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ABSTRACT

Classification is one of the basic and most important operations that can be used
in data science and machine learning applications. Multi-label classification is
an extension of the multi-class problem where a set of class labels are associ-
ated with a particular instance at a time. In a multiclass problem, a single class
label is associated with an instance at a time. However, there are many different
stacked ensemble methods that have been proposed and because of the com-
plexity associated with the multi-label problems, there is still a lot of scope for
improving the prediction accuracy. In this paper, we are proposing the novel
extended multi-tier stacked ensemble (EMSTE) method with label correlation
by feature subset selection technique and then augmenting those feature subsets
while constructing the intermediate dataset for improving the prediction accu-
racy in the generalization phase of the stacking. The performance effect of the
proposed method has been compared with existing methods and showed that our
proposed method outperforms the other methods.
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1. INTRODUCTION
Classification is one of the basic and most important operations that can be used in data science and

machine learning applications. Multi-label classifications are found in the areas of text categorization [1],
medical applications [2], movie genres classification [3], protein classification [4] and so on. The classification
of multi-label data is entirely different from the binary and multi-class problems, since the classification of
multi-label data may get affected by the inherently hidden label correlation [5]. There are a substantial number
of proposed algorithms for dealing with these kinds of problems. In [6], these are categorized into two different
approaches. They are problem transformation and algorithm adaptation approach. problem transformation
(PT)approach, data is adapted according to the algorithm and the problem is decomposed into multiple binary
class or multi-class problems. The different transformation methods include: binary relevance (BR), ranking
by pairwise comparison (RPC), label powerset (LP) method, and calibrated label ranking (CLR).

BR [7]–[9]: This method converts the original problem of multi-label into m number of binary prob-
lems by containing all examples of the original dataset Dj , j = 1...m, and learning happens with each label.
The final output will be the union of all labels predicted by m classifiers. The main drawback of the BR method
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is that it ignores label correlation between the labels. LP [10] method considers the combination of unique label
sets present in the original training dataset as a single class label in the transformed dataset. The output for the
new instance will be one of these unique label sets with the highest probability or label ranking. LP suffers from
the problem of computation complexity, (n, 2L) where n indicates the total number of data points and L is the
number of labels. Another problem is that it can only predict the unique label combinations which are present
in the training dataset, which may lead to a problem of class imbalance. The pruned PT method [10] provides
the solution for the second problem indicated above by removing the label sets which are occurring rarer than a
user-defined threshold, and often changing by replacing them with decomposed subsets of these corresponding
set of labels which are present whose value is greater than the peak value in a dataset. Ranking by pairwise
comparison (RPC) [11] transforms the dataset of multi-label into L(L − 1)/2 binary label datasets where L
indicates the total number of labels, one for each pair of labels. Each dataset keeps as it is the data points
from the original dataset, that may be associated with at least one of the corresponding labels but not both.
However, ranking keeps a corresponding order of the labels. In [12], the argument is that such kind of ranking
may not hold a usual “zero-point” and hence, does not give any kind of knowledge about the preference or the
absolute choice, which can distinguish among all other alternative options. Later, by proposing an extension of
RPC, that is, calibrated label ranking (CLR), with an extra label to the original or the base label set, that can
be considered as a “neutral breaking point” between related and unrelated class labels. Algorithm adaptation
approach adapts the base algorithms to work on multi-label datasets without using any transformation method.
Some of the algorithms like AdaBoost.MH [13], MLkNN [14], and random k-labelsets (RAkEL) [15] can be
used directly on multi-label data.

2. LITERATURE REVIEW
This section gives the background of different existing methods for multi-label classification. The

review of existing methods helps to improve the new methods and the usage of the methodologies provides
more clarity on the novelty of new methods. This section also gives a comparative study of existing methods.

