
Journal of International Information Management

Volume 12 | Issue 1 Article 4

2003

The development of a business rules engine: A
condition-action rule algorithm for finite static lists
Terri D. Giddens
Texas Tech University

Kevin E. Gaasch
Panhandle Plains Student Loan Center

Follow this and additional works at: http://scholarworks.lib.csusb.edu/jiim

Part of the Management Information Systems Commons

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International
Information Management by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Giddens, Terri D. and Gaasch, Kevin E. (2003) "The development of a business rules engine: A condition-action rule algorithm for
finite static lists," Journal of International Information Management: Vol. 12: Iss. 1, Article 4.
Available at: http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4

http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol12?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol12/iss1?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol12%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

Business Rules Eneine Journal o f International Technology & In formation Management

The development of a business rules
engine: A condition-action rule
algorithm for finite static lists

Terri D. Giddens
Texas Tech University

Kevin E. Gaasch
Panhandle Plains Student Loan Center

ABSTRACT

An on-going theme in Information Systems research is the methods by which business
rules are gathered and implemented. Additionally, many efforts have been made to de
velop reusable algorithms for processing business rules to reduce system development,
testing, and maintenance time. The objective of this paper is to present a reusable algo
rithm for condition-action rules that are applied to finite static lists. More importantly, the
algorithm is generalized for complex rules that are complicated by differences in user
authorizations and other dependencies.

INTRODUCTION

Tiie process of gathering system requirements in a business domain involves the definition
of bu siness rules, or more particularly, production rules or condition-action rules. These rules
may be tliought of as intrinsic bits of knowledge concerning a particular system's domain. A
conditicin-action business rule is any statement that can be put in the form of "if - then". A rule
is defmtid as: "A statement that defines or constrains some aspect of the business. It is intended
to assert business structure, or to control or influence the behavior of the business" (Perkins,
2000). One major and continuing problem in software development is the implementation of
business rules as hard-coded elements that are often replicated throughout many applications.
As a consequence, they are neither maintainable nor reusable (Belderrain, 2002) (Rouvellou et
ill., 2000). Business rules often change during an application's life cycle, and subsequent
changes; of these business rules may have an adverse impact on the application. Analysts or
jjrogrammers may change or add rules without a full understanding of the existing rules or their
I'epilication (Grosoff et al., 2000).

43

1

Giddens and Gaasch: The development of a business rules engine: A condition-action ru

Published by CSUSB ScholarWorks, 2003

Joumalof International Technology & Information Management Volume 12, Number 1

The use of generic, encapsulated, reusable business rules algorithms has been recognized
as a fundamental need in corporate software development. Over the past thirty years, many
papers have presented architectural frameworks that attempt to make the implementation of
business rules more flexible and designed for change (Grosoff et al., 2000)(Shao et al., 2001).
Many of these include case-based reasoning, externalized or componentized rules, neural net
works, and knowledge-based inference engines. The goal for each is the development of a
"rules engine" that processes business rules and aids in the development, testing, and mainte
nance of complex systems. The need for a rules engine is emphasized by the fact that most
business rules have low stability, high complexity, and require a high effort to enforce (Rosea and
D'Atillio, 2001)(Rosca et al., 1995). The high complexity is explained by the interdependencies
that exist on other business rules. It is further argued that rule encapsulation and extemalization
significantly enhances maintainability (Belderrain, 2002) (Rouvellou et al., 2000).

This paper presents a reusable algorithm to be used in a business rules engine. The algo
rithm is for one specific type of a business rule; it is to be used on finite static lists that have a
multiple set of rules triggered by additional dependencies on other fields and differences in
authorization that have been defined for various classes of users. This paper begins with an
overview of the literature on Condition-Action Rules. This is followed by an industry example to
be used to facilitate the presentation of the algorithm. The first iteration of the algorithm in its
simplest form, a finite static list assigned business rules for a single user authorization, is then
presented. In the second iteration, the algorithm is modified for more complex business rules
that are affected by multiple user authorizations. Because business logic is often further com
plicated by multiple dependencies on other data input fields, the third iteration of the algorithm is
finally generalized for n-dimensional dependencies. The benefit of a system that uses this algo
rithm is then discussed.

