
Journal of International Information Management

Volume 12 | Issue 1 Article 8

2003

Seleclting Middleware for N-tier applications
Thomas Sandman
California State University, Sacramento

Timothy Riley
Placer County Office of Education

Follow this and additional works at: http://scholarworks.lib.csusb.edu/jiim

Part of the Management Information Systems Commons

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International
Information Management by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Sandman, Thomas and Riley, Timothy (2003) "Seleclting Middleware for N-tier applications," Journal of International Information
Management: Vol. 12: Iss. 1, Article 8.
Available at: http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/55331833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol12?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol12/iss1?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/8?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/8?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

Selecting MMdleware Journal of International Technology & Information Management

Seleclting Middleware for
N-tier applications

Thomas Sandman
California State University, Sacramento

Timothy Riley
Placer County Office of Education

ABSTRACT

This paper describes middleware for n-tier architecture, describes how this middleware
is meeting the unique demands of Internet applications and e-commerce, and suggests
selection guidelines to assist business managers in choosing appropriate types of middleware
for n-tier systems that will meet their internet needs. Different types of middleware provide
the functionality for addressing many distinct and disparate problems arising from the
distributed processing associated with n-tier systems. This paper associates the type of
middleware with the nature of the system being developed.

Thie Internet has grown at a pace so rapid that technology has struggled to keep up. A
communications medium that not long ago was read-only, text based-advertising has blossomed
into full-scale client-server transaction processing. The conventional technologies that make
client-S£;rver computing possible are limited in meeting the needs of the Internet. The purpose of
this piapfjr is to describe the enabling technologies of n-tier architecture, describe how middleware
is meeting the unique demands of Internet applications and e-commerce, and suggest selection
guid(;lii].es that can assist business managers in choosing the correct mix of building blocks for n-
lier systems that meet their internet needs.

Middleware is the enabling technology that has allowed web architects to develop three-
itier Etnd n-tier systems, overcoming many problems and limitations inherent in two-tier systems.
Many definitions of middleware have been published. It has been defined as, "a vague term that
covers all the distributed software needed to support interactions between clients and servers"
(Edwards, Harkey, and Orfali, 1999, p. 44), and, as "a layer of software that enables communi
cations between software components regardless of the programming language in which the

INTRODUCTION

MIDDLEWARE - THE ENABLING TECHNOLOGY

107

1

Sandman and Riley: Seleclting Middleware for N-tier applications

Published by CSUSB ScholarWorks, 2003

Journal of International Technology & Information Manaeement Volume 12, Number 1

components are developed, the protocols used to communicate between components, or the
platforms on which the components execute" (Sharon, 1997, p. 92). Bernstein (1996) defines
middleware as "a general-purpose service that sits between platforms and applications" (p. 89).

These definitions are quite vague and do not come close to fully describing middleware;
thus this section will attempt to paint a clearer picture of what middleware is by explaining the
various types of functionality that are offered by middleware applications. Middleware will also
be categorized, and an overview of each middleware type, its functionality, advantages and
disadvantages will be provided.

Middleware Functionality and Terminology
Middleware can perform many functions in computer information systems. The most

common functions performed by middleware are: advanced messaging, application framework
capabilities, dynamic load balancing, encapsulation/modularization, legacy integration, multi-da
tabase support, naming services, security services, thread pooling, transaction control, transac
tion queuing, and failover.

• Messaging - Messaging services are provided by all middleware applications. By defi
nition, middleware acts as a layer that allows clients to communicate and transact with
servers. However, there are many types of advanced messaging services that can be
provided middleware, including the following:

o Conversational messaging. This allows two applications to pass messages back
and forth in a real-time manner (Edwards, 1999). Applications can communi
cate across the Internet, a WAN, or a LAN with specialized software. TCP/IP
Sockets and IBM's CPI-C are examples of the middleware used to support
such conversational messaging services,

o Message queuing. This type of messaging de-couples the client and server
interactions by queuing messages on the server (Sharon, 1997) and works well
for integrating existing applications. However, there is no transaction control
using this method. Therefore, applications that must pass messages in a trans
actional fashion cannot use message queuing to do so.

