
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 3, June 2023, pp. 3124~3130

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i3.pp3124-3130 3124

Journal homepage: http://ijece.iaescore.com

Evaluation of the strength and performance of a new hashing

algorithm based on a block cipher

Kunbolat Algazy1,2, Kairat Sakan1,2, Nursulu Kapalova1,2
1Laboratory of Information Security, Institute of Information and Computational Technologies, Almaty, Kazakhstan

2Faculty of Information Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan

Article Info ABSTRACT

Article history:

Received Jul 28, 2022

Revised Sep 7, 2022

Accepted Oct 1, 2022

 The article evaluates the reliability of the new HBC-256 hashing algorithm. To

study the cryptographic properties, the algorithm was implemented in software

using Python and C programming languages. Also, for the algebraic analysis

of the HBC-256 algorithm, a system of Boolean equations was built for one

round using the Transalg tool. The program code that implements the hashing

algorithm was converted into a software program for generating equations. As

a result, one round of the compression function was described as conjunctive
normal form (CNF) using 82,533 equations and 16,609 variables. To search for

a collision, the satisfiability (SAT) problem solver Lingeling was used,

including a version with the possibility of parallel computing. It is shown that

each new round doubles the number of equations and variables, and the time to
find the solution will grow exponentially. Therefore, it is not possible to find

solutions for the full HBC256 hash function.

Keywords:

Algebraic cryptanalysis

Collision

Cryptanalysis

Cryptography

Hash function
This is an open access article under the CC BY-SA license.

Corresponding Author:

Kairat Sakan

Faculty of Information Technology, Al-Farabi Kazakh National University

71 al-Farabi Ave., Almaty, 050040, Kazakhstan

Email: 19kairat78@gmail.com

1. INTRODUCTION

In today's information world one of the key values is to ensure the reliability and security of

information. Many information systems, including low-resource internet of things (IoT) devices, use various

cryptographic transformations to ensure information security during data storage and transmission. One of the

basic cryptographic transformations involved in various security issues is hash functions; one-way

mathematical transformations that convert an arbitrary input data array into a unique sequence of fixed length.

Modern hash functions are used to implement various information security procedures, such as user

authentication [1]–[5], data integrity control [6], [7], electronic signature [8], formation of cryptocurrency

transactions [9]–[12], search for malicious software [13]–[17], creation of stego-containers (hash-based

approach) [18], and optimization of biometric identification algorithms [19]. The requirements for

cryptographic hash functions are as follows.

− High performance: For any message M it is possible to efficiently calculate the hash value h in real time.

− Irreversibility (one-way function): Given a known hash value h, it is computationally difficult to find a

message M with ℎ = ℎ𝑎𝑠ℎ(𝑀).

− Weak resistance: Given a known message M, it is computationally difficult to generate (compute) a

message M' such that ℎ = ℎ𝑎𝑠ℎ(𝑀) = ℎ𝑎𝑠ℎ(𝑀′).

− Strong resistance: It is computationally difficult to find random messages M and M' such that ℎ𝑎𝑠ℎ(𝑀) =
ℎ𝑎𝑠ℎ(𝑀′).

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

 Evaluation of the strength and performance of a new hashing algorithm based … (Kunbolat Algazy)

3125

Currently, hashing functions are built using three constructions. The first one is various non-linear bit

functions. The second one is the Merkle-Damgard construction that uses compression functions in the form of

block symmetric encryption algorithms. The third one is specialized structures.

Given that the strength of the algorithms used to calculate hash values underlies the security of many

information systems and services, an important task is a comprehensive study of the strength of the developed,

modernized, and initially applied cryptographic algorithms for calculating hash values to various cryptanalysis

methods and methods for detecting collisions. Baseline security recommendations for IoT [20] of the European

Union Agency for Network and Information Security (ENISA) describe that to ensure information security in

critical information infrastructures, it is required to provide the following:

− GP-TM-24: Authentication credentials shall be salted, hashed, and/or encrypted.

− GP-TM-34: To ensure proper and effective use of cryptography to protect the confidentiality, authenticity,

and/or integrity of data and information (including control messages), in transit and at rest. To ensure the

proper selection of standard and strong encryption algorithms and strong keys and disable insecure

protocols. To verify the robustness of the implementation.