CONDITION-ACTION RULES

Condition-Action Rules are based on action assertions. Action assertions specify con
straints on the data that is produced or modified by the actions. A "condition" is a test that is
used to determine whether to perform certain actions or test other action assertions. One type of
action assertion is an "integrity constraint". An integrity constraint is an assertion that tests for
a valid state that must always be true. Integrity constraints are often complicated by the varia
tions in the business rules affected by user "authorization". Authorization specifies user permis
sions to perform certain actions; the integrity constraint may have a different set of rules de
pending on the authorization assigned to a particular user.

A significant portion of business logic is associated with validation of data. Most data
validation is done through integrity constraints. All data entry fields have a value that is validated
prior to saving the data. The validation state must be true in order for the data to be saved. The
following are various classes of action assertions that are applied to simple data validation:

• Required fields. On a data entry screen some fields are required to be entered and will
not save unless there is something in the field.

44

2

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 4

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4

Busitiess Rules Engine Journal of International Technology «& Information Management

• Field size limits. All fields that are being saved to a database must not exceed the field
length specified in the structure of the database.

• VaM Dates: All dates must be a valid date. Some systems require additional date field
validations.

• Upper/lMwer Limits. Some fields may not be valid if they are out of bounds on a lower
or upper limit.

• Dependencies. Some fields need additional validation depending on the value of another
field.

• Finite Static Lists. Some fields have a finite set of values that the field can contain. This
is typically displayed in a pull-down (combo) list or list box where there are a finite number
of choices that can be made.

Bu siness logic defined for data input usually requires a combination of the above assertion
typ(2s. For ex ample, a required field may have a length constraint and must be one of a certain
set of values from a finite static list. The nested "if statements in a program with multidimen
sional business logic can get very complicated and hard to read. Condition-Action rules for data
\ alidation need to be flexible and easy to modify, program, and test.

ESfDUSTRY EXAMPLE

To facilitate the discussion, an industry instance where the algorithm has successfully been
impl(;mi;nted is presented. The following is a brief overview of the industry example.

In the student loan industry, student loan applications are received and processed. The
"orig;inEition" of a loan involves coordination between the school, lender, borrower (student or
])aTent) and guarantor.

Tire process that a borrower goes through to get a student loan is:

1. A borrower fills out an application and selects a school and lender.
2. Tire application is submitted to the school, lender, and guarantor.
3. Biefore a loan is originated from the application, the application must be guaranteed by a

federal guarantee agency. Once a notice of guarantee is received from the guarantee
agency, the lender's loan department "matches" it to an application and it becomes a
"loan".

4. Included on the loan are disbursements (dates and amounts) that are set by the school.
The lender processes the disbursements according to these dates and amounts.

5. After the loan is fully disbursed, the loan is sent to servicing where interest accrues and
payments are solicited.

i4.pplications, loans, and disbursements can have one of a fixed number of statuses. The
businesis. logic for these finite static lists defines how each of the statuses can be changed. A
stEitus c an be changed to another value based on its initial value, the type of authorization the user
has been assigned, the type of loan that it is, and the amount requested.

45

3

Giddens and Gaasch: The development of a business rules engine: A condition-action ru

Published by CSUSB ScholarWorks, 2003

volume^2j_nmn^^

For this example, the status of an application will be used. An application can have the
following finite number of statuses:

• Matched - It has become a "loan" because a guarantee has been received for it.
• Pending - The application is waiting for a guarantee to be "matched" to it.
• Hold - Something is wrong with the application - it cannot be "matched" in this status.
• Canceled - The application has been canceled by the Borrower, School or Guarantor.

The inclusion of multiple user authorizations makes the business logic multi-dimensional.
The valid changes from one value to another are further complicated by the authorization granted
to the user. A user is able to change the status of the application according to the authorization
he/she has been assigned. A "supervisor" user is able to change from any status to any other
status. A "guest" is not able to change the status. A "staff user can change the status of the
application according the following rules:

• Once matched, the application cannot change status.
• A pending application can be placed on hold.
• A pending application can be matched.
• An application on hold can be removed from hold and put back to pending
• A pending application can be canceled.
• An application on hold can be canceled.
• Once canceled, the application cannot change status.

To further complicate this business logic, this finite static list has dependencies on other
fields. For example, depending on the type of application or the requested amount, the applica
tion must be on hold if some data entry fields are blank.