o Publish/Subscribe. This typically allows client applications to subscribe to spe
cific services on a server (Boucher, 1999). The server application then sends
messages to an event manager, which determines who or what has subscribed
to receive that piece of information and then sends out the information only to
appropriate recipients. The publish/subscribe-messaging pattern is becoming
widely used for informational internet applications, such as stock or news tick
ers.

o Request/reply messaging. This is synchronous, in that an application sends a
request for information, and then awaits a reply (Sharon, 1997). Examples of
request/reply messaging include remote procedure calls, and object request broker
(ORB) remote method invocations, which is part of the CORBA standard.
Request/reply works well when simple transaction control is a necessity.

108

2

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 8

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/8

se/ectm^_middlewa^ Journal of International Technology & Information Management

<» /k]5plication framework capability - Application frameworks are software packages that
are designed to assemble applications (typically web applications) quickly using a pre-
raade set of objects (McFall, 1998). The applications created by these frameworks
u sually reside on one of the middle tiers located between the client and the server in a
wi3b-based multi-tier application. Some application frameworks contain tools used to
tmild business logic for a web application, while others provide a way to assemble quickly
ai sophisticated graphical user interface for full-scale e-commerce sites.

• Dynamic load balancing - This is the ability of an application to adjust itself based upon
the load the server is currently experiencing (Hoffman, 1999). This feature typically
allows a middleware application dynamically to create new logical server instances to
\vhich information requests can be automatically re-directed. This functionality smoothes
out the performance of an application during peak demand periods.

® EncaiDsulation/modularization - Encapsulation is the ability to assemble program code in
a modular, reusable fashion. For purposes of middleware, business logic can be encap
sulated into services with simple programming interfaces, thus allowing many applica
tions to use consistent logic when retrieving and performing update transactions on a
(fata store. Security logic can be encapsulated. Objects can be created and inter-
clranged to allow one application to communicate with many different types of data
:50urces. Encapsulation and code re-use are two of the most important functions of
fered by middleware applications (Bielski, 1999).

• Legacy integration - Middleware also provides the capability to integrate legacy appli
cations into new web applications (Lewis, 1998). By doing so, companies can leverage
existing technology to create their web presence. By leveraging existing information
systems, companies can realize huge cost savings, because it is not necessary to create
a new internet information system from scratch and maintain both systems.

• Multi-database support - Quality middleware applications also provide multi-database
support that allows one application to perform transactions across multiple, heteroge
neous data sources (Dogac, Dengi, and Oszu, 1998). Full transaction control can be
performed across these systems. Web-based multi-tier systems can be designed to
integrate marketing, sales, inventory, accounting, payroll, and other corporate systems,
which were previously independent of one another.

•' Naming services - Naming services provides a way for a client application to connect to
an object or web site without having to know the physical location (Garber, 1999). This
provides "location transparency" for server applications and objects. Clients do not
need to know where a server component is. The naming service stores this information
and directs the client to the appropriate server/location automatically.

® Security services - These services provide user authentication capabilities and message
encryption, which are two of the most important features for e-commerce sites doing
business on the Internet today (Eckerson, 1995). Without proper security, performing
any type of financial transaction on the Internet would expose both the client and server
to the possibility of electronic theft.

• Thread pooling - Thread pooling allows multiple users to share a single connection to a

109

3

Sandman and Riley: Seleclting Middleware for N-tier applications

Published by CSUSB ScholarWorks, 2003

Joiirnal_o£IntmiatwnalJ^clmolo£^ Volume 12, Number 1

data store, thus improving performance and preventing server overload (Edwards, 1999).
Most middleware packages that offer this feature can automatically determine how
many users should share a connection, and many also allow system administrators to
configure the number of users that share a connection to a data store, thus giving them
the ability to customize their system based on the capabilities of their system.