2.1. Multi-label learning with label correlation and feature selection method
Exploiting the label correlation is one of the research issues to be considered for improving the multi-

label classification performance. In the literature, we can find many related approaches that have been proposed
in the past decades for exploiting label correlation and feature selection. There are three categories of label cor-
relation strategies: one is the first-order strategy that ignores the label correlation. One can understand how
this strategy is achieved from the BR example considered. But, there are advantages with the first-order strat-
egy concerning implementation simplicity and efficiency, but it will not consider label correlation information.
Another strategy is the second-order strategy. Here, the pairwise correlation is considered between the labels.
For example, in LR proposed in [16] and an extended LR proposed in [17], a virtual label is added to each
instance i.e., CLR. In [18], a conventional support vector machine (SVM) is modified based on ranking loss by
considering a new loss term which is called RankSVM. In the work carried out by Zhi-Fen He et al. [19], label
correlations with missing labels are considered. The last one is the high order strategy. Here, among the labels,
the high order correlations will be exploited. For instance, the label powerset (LP) [20] considers the combina-
tion of unique label sets present in the original training dataset as a single class label in the transformed dataset.
The output for the new instance will be one of these unique label sets with the highest probability or label
ranking. The PPT method overcomes the problem of LP by the selection of a small random subset of labels,
then trains an ensemble of classifiers by using the LP method. But, it only addresses the implicit correlation
among labels which considers the weight vector by learning each classifier depending on the weight vectors
of other classifiers, the matrix of correlated labels, and the parameters of the model. As we know, multi-label
learning has many problems concerning label correlation, and it may not fit well for all real-time applications
where the overall importance of label distribution matters. Geng [21] have proposed label distribution learning
(LDL) for such problems. The LDL covers some of the labels, which will represent the degree of the instance.
LDL could improve the learning process in case of utilization of the label correlation concerning facial depres-
sion recognition as contributed by Zhou et al. [22], facial age estimation by Wen et al. [23] and many other
applications.
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2.2. Ensemble learning
Ensemble methods are useful when it requires to take a decision based on collective opinion of dif-

ferent sources. The result of the base classifier can be used in constructing the next-level classifier which are
considered as dependent ensemble methods. The AdaBoost algorithm is useful for improving the performance
of various machine learning algorithms or weak learners. All data points in the training dataset are weighted.
The initial weight is set to: W (Xi) = 1/n where Xi is an example of ith and n indicates the total number
of data points with multiple labels in the training dataset. Methods of meta-learning are particularly useful
for those which are categorized by always correctly classifying or incorrectly classifying certain conditions.
Some of the methods for measuring are distribution weight, majority vote, Bayesian combination, performance
weight, and entropy weight. In our paper, we use a meta-learning method called Stacking. This method is used
to accomplish greater accuracy with maximal generalization. It is often used to integrate models created by
distinct classifiers to form a meta dataset. That is, rather than using input features from the original training
dataset, the input features will be the predicted results of its base classifiers and class labels will be considered
as such in the original training dataset. Later, the meta classifier will produce the final prediction from the meta
dataset. The weighted classifier selection has been proposed by Xia et al. [24], with sparsity regularization for
ensemble member construction for multi-label classification.

2.3. Research targets
The existing algorithms which are mentioned above are developed to find out the solution for the

multi-label classification problems. But still, there are challenges related to label correlation, the curse of di-
mensionality, and label imbalance. There exist many ensemble techniques which improve the performance of
learning through different combination approaches. These combination approaches are mainly used to concen-
trate on the model overfitting and the sensitivity of initialization. Our contributions are summarized as: i) we
propose a novel extended multi-tier stacked ensemble method for multi-label classification, which is useful in
constructing the strong meta-learning phase by considering different combination schemes for model setting;
ii) we also consider the label correlation feature subset augmentation for improving the classification perfor-
mance; and iii) to the best of our knowledge, this approach works significantly more fine than the existing
systems.

The experiments have been carried out on 10 different multi-label datasets of different domains. The
rest of the paper is organized as. In section 2, we describe the proposed method, in section 3 we present
the mathematical model, in section 4 we will be discussing evaluation metrics and in section 5 we discuss
experiments, followed by the conclusion.

3. PROPOSED METHOD
The main challenge with the stacked ensemble method is that the variance of the base tier may be

inherited to level1, i.e., meta learner. One more problem associated with the multi-label data is the ignorance of
label correlation information when applied with the binary relevance method. In this paper, we are considering
the label correlated feature subset for augmenting with the ensemble tier. In the literature, many different ways
have been discussed for stacking and label correlation methods and those approaches have shown improved re-
sults for the performance metrics, but still, there is a lot of scope for improving the performance by considering
the label correlation with multi-tier stacked ensemble method. Figure 1 shows the extended multi-tier stack
method. The base level uses predefined base classifiers for the given problem. The combination schemes are
then used to get the combined prediction. So, the bias and variance can be controlled in these two tiers. The
novelty we are introducing is that we are augmenting the meta dataset constructed in the generalization tier
with the label correlated feature subset. Using the label correlation helps to improve the classification accuracy.