Business logic can become very complex and therefore extremely hard to program, test,
and maintain. Pseudo code for the algorithm for the above business rules would be:

Function Validate_Status (initial_status, changed_status, UserAuthorization)

If UserAuthorization = "staff then

If initial_status = "Hold" then

If changed_status = "Pending" then valid = true;

If changed_status = "Matched" then valid = false;

If changed_status = "Canceled" then valid = true;

End if //status = Hold"

If initial_status = "Pending" then

If changed_status = "Matched" then valid = true;

If changed_status = "Canceled" then valid = true;

46

4

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 4

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4

Business Rules Engine Journal of International Technology <fe Information Management

If changed_status = "Hold" then valid = true;

End if //status = Pending"
If initial_status = "Matched" then

If changed_status = "Pending" then valid = false;

If changed_status = "Canceled" then valid = false;

If changed_status = "Hold" then valid = false;

End if //status = Matched"
; If initial_status = "Canceled" then

If changed_status = "Pending" then valid = false;

If changed_status = "Matched" then valid = false;

If changed_status = "Hold" then valid = false;

End if //status = Canceled"

End if //UserAuthorization = staff
;l i //******** i-gpeat above for other User Authorizations *****************

Return valid

Funcidon End

In the Eibove scenario, the validation of this finite static list of 4 items for one user authori
zation requires 2" or 16 "if statements. These 16 statements would need to be duplicated for
{;ach useir authorization. For this scenario, the logic to support the dependency on the type of
loan and the amount of the loan would also have to be added. Beyond becoming a programming
nightmiue, tliis is very difficult to test and maintain as the business rules change.

•C ONCEPTUALIZATION OF BUSINESS LOGIC COMPLEXITY OF
A FINITE STATIC LIST WITH DEPENDENCIES

The following conceptual diagram shows the finite static list and its dependency on
other valines that complicate the business logic. In the center is the finite static list. The first
dimension around it shows its dependency on user authorization. Valid status changes are de
fined by the type of user authorization permitted. The business logic is further depicted by
shovk'ing the finite static list's dependencies on the application type and the application amount in
the lemaining dimensions. Depending on the application type and the application amiount, the
business rules that dictate valid status changes differ.

47

5

Giddens and Gaasch: The development of a business rules engine: A condition-action ru

Published by CSUSB ScholarWorks, 2003

jounial^£hiternationaljecfmolo£^^^jn^^^ Volume 12, Number 1

Figure 1. Conceptual Diagram of Finite Static List with Dependencies

To further complicate matters, complex business logic is often viewed by the programmer
as a challenge. Given a set of business rules, a clever programmer will attempt to simplify the
logic into a minimal set of intertwining nested if statements using some sort of boolean logic
reduction techniques. This over-simplification usually makes the program hard to maintain. If
the logic is not clearly documented or easy to read, subsequent changes to the code may be
made incorrectly and have adverse effects on logic of the application.

FINITE STATIC LIST ALGORITHM

To simplify the explanation of the algorithm, discussion of the algorithm will first be given
using only the business rules for a user of the system who has been given "staff system autho
rization. This will be referenced as a finite static list having business rules defined with a one-
dimensional dependency. After this initial presentation, the algorithm will be generalized to
handle multi-dimensional complex condition-action rules that incorporate multiple dependencies
as illustrated in the business rules for the industry example.

The following table defines the algorithm in a generic form in the first column. For clarifi
cation, the algorithm is applied to the industry example and is given in the second column.

48

6

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 4

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4

Business Rules Engine Journal of International Technology & Information Management

Table 1. Simple algorithm with single user authorization

Generic Form Applied Form
n: number of elements in Finite Static List n =4

Statuses: matched, pending, hold, canceled
I = A single Item in a Finite Static List,
li e [Li, L, ••• L-i], 0 < i < n, andnis finite

F = Finite Static List of n Items

L - matched, Ii = pending,
L = hold, 13= canceled

F = [matched, pending, hold, canceled]

L = Initi.al value selectedfrom F, 0 < i < n

Ij = QiEingedvsdue selected from F, 0 <j <
n, Ii<>;^

Eij e [lLo,Ii), (L,I2), (L-2, Li-i)] = A
combination of 2 Items (li, Ij) where each
E jj represents a change of value from one
Item in the Finite Static List (10 to another
element in the Finite Static List (Ij), i <> j

Status initial value is either matched,
pending, hold, or canceled.
The status is changed to another value. A
change to the same value is not relevant.

Ei2 = [pending, hold] implies that the initial
value was "pending" and changed to
"hold".
A change from "hold" to "hold" is not
relevant.

b - " number of bits needed to represent
all possible (Eij) state changes.

b = 2* = 16. There are 16 possible state
changes from one item in the list to another.