− GP-TM-36: Build devices to be compatible with lightweight encryption and security techniques.

− GP-OP-04: To use proven solutions, i.e., well-known communications protocols and cryptographic

algorithms, and recognized by the scientific community. Certain proprietary solutions, such as custom

cryptographic algorithms, should be avoided.
Based on recommendations, standards, and international experience in the field of information

security, it can be argued that research devoted to the analysis of the strength of cryptographic algorithms of

hash functions is relevant and requires continuous work to assess the current state in this field of knowledge

for each algorithm used or its modification.

2. METHOD

2.1. HBC-256 hash function

The hash-based on block cipher (HBC-256) hashing algorithm is new and belongs to the class of new

hash functions. A detailed description of the algorithm and some approaches to its analysis are presented in

[21]. The HBC-256 hash function is built on the Merkle-Damgard construction. The essence of the design is

an iterative process of sequential transformations when the input of each iteration receives a block of the source

text and the output of the previous iteration. At each iteration, the transformation occurs by a special

compression function (CF).

The general structure of the compression function can be represented as shown in Figure 1. The input

of the compression function receives a 128-bit message. This message is also the master key from which the

round keys are generated, and the same message is the input message of the compression function. The main

difference is that multiple processing (8 rounds) takes place to generate the next key. Also, different Stage-2

operations are applied during key generation and the compression function.

The general hashing scheme processes the message M, which consists of three 128-bit blocks. After

all, three blocks have been processed, they are shuffled and the first 256 bits form the desired hash value. If

the length of the original message is less than 384 bits, then the message is padded as described in [21].

Figure 1. General structure of the compression function

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 3124-3130

3126

Each round for the compression function consists of three transformations called Stage-1, Stage-2,

and Stage-3. For Stage-1 and Stage-3 operations, data is represented as a 4×4 matrix, where each element of

the matrix is one byte. For the Stage-1 operation, the transformation is performed from left to right and from

top to bottom. To form each element, the addition modulo two is implemented to all elements of the row and

column at the intersection of which the element is located, and then it is replaced using S-boxes. The Stage-3

transformation is similar to the Stage-1 transformation but the transformation is applied from right to left and

from bottom to top. To replace each byte, two S-boxes are used from those presented in Table 1. The byte that

needs to be replaced by S-boxes is in a 4×4 matrix at the intersection of the ith column and the jth row. Therefore,

to convert each byte, it is necessary to divide it into two nibbles. The high nibble is replaced by Si-box and the

low nibble–by Sj-box. After that, the result of the replacement is reversed: the output of Si forms the low nibble

of the new state, and the output of Sj is the high nibble as can be seen in Figure 2.

The Stage-2 transformation consists of two operations: a circular shift and a modulo 2 addition (XOR)

operation. The elements of a 4×4 matrix are written as a single block of data by concatenating all bytes. Further,

a cyclic shift to the left by one bit is performed. The result of the Stage-2 operation is the result of the modulo two

addition of the original state and the state shifted to the left by one bit. When generating a key in the Stage-2

operation, there is no modulo two addition operation, and the result of the function is a shift to the left by one bit.

A hash function or compression function is a function that converts an array of input data of arbitrary

length into an output bit string of a fixed length, performed by a certain algorithm. The transformation

performed by the hash function is called hashing. The input data is called the input array, key, or message. The

result of the transformation is called a hash, hash code, hash sum, message summary, or digest.

In the general case, there is no one-to-one relationship between the hash code and the original data.

The values returned by the hash function are less diverse than the values of the input array. The case in which

a hash function converts more than one array of input data into the same summaries is called a collision.

Collision probability is used to evaluate the quality of hash functions.

For cryptographic hash functions, special requirements apply, i.e., resistance to pre-image and second

pre-image attacks and irreversibility. Irreversibility of a hash function is such a property that, for a given value

of the hash function h(M), it is computationally impossible to find the original block of data M. Pre-image

resistance means that for a given message M it is computationally difficult to select another message M1 so that

the hash values of these messages match, i.e., ℎ𝑎𝑠ℎ(𝑀) = ℎ𝑎𝑠ℎ(𝑀1). Second pre-image resistance means that

it is computationally difficult for any M to find two different messages M and M1 that have the same hash.