• Transaction control - Transaction control is the capability of an application to perform a
cohesive update to one or more data sources (Edwards, 1999). What this means is that
a transaction is ensured of completion from beginning to end. If any part of the transac
tion fails, the entire transaction is "rolled back." By rolling back a transaction, the data is
restored to its original state, thus preventing data corruption. If all components of the
transaction are successfully completed, then the transaction is "committed." When a
transaction is committed, changes to the data are applied to the data store. After a
transaction is committed, it cannot be rolled back.

• Transaction queuing - Transaction queuing is the ability of an application to serialize or
queue transactions. This allows many requests to be submitted to a data source at once,
without locking up or overloading the server. Transaction requests are held in queue in
a first-in, first-out (FIFO) order of precedence until the middleware application allows
them to be submitted (Edwards, 1999). Many applications allow the order of prece
dence to be overridden based on different levels of priority that can be assigned to a
transaction.

• Failover - Another functionality provided by many middleware applications is the failover
capability. Failover is the ability to redirect network traffic to a backup server when a
primary server goes down or is unavailable (Edwards, 1999). Many applications also
include automatic recovery and redirection back to a primary server when it becomes
available again.

It is important to note that the above list is not all-inclusive, however, this list is representa
tive of many common features sought after by companies shopping for middleware. It should
also be said that during the course of researching this paper, no middleware packages were
found to be a comprehensive solution that incorporates all of the functionalities listed above.
The next section will discuss the major categories of middleware, and it will indicate which types
of functionality are typically found in each category.

Middleware Classification
The features presented above are packaged in different types of middleware packages

are available. The primary types of middleware on the market are: database access middleware,
RFC (remote procedure call) middleware, DTPM (Distributed Transaction Processing Moni
tor) middleware, message-oriented middleware (MOM), object request brokers (ORBs), object
monitors, application servers, and enterprise application integration middleware (EAI). This
section will discuss each type of middleware and the types of functions each performs.

• Database Access Middleware - Database access middleware allows client applications
to access data and perform transactions on various types of databases (International

110

4

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 8

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/8

Selecting Middleware Journal of International Technology & Information Management

Systems Group, 1997). Database access middleware is commonly used in two-tier
applications. An example of database access middleware is ODBC.

<• E.PC Middleware - RPC middleware is one of the earliest forms of middleware to
become available. RPC middleware is based on a mechanism that has evolved from
UNIX operating systems (International Systems Group, 1997). These types of
miiddleware have been used for many years to create distributed computing systems,
and RPC middleware is considered an industry standard type of middleware, and will be
discussed in the next section.

'» DTPM Middleware - This is a type of middleware that originated from mainframe
computing. DTPM has evolved from transaction processing (TP) monitors, a type of
software used on mainframes to ensure transactional integrity against data stores
(Edwards, 1999). DTPMs play the same role for client/server systems, ensuring that
transactions performed on distributed databases are performed in such a way that the
ACID properties, and therefore transactional integrity, are guaranteed (see Table 1).
Distributed transaction processing middleware is a mature segment of the market that
has evolved in accordance with industry needs; therefore, DTPMs have many advan
tages. By definition, DTPMs provide complete transaction control. In addition, many
DTPMs provide load balancing, failover, location transparency, thread poohng, concurrency
control, transaction queuing, and auto restart capabilities (Edwards, 1999). DTPMs
liave a few disadvantages. Most packages focus on database transactions, and few, if
any, provide advanced messaging services, such as request/reply, conversational mes
saging, publish/subscribe, or message queuing (International Systems Group, 1997). Also,
iTiost DTPMs do not provide support for objects.

Talble 1. ACID Properties (after International Systems Group, 1997, p. 10)

;\toniicity All operations that an application performs which involve updates to any kind of
resource are grouped into a so-called "unit of work." This unit is referred to as
atomic, meaning it is indivisible. In other words, the entire unit of work is either
performed or not. Any partial completion (due to system failures) will be rolled
back.

Ccmsi stency At the end of a transaction, all resources that have participated will be in a
consistent state.

Isolation Concurrent access to shared resources by different units of work (performed by
different applications) is coordinated so that they do not affect each other. In other
words, transactions that compete for resources are isolated from each other.

Durat)ility All updates to resources that have been performed within the scope of a transaction
will be persistent, or durable.