S — A £:et of b bits, where each bit in S
maps to each Ey

Pjj = Calculated position of bit in S mapped
for each Ey . Py = n*i + j, Py < b

S contains 16 bits, each representing one
state change. For the above business rules,

S="0000 1011 0101 0000"

Bit position 0=0 (matched to matched)
Bit position 1=0 (matched to pending)
Bit positi on 2 = 0 (matched to hoi
Bit positi on 3 = 0 (matched to canceled)
Bit position 4 = 1 (pending to matched)
Bit positi on 5 = 0 (pending to pending)
Bit position 6 = 1 (pending to hold)
Bit position 7 = 1 (pending to canceled)
Bit positi on 8 = 0 (hold to matched)
Bit position 9 = 1 (hold to pending)
Bit position 10=0 (hold to holc^
Bit position 11=1 (hold to canceled)
Bit position 12 = 0 (canceled to matched)
Bit position 13=0 (canceled to pending)
Bit position 14=0 (canceled to hold)
Bit position 15 =0 (canceled to canceled)

If changing from pending to hold:
Pending: i = 1; hold: j = 2, n = 4
Bit positi on = 4*1 + 2 = 6

49

7

Giddens and Gaasch: The development of a business rules engine: A condition-action ru

Published by CSUSB ScholarWorks, 2003

jom^nal_a£intentationalj^ecfnwlo^^_&_i^^ voliime^2^_niun^e^

S(Pij)= Value of bit in S at position P

S(Pij) = 0 if Eij is not a valid state change If the value at the cdculated bit position is a
0, it is not a valid state change.

S(Pjj) = 1 if Eij is a valid state change E the value at the cal culated bit position i s a
Litis a valid state change.

Condition-Action Rule: Gven R determine Given a change from "pending" to "hold":
whether a change to Ij is valid.
If a change from Ii to Ij is not valid, do not Calculate the bit position:
allow the change. Initial Status (pending) = 1

Changed Status (hol<^ = 2
Evaluation: Bit Position = 4 *1-1-2 = 6

V = trueifS(Pij)= 1 E value at bit position "6" = 1 it is a valid
V = false if S(Pij) = 0 change

E value at bit position "6" = 0 it is not valid

The key to understanding the algorithm is the bit mapping of each possible status change in
S. S contains a bit for each possible status change. The first four bits are for an initial status
of "matched". The next four are for an initial status of "pending". The next four are for an
initial status of "hold". The last four bits are for an initial status of "canceled". Each of the bits
within the grouping of four represents the changed status. Bit position zero in the group of four
represents a status change to "matched". Bit position one in the group represents a status
change to "pending". Bit position two in the group represents a status change to "hold". Bit
position three in the group represents a status change to "canceled". Therefore, bit position six
in S represents a change from pending to hold. If the bit at that location is set to 1, the change is
valid. If the bit at that location is set to 0, the change is invalid.

The following is an object oriented approach to the algorithm using Java. It should be
noted that the algorithm can be implemented many different ways using different languages and
even XML to identify the rules. The following Java code segments are given just to demonstrate
the ease of programming using this algorithm.

Sample Code: StatusChangeValidator.iava
importjava.util.*;

public class StatusChangeValidator {

private Hashtable itemTable = new Hashtable();

private int itemCount;

50

8

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 4

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4

Business Rules En^ne Journal of International Technology <£ Information Management

BitSet validChanges;
int numStatusItems;

;StatusChangeValidator(int numltems) {
itemTable = new Hashtable();
itemCount = 0;
numStatusItems = numltems;
validChanges = new BitSet(Math.pow((double)2, (double)numStatusItems);

}

public void addItem(String s) {
itemTable.put(s, String.valueOf(itemCount));
itemCount++;

}

public void addValidStatusChange(String si, String s2) {
\'alidChanges. set(numStatusItems *

Iriteger.parseInt(itemTable.get(sl).toStringO)
+Integer.parseInt(itemTable.get(s2).toString()));

}

public boolean isValid(String s 1, String s2)
return (validChanges.get(numStatusItems*

Integer.parseInt(itemTable.get(sl).toString())
+Integer.parseInt(itemTable.get(s2).toString())));

}
}

llie code identifies a StatusChangeValidator class that incorporates a Hashtable and a
BitSet, The Hashtable is used to store the finite static list and the order of each item in the list.
The; Hashtable is used to "lookup" the item and return its position in the list in order to calculate
th,e bit position in the BitSet. The BitSet is used to store the bits mapped to each possible change
from one item in the finite static list to another. The Hashtable represents F and the BitSet
represents S.