4. MATHEMATICAL MODEL
In this section, we discuss the mathematical model, which gives the process of creating a real-world

representation of the proposed system required in this paper. The representation of the proposed model in a
mathematical model helps to transform the description into an accurate presentation of the proposed model.
Table 1 gives the description of notations used in this paper.
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Figure 1. Architecture of multi-tier stacked ensemble with correlated feature subset augmentation method for
multi-label data

4.1. Base-tier
Let D = {x, y} where x ∈ X and y ⊆ Y , X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yL} and each

yj = {0, 1} and j = 1, 2, ..., L. Then, train the classifier with ℏ(X) to predict the label subset Y ′, that is,
Y ′ ← ℏ(X) where Y ′ ∈ {0, 1}L. Let H = {ℏ1, ℏ2..., ℏm} be set of base classifiers and each base classifier
predicts the set of labels which can be mapped on the label set Y .

Y ′ = ℏk(X) (1)

where ℏk ∈ H and k = {1, 2, 3, ...,m} let BL = {BL1,BL2, ...,BLm} be the set of label sets predicted by
each base classifier.
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BLk = Y ′ ← ℏk(X) (2)

Table 1. Notations
Symbols Descriptions

D Training dataset
X Feature set of training dataset
Y Label set of training dataset
n Number of features
xi ith instance
yj jth label

hk(X) kth base classifier
Y ′ Predicted label set
H Base classifier set
m Number of classifiers
BLk Set of Predicted label set
WLk Set of combination methods
Si Semantic label set
Fk Features of semantic label set

(Fk;Si) Relatedness among feature of candidate set
E(Fk) Function for evaluation Mx(Fk, L)

4.2. Ensemble tier
LetWL = {WL1,WL2, ...,WLN} be the set of combination methods for combining the labels pre-

dicted by the base classifiers to map them with the proper subset of the label set. Consider the following
(3):

WLk : BLk → Y ′ (3)

and Y ′ ∈ {0, 1}L

WLk = Aggr(ℏk(X)) (4)

where k = {1, 2, 3, ...,m}

4.3. Generalization tier
In this step, we are selecting maximum label correlated feature subset for augmenting with ensemble

dataset. There are many feature selection methods for multi-label dataset such as D2F, SCLS and MDMR
methods. These feature selection methods use low order similarities to figure out candidate features [25]–[27].
In this paper, we are making use of considering max-correlation (MCMFS) proposed by Zhang et al. [28]
algorithm, which uses max correlation between the labels. In this method, the label set is divided into m
semantic groups L′ = {s1, s2, ..., sm}, where each si = {li1, li2, ..., liq} ∈ Y and i = 1, 2...m and the
following condition is satisfied, i.e., s1 ∪ s2 ∪ .. ∪ sm = L and si ∩ sj =. Then the (Fk;Si) indicates
relatedness among feature of candidate set and the label sets in each semantic group is defined as (5).

(Fk;Si) = max(µ(Fk; yj)) (5)

In (5) a larger value indicates the candidate feature which is of more relevance in the semantic group and a
small value indicates a weak relevance in the semantic group. Then we can obtain the maximum correlation of
d dimensional vector of feature Fk and the label set, L i.e.,

Cor(fk;L′) = [(Fk; s1), (Fk, s2)...(Fk, sm)] (6)

then
Mx(Fk, L) = max

si∈L′
(Fk, si) (7)

Mx(Fk, L) = max
si∈L′

{max
lj∈si

µ(Fk, lj)} (8)
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Mx(Fk, L) = max
lj∈L

µ(Fk, lj) (9)

whereMx(Fk, L) takes the maximum relevance of the corresponding features effectively with respect to label
set, irrespective of any number of labels that are present in the semantic group. Mx(Fk, L) can exactly make
a selection of the critical features. Based on this, we can use MCMFS as feature subset selection algorithm for
selecting feature subset. The function for evaluation is given as (10) and (11):

E(Fk) =Mx(Fk, L)−
1

|s|
Σµ(Fk;Fj) (10)

E(Fk) = max
lj∈L

µ(Fk, lj)−
1

|s|
Σµ(Fk;Fj) (11)

after selecting the feature subset, Fs, it has to be augmented with the predicted result of the ensemble method.