111

5

Sandman and Riley: Seleclting Middleware for N-tier applications

Published by CSUSB ScholarWorks, 2003

Jounial^fjnternational Technolo^ <6 Information Management voliime_22j_nur^^

• MOM Middleware - MOM represents a wide variety of middleware products used to
facilitate the transfer of messages between software applications (International Sys
tems Group, 1997). This type of middleware typically provides either synchronous (block
ing) or asynchronous (non-blocking) communication, or in some cases both (Interna
tional Systems Group, 1997). Most MOMs also provide some form of advanced mes
saging. The software will fall into three general categories; message passing middleware,
message queuing middleware, and publish/subscribe middleware.

o Message passing middleware facilitates a direct connection between two or
more programs (International Systems Group, 1997). This connection generally
must remain persistent, and therefore this type of middleware does not work
well for communication between loosely coupled programs. Most message
passing middleware packages support both synchronous and asynchronous
messaging.

o Message queuing middleware uses message queues to facilitate the transfer of
messages from one program to another. This eliminates the tight coupling be
tween the communicating programs, and persistent connection is generally not
required. This model is frequently used between software applications that do
not have a quality connection. Generally, only asynchronous messaging is sup
ported. Some message queuing middleware packages offer thread pooling and
persistent queuing. Persistent queuing refers to the ability to recover and re
sume message queue operation after a system failure (International Systems
Group, 1997).

o Publish/subscribe middleware allows client applications, or subscribers, to sub
scribe to information from a server, or publisher. Once the subscriber registers
with the publisher, the subscriber does not have to poll the publisher for new
information, and new information is automatically sent to the subscribers when
necessary (International Systems Group, 1997).

The benefits of advanced messaging middleware are straightforward. Based on the
type of messaging middleware selected, users can implement message/passing, mes
sage queuing, or publish/subscribe messaging on their systems. In addition, some inte
grated packages are available which allow all types of advanced messaging. Disadvan
tages of this type of middleware are that it is very limited, many packages only address
messaging, and transaction control is not addressed. Load balancing, failover, location
transparency, concurrency control, transaction queuing, and auto restart are generally
not addressed.

• Object Request Brokers - Object oriented middleware, commonly referred to as object
request brokers (ORBs) represents a type of middleware that supports the transfer of
encapsulated components, or objects, between software applications. Object request
brokers generally fall into two categories: CORBA-compliant ORBs, and Microsoft
COM objects (Gaudin, 1997). Pure object request brokers simply provide a standard
means by which encapsulated objects communicate with one another. Object request
brokers typically do not provide transaction processing services, security services, or

112

6

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 8

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/8

Selecling Middleware Journal of International Technology & Information Management

any of the other functions that are required by many organizations seeking a middleware
product.
Object Monitors - Object monitors are an extension of object request brokers, and they
combine the benefits of an ORB with the transaction processing capabilities of distrib
uted transaction processing middleware (Boucher, 1999). The transaction services are
hiandled through a well-defined interface that can be called through the ORB. Because
object monitors are a hybrid between ORBs and DTPMs, they combine benefits of both
categories. Object monitors allow for encapsulated, reusable objects to communicate
with one another through a standard protocol. In addition, they offer extensive transac
tion control capabilities. Some object monitors also assist in load balancing, failover,
thread pooling, and many of the other benefits sought by middleware customers (Inter
national Systems Group, 1997).

