & Gerhard Stelnke 

The Development of a Thorough Test Plan in the Analysis Phase Leading to 
more Successful Software Development Projects 

Jim Nindel-Edwards 
Seattle Pacific University 
e-mail: nindeiiSsDit.edii 

Gerhard Steinke 
Seattle Pacific University 
e-mail:asteinke!2isriu.edii 

ABSTRACT 

A critical problem in many software development projects is missing some important requirements until 
late in the development life cycle. The impact of a missing or misunderstood requirement can add to the 
project cost and delay product launch due to rework both of the application code, documentation updates, 
and addition test passes. Building a thorough test plan very early in the product development cycle has 
the potential for early discovery of missing requirements with attendant reduction in project costs and 
schedule improvement. In this paper we discuss some of the causative factors of how and why 
requirements can be missed in software development projects and show how the early formulation of a 
test plan can directly address these factors. Key to the success of this approach is the understanding that 
mature tests often go beyond the documented requirements for applications and into exploring the 
boundaries of the application domain where missing requirements can often be uncovered. In addition 
the test methodology of looking at features from multiple users' perspectives and less common use cases, 
shed light on misinterpreted and/or misunderstood requirements. 

Key words: Requirements management, test plan, test plan checklist, functional requirements, missing requirements. 

INTRODUCTION 

Software development projects invariably work better when requbements are thoroughly documented, designed and 
developed,. Yet in many cases the users and stakeholders of projects are not entirely clear in expressing their 
product requirements (Jones, 1997). The difficulty in visualizing the end product makes it challenging, if not 
downright difficult, to capture and document all the software product requirements. Without clear and complete 
requirements documentation developers often must build a complete, complex system from the only view of the 
product that typically has any real meaning to the user, the ubiquitous feature list. This list - hopefully found in the 
project proposal -becomes the de facto description of the new, or newly enhaneed, software product. 

Yet even complete, approved, requirements documentation often miss items critical to the success of a software 
project. The requirement may simply be assumed by the customer, may have been consider and not documented, or 
at the start of a project simply unknown. The missing requirements may be discovered in the build process or test 
cycle. Sadly some requirements go totally undiscovered until the product is released or implemented only to fail or 
be seriously defective in its first use due to "bugs", some of which may in fact be missed requirements. 

While it is both possible and likely to miss some product functionality requirements, the bulk of truly missed 
requirements lie outside the realm of the function/features of a software product (Leffingwell and Widrig, 2003). 
Factors such as product performance, load limits, target installation environments, and applieable standards are not 
generally considered primary requirements of a software product yet play a key role in the success (or failure) of a 
software product. While good and well structured requirements documentation will address many of these 
environmental requirements, those that are missed in the requirements stage often still are missing at product launch. 
To the extent they truly are requirements for product success early discovery of these in the project can be a critical 
success factor in helping to create an "on time, on budget" software development effort that meets both customer 
and stakeholders' expectations. 

Various methodologies. Object Oriented, Spiral (Boehm, 2000), Unified Development, Extreme (Jeffiies, 2001), and 
many other development lifecycles (Kay, 2002) address requirement elaboration in different ways and while 

Communications of the IIMA 41 2005 Volume 5 Issue 1 



Development of a Thorough Test Plan Jim Nindel-Edwards & Gerhard Steinke 

typically not focused on requirements management recognize the importance of the base requirements. Regardless 
of the chosen methodology recognition of important requirements late in the product lifecycle is an expensive 
consequence. 

In this paper we look at the foundational elements of project requirements and suggest that a thorough test plan will 
provide the environment for determining and classifying a more complete list of requirements beyond the commonly 
used functional requirement orientation. This enhanced emphasis on the test plan will be used to help us understand 
key strengths and key weaknesses of typical requirement methodologies. We suggest completing a test plan 
template that should allow the software development manager to better understand the full requirements of the 
software project going beyond functional requirements—and thus lead to more successful projects. 

GENERAL APPLICATION REQUIREMENTS 

The starting point for our research starts with the definition of "requirements". A typical usage of this term 
requirement is "a statement of need, something that some class of user or other stakeholder wants." (Alexander and 
Stevens, 2002) Another definition of requirements is offered by requirements engineering authors Dorfinan and 
Thayer (1990) in two parts: 

1. A software capability needed by the user to solve a problem to achieve an objective. 
2. A software capability that must be met or possessed by a system or system component to satisfy a contract, 

standard, specification, or other formally imposed documentation. 

In both of these definitions the primary emphasis is on the functionality of the software product, those features that 
satisfy a user's needs. Alexander and Stevens (2002) go on to define a function as "... something that a system or 
subsystem does, presumably because a requirement made it necessary." They also state that the commonly used 
term "functional requirement" "in practice ... means the same as function." 