D′ =WL ∪ Fs ∪ Y (12)

whereWL is the predicted result of the ensemble classifier, Fs is the label correlated feature subset and Y is
the label set from the original training dataset. After constructing meta dataset, we apply the meta learner for
final model training.

fin model← ℏ(D′) (13)

Algorithm 1 uses the base classifiers for predicting the first level prediction. We use binary relevance
for the problem transformation and then, for the base classification we have chosen naive Bayes, SVM, decision
tree classifiers. Algorithm 2 depicts applying the combination schemes for the predicted result from the base
classifier. Here we are considering bagging and boosting combination schemes for stacking. In Algorithm 3
we are using the MCMFS algorithm for feature subset selection in our model for selecting the critical features
for augmenting in the generalization tier. Algorithm 4 depicts the generalization tier, where the meta dataset
is constructed by combining the predicted result, feature subset, and the label set from the original training
dataset. Once the meta dataset is constructed, the meta learner is applied for the final prediction.

Algorithm 1 Classification with base classifier by using transformation method
1: Input: D = {X i, Y i}ni=1, where X i ∈ Rn, Y i ⊆ Y (set of all labels)
2: Output: Stacked Ensemble classifier

begin
3: Step 1: Transform the multi-label data to binary class problem by applying binary relevance (BR) method.
4: DBR ← BR(D)
5: Step 2: Apply the base classifiers on DBR
6: for i← 1 to m
7: Train the base classifier ℏi(X) based on DBR.
8: end for
9: BL = {ℏ1(X), ℏ2(X), ..., ℏm(X)}

10: Step 3: return BL
end

Algorithm 2 Applying the combination scheme for the predicted result from the base classifier
1: Input: The predicted result of the base classifiers BL
2: Output: new ensemble datasetWL

begin
3: Step 1: apply the combination schemes (CS) to produce ensemble prediction.
4: for j← 1 to p
5: for i← 1 to m
6: WLi = CSj(BLi)
7: end for
8: end for
9: Step 2: return Aggr(WL)

end
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Algorithm 3 Selecting the label correlated feature subset by making use of the algorithm MCMFS [28]
1: Input: Full feature set from the original training dataset F = {f1, f2...fd} and label set L = {l1, l2...lm}
2: Output: Correlated feature subset Fs

begin
3: Fs ← Null
4: p← 0
5: for i← 1 to d
6: calculateMx(Fi, L) using eq(9)
7: end for
8: while p < b do
9: if p == 0 then

10: select fj with highestMx(Fi, L)
11: p = p+ 1
12: Fs = Fs ∪ {fj}
13: F = F − {fj}
14: end if
15: for each fi ∈ F do
16: calculate µ(fi; fj)
17: by using equation (11) calculate E(Fi)
18: end for
19: with the highest E(Fi), select the feature fj
20: Fs = Fs ∪ {fj}
21: F = F − {fj}
22: end while

end

Algorithm 4 Constructing meta dataset and applying meta classifier for final prediction
1: Input: The predicted result of the ensemble classifiersWLand the label correlated feature subset Fs and Y .
2: Output: Final prediction

begin
3: Step1: Construct the meta dataset by augmenting the Fs and Y withWL .
4: D′ =WL ∪ Fs ∪ Y
5: Step2: train the model with new meta dataset D′ with meta learner
6: fin model← ℏ(D′)

end

5. EVALUATION METRICS
In the multi-label classification method, the output is a set of labels, so the normal evaluation metrics

used for analyzing single-label classification algorithms cannot be applied directly. The following list includes
some of the commonly used evaluation metrics. The metrics used for evaluation differs according to the nature
of the target problem [29].

Precision =
1

N

N∑
i=1

|f(X i) ∩ Y i|
|f(X i)|

(14)

Recall =
1

N

N∑
i=1

|f(X i) ∩ Y i|
|Y i|

(15)

F1−Measure =
1

N

N∑
i=1

2 ∗ |f(X i) ∩ Y i|
|Y i|+ |f(X i)|

(16)

A higher the value indicates better performance of an algorithm.

Hamming Loss =
1

N

N∑
i=1

|f(X i)⊕ Y i|
|Y i|+ |f(X i)|

(17)
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The performance of the algorithm increases with the decrease in value of Hamming loss, i.e., zero
indicates a perfect classification. The measures such as precision, recall, F1-measure, or any measure which can
be used to evaluate binary classification can be computed on a per-label basis and used for multi-label evaluation
after averaging over all possible labels. The difference between macro-averaging and micro-averaging is that
macro-averaging gets affected by classes with fewer instances, but micro-averaging is affected by classes with
numerous instances.