Table 1. Four "golden" S-boxes
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

𝑆0(x) 0 F B 8 C 9 6 3 D 1 2 4 A 7 5 E

𝑆1(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D

𝑆2(x) 7 C E 9 2 1 5 F B 6 D 0 4 8 A 3

𝑆3(x) 4 A 1 6 8 F 7 C 3 0 E D 5 9 B 2

Figure 2. S-box byte transformation

2.2. Method of algebraic analysis

Methods of algebraic analysis [22] are universal methods applicable to many varieties of

cryptographic algorithms: symmetric block and stream ciphers, and algorithms for computing hash values.

Algebraic attacks are based on solving systems of non-linear equations to recover a secret key or message. For

the cryptanalysis of hash functions, algebraic attacks can be used to detect collisions and pre-image if a

potentially weak compression function is used. The basic idea of algebraic attacks is to recover the secret key

Int J Elec & Comp Eng ISSN: 2088-8708

 Evaluation of the strength and performance of a new hashing algorithm based … (Kunbolat Algazy)

3127

by solving non-linear equations involving the message, the ciphertext, and the key bits. An algebraic attack

consists of two stages. Stage 1 is the generation of a sufficient number of non-linear equations of low degree

or structured (multidimensional) non-linear equations. Stage 2 is the calculation of key bits by solving a system

of equations.

The first step needs to be performed only once for the cryptographic algorithm under consideration.

The most commonly used methods for solving equations include linearization algorithms [23]–[25], Gröbner

basis [26], and reduction to the SAT problem [27]. Linearization solves the resulting system of non-linear

equations by replacing non-linear terms with new variables, so each non-linear monomial is replaced by a new

variable. The resulting new system will be linear and can be solved by the Gaussian elimination method.

Another class of general algorithms for solving systems of algebraic equations is based on Gröbner bases. In

practice, there are some automated tools, such as SAT solvers: CryptoMiniSat, Lingeling, and Cadical, if the

number of equations describing the analyzed hash algorithm is not too large.

The algebraic analysis assumes that any encryption process can be represented in the form of algebraic

transformations and mathematically describe the explicit dependence of output bits on input bits. The process

of compiling such a system (most often just Boolean equations) is quite difficult and takes up most of the time.

This type of analysis is not statistical, which means that only a few pairs of plaintext-ciphertext are needed to

solve this system. The variables of a Boolean set of equations can take only two values 0 and 1, therefore, the

system can be written with several logical bases – (|,&,￢), (&,￢),(|,￢), (⊕,&). The last three options,

respectively, allow us to write the expression in disjunctive normal form (DNF), conjunctive normal form

(CNF), and the form of the Zhegalkin polynomial. After creating such an algebraic description, it is necessary

to solve the constructed system of equations, which can be done using one of the SAT solvers, the result of

which will show whether the system has a solution under given conditions or not.

3. RESULTS AND DISCUSSION

3.1. Features of HBC-256 hashing function implementations and experimental data obtained

For hashing functions, we have obtained program implementations using Python and C programming

languages. Below is a fragment of the C implementation of the HBC-256 function, which describes the

operation of the Stage1 function.

void Stage1(struct CompressFunction*HashObject) {

 for (int i = 0; i < NUMBER_OF_ELEMENTS_IN_STATE; i++) {

 for (int j = 0; j < NUMBER_OF_ELEMENTS_IN_STATE; j++) {

 unsigned char tmp = HashObject > state[i][j];

 for (int k = 0; k < NUMBER_OF_ELEMENTS_IN_STATE; k++) {

 tmp ^ = HashObject > state[i][k];

 }

 for (int m = 0; m < NUMBER_OF_ELEMENTS_IN_STATE; m++) {

 tmp ^ = HashObject > state[m][j];

 }

 HashObject ->state[i][j]= SBOX(i, j, tmp));

 }

 }

}

Using the obtained implementations, we carried out experiments and time measurements of the

processing speed of one message using different personal computer (PC) configurations. During an experiment,

the same block of data was hashed 1,000 times, after which the average processing time per data block was

calculated. It is important to consider that in multicore systems the experiment was performed using a single

core. The results of the experimental measurements are shown in Table 2.