» Application Servers - Application Servers are perhaps the newest classification of
middleware. It is difficult to define what encompasses an application server, because
ajiplication servers are a fairly new middleware category, and the types of products that
iu e touted to be application servers have a wide range of functionality (Boucher, 1999).
IVIost agree, however, that application servers give users the ability to develop business
logic services in a multi-tier environment much more quickly than conventional middleware
and v/ith much less programming. Application servers act as a framework for develop
ing these services (Boucher, 1999). Almost all application server packages offer rapid
development of middleware services and transaction control. Also, load balancing, failover,
s<;curity services, thread pooling, transaction queuing, and other functionalities can be
found in many of the available products. Some offer CORBA-compliant object support,
and some even provide application development tools for creating user interfaces. Some
application servers are specifically geared toward internet development, and these are
commonly referred to as web application servers (Boucher, 1999). Disadvantages of
this type of middleware are that it is still a very confusing segment, with many offerings
to choose from. Larger companies are buying out many small companies offering appli
cation servers. Because this segment is not well defined and is still in a state of chaos,
generalizations cannot be made regarding disadvantages—these must be determined on
an individual product basis.
linterprise Application Integration Middleware - Enterprise application integration pack
ages are a specialized type of middleware used to integrate legacy applications. This
type of software utilizes adapters or connectors, each of which has been specialized to
communicate with a specific type of legacy software (Garber, 1999). One clear advan
tage of using this type of middleware is that it allows legacy integration. Many of these
products support the integration of these legacy applications into web applications (Garber,
]!999), and businesses can realize huge savings by leveraging existing technology, if they
can find an EAI application suitable for their needs. There are disadvantages of using
this type of middleware. First, because it is messaging-based, it is difficult to implement
transaction control; and second, many of these packages fail to provide the performance
features of other middleware types, such as load-balancing, failover, and thread pooling.

113

7

Sandman and Riley: Seleclting Middleware for N-tier applications

Published by CSUSB ScholarWorks, 2003

Journala[Jnternational Technolo^ & Information Management Volume 12, Number 1

EVALUATING MIDDLEWARE ALTERNATIVES FOR INTERNET SYSTEMS

In this section, the information presented above will be used as the basis to propose steps
and guidelines that can assist in the selection of appropriate middleware for n-tier internet sys
tems. These steps would be added to the traditional systems development lifecycle phase of
systems design. Within the overall development lifecycle, the additional proposed steps are;

1. Gather requirements for the new system (done during systems investigation and analysis)
2. Determine the middleware functionality needed to meet system requirements.
3. Identify middleware categories that offer the necessary functionality.
4. Evaluate and choose middleware products for each of the selected categories.

These steps can be integrated into existing system development processes.

Gather Requirements for the New System
The crucial first step in selecting the appropriate type of middleware is to gather informa

tion about the requirements of the new system. If the requirements are not understood and a
system is implemented based on incorrect or incomplete requirements, it will not meet the busi
ness needs for which it was intended.

The key to performing a thorough analysis is to ask questions and take thorough notes. An
exhaustive series of interviews must be performed with all the key personnel involved with the
system. There is no magic list of questions or rules of thumb, nor is there a template that can be
used to ensure that a requirements analysis is performed thoroughly and to an acceptable level of
completeness. However, a set of questions is presented below that will assist in determining the
type of middleware that should be used to implement a system:

• Will this system operate on the public Internet or a private Intranet?
• What types of operations will be performed using the system?
• Will e-commerce be performed on the system? Is so, what type of e-commerce will it

be—retail sale of tangible goods, digital delivery of goods and services, or electronic
commerce among businesses?

• Who will be using the system—customers, employees, or business partners?
• Can it be estimated how many users will concurrently be using the system during peak

demand?
• Is the new system replacing an existing system? Why is the existing system being

replaced?
• Is there a high degree of growth potential for the new system? Can growth be reason

ably predicted and estimated?
• How important is performance?
• How will users interact with data stores on the server?
• Will data stores be read-only or will users perform updates?
• Will transaction control between client and server be necessary?

The above list represents only a small fraction of the questions that would be asked over

114

8

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 8

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/8

Selecting Middleware Journal of International Technology & In formation Management

the c:ourse of a complete and thorough requirements analysis. However, the answers to this set
oi" questions will provide a good insight into the type of system being developed and the require
ments of the middleware that should be implemented with the new system. The next step in the
process cf middleware selection is to determine the types of functionality that will be necessary
tci mieist the requirements of the new system. This step would also be performed as part of the
reiquirements analysis.

System Functionality Determination

Th is step links each of the questions listed above and will discuss the implications that each
a:asw<;r vdll have in determining required functionality.