Macro F1:

F l
1 = 2

N∑
i=1

(Y l
i ∗ f(Xi)

l)/(

N∑
i=1

Y l
i +

N∑
i=1

f(Xi)
l) (18)

macroF1 =

h∑
l=1

F l
1 (19)

Where Y l
i is 1 if instance Xi originally has a label l. f(Xi) is the predicted label of instance Xi, f(Xi)

l is 1 if
Xi is predicted to have label l, both Y l

i and f(Xi)
l will have a value 0 otherwise.

MicroF1 =

∑h
i=1

∑N
j=1 Y

i
j f(X)ij∑h

i=1

∑N
j=1 Y

i
j +

∑h
i=1

∑N
j=1 f(X)ij

(20)

6. RESULTS AND DISCUSSION
6.1. Datasets

For finding out the performance of multi-tier stacked ensemble (EMSTE) we have selected the 10 most
common data sets from Mulan and Meka Repository [30] of standard multi-label datasets and each column of
Table 2 shows the characteristics of the data sets. Here we tried to cover all datasets from different domain. We
have tested whether the proposed method works on all of these different domain datasets.

Table 2. Description of the datasets
Dataset Name #instances #Features #Labels

yeast 2417 103 14
scene 2407 294 6

emotions 593 72 6
music 592 77 6

corel5k 5000 499 374
enron 1702 1001 53
bibtex 7395 1836 159
flags 194 26 12
birds 322 260 20

genbase 662 1186 27

6.2. Baseline methods
The proposed method will be compared with the following baseline ensemble multi-label classification

methods which are related to different concepts like ensemble, stacking and multi-label.
a. Ensemble binary relevance (EBR) method [31]: it is an ensemble version of the binary relevance model,

and it does not consider the label correlation.
b. Ensemble classifier chain (ECC) method [32]: an ensemble version of classifier chain. In this method, the

global label correlation will be considered and the order of chain for each CC will be generated randomly.
c. Ensemble label powerset (EPS) [33] method: it is an improved version of the ensemble Label Power set

method, which focuses on the most important correlation of labels by pruning rarely occurring label sets.
d. RAkEL: It is an improved version of the ensemble of label powerset based on a random small subset of k

labels and the relationship between this small subset of k labels.
e. ADABOOST.MH: a weighted ensemble version based on BR that not only maintains a set of weights over

the instances as AdaBoost does, but also over the labels.
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f. MLS [34] it is a stacked multi-label ensemble version based on binary relevance. The global correlation
between the labels will be considered at the meta level, but misses the local pairwise relationship between
the labels.

g. MLkNN [35] it is a lazy learning multi-label version of kNN algorithm, which is based on statistical infor-
mation taken from the label sets which are neighboring instances of unseen labels. ML-kNN makes use of
maximum a posterior principle to find out the label set for the unseen instances.

6.3. Experimental setup
The experiment has been done by using python3 as well as MEKA [36] tool to verify the performance

of our EMTSE scheme with the existing schemes, which provides the multi-label methods. We have tested the
proposed system on 10 benchmark datasets of different domains for the effectiveness of the proposed system.
In practice, the 10-fold cross-validation is applied for performance evaluation. The random division of all
samples is done in 10 equal parts. Each part is held for testing and the remaining part of the data is merged with
the training dataset. The validation has run ten times in an iterative manner. Then the average performance of
the evaluation metrics is calculated for the given model. Binary relevance decision tree (BRDT) [37] is used
for improved generalization capability of the model. It finds one decision tree for each label. For each label
associated with label set Y , the binary naive Bayes classifier is learned. This is called binary relevance naive
Bayes (BRNB) [38]. This method outputs a set of labels which is the union of different single-label naive
bayes classifiers. In SVM kernel [39], [40] the multi-label problem is decomposed into multi-class problem.
Then it tries to determine the optimal hyperplane based on training data, which is used to classify test data
points or the new data points. In two dimensions, the hyperplane is a simple line. The combination schemes we
selected for experimentation are bagging and boosting. The label correlated feature selection is a method used
to select the top-ranked features for augmenting in the ensemble tier for improving the prediction performance
of the meta learner. We have used MLkNN classifier in the generalization tier as a meta classifier for the final
prediction since MLkNN uses the approach of maximum a-posteriori (MAP) combined with k-NN, and it is
been proved that MLkNN performed far better than several other algorithms [41]. The experimental results
have been recorded in Tables 3–7 with the corresponding rank value among the algorithms and ↑ indicates that
the higher the value, better the performance and ↓ indicates lower the value better the performance.