Table 2. Experimental results of software implementations
Algorithm PC parameters Language Max t Min t Avg t

HBC-256 Intel(R) Core (TM) i5-11400H C 0.000728 0.000614 0.000650

HBC-256 Intel Core i5, 8GB RAM Python 0.052314 0.0276546 0.0379676

3.2. Finding a collision by algebraic analysis

For algebraic analysis, it is necessary to construct a system of Boolean equations. For this purpose,

the tool Transalg is used [28], [29]. This software tool converts a cryptographic algorithm into a system of

equations and supports writing in the CNF format, in the basis of &, ¬ and in the form of dependencies on the

input bits in the symbolic postfix representation.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 3124-3130

3128

The program code implementing the hashing algorithm was converted into the program code for

generating equations. As a result, one round of the compression function was described as a CNF using 82,533

equations and 16,609 variables. Some of the equations are presented below.

Х176 = Х168 Х102 ^

Х177 = Х169 Х103 ^

Х178 = Х170 Х104 ^

Х179 = Х178 Х177 ^ X177 X178 & ^ X176 ^ X176 X178 & ^ X176 X177 &

Х180 = Х178 Х177 X178 & ^ X176 ^ X176 X177 & X178 & ^ X175 ^ X175

Х181 = Х178 Х177 ^ X176 X178 & ^ X175 X178 & ^ X175 X177 & X178 &

Х182 = Х178 Х177 ^ X176 X177 & ^ X175 ^ X175 X178 & ^ X175 X176 &

Х183 = Х174 Х173 ^ X173 X174 & ^ X172 ^ X172 X174 & ^ X172 X173 &

Х184 = Х174 Х173 X174 & ^ X172 ^ X172 X173 & X174 & ^ X171 ^ X171

Х185 = Х174 Х173 ^ X172 X174 & ^ X171 X174 & ^ X171 X173 & X174 &

Х186 = Х174 Х173 ^ X172 X173 & ^ X171 ^ X171 X174 & ^ X171 X172 &

Х187 = Х9 Х179 ^

Х188 = Х10 Х180 ^

Х189 = Х11 Х181 ^

Х190 = Х12 Х182 ^

Х191 = Х13 Х183 ^

Х192 = Х14 Х184 ^

Х193 = Х14 Х184 ^

The correctness of the constructed equations was checked using control values for the input and output

of the compression function using special code in Java. To partially generate the system and solve it, the use

of an SAT solver is necessary. We chose a series of SAT solvers Lingeling, including a version with the ability

to parallelize the calculation of Plingeling, as well as cubic and competitive versions of Treengeling and

Lingeling. Value checking is performed on one state of one round of the compression function [30].

To test the operation, Lingeling was run with the original system of equations and the constraint on

the values of output variables, that is, finding the values of input variables with known output variables

(restoring the prototype). These calculations were run with the condition that the outputs are equal to the test

condition. The solution was known, that is, there was a check for side solutions (collisions), as well as an

estimate of the computation speed of the known input value (test restoration of the prototype). Without

additional options using a single-processor kernel, this problem took 241,000 sec = 67 hours and did not find

an existing solution or an additional one Figure 3. To speed up solution finding, some of the input variables were

marked and the speed of finding the solution was checked on a test case. Data with the calculation time for partially

marked values are shown in Tables 3 and 4. Thus, the constructed system of equations with some probability

allows obtaining a prototype for one round of compression function. Further work should be aimed at constructing

a system of equations describing a full-round hashing function. Also, the solution search algorithm can be

reconfigured to find a first-order collision.