Wh<;ther the system will be implemented on the public Internet or a private Intranet was
the first question. There are key differences between the two that can help the analyst decide
on middleware requirements: security, what types of operations will be performed, whether or
not e-commerce will be conducted and what type of e-commerce it will be, who will use the
systej-n, tlie number of users who will be using the system concurrently, what type of legacy
systeim exists, and the degree of performance expected are some of the requirements that must
be talcen into account. It could be argued that Intranet systems will have a more finite, predict
able number of users on the system, and a decreased need for functionalities such as scalability,
load-balaiiicing, and failover.

It sliould also be determined what kinds of operations will be performed on the system.
Will this be an interactive e-commerce site that allows users to make secure purchases online?
>Vill this be a business-to-business application that pipelines data from one company to another?
Will this; be a customer service portal, with username/password security? The answer to these
que;sl;ions can give the analyst a broad understanding of what the system will be expected to do
and c:an lead to more information about security requirements, performance, updateability, and
transaction control, to name a few possible functions.

If e-commerce is to be performed, it should be determined what type of e-commerce is
taking pilace: retail sale of tangible goods, digital delivery of goods and services, or electronic
commerc;e among business. For the first category, retail sale of tangible goods, updateability is
an important feature because a business would likely want to add and remove products and
upda te]3rices quickly, as well as to change the graphics and other content to keep the site fresh.
Security, transaction control, performance, load-balancing, thread pooling, and failover are im-
iportant for this type of web site. For digital delivery of goods and services, messaging would
likely be added to the previous list of desirable functionality. Business-to-business commerce
maiy need fewer of these functions because they have a more predictable, finite number of
users, and they will have a limited, static product line. It is also possible they will us the Internet
to transfer data or simply to provide read-only product documentation for customers.

Determining who will use the system can give the analyst insight into which middleware
functionality is appropriate. Will retail customers be using the system? Will confidential informa

115

9

Sandman and Riley: Seleclting Middleware for N-tier applications

Published by CSUSB ScholarWorks, 2003

Jounml_o£2nternatmnalTeclm Volume 12, Number 1

tion be transferred via the public Internet? Will only employees be using the system via a private
Intranet? Will business partners be using the system? These questions can guide the analyst
towards answers regarding security and performance.

The number of concurrent users during peak demand is important. A business-to-con
sumer e-commerce site, in which case issues such as scalability, load-balancing, failover, and
thread pooling will become desirable middleware functions. On the other hand, business-to-
business and intranet systems may be able to predict the number of users on the system at one
time, in which case these features are less critical.

One important consideration is that the new system may not be replacing an information
system, but it may be replacing or enhancing a system that is currently done in part by manual
processes. If, for example, the company currently takes phone orders that are entered into a
mainframe order-entry application, then perhaps the mainframe order-entry application can be
leveraged and used to create a new internet e-commerce system. This type of information is
important in helping the analyst to determine whether legacy systems can be leveraged to create
the new internet system.

It should also be determined if a high degree of growth is expected and whether or not
growth can be reasonably forecast. If the system is not expected to grow rapidly and growth
can be accurately forecast, then scalability will be less of an issue. If it is not known how rapidly
the system will grow, then scalability will likely be a necessary feature of the new middleware.
In the case of a start-up e-commerce site, it may be very difficult to predict usage and growth.

The need for performance should also be investigated. It is hard to imagine that a business
would not consider performance, but there could be business-to-business applications that auto
mate overnight data transfers, and this may mean that performance is less of an issue. Failover
will be important to ensuring that data transfers have been completed by the next business day.
If it is determined that performance is important, then issues such as concurrency control, load
balancing, transaction queuing, and message queuing will likely be on the list of desired
functionalities.

Another issue that must be addressed is transaction control. What type of transactions will
be performed against data servers? Will the users be performing read-only transactions, or will
updates to the data servers be necessary? For most e-commerce sites, transaction control will
be very important, because customers will be entering order information that must be safely
committed to the database. If this is the case, then transaction control will most certainly be
added to the list of necessary functions that the new system must perform.

Answers to these questions will help identify necessary middleware functionalities. They
will provide a good insight into the system's middleware requirements. Table 2 gives a summary
of these findings. It lists the questions that were proposed earlier in this chapter and indicates
which common middleware functions will likely be needed based on the answer to each ques
tion. The required functionalities will then determine the correct type of middleware to acquire.