Table 3. Average precision of different multi-label classification algorithms ↑
Dataset EBR ECC EPS RAkEL Adaboost.MH MLkNN MLS EMSTE
yeast 0.654(3) 0.562(8) 0.573(7) 0.580(6) 0.638(5) 0.701(2) 0.642(4) 0.772(1)
scene 0.635(8) 0.654(5) 0.729(3) 0.711(4) 0.651(7) 0.738(2) 0.671(6) 0.751(1)

emotions 0.735(4) 0.637(6) 0.571(8) 0.581(7) 0.746(3) 0.708(5) 0.732(2) 0.756(1)
music 0.755(2) 0.615(7) 0.595(8) 0.689(4) 0.623(6) 0.658(5) 0.715(3) 0.801(1)

corel5k 0.174(6) 0.167(7) 0.160(8) 0.279(3) 0.294(2) 0.228(5) 0.342(1) 0.251(4)
enron 0.163(8) 0.187(5) 0.170(6) 0.168(7) 0.191(4) 0.238(1) 0.237(2) 0.208(3)
bibtex 0.143(7) 0.114(8) 0.180(5) 0.175(6) 0.198(4) 0.338(1) 0.250(3) 0.251(2)
flags 0.622(6) 0.774(2) 0.542(8) 0.562(7) 0.701(5) 0.738(3) 0.721(4) 0.851(1)
birds 0.231(5) 0.324(4) 0.218(6) 0.475(2) 0.488(1) 0.210(7) 0.701(2) 0.422(3)

genbase 0.798(2) 0.789(4) 0.799(1) 0.727(7) 0.714(8) 0.738(6) 0.797(3) 0.780(5)
Average score 0.491(6) 0.4823(7) 0.4537(8) 0.4947(5) 0.5244(4) 0.5295(3) 0.5808(2) 0.5843(1)

6.4. Experimental results and analysis
Tables 3-7 show the average precision, F1score, MAcroF1, MicroF1, and Hamming loss respectively

of the various methods. It can be seen in many of the cases our method (EMSTE) gives the best result. Among
the other cases, mostly EMSTE is in second place. Even if EMSTE is not in second place, its value is close to
the best value. We are using the Friedman test Fr [42] to analyze the performance of different algorithms based
on the evaluation metrics. The Friedman test Fr and critical value with the significance level α = 0.05 have
been considered. The rejection or null hypothesis is for the equal performance of each metric. As long as we
have two or more populations, and among them, some are not normal, we can make use of the non-parametric
Friedman test considering it an omnibus test to find out the existence of any significant differences among the
median values of the populations. We are using the post-hoc Nemenyi test [43] to retrieve which differences
are significant. If the differences in the mean rank are greater than the critical distance CD=3.32 of the Ne-
menyi test, then we can say that differences among the populations are significant. The statistical analysis was
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conducted for k=7 (No. of algorithms used for comparison), N=10 (no. of datasets) significance level of the
tests alpha=0.050 with the family-wise. The algorithms which are connected within the CD line are not statis-
tically significantly better than each other. The results of these tests are shown in Figure 2 as critical distance
diagrams. In the diagram, the top-ranked algorithms are on the left side of the CD diagram and the algorithms
which are on the right side of the CD line are low ranked algorithms. For example, in Figure 2(a) EMSTE,
ECC, EBR, and MLkNN are left side of the CD line and are considered to be the top-ranked algorithms, and
RAkEL, EPS, and ADABOOST fall on the right side the of the CD line and are considered to be the low rank-
ing algorithms for the Average Precision performance metrics. Similarly, for the other performance metrics of
the CD diagrams which are shown as Figure 2(b) F1, 2(c) macro F1, 2(d) Micro F1, and 2(e) Hamming loss,
holds the same.