Figure 3. Calculation of the prototype in Lingeling

Int J Elec & Comp Eng ISSN: 2088-8708

 Evaluation of the strength and performance of a new hashing algorithm based … (Kunbolat Algazy)

3129

Table 3. Computation speed in seconds for

calculations on a single-processor core
Number of unknown bits 0 8 16 24

Plingeling - 15.8 1851 unknown

Treengeling 0.11 19.54 105.41 207987.68

Table 4. Computation speed in seconds for

calculations on a six-processor core
Number of

unknown bits

0 8 16 24 128

Plingeling - 0.1 2.9 27807.5 39331.7

4. CONCLUSION

The results obtained correspond to the chosen methods of analysis. For the hashing algorithm, we

obtained implementations using Python and C programming languages, which were tested using different

computer configurations (Table 1). Algebraic analysis of one round of the hashing function HBC-256 yielded

a system of 82,533 equations and 16,609 variables. It took about 11 hours to solve the system and allow us to

determine the prototype for one round of encryption (Tables 3 and 4). It should be noted that Plingeling uses

randomization in its algorithms to find a solution. Therefore, only one experiment out of five ended with a

successful finding of the full prototype. That said, it is naturally clear that with each new round the number of

equations and variables will double, and the time to find a solution will grow exponentially. Thus, at the

moment it is not possible to find solutions for the full HBC-256 hashing function.

The HBC-256 hashing algorithm under consideration is new and was first presented. Currently, there

are no publications on the study of the properties of this hashing algorithm. The reliability of new cryptographic

algorithms is confirmed by thorough multiple studies of different aspects of robustness. For hashing functions,

it is research in the field of irreversibility and searches for collisions.

The biggest limitation when conducting research is the difficulty of using full-size inputs and outputs

for the developed hashing algorithms because the analysis becomes time-consuming and demands

computational resources and time. One solution to this problem is to use reduced models or functions to model

and approximate the result. The study has not identified any vulnerabilities in the full-round hashing algorithm.

Not all possible analysis methods were considered. The methods used were not always applied to full-run

versions of the algorithm. All of this will be improved upon in the future. This study is only the first step in

investigating the properties of the new hashing algorithm. The proposed approaches can be improved.

ACKNOWLEDGEMENTS

The research work was carried out within the framework of the project OR11465439 – Development

and research of hashing algorithms of arbitrary length for digital signatures and assessment of their strength"

at the Institute of Information and Computational Technologies.

REFERENCES
[1] S. L. Nita and M. I. Mihailescu, “Hash functions,” in Cryptography and Cryptanalysis in Java, Berkeley, CA: Apress, 2022,

pp. 101–112, doi: 10.1007/978-1-4842-8105-5_8.

[2] N. Kheshaifaty and A. Gutub, “Engineering graphical captcha and AES crypto hash functions for secure online authentication,”

Journal of Engineering Research, Nov. 2021, doi: 10.36909/jer.13761.

[3] P. Farshim and S. Tessaro, “Password hashing and preprocessing,” in EUROCRYPT 2021: Advances in Cryptology – EUROCRYPT

2021, 2021, pp. 64–91, doi: 10.1007/978-3-030-77886-6_3.

[4] J. Herrera and M. L. Ali, “Concerns and security for hashing passwords,” in 2018 9th IEEE Annual Ubiquitous Computing,

Electronics & Mobile Communication Conference (UEMCON), Nov. 2018, pp. 861–865, doi: 10.1109/UEMCON.2018.8796720.

[5] M. A. D. Brogada, A. M. Sison, and R. P. Medina, “Head and tail technique for hashing passwords,” in 2019 IEEE 11th International

Conference on Communication Software and Networks (ICCSN), Jun. 2019, pp. 805–810, doi: 10.1109/ICCSN.2019.8905384.

[6] V. Fomichev, D. Bobrovskiy, A. Koreneva, T. Nabiev, and D. Zadorozhny, “Data integrity algorithm based on additive generators

and hash function,” Journal of Computer Virology and Hacking Techniques, vol. 18, no. 1, pp. 31–41, Mar. 2022, doi:

10.1007/s11416-021-00405-y.

[7] J. Wang, W. Luo, Y. Hu, and H. Jiang, “PN-HASH: An immune-inspired scheme for data integrity check,” in 2020 12th International

Conference on Advanced Computational Intelligence (ICACI), Aug. 2020, pp. 340–348, doi: 10.1109/ICACI49185.2020.9177796.

[8] T. Espitau, “Mitaka: Faster, simpler, parallelizable and maskable hash-and-sign signatures on NTRU lattices,” in Proceedings of

the 8th ACM on ASIA Public-Key Cryptography Workshop, May 2021, pp. 1–1, doi: 10.1145/3457338.3458293.