Note that the second part of the Dorfman and Thayer (1990) definition of requirements goes beyond the needs of the 
software product, moving into the "contract, standard, specification, or other formally imposed documentation." 
Typically it is in these documents - the contracts, standards, specifications, etc., that the hidden or missed 
requirements will be found. Certainly we can miss functional requirements, but it is the area of form, fit, finish, and 
integration where we are more likely to overlook project requirements and it is in the "testing" of these less well 
documented requirements that the test plan creation process can help uncover missing project requirements. 

Humphrey Watts (1990) refers to unknown requirements and later misunderstood requirements. A misunderstood 
requirement often is recorded, but missing some contextual reference that would allow the requirement to be fully 
understood. 

Why should we be concerned about these other requirements that do not directly affect application functionality? 
Simply, meeting the second class of requirements is a prerequisite for acceptance of the project. Failure to meet a 
specification can preclude payment for a project. Rework may be required to fulfill a standard. Missing a 
contractually defined delivery date my reduce payment and/or impose late delivery payments from the supplier. 
Clearly it is our best interest as project managers to fully understand all the requirements of a project and in doing 
do lessen the risk of missing or misinterpreting any requirements. We suggest that these requirements will not be 
forgotten if a thorough test plan is included in the requirements definition phase. 

Requirements come in various forms and a clear, comprehensive understanding of all the project requirements is a 
prerequisite for the thorough test plan. Looking broadly we can classify requirements in to at least six different 
types. 
Functional Requirements - What an application must do 

Functional requirements are the most basic of all software and project requirements and many books and articles, 
including Manasins Software Reauirements (Leffingwell and Widrig, 2003)_and Writins Better Requirements 
(Alexander and Stevens, 2002), have been written on this subject. Simply stated, the functional requirements of a 
software product must answer the question: "What must the software product do?" to be a successful application. 
This seemingly simple question becomes increasing complex as more stakeholders and users get involved in 
requirements process. Functional requirements can be, and often are, in conflict with one another. An example of a 
potential requirement conflict might be: "easy to use" and "comprehensive in features." 

Communications of the IIMA 42 2005 Volume 5 Issue 1 



Development of a Thorough Test Plan Jim Nindel-Edwards & Gerhard Steinke 

Having collected all the requirements there can and should be a process of requirements conflict resolution to, where 
possible, we mold the functional requirements into the best possible package. For example, given the "feature rich" 
and "easy to use" requirements previously mentioned, a new requirement entitled: "allow customized user levels" 
might be introduced to resolve the apparent requirements conflicts. In other cases some features may simply be 
dropped as redundant in a comprehensive requirements review session. 

Since virtually all sofiware product development efforts have resource constraints, software product managers 
typically will segregate functional requirements into the "needs" and "wants." Balancing out the needs, wants, 
delivery date/time, and project costs is the very essence of software project management. If we are missing 
requirements or requirement priorities the process of selecting critically important functional requirements must be 
flawed as we do not have all of the information required for to make a fully informed selection. But herein lies the 
importance of creating a test plan which could identify all the requirement priorities for a successful software 
project. 

And assuming that we have a fiill set of requirements, are they fully understood? In the end there is a test for good 
requirements - are they themselves testablel Using the test plan approach can enhance the functional requirements 
process by assuring that the requirements are more precise, i.e. testable. Good functional requirement testability is 
an important contribution to the requirements process — helping to flush out ambiguities in function requirements. 

Application Architecture - How does this fit? 

Sofiware architectural and environmental requirements typically address the target computing environment for the 
software product. Ideally this information is included in the project requirements and happily, in most cases this is 
addressed. The full ramification of the target environment however may not be considered, particularly for some 
statistical outliers in the target environment. An example might be a target of a certain class of workstations only to 
fmd out in the implementation phase that not all departments have the specified or hoped for hardware. And, worse 
yet, some other business mandated sofiware package precludes upgrading their hardware. 

If this architecture requirement is included in the test plan, then the "missed" requirement here might be easy to 
rectify early in the development cycle, instead of being discovered at later phases of implementation which would 
cause serious, and costly, deployment delays and/or rework of the application to accommodate the "required" 
hardware configuration. 

Environmental Requirements - Where will it run? 

Environmental factors can follow a similar path of being included in some form in the initial project requirements 
yet incomplete in some critical regard at the time for beta testing and/or implementation. Referring to Myers's 
Project Objective list (Myers, 2003), application efficiency, compatibility, security, and several of the reliability 
attributes can be classified as environmental features, or requirements of sofiware applications. 