Table 4. F1-score of different multi-label classification algorithms ↑
Dataset EBR ECC EPS RAkEL Adaboost.MH MLkNN MLS EMSTE
yeast 0.385(6) 0.398(5) 0.374(8) 0.383(7) 0.405(3) 0.401(4) 0.455(2) 0.457(1)
scene 0.712(5) 0.728(3) 0.707(6) 0.634(7) 0.051(8) 0.734(2) 0.718(4) 0.752(1)

emotions 0.635(5) 0.637(4) 0.631(6) 0.581(7) 0.046(8) 0.667(1) 0.521(3) 0.651(2)
music 0.705(2) 0.615(7) 0.695(4) 0.689(5) 0.455(8) 0.654(6) 0.702(3) 0.750(1)

corel5k 0.274(4) 0.267(5) 0.260(6) 0.279(3) 0.294(2) 0.112(8) 0.295(1) 0.250(7)
enron 0.219(4) 0.225(2) 0.187(7) 0.168(8) 0.214(5) 0.212(6) 0.220(3) 0.235(1)
bibtex 0.143(7) 0.114(8) 0.180(4) 0.175(5) 0.198(3) 0.210(2) 0.174(6) 0.320(1)
flags 0.654(4) 0.674(2) 0.582(7) 0.652(5) 0.562(8) 0.638(6) 0.667(3) 0.750(1)
birds 0.301(4) 0.324(3) 0.218(7) 0.275(5) 0.388(2) 0.059(8) 0.274(6) 0.451(1)

genbase 0.551(2) 0.498(5) 0.540(3) 0.427(7) 0.414(8) 0.438(6) 0.501(4) 0.582(1)
Average score 0.4579(2) 0.448(4) 0.4374(5) 0.4263(6) 0.2977 (8) 0.4125(7) 0.4527(3) 0.5198(1)

Table 5. Macro F1-score of different multi-label classification algorithms ↑
Dataset EBR ECC EPS RAkEL Adaboost.MH MLkNN MLS EMSTE
yeast 0.385(6) 0.398(5) 0.374(8) 0.383(7) 0.405(3) 0.401(4) 0.431(2) 0.455(1)
scene 0.712(4) 0.728(3) 0.707(5) 0.634(6) 0.001(8) 0.734(2) 0.621(7) 0.754(1)

emotions 0.635(5) 0.637(4) 0.631(6) 0.581(7) 0.046(8) 0.667 (1) 0.651(3) 0.652(2)
music 0.705(2) 0.615(6) 0.695(3) 0.689(4) 0.455(8) 0.654(7) 0.686(5) 0.751(1)

corel5k 0.274(3) 0.267(4) 0.260(5) 0.279(2) 0.294(1) 0.112(7) 0.401(3) 0.251(6)
enron 0.219(4) 0.225(2) 0.187(7) 0.168(8) 0.214(5) 0.212(6) 0.222(3) 0.245(1)
bibtex 0.143(7) 0.114(8) 0.180(5) 0.175(6) 0.198(4) 0.210(3) 0.311(2) 0.321(1)
flags 0.652(3) 0.674(2) 0.582(7) 0.650(5) 0.562(8) 0.638(6) 0.655(4) 0.751(1)
birds 0.301(4) 0.388(1) 0.218(6) 0.275(5) 0.358(3) 0.059(7) 0.401(3) 0.361(2)

genbase 0.551(3) 0.498(5) 0.540(4) 0.427(7) 0.414(8) 0.438(6) 0.570(2) 0.581(1)
Average score 0.4577(3) 0.4544(4) 0.4374(5) 0.4261(6) 0.2947(8) 0.4125(7) 0.4949(2) 0.5122(1)

Table 6. Micro F1-score of different multi-label classification algorithms ↑
Dataset EBR ECC EPS RAkEL Adaboost.MH MLkNN MLS EMSTE
yeast 0.554(3) 0.532(7) 0.545(5) 0.550(4) 0.559(2) 0.528(8) 0.534(6) 0.564(1)
scene 0.708(7) 0.724(2) 0.722(4) 0.711(6) 0.02(8) 0.712(5) 0.723(3) 0.764(1)

emotions 0.665(3) 0.656(4) 0.671(2) 0.655(5) 0.646(7) 0.638(8) 0.650(6) 0.681(1)
music 0.709(2) 0.615(7) 0.595(8) 0.689(3) 0.668(5) 0.663(6) 0.670(4) 0.788(1)

corel5k 0.390(1) 0.284(8) 0.290(7) 0.320(6) 0.339(5) 0.359(4) 0.361(3) 0.383(2)
enron 0.563(4) 0.584(1) 0.489(7) 0.580(2) 0.561(5) 0.538(6) 0.401(3) 0. 573(3)
bibtex 0.343(6) 0.234(7) 0.432(5) 0.443(4) 0.467(3) 0.232(8) 0.534(2) 0.543(1)
flags 0.622(6) 0.734(2) 0.542(8) 0.562(7) 0.731(3) 0.754(1) 0.688(5) 0.698(4)
birds 0.441(4) 0.424(6) 0.407(7) 0.475(3) 0.488(2) 0.438(5) 0.401(3) 0.491(1)