[9] O. Belej, K. Staniec, and T. Więckowski, “The need to use a hash function to build a crypto algorithm for blockchain,” in Theory

and Applications of Dependable Computer Systems, 2020, pp. 51–60, doi: 10.1007/978-3-030-48256-5_6.

[10] N. Yuvaraj and P. Mohanraj, “Radial kernelized regressive Merkle–Damgård cryptographic hash blockchain for secure data

transmission with IoT sensor node,” Peer-to-Peer Networking and Applications, vol. 14, no. 4, pp. 1998–2010, Jul. 2021, doi:

10.1007/s12083-021-01135-0.

[11] N. R. Chilambarasan and A. Kangaiammal, “Matyas–Meyer–Oseas skein cryptographic hash blockchain-based secure access

control for E-learning in cloud,” in Inventive Systems and Control, 2021, pp. 895–909, doi: 10.1007/978-981-16-1395-1_65.

[12] H. K. Patil, “Blockchain technology-security booster,” in IGI Global, 2021, pp. 128–139, doi: 10.4018/978-1-7998-2414-5.ch008.

[13] R. Punithavathi, K. Venkatachalam, M. Masud, M. A. AlZain, and M. Abouhawwash, “Crypto hash based malware detection in

IoMT framework,” Intelligent Automation & Soft Computing, vol. 34, no. 1, pp. 559–574, 2022, doi: 10.32604/iasc.2022.024715.

[14] N. Naik, P. Jenkins, N. Savage, L. Yang, T. Boongoen, and N. Iam-On, “Fuzzy-import hashing: A malware analysis approach,” in

2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jul. 2020, pp. 1–8, doi: 10.1109/FUZZ48607.2020.9177636.

[15] S. C. Peiser, L. Friborg, and R. Scandariato, “JavaScript malware detection using locality sensitive hashing,” in ICT Systems Security

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 3124-3130

3130

and Privacy Protection. SEC 2020, 2020, pp. 143–154, doi: 10.1007/978-3-030-58201-2_10.

[16] D. Moon, J. Lee, and M. Yoon, “Compact feature hashing for machine learning based malware detection,” ICT Express, vol. 8,

no. 1, pp. 124–129, Mar. 2022, doi: 10.1016/j.icte.2021.08.005.

[17] T. Baba, K. Baba, and T. Yamauchi, “Malware classification by deep learning using characteristics of hash functions,” in Advanced

Information Networking and Applications. AINA 2022, 2022, pp. 480–491, doi: 10.1007/978-3-030-99587-4_40.

[18] R. Riasat, I. S. Bajwa, and M. Z. Ali, “A hash-based approach for colour image steganography,” in International Conference on

Computer Networks and Information Technology, Jul. 2011, pp. 303–307, doi: 10.1109/ICCNIT.2011.6020886.

[19] S. Karaman and S.-F. Chang, “Hashing for face search,” in Computer Vision, Cham: Springer International Publishing, 2021,

pp. 553–558, doi: 10.1007/978-3-030-63416-2_817.

[20] ENISA, “Baseline security recommendations for IoT,” European Union Agency for Network and Information Security

https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot/@@download/fullReport (accessed Jun. 01,

2022).

[21] K. Sakan, S. Nyssanbayeva, N. Kapalova, K. Algazy, A. Khompysh, and D. Dyusenbayev, “Development and analysis of the new

hashing algorithm based on block cipher,” Eastern-European Journal of Enterprise Technologies, vol. 2, no. 9 (116), pp. 60–73,

Apr. 2022, doi: 10.15587/1729-4061.2022.252060.

[22] G. V. Bard, Algebraic cryptanalysis. Boston, MA: Springer US, 2009, doi: 10.1007/978-0-387-88757-9.

[23] N. T. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers with overdefined systems of equations,” in ASIACRYPT 2002:

Advances in Cryptology — ASIACRYPT 2002, 2002, pp. 267–287, doi: 10.1007/3-540-36178-2_17.

[24] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient algorithms for solving overdefined systems of multivariate polynomial

equations,” in Eurocrypt’2000, LNCS 1807, 2000, pp. 392–407, doi: 10.1007/3-540-45539-6_27.