In the end analysis, this branch of the requirements project tree is the most productive area to specify in a test plan, 
particularly as our computing environments grow more complex (Schneberger, 1995). An intentional inclusion or 
exclusion of a specific enviromnent for a sofiware product in our test plan would represent a known and 
accommodated requirement. Sofiware test plans which clearly state "included" and "excluded" environmental 
factors help to bring focus to this area. 

Hardware and Software Standards - Does it comply with standards? 

Standards represent an abstraction of hardware and sofiware operating environments. Calling out applicable 
standards for any software product should be a part of the project requirements (Patton, 2001) and most requirement 
engineering templates provide for citation of applicable standards. Virtually no sofiware product exists without 
some standards based context, if nothing else, the target operating system(s). When no standards are either specified 
or acknowledged the software development project is in jeopardy as any change to the deployment target outside of 
the development environment could be considered as either a failed implementation or uncontrolled change to the 
project requirements. 

Citing of applicable hardware/software standards will reduce project risk factors. Citing of standards in project 
requirements therefore is necessary to a robust software product development project. 

Communications of the IIMA 43 2005 Volume 5 Issue 1 



Development of a Thorough Test Plan Jim Nindel-Edwards & Gerhard Stelnke 

A robust test plan provides two valuable functions in the compliance area. First is the validation that the software 
product in fact meets its target standards. Second, typical robust test plans and associated test cases will push the 
edges of the compliance requirements to determine how the application responds outside of the standard settings. 
Typically referred to as edge and boundary tests the test plan and associated test results can help product managers 
understand how the software product performs when applied outside the required standard. 

Functional Attributes - Does it satisfy secondary user groups? 

There exists a whole host of other functional requirements for software products to be successful, many of which are 
not specifically identified by the target user group for a specific product. The primary focus of most requirements 
sets is the functionality required causing a specific user group(s) to be interested it buying, switching to, or to 
otherwise accepting a specific application package. But there are secondary user groups who will be impacted—and 
they have their own requirements. Their set of functional requirements is too often overlooked in the requirements 
process. 

In this area several of Myers's other "Product Objectives" (Myers, 2003) fit, including documentation, efficiency, 
installation, and several reliability attributes. When working from high-level project requirements templates often 
these areas will in fact be addressed - at least they might have a subject heading in the requirements document. But 
too often they are simply addressed at the high level and thus are lost as the software development project unfolds. 

Vague and ambiguous efficiency and reliability requirements can easily be lost in an application design process. 
Product documentation too often is grafted onto software development projects or - worse yet - eliminated entirely, 
sacrificed to reduce project costs, shorten the initial product development cycle, or to allow including more 
functionality into the product. If efficiency, reliability, and documentation requirements are not clearly articulated 
and made part of the testing plan for the software product very likely they too, may be found missing when the 
product is delivered to the customer. 

Likewise software products that are installed in a shared environment (like an end user workstation) that either cause 
another application to fail, and/or are themselves "damaged" by the installation of another software package are of 
low quality and reliability. Unless we are building truly turn key hardware/software applications the install ability 
of an application should be part of the test plan. 

The test plan's role in this area has the highest likelihood of revealing missing requirements. Test plans or test 
scenarios depicting usage by secondary user groups can point out glaring holes in the product requirements. Robust 
test plans will look at the software product from all perspectives, primary users, secondary users, hard core users, 
and casual users. All of these scenarios and the corresponding test cases can yield both insights into missed or 
potentially missed requirements as well as providing validation for existing features included in the requirements. 

Product and System Security Requirements - Is it Secure? 

Security is in some regards similar to the previous group in that security is both functional, and necessary for most 
software applications. The functional aspect is that most software applications must consider and provide for 
application and data security. The project requirement here however is a little tenuous - must the application 
provide for the security? Or the environment where the applications operates, i.e. the operating system? 

Certainly we could consider application and data security to be functional - a feature the application must provide. 
It could be considered environmental - some combination of application functionality and operating system features 
could make an application "secure." Or even a functional requirement of a secondary user group - security being 
the responsibility of system administration rather than the primary user of an application. Sadly if left to any of 
these categories security features may be found to be lacking until late, perhaps very late, in the development cycle. 
Security requirements are particularly important to be well known and well rmderstood early in the development 
cycle. 