The StatusChangeValidator class has four methods; the constructor, addltem(),
addValidStatusChangeO, and isValid(). The constructor method creates the Hashtable and the
E itset and initializes the value of numStatusItems (n). "itemCount" is initially set to 0 and is used
as a counter as items are added to the Hashtable. Initially, all bits in the Bitset are set to 0 to
r(jpiresent invalid status changes.

The method addltem() is used to add an item to the Hashtable. The method
addValidStatusChange is used to set a bit in the Bitset to represent a valid status change. The
me;thod is^/alid() is used to calculate the bit location and return the bit (either true or false) from
the; Bitset.

51

9

Giddens and Gaasch: The development of a business rules engine: A condition-action ru

Published by CSUSB ScholarWorks, 2003

joiuinal^^^inteniatwnaitecfmolo T̂/_&jn^bnna^ Volume 12, Number 1

The following is the client code that uses the StatusChangeValidator:

public class Testit {
public static void main(String args[]) {

//create a statuschangevalidator for a finite static list with 4 elements
StatusChange Validator scv = new StatusChangeValidator(4);
// add the 4 Items to the validator
scv.addltemC'matched");
scv.addltemC'pending");
scv.addItem("hold");
scv.addltemC'canceled");

//specify the business rules
scv.addValidStatusChangeC'pending", "hold");
scv.addValidStatusChangeC'pending", "canceled");
scv.addValidStatusChangeC'pending", "matched");
scv.addValidStatusChangeC'hold", "pending");
scv.addValidStatusChangeC'hold", "canceled");

//validate the rule
if(scv.isValid(args[0], args[l]))

System.out.printlnC'allowed");
else

System.out.println("not allowed");
}

}

The client code creates an instance of the StatusChangeValidator with four items. Each of
the four statuses is added to the StatusChangeValidator. Each valid status change is then de
fined using addValidStatusChange(). The change is validated by a single "if statement testing
the value of the isValid() method. Running the program requires the user to specify two param
eters, the initial status followed by the changed status. To run this sample program, the user
would enter "Java Testit pending hold".

The programming of this business logic in a traditional form would have taken sixteen "if
statements that would have been harder to code, test and maintain. Using the "black box" rules-
engine algorithm, the code has been simplified to a single "if statement. The business logic is
easy to read and change. To add another valid status change, only one line of code would need
to be added. Also, adding another status to the list would also require one only line of code.
From a programmer's point of view, the logic is much easier to follow. Consequently, the main
tenance programmer would be less likely to jeopardize existing business logic while implement
ing new rules. From a developer's point of view, a structure is created that tends to enforce its
own rules for change while preserving the integrity of the code.

52

10

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 4

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4

Business Rules Engine Journal of International Technology <£ Information Management

GENERALIZED - MULTIPLE USER AUTHORIZATIONS

Thi; following table defines the algorithm for finite static lists with multiple user authoriza
tions. Once again, for clarification, the algorithm is applied to the industry example and is given
in the second column.

Taible 3. Generalized algorithm with multiple user authorization
Generic Form Applied Form

n: number of elements in Finite Static List n =4
Statuses; matched, pending,hold, canceled

]; = a single Item in a Finite Static List,
li [L, ti, ii-i]. 0 <i <n, andnis
irinite
!F — JFinite Static List of n Items

L - matched, Ii = pending,
]3 = hold, l3= canceled

F = [matched, pending, hold, canceled]

D ~ A set of user authorizations

Di, = A single user authorization assigned
from m authorizations, 0 < k < m

D = [guest, staff, supervisor]
m = 3
Do = guest, Di - staff.
Da = supervisor

Ij ~ ![nili al value sel ected from F, 0 < i < n

Ij -• Ch anged value selected from F, 0 <;j
n, ii<>:^

Status initial value is either matched,
pending, hold, or canceled
The status is changed to another value. A
change to the same value is not relevant.

Eij £ [CoJl). (lo, L), • • • (L-2. In-l)] = A
combination of 2 Items (li, Ij) where each
Fiji represents a change of value from one
Item in the Finite Static List (L) to another
element in the Finite Static List (Ij), i <> j

b :=m * 2" = number of bits needed to
represent all possible (Eij) state changes for
all m authorizations.