[25] R. Biyashev, D. Dyusenbayev, K. Algazy, and N. Kapalova, “Algebraic cryptanalysis of block ciphers,” in Proceedings of the 2019

International Conference on Wireless Communication, Network and Multimedia Engineering (WCNME 2019), 2019, pp. 129–132,

doi: 10.2991/wcnme-19.2019.30.

[26] M. Bardet, J.-C. Faugère, and B. Salvy, “On the complexity of the F5 Gröbner basis algorithm,” Journal of Symbolic Computation,

vol. 70, pp. 49–70, Sep. 2015, doi: 10.1016/j.jsc.2014.09.025.

[27] E. Ishchukova, E. Maro, and P. Pristalov, “Algebraic analysis of a simplified encryption algorithm GOST R 34.12-2015,”

Computation, vol. 8, no. 2, May 2020, doi: 10.3390/computation8020051.

[28] A. Biere, “Lingeling, Plingeling, and Treengeling entering the SAT competition 2013,” Proceedings of SAT Competition, 2013,

pp. 51–52.

[29] I. Otpuschennikov, A. Semenov, I. Gribanova, and O. Zaikin, “Encoding cryptographic functions to SAT using TRANSALG

system,” in ECAI’16: Proceedings of the Twenty-second European Conference on Artificial Intelligence, 2016, pp. 1594–1595, doi:

10.3233/978-1-61499-672-9-1594.

[30] A. Biere, “lingeling,” Github. https://github.com/arminbiere/lingeling (accessed Jun. 03, 2022).

BIOGRAPHIES OF AUTHORS

Kunbolat Algazy received a master's degree in mathematics from Al-Farabi Kazakh

National University in 2001 and a Ph.D. degree in information security systems, in Almaty,

Kazakhstan, in 2021. From 2001 to 2014 he worked in the field of information protection in the

state structure. Between 2014 and 2016, he worked as a teacher at the Department of
Mathematics at Satbayev University. Currently, he is a researcher in the laboratory "Information

Security" at the Institute of Information and Computing Technology. His research interests

include cryptography, cryptanalysis, development, and research in the field of information

protection. He can be contacted at kunbolat@mail.ru.

Kairat Sakan graduated from the Faculty of Mechanics and Mathematics of Al-Farabi
Kazakh National University, majoring in mathematics and applied mathematics (KazNU, Almaty,
Kazakhstan) in 2001. From 2001 to 2002, he worked as a teacher at the Department of Applied
Mathematics and Mathematical Modeling at KazNU. From 2003 and 2005, he worked as a junior
researcher at the Research Institute of Mathematics and Mechanics (IMM) of KazNU. After that,
he worked in the field of information protection in the state structure for several years. Since 2018,
he has been working as a mathematician in the information protection laboratory at the Scientific
Institute of Information and Computing Technologies. Currently, he is a doctoral student at KazNU,
majoring in information security systems. His field of scientific research is information protection
in the public and private sectors. He can be contacted at 19kairat78@gmail.com.

Nursulu Kapalova received her master's degree in mathematics from Al-Farabi

Kazakh National University in 2002 and her degree candidate in technical sciences (Almaty,
Kazakhstan) in 2009. Currently, she is a leading researcher in the laboratory of "Information

Security" at the Institute of Information and Computing Technology and an associate professor

at the Department of "Information Systems" at Al-Farabi Kazakh National University. Her areas

of scientific works are development and research in the field of information protection. She can
be contacted at nkapalova@mail.ru.

https://orcid.org/0000-0003-3670-2170
https://scholar.google.com/citations?view_op=list_works&hl=ru&user=I512CzYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57202761698
https://www.webofscience.com/wos/author/record/2224884
https://orcid.org/0000-0002-6812-6000
https://scholar.google.co.id/citations?hl=ru&user=hgk1jFQAAAAJ
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57687675800&zone=
https://www.webofscience.com/wos/author/record/3914255
https://orcid.org/0000-0001-9743-9981
https://scholar.google.com/citations?user=ErxcNU8AAAAJ&hl=ru&oi=ao
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57191242124&zone=
https://www.webofscience.com/wos/author/record/705250