genbase 0.347(8) 0.387(5) 0.378(6) 0.356(7) 0.456(3) 0.476(2) 0.431(4) 0.565(1)
Average score 0.5342(3) 0.5174(6) 0.5071(7) 0.5341(4) 0.4935(8) 0.5338(5) 0.5393(2) 0.605(1)
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Table 7. Hamming loss of different multi-label classification algorithms ↓
Dataset EBR ECC EPS RAkEL Adaboost.MH MLkNN MLS EMSTE
yeast 0.206(2) 0.210(4) 0.212(5) 0.247(8) 0.232(6) 0.209(3) 0.238(7) 0.202(1)
scene 0.0942(1) 0.098(4) 0.097(3) 0.138(6) 0.178(8) 0.099(5) 0.143(7) 0.095(2)

emotions 0.197(2) 0.205(3) 0.212(4) 0.265(7) 0.306(8) 0.235(6) 0.254(5) 0.192(1)
music 0.025(2) 0.021(1) 0.125(6) 0.109(5) 0.212(7) 0.238(8) 0.060(4) 0.055(3)

corel5k 0.174(3) 0.167(2) 0.160(1) 0.279(7) 0.294(8) 0.238(4) 0.255(6) 0.251(5)
enron 0.163(3) 0.187(6) 0.170(5) 0.168(4) 0.191(7) 0.218(8) 0.092(2) 0.051(1)
bibtex 0.249(4) 0.245(3) 0.259(6) 0.253(5) 0.278(8) 0.232(1) 0.277(7) 0.236(2)
flags 0.227(5) 0.297(8) 0.098(2) 0.162(4) 0.121(3) 0.228(6) 0.252(7) 0.031(1)
birds 0.043(2) 0.045(3) 0.046(4) 0.075(7) 0.052(5) 0.0.054(6) 0.151(8) 0.041(1)

genbase 0.022(1) 0.102(2) 0.140(3) 0.221(6) 0.314(8) 0.238(7) 0.211(5) 0.151(4)
Average score 0.14002(2) 0.1577(4) 0.1519(3) 0.1917 (5) 0.2178(7) 0.2189 (8) 0.1933(6) 0.1305(1)

(a) (b)

(c) (d)

(e)

Figure 2. Critical distance diagrams for the comparison algorithms of different performance evaluation
metrics (a) average precision, (b) F1, (c) macro F1, (d) micro F1, and (e) Hamming loss

In each CD diagram of Figure 2 any comparison algorithm connected with EMSTE are having a
different performance among them significantly. EBR performs well on Hamming loss (HLoss) , because of
its first-order label correlation approach that tries to optimize the Hamming loss. We can observe EMSTE
outperforms in terms of HLoss. We have used ECC as a comparison algorithm to show how the high order
label correlation approach outperforms the other approaches on MicroF1, which considers the global label
correlations. But the proposed EMSTE outperforms in terms of these methods. Figure 3 shows the graph
that compares the average score of performance evaluation metrics Average Precision and F1 Score of different
comparison algorithms and Figure 4 shows the graph that compares the average score of performance evaluation
metrics macro F1 and micro F1 Score and Hamming loss of different comparison algorithms. It is clear from the
graph that the performance of the proposed method i.e., EMSTE is better in every case. EMSTE outperforms
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compared to other methods concerning other evaluation metrics. This indicates the superiority of the proposed
method and the effectiveness of augmentation of correlated features in meta-learning.

Figure 3. Average score of performance evaluation metrics F1 score

Figure 4. Average score of performance evaluation metrics macro F1, micro F1, Haming loss

7. CONCLUSION
In this paper, we have experimented with the novel extended multi-tier stacked ensemble method

(EMSTE) for multi-label classification to enhance the performance of the classification by considering label
correlated feature subset selection and by augmenting those features while constructing the meta data set at
the generalization tier. In this approach, we are trying to control the bias and the variance at the ensemble tier
by making use of combination schemes and improving the performance of classification at the generalization
tier. We have tested our method with ten datasets and compared it with a number of different multi-label
classification algorithms and our method is giving very good results.
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