Ei2= [pending, hold] implies that the initid
value was "pending" and changed to
"hold".

A change from "hold" to "hold" is not
relevant

b = 3 * 2* = 48. There are 16 possible state
changes from one item in the list to
another. There are 3 possible user
authorizati ons. Total bits needed is 48.

EijIiDk) := A state change (Eij) for a given
user authori.zation (Pk).

Each of the 16 state changes must be
replicated for each user authorization.

S = A set ofb bits, where each bit Sp maps
to eacliEijCClk)

S contains 48 bits.

Pij(Pit) = Position of bit in S mapped for
each EijCD,). Pij(P,) = ((n=1 +j) + (k * ?)),
Pij(Di()< b.

Changing from pending to hold with a user
authorization of supervisor:
pending: i = 1; hold: j = 2, n = 4
supervisor: k = 1
Bit position = f4*l + 2) + (1 * 2^) = 22

53

11

Giddens and Gaasch: The development of a business rules engine: A condition-action ru

Published by CSUSB ScholarWorks, 2003

joum^_o£hiteniational^recimolo^^^_&jn^b^ Volume 12, Number I

S(Pij(r)k))= Value of hit in S at position
PijCDk)

S(Pij(Di()) = 0 if Eij(Di,) is not a vali d state
change

S(Pij(Di,)) = 1 if Eij(Pi() is a valid state
change

If the value at the cal culated bit position i s
a 0 it is not a valid state change.

If the value at the cal culated bit position i s
a Litis a valid state change.

Condition-Action Rule: "With a user
authorization of lA^given R determine
whether a change to Ij is valid
If a change from li to Ij is not vali d, do not
allow the change.

Evaluation:

V = tiueifS(Pij(Dk)) = l
V = false if S(Pij(DK)) = 0

Given a user authorization of supervisor
and a change from "pending" to "hold":

Calculate the bit position:
Initial Status (pending) = 1
Changed Status (hol<^ =2
Supervisor authorization = 1
Bit Position = (4*1 + 2) + (1 * 2^) =22

If value at bit position "22" = 1 it is a valid
change
If value at bit position "22" = 0 it is not
valid

The key to understanding the changes made to the algorithm to accommodate the compli
cations added by differing user authorizations is that the initial bit set that represents each pos
sible status change in the finite static list has to be replicated for each user authorization. If there
are four items in the list, then there are 2"* bits required to represent each valid state change.
These 16 bits must be replicated for each user authorization. Therefore, if there are three
different user authorizations, the number of bits needed would be 16 * 3 or 48. The Java
program given would need to be modified slightly to add this second dimension by overloading
some of the methods to accommodate additionally passing the user authorization to be used in
the calculation of bit positions.

GENERALIZED - MULTIPLE USER AUTHORIZATIONS AND
MULTIPLE DEPENDENCIES ON OTHER FIELDS

The following table defines the algorithm for finite static lists with multiple user authoriza
tions and multiple dependencies on other fields. Once again, for clarification, the algorithm is
applied to the industry example and is given in the second column. In this example, it is assumed
that there are different types of applications and the status change is not only dependent on the
authorization granted to the user, but also to the type of application and the amount of the loan
request.

54

12

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 4

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4

Business RulesEim^ Journal of International Technology & Injormatioii^im

Table 3. Generalized algorithm with multiple user
authorizations and multiple dependencies

Generic Form Applied Form
ji: numlxa' of elements in Finite Static List n =4

Statuses: matched, pending, hold, cancded
1 = A single Item in a Finite Static List,
li [Llu • • • L-1], 0 < i < n, and n i s
liiniti5
F == Finite Static List of n Items

L = matched, Ii = pending,
L = hold, l3= canceled

F = [matched, pending, hold, cancded]

d == number of dependencies

D = A set of dependencies on other fields
and/or user authorization

d = 3
dependent on user authorization,
application t5?pe and loan amount
D = [user authorization, application t3rpe,
loan amount]

Di= A dependency on another fi d d and/or
authorization assigned from d
dependencies, 0 ^ 1 < d

Do = Dependency on user authorization
Di = Dependency on ^plication type
Da = Dependency on loan amount
d = 3

D](m) == number of distinct possibilities for
a dependency

Di(= tlie value (k) chosen from the choices
from D],

Do(m) = 3
Different user authorizations are guest,
staff, and supervisor.
Di(m) = 2
Different application tjrpes are studemt
initiated or parent initiated.
DaCm) = 2
Different loan amounts are those > $500
and those <=$500.