Security is another area where the test plan can help drive out both the comprehensive security needs of a software 
product. The peculiar attribute of computing security is that a functional requirement is quite easily stated - the 
application and its data must be secure. We can even go onto defining some of the attributes - data can be 
accessible by those who need it, but not to those that do not. Detailed test plans that include the methods of attack 
for an application can be a significant aid in the application design process to highlight the various possibilities for 

Communications of the IIMA 44 2005 Volume 5 Issue 1 



Development of a Thorough Test Plan Jim Nindel-Edwards & Gerhard Steinke 

application and data attack that the designs might not consider until too late in the development project, or too late 
after a successful data attack on the released application. 

TEST PLAN PERSPECTIVE - VERIFYING FUNCTIONALITY, FINDING DEFECTS 

We can apply a thorough test plan, identifying all requirements in this test plan during the requirements engineering 
phase. This approach reduces the likelihood of missing requirements to being discovered late in the development 
effort when they are more expensive to repair. 

Using a test plan checklist 

Using checklists is a common practice used in most formal development methodologies and is a well-accepted 
technique to insure all important project requirements have been considered in a software product's development 
plan. The process of gathering functional requirements generates the features list that becomes the functional 
checklist for both software quality activities and user acceptance. A comparable test plan checklist can be used to 
reasonable assure that all project requirements have been considered in the project plan. 

Functional tests mapped directly or indirectly to product objectives and functional requirements often will make up 
the bulk of the software test plan. Certainly a software product must meet functional requirements to be acceptable. 
The bulk of the test plan will most likely be directed at the classical areas of unit test, [unit] integration testing, 
functional/black box testing, etc. By in large, all of these tests are of course necessary and will server to validate 
both the application design, and verify the application meets the functional requirements. 

Once we move beyond the function requirements other software product attributes are called for in the test plan. 
Generally termed "system test" in test plan documents these areas have a greater probably of catching missed 
product requirements. Unfortunately however in a typical product life cycle these tests are not normally scheduled 
until late in the project, since they normally require a functioning application to perform the test. This relegation to 
late in the life cycle carries the risk of increased cost to repair, and higher likelihood of impacting the product 
delivery schedule. But looking at the software product from the software test perspective yields a different vision 
that goes beyond the ftmction product attributes, as seen below in Figure 1. That is why clearly articulating the test 
plan early on is so valuable. 

Naturally a test plan initiated early in the product development cycle must keep pace with the application being 
developed. As the application progresses through the design, develop, test, change, re-release, re-test cycle new 
areas for system level tests will be exposed. A complete and well developed test plan will need maintenance just as 
the application it verifies is being developed and maintained. 

Communications of the IIMA 45 20G5 Volume 5 Issue 1 



Development of a Thorough Test Plan Jim Nindel-Edwards & Gerhard Steinke 

Functional Requirements Testing 

B All documented user requirements, primary and other required use case scenarios 
S3 Human Factors - Identification of processes and procedures that will be difficult or inconvenient 

for the users/operators of the application 
• User's manual and/or on-line documentation 
• Help files 
• Samples and examples 
• Icons and artwork 

Application Architecture Testing 

B Configuration: Determine the planned legal hardware and/or software configuration on which the 
system will, and will not operate correctly 

0 Compatibility - Test and expose areas where system interfaces that are possible and likely are not 
fully functional 

S3 Installability - Test for proper installation of the application and determine situations where 
correct installation can yield incorrect results from the application and/or adverse affects on the 
installation target 

Environmental Requirements Testing 

E3 Load/Stress Testing - Objective: To identify the peak load conditions at which the system fails. 
B Volume - Objective: Test to determine the level of continuous heavy load at which the system 

will fail 
S3 Performance - Determine and benchmark application performance under nominal and peak 

conditions 
S3 Reliability/Availability - Records the uptime performance of the application under nominal and 

peak loads 
• Setup and installation 

Hardware and Software Standards Testing 

B Application deployment on all specified hardware and using requirement specified operation 
systems, including where applicable different versions of operating systems 

B Verification against various system interfaces, including current industry standards for 
information exchange (HTML, XML, SOAP, UDDI, etc.) 

• Error messages 

Functional Attributes, Secondary User Groups Testing 

B Serviceability - Identify the applieation's diagnostic results helping application administrators to 
determine corrective procedures, both proactive and reactive 

0 Testing common use case scenarios of secondary user groups 
• Product support information (contact #'s, e-mail addresses, etc.) 
• Ads and marketing material 

Product and System Security Requirements Testing 

0 Security - Testing various methods to break through the security provisions of the application 
0 Recovery - Examines application behavior after encountering errors or other abnormal 

conditions. 

Figure 1: Sample Project Test Plan. 