116

10

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 8

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/8

Selecting Middleware Journal o f International Technology & In formation Management

Middleware Category Selection
The nexl: step in evaluating middleware alternatives is to review the middleware categories

and thie common functionality found in each category. This will assist in narrowing down the
miiddlew:aire alternatives that should be investigated further. Table 3 lists the middleware catego
ries discussed in this paper, and indicates which functionalities are commonly found in each
category,, A "Y" indicates that a middleware category generally possesses the corresponding
functionality, while an "N" indicates that it generally does not. Linking functionalities and cat
egories assists developers in identifying what middleware to acquire.

Ui a:

Si
1/5
'55

s:
Ci?l
s:
i:
u

O"

3
'D

'El
C! a>

C)

C)

J3A0JIEJ
§um3n^ tlOpOESDEJX

JOJJUOQ U0143ESUBJX
Suijood pESJijx

S30IAJ3S AI13TO3S
S33yU35 §UItOTX[

yoddng 3SBqBjEp-q]n]?q;
uotjEjSsiui XOESSX

qEZUBjnpoyqyuo i5E]nsdEoug
guioueieg pEog OTUJBUXQ

3{J0^3UJEJX uoiiEoiiddy
SuigBSS3y>I p33UBApY

w

p o

I

s a o w 6

e
H

w

•-6 o
1 !

a;

o p
"B

117

11

Sandman and Riley: Seleclting Middleware for N-tier applications

Published by CSUSB ScholarWorks, 2003

Joum^o^International^Techno^ volume_12j^mnber^

Table 3. Summary of Middleware Functionality

dl ewar e Futi rti mi ality

TVIiil dl cnwa-ro T A
dv

an
ce

d
M

es
sa

gi
ng

A
pp

lic
at

io
n

Fr
am

ew
or

k

D
yn

am
ic

 L
oa

d
B

al
an

ci
ng

En
 c a

p s
ul

 at
i o

n/
M

o d
ul

 ai
i z

 a

L
eg

ac
y

In
te

gr
at

io
n

M
ul

ti-
da

ta
ba

se
 S

up
po

rt

N
am

in
g

Se
rv

ic
es

Se
cu

ri
ty

 S
er

vi
ce

s

T
hr

ea
d

Po
ol

in
g

T
ra

ns
ac

tio
n

C
on

tr
ol

bT
ra

ns
ac

tio
nQ

ue
ui

ng

Fa
ilo

ve
r

Database Access N N N N N Y N N N N N N
Remote Procedure Call N N N N N N Y Y N N N N
Di stributed Transaction N N Y Y N Y N N Y Y Y Y
Mfissape-Ori ented Y N N N N N N N N N N N
Obiect Reouest Broker Y N N Y N N Y N N N N N
Obiect Monitor N N Y Y N Y Y N Y Y Y Y
Aoolication Server N Y Y Y N N N Y Y Y Y Y
Entermse Aoolication Y N N N Y N N N N N N N

The next step in this process is to narrow the list of middleware categories to determine
those categories of middleware that will best fit the needs of the new system. The analyst may
discover that several categories of middleware are suitable. However, it is likely tbat no cat
egory will meet all of the system requirements, and this would necessitate the selection of mul
tiple middleware categories. For many robust e-commerce systems, nearly every type of
middleware functionality will be on the final list of requirements, and this will necessitate the use
of multiple middleware packages.

It should be reiterated that the application server segment is very promising and should be
investigated closely. This segment is very new and still rapidly evolving. However, middleware
that falls into this category should be evaluated on a product-by-product basis, because a viable
alternative may be found that meets the requirements of the new system.

Middleware Product Selection
The final step in the process of middleware selection is to evaluate individual products and

choose the product combination that best meets the needs of the new system. There is not much
to say on this topic that is specific and unique to middleware selection or n-tier development.
The following list offers suggestions of things to consider when evaluating middleware products:

• Ask vendors for references of organizations currently using the software.