Do represents the dependencies on the three
user authorizations:
Doo,v>fhere k= 0, represents "guest"
Doi where k= 1, represents "staff
Doa where k= 2, represents "supervisor"

Di represents the dependencies on the two
application tjrpes:
Dio where k= 0, represents "student
initiated"
Dii where k= 1, represents "parent
initiated"

Da represents the dependencies on the two
loan amounts:
Dao where k= 0, represents < $500
Dai where k= 1, represents > $500

13

Giddens and Gaasch: The development of a business rules engine: A condition-action ru

Published by CSUSB ScholarWorks, 2003

Journal of International Technology & Information Management Volume 12, Number 1

Ii = Initi£l value selected from F, 0 < i < n Status initial value is either matched,
pending, hold, or canceled

Ij = Changed value selected from F, 0 <j <
n,

The status is changed to another value. A
change to the same value is not relevant

Eij e [(Jo Jl). (Jo, I2), • • • (ii-2, ln-1)] = A
combination of 2 Items (Ii, Ij) where each
Eij represents a change of value from one
Item in the Finite Static List (
Ii) to another element in the Finite Static
List(Ij),i <> j

Ei2 = [pending, hold] implies that the initial
value was "pending" and changed to
"hold".

A change from "hold" to "hold" is not
relevant

b = 2" *Do(m) *Di(m)....*Dd(m) -
number of bits needed to represent all
possible (Eij) state changes for all
dependencies

b = 2^ *3*2*2 = 192. There are 192
possible state changes from one item in the
list to another. There are 3 possible user
authorizati ons. There are 2 possibl e tjrpes
of applications. There are 2 possible
ranges for loan amount. Number of bits
needed is 192.

EijCDok Dili... Ddk) = A state change (Ey) for
a given set of dependencies.

Each of the 16 state changes must be
replicated for each dependency.

S = A set of b bits, where each Sij (Dok
Dill... Ddk)maps to each EijCDok Dm... Ddk)

S contains 192 bits.

Pij(Doik Dill... Ddk) = Position of bit in S
mapped for each EijCDok Dm... Ddk)•
PijkCDok Dm... Ddk) = + j) +
t =^ak)) +
(2^*Db(m)*Dm) +
(2" *Do(m) *Di(m) *D2k)+....+
(2" *Db(m)*Di(m)*.*Dd.i(m) =^dk)
P(Dak Dm... Ddk)

Changing from pending to hold with a user
authorization of supervisor for an
application that is parent initiated and a
loan amount greater than $500:
pending: i = 1; hold: j = 2, n = 4
supervisor: Dok = 1, Do(m) = 3
parent initiated: Dm = 1; Di(m) = 2
loan amount > $500; Dm = 1. DaCm) = 2

Bit position = (4 * 1 +2) +
(2* *1) +
(2^*3 *1) +
(2^ *3*2 * 1)
= 166

S(Pij(Dak Dm... Ddk)) = Value of bit in S at
position PijCDok Dm... Ddk)

S(Pij(Dak Dm... Ddk)) = 0 if Eij(Dok Dm...
Ddk) is not a valid state change

If the value at the calculated bit position is
a 0, it is not a valid state change.

56

14

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 4

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4

Busmi?ss Rules Engine Journal of International Technology & Information Management

SfPijCEiok Da... Ddk)) = 1 if EijCDok Da...
D,a) is a valid state change

If the value at the calculated bit position is
a 1, it is a valid state change.

Condilion-ActionE.ule: Given a status ofli,
a user authorization ofDok, and application
type of Da, and a loan amount of Djk,
determine whether a change to Ij is valid
If a change from li to Ij is not valid, do not
allow the change.