Test at every step in the product life cycle 

"Testing" of a software application need not wait until the application is actually functioning. Part of the test plan 
created during the analysis phase, may have items to be tested during each of the following phases. Requirements, 
specifications, and application design are all testable even from documentation. Projects that use Rapid Application 
Development (RAD) or eXtreme Programming (XP) techniques actually will have testable software earlier in the 

Communications of the IIMA 46 2005 Volume 5 Issue 1 



Development of a Thorough Test Plan Jim Nindel-Edwards & Gerhard Steinke 

project lifecycle. 

Even when RAD and XP techniques are not used every deliverable from a software development effort is testable in 
some sense. If by no other method than by document review the requirements of individual system components may 
be tested through scenario analysis to see the effects of these components on larger system. A simple example 
might be a design feature that allows a web service a limited time, several seconds delay even if the intranet or 
extranet is slow to respond to a web service request. If this same service were to be used repeatedly in a single 
transaction the overall response time for the transaction could exceed the design goals for the transaction. In this 
event we can "test" the transaction without any code even being built. The comparison of the design specifications 
to a perform requirement or goal is sufficient to see room for a possible transaction failure. 

CONCLUSION 

Missing one or more software product requirements needed for a successful launch or version of a software product 
or system seems as inevitable as the knowledge that there is a "bug" in an application. Just as there can be minor 
defects in applications that do not prevent product release, there are classes of software requirements that, if missed, 
can either be gracefully deferred from a product release or renegotiated with the project sponsor. While we can and 
often do defer both requirements and bug fixes to later releases we need to occasionally ask ourselves. Why? Why 
did we miss the requirement? Or why was it that the requirement was misunderstood until too late in the project to 
be corrected prior to project launch? We suggest that the creation of a detailed test plan in the requirements phase 
will clarify all requirements and thereby lead to more successful soflware development projects. 

A testing plan can help in the early discovery of missing and misunderstood requirements. Development of the 
product test plan early in the product life cycle, and constantly testing the product against this test plan can 
significantly improve the overall product quality. Some may ask "How can this be? Testing costs in test resources 
and adds nothing to the overall functionality of the application!" True perhaps, but the balance here is the cost of 
rework late in the development life cycle - which likewise adds no value to the software product - it is simply 
rework. Doing again what might have been done correctly the first time. 

REFERENCES 

Alexander, Ian F. and Stevens, Richard (2002). Writing Better Requirements, London, Addison-Wesley. 

Boem, Barry, edited by Hansen, Wilfred J (July 2002). Spiral Development: Experience, Principles, and 
Refinements, Pittsburgh, Carnegie Mellon, Software Engineering Institute. Website: 
w\^'w.sei.cinu.edu/cbs.%piral2000/lebruarv2000/SR08.pdf 

Dorfman, Merlin, and Thayer, Richard H. (1990). Standards, Guidelines, and Example of System and Software 
Requirements Engineering, Los Alamitos, CA: IEEE Computer Soeiety Press. 

Jeffries, Ron (2001). What is Extreme Programming?, XProgramming.eom. Website: 
http://w'ww.xproaramming.com/xpmag/wliatisxp.htm 

Jones, Casper (1997). Software Quality, Analysis and Guidelines for Success, London, Thomson Computer Press, 
page 67. 

Kay, Russel (May, 2002). QuickStudy: System Development Life Cycle, COMPUTERWORLD. Website: 
www.comDuterworld.com/developmenttoi)ics/devel.opment''storv/0.10801.71151 .OO.html 

Leffingwell, Dean and Widrig, Don (2003). Managing Software Requirements, a Use Case Approach, 2"'' Ed, 
Boston, Addision-Wesley page 129. 

Myers, Glenford J. (1976) Software Reliability, New York, John Wiley & Sons. 

Patton, Ron (2001) Software Testing, Indianapolis, SAMS Publishing, page 59. 

Communications of the LIMA 47 2005 Volume 5 Issue 1 



Development of a Thorough Test Plan Jim Nindel-Edwards Gerhard Stelnke 

Schneberger, Scott L (1995). Distributed Computer Environment Software Maintenance: System Complexity Versus 
Component Simplicity, Proceedings from the Assoeiation for Information Systems Inaugural Americas 
Conference. See: http:.:/socrates.bavlor.edii/ramsower/acis.'sessions.htm Watts, Humphrey (1990). 
Managing the Software Process, Addison-Wesley. 

Communications of the HMA 48 2005 Volume 5 Issue 1 


	Communications of the IIMA
	2005

	The Development of a Thorough Test Plan in the Analysis Phase Leading to more Successful Software Development Projects
	Jim Nindel-Edwards
	Gerhard Steinke
	Recommended Citation


	The Development of a Thorough Test Plan in the Analysis Phase Leading to more Successful Software Development Projects