118

12

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 8

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/8

Selectine Middleware Journal of International Technology & Information Management

•' 7*,sk vendors to identify organizations with systems that have similar functionality to the
one being developed by your organization.

» i^.sk vendors to arrange demonstrations of production systems that are using their prod
uct.

<• Obtain trial versions of the software and develop a prototype to ensure that the middleware
fits the needs of the application.

'• Ask the vendors to provide as much assistance as possible in prototype development.
" Discuss training resources so employees can be brought up-to-speed on the use of the

r,ew middleware tool.
• Try to select products that are established in the market so that obtaining developers

ex perienced with the product will be possible.
• Ask the vendor what type of technical support package comes with the purchase.
® (iionsider the financial condition of the middleware source, that is, will the company be

Eiround next year to support the product?
Thiis list of considerations can be applied to the purchase of any type of development

soft ware and iis not exclusive to middleware. Also, it should be stated that there are many other
questi ons that could be asked when making a software purchase. However, the above questions
can help a business select the right vendor and product to provide the middleware to use in
building an n-tier system.

SUMMARY

Two-tier technologies are inadequate for large-scale e-commerce and business systems.
Ilusinesseis must use three- or n-tier architectures to address the challenges presented when
impile:menting these kinds of systems. The enabling technology that makes this possible is
middleware.

To ensure the success of a three- or n-tier system, businesses must understand the system
tieing; built and the technology being used to build it. Key steps to help ensure success are:

1. Understand the requirements of the new system.
2. Understand the functionality needed to fulfill the requirements.
3. Understand the various categories of middleware and the functionality that is typical of

each category.
4. E^'£lluate products from those categories identified as meeting the needs of the new sys

tem.
Following these steps will help to ease the pain of middleware selection and will facilitate

the successful implementation of new e-commerce systems for businesses that wisely choose to
use £in n- tier architecture.

119

13

Sandman and Riley: Seleclting Middleware for N-tier applications

Published by CSUSB ScholarWorks, 2003

Jounial_o£hiternationalTec}mologv_&_J^ vojmme^j2j_ninriber

REFERENCES

Bernstein, Philip A. (1996). Middleware: A Model for Distributed System Services. Communi
cation of the ACM, 39(2), 86-98.

Bielski, Lauren (January, 1999). Ready for Multi-Tier, Distributed Computing.^ American Bank
ers Association Journal, 91(1), 53-55.

Boucher, Karen (December 1999). Application Servers on the Front Lines. Software Maga
zine, 19(3), 46-51.

Dogac, Dengi, and Oszu (1998). Distributed Object Computing Platforms. Communications of
the ACM, 1998, 41(9), 95-103.

Eckerson, Wayne W (1995). Three-Tier Client/Server Architecture. Open Information Sys
tems, 10(1), 1-20.

Edwards, Harkey, and Orfali (1999). Client/Server Survival Guide, Third Edition. New
York: John Wiley and Sons, Inc.

Edwards, Jeri (1999). Three-Tier Client/Server at Work. New York: John Wiley and Sons,
Inc.

Garber, Lee (1999). Middleware Moves to the Forefront. Computer, 32(5), 17-19.

Gaudin, Sharon (1997). IBM Middleware Befriends CORBA. Computerworld, 31(20), 41-
42.

Hoffman, Richard (1999). No More Middle Ground for Middleware. Network Computing,
10(10), 76-77.

International Systems Group (1997). Middleware - The Essential Component for Enterprise
Client/Server Applications. International Systems Group Incorporated.

Lewis, Ted (1998). The Legacy Maturity Model. Computer, 31(11), 125-127.

McFall, Cynthia (1998). An Object Infrastructure for Internet Middleware. IEEE Internet
Computing, 2(2), 46-51.

Sharon, Dave (1997). Avoiding a Middleware Muddle. IEEE Software, 14(6), 92-98.

120

14

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 8

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/8

	Journal of International Information Management
	2003

	Seleclting Middleware for N-tier applications
	Thomas Sandman
	Timothy Riley
	Recommended Citation

	Seleclting Middleware for N-tier applications