Eviiluati on:

V ~ true if S(Tij(Dok Da... Das)) = 1
V - fsdse if SCPijCDok Da... Ddk)) = 0

Given a user authorization of supervisor
and a change from "pending" to "hold":

Cal cul ate the bit positi on:
Initial Status (pending) = 1
Changed Status (hol($ =2
Supervisor authorization = 1 (of 3)
Application type = 1 (of 2)
Loan amount = 1 (of 2)
Bit Position = ((4 * 1 +2) +

(2^ *1) +
(2^*3 *1) +
(2^ *3 * 2 * 1)
= 166

If value at bit position "166" = 1 it is a
valid change
If value at bit position "166" = 0 it is not
valid

Ttie key to understanding the changes made to the algorithm to accommodate the many
dimensions of the business rules is that an offset must be calculated for each added dimension.
If there are four items in the list, then there are 2" bits required to represent each valid state
change:. These 16 bits must be replicated for each of the three user authorizations, bringing the
total to 48 bits. Each of these 48 bits must be replicated for both of the application types, which
brings the total to 96. Finally, each of these 96 bits must be replicated for both of the loan
amounts, which brings the total to 192 bits. These 192 bits represent the number of "if state
ments that a programmer would have to generate to fully represent the business logic required.
Furthenmore, the 192 "if statements would be nested the number of dimensions deep. Once
again, the Java program given would need to be modified slightly to accommodate the additional
dirrienisions by overloading some of the methods to additionally pass the user authorization, appli
cation type and loan amount to be used in the calculation of bit positions.

II'

57

15

Giddens and Gaasch: The development of a business rules engine: A condition-action ru

Published by CSUSB ScholarWorks, 2003

Journal of International Technology & Information Management volume^l^^hunbet^

CONCLUSION

The dynamics of business logic in the life-cycle of software development deeply affect
the development, testing and maintenance costs. It is through a well thought-out design of the
business logic, where there is ease in programming, testing, and maintenance, that system devel
opment costs can be reduced.

The challenge with programming and consequently maintaining business logic arises from
the concept of separating out rules for implementation outside of the language selected for
program development. This immediately introduces a need to know which rules are to be imple
mented in this alternative mechanism and, by inference which specification mechanism to use
for which rules. Designing the implementation of business rules should be a critical part of the
requirements gathering and analysis.

It was not the purpose of this paper to identify the modeling of the business rules, but
rather the underlying algorithm that supports the business rule. Future research in this area will
be the further development of business rule engine algorithms. An extensive study that actually
measures the success of such an implementation in development, testing, and maintenance should
also be done.

REFERENCES

Belderrain, Cristina (2002) Message-Driven Beans and Encapsulated Business Rules.
http//www.theserverside.com/resources/articles/

MessageDrivenBeansAndEncapsulatedBusinessRules/article.html.

Grosof, B. Labrou, Y. (1999) An Approach to using XML and Rule-based Content Language
with an Agent Communication Language. IBM Technical Report RC21491.

Grosof, B., Labrou, Y. & Chan, H.Y (1999) Declarative Approach to Business Rules in
Contracts: Courteous Logic Programs in XML. Proceedings of EC99.

Grosof, Benjamin, Rouvellou, Isabelle, Degenaro, Lou, Chan, Hoi, Rasmus, Kevin, Ehnebuske,
Dave, McKee, Barbara (2000) Combining Different Business Rules Technologies: A
Rationalization. Proceedings of the OOPSLA 2000 Workshop on Best-practices in Busi
ness Rule Design and Implementation.

Perkins, Alan (2000) Business Rules = Meta-Data. IEEE , 285-294.

Rosea, K., Daniela and D'Attilio, John (2001) Business Rules Specification, Enforcement and
Distribution for Heterogeneous Environments. IEEE, 3-9.

Rosea, L., D., Greenspan, S., Wild, C., Reubenstein, H., Maly, K., Feblowitz, M. (1995) Appli
cation of a Decision Support Mechanism to the Business Rules Lifecycle. Proceedings
of the KBSE95 Conference.

58

16

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 4

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4

Journal of International Technology & In formation Management

Rouvellou, Isabelle, Rasmus, Kevin, Ehnebuske, Dave, Degenaro, Lou, McKee, Barbara (2000).
Extending Business Objects with Business Rules. IEEE.

Shao, G. Fu, Embury, S.M., Gray, W.A., Liu, X. (2001) A Framework for Business Rule Pre
sentation

59

17

Giddens and Gaasch: The development of a business rules engine: A condition-action ru

Published by CSUSB ScholarWorks, 2003

60

18

Journal of International Information Management, Vol. 12 [2003], Iss. 1, Art. 4

http://scholarworks.lib.csusb.edu/jiim/vol12/iss1/4

	Journal of International Information Management
	2003

	The development of a business rules engine: A condition-action rule algorithm for finite static lists
	Terri D. Giddens
	Kevin E. Gaasch
	Recommended Citation

	The development of a business rules engine: A condition-action rule algorithm for finite static lists

