
Journal of International Information Management

Volume 5 | Issue 2 Article 7

1996

The object-oriented paradigm as an
implementation of systems theory in IS
William A. Newman
University of Nevada, Las Vegas

Anthony R. Hendrickson
University of Nevada, Las Vegas

Follow this and additional works at: http://scholarworks.lib.csusb.edu/jiim

Part of the Management Information Systems Commons

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International
Information Management by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Newman, William A. and Hendrickson, Anthony R. (1996) "The object-oriented paradigm as an implementation of systems theory in
IS," Journal of International Information Management: Vol. 5: Iss. 2, Article 7.
Available at: http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/55331824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol5%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol5?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol5%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol5/iss2?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol5%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol5%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol5%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol5%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol5%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

The Obie(;t-Oriented Paradigm Journal of International Information Management

The object-oriented paradigm as an
implementation of systems theory in IS

William A Newman
Anthony R. Hendrickson

University of Ne vada, Las Vegas

ABSTRACT

Cla ssical General Systems Theory (GST) is rich with fundamental concepts relating to
the explanation of how systems behave and operate. The new concept of object-oriented tech­
niques and methodologies was found to be closely aligned with most of the fundamental theo­
ries of GST. This article presents these alignments and similarities and clearly shows that
object-oriented techniques provide a better fit to GST than older design methodologies.

INTRODUCTION

Classical General Systems Theory (GST) as we know it was derived from theorists work­
ing from approximately 1920 to the 1950s. These theorists first attempted to understand the
behavior of organic systems by formulating a set of general system frameworks. Systems Theory
has expanded over the years to now include inorganic systems and identifies fundamental prin­
ciples about the behavior of these systems and their makeup. Applying the concepts of Systems
Theory to the object-oriented paradigm clearly shows that object-oriented concepts better follow
the fundamental concepts system theory. This article briefly discusses both the concepts of sys­
tem theory and object-oriented methodologies and expands earlier work' characterizing the rela­
tionship of classical systems theory with the practical world of Local Area Networks which
showed distinct parallels in system theory and practical computing methodologies in form and
function.

109

1

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

Journal of International Information Management Volume 5, Number 2

HISTORY OF SYSTEMS THEORY

A formal theory of the behavior and fundamental principles surrounding all systems was
derived from a variety of disciplines around the 1950s and numerous books and papers have been
produced since then, further expanding the concepts and intricacies of systems. General Systems
Theory itself evolved from the biological sciences and attempted to explain the behavior of or­
ganic systems after biologists became disenchanted with the analytical approach. The analytical
approach attempted to understand systems by just examining their components, ignoring the
relationships of the components to the larger entity. Fundamental GST works^ like "Die Physischen
Gestalten in Ruhe und im stationarem Zustand" laid the basis for looking at a system as an
assemblage of parts making up a whole and included the Gestalten concept of holistic behavior -
understanding the system by understanding its fundamental makeup and its relationship to other
systems and objects within the system itself. Ludwig von Bertalanffy, a biologist, is considered
the originator of GST^ and formulated the concept that all living systems are open systems and
interact with their environment.'' Later, writers like Kenneth Boulding, Norbert Weiner, and Herbert
Simon included inorganic systems in their fundamental system models and greatly expanded the
boundaries of the discipline. Churchman^ formulated five basic considerations that should be
examined to understand the behavior and function of systems:

1. The obj ectives of the system and measurement instruments
2. The environment of the system
3. The resources of the system
4. The components of the system
5. The management of the system

Each of these subparts of a system must be examined in order to understand that system
and constitute the holistic view. The system examination is incomplete if less than all five areas
have been investigated.

WHAT IS A SYSTEM?

Numerous definitions exist for what a system is; however, all the definitions center on
defining systems as being made up of objects or entities which have relationships among them­
selves. The entities have attributes that determine how these entities communicate and interrelate
with themselves and other systems. Some of the definitions of a system are complex while others
are simple. Two examples of a definition of systems are:

A system is a device, procedure, or scheme which behaves according to
some description, its function being to operate on information and/or en­
ergy and/or matter.®

A system is a complex of interrelated entities.^

110

2

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

The Obiect-Oriented Paradigm Journal of International InformatiGn Management

For this discussion, we define a system as an assemblage of components designed for some
purpose to achieve an objective. These components, objects, or entities always share the follow­
ing fundamental implications:

1. A system must be designed to accomplish an objective.
2. The elements of a system must have an established arrangement.
3. Interrelationships must exist among the individual elements of a system, and these interre­

lationships must be synergistic in nature.
4. The basic ingredients of a process (the flows of information, energy, and materials) are

more vital than the basic elements of a system.
5. Organization objectives are more important than the objectives of its elements, and thus,

there is a de-emphasis of the parochial objectives of the elements of a system.®

To]3araphrase the above, all systems have organization, interaction, interdependence, inte­
gration and purpose. Systems have a hierarchy within other systems and among their compo­
nents. Systems also have attributes or properties that manifest both themselves and their relation­
ships to other objects and systems. Systems live; within a definable boundary that differentiates
them from their general environment. Systems perform on the basis of some standards set for the
system and systems are controlled by at least one controller or organizer whose job it is to see that
the system follows the standards that have been set. Systems communicate with the other objects
in the system through outputs and inputs and with the external world or other systems through
feedback. Feedback can either encourage correct behavior of the system (positive feedback) or
bring the system back into conformity with its objective (negative feedback). Without feedback
and maintenance, systems slide inevitably toward collapse (entropy). Negative entropy maintains
the system and may in fact improve it.

HISTORY OF OBJECT-ORIENTATION

The concepts of code modularity, loose coupling, high cohesion, and information hiding,
which are most closely tied to object-orientation were proposed by a number of software develop­
ers beginning in the early 1960s. Simula I and. Smalltalk, both object-based languages, were
conceived and initially appeared in the 1960s.® Several early attempts at incorporating these
concepts into the structure of a language were made by various researchers. Yonezawa and Torkoro
state:

The term 'object' emerged almost independently in various fields in com­
puter science, almost simultaneously in the early 1970s, to refer to no­
tions that were different in their appearance, yet mutually related. All of
these notions were invented to manage the complexity of software sys­
tems in such a way that objects represented components of a modular
decomposed system or modular units of knowledge representation.'"

I l l

3

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

Journal of International Information Management Volume 5, Number 2

However, no one person or group can be credited with inventing the paradigm. Advances in
computer architecture, programming languages, and design methodologies all contributed to the
development of OO concepts." The object concept began in hardware technology with descrip­
tor-based and capability-based designs in the 1970s.'^ These designs attempted to bridge the gap
between low-level machine languages and higher level abstractions necessary in modem pro­
gramming languages.

Smalltalk (versions 72, 74, 76, and 80) built upon Simula's OO paradigm and conceptual­
ized everything into an object which belonged to some object-type class. Other languages such as
Alphard, CLU, Euclid, Gypsy, Mesa, and Modula all attempted to extend the ideas of data
abstraction and build higher level programming languages.

Dijkstra''* first introduced the concept of using layers of abstraction to create systems com­
prised of component modular design. Dijkstra's THE language was the culmination of this lay­
ered approach to OO architectures. Independent of programming languages, database technology
evolved primarily via the entity relationship (ER) concept of Chen.'^ The ER model conceptual­
izes entities with attributes and relationships between the entities. Rumbaugh'® proposed an inte­
gration of the ER model with an OO approach.

Along the way other researchers have contributed portions that now comprise the OO para­
digm. Pamas'^ introduced the notion that aspects of data do not always need to be visible to the
user of the data. This concept of information hiding restricts the details of how an operation is
accomplished. While the operation is known, the actual process used to complete the operation is
not. This is necessary to protect the data from arbitrary and/or unauthorized use. Mechanisms for
abstract data typing were developed by several researchers in the 1970s.'® Finally, an underlying
theory of abstract typing and subclasses was presented by Hoare."

Although OO concepts were initialized some 20 to 30 years ago, they have not gained
widespread industry popularity and acceptance until recently. Limitations related to computer
architecture, programming languages, design methodology, database theory, and cognitive sci­
ence have all contributed to the slow acceptance of OO concepts. However, OO concepts are
closely aligned to the fundamental concepts found in systems theory and the OO paradigm may
be seen as an implementation methodology and tool for systems theory concepts in IS. The next
section will show the alignment that the object-oriented paradigm has with the GST model.

SYSTEMS THEORY AND OBJECT-ORIENTATION

Systems theory provides a natural way of conceptualizing and analyzing the real world
within the information systems (IS) discipline. One problem with mapping system theory to IS
however, is that the technology in past IS applications was relatively primitive (i.e., the model
was not a good fit due to technological limits of the application software). Systems analysis and
design techniques and programming languages of the past could not support the same level of
abstraction embodied in systems theory. Thus, applications were record and file based, not entity
or object-based.

112

4

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

The Object-Oriented Paradigm Journal of International Information^4anagement

OO concepts are closely aligned to the fundamental concepts found in systems theory and
the OO paradigm may be seen as an implementation methodology and tool for systems theory
concepts in IS. One of the fundamental problems with explaining the concept of object-orienta­
tion and its mapping to GST, is the lack of common terminology outside the concept on which to
base the definition of the paradigm's terms. Each of the OO paradigm's terms seems to be cur­
rently explained with terms contained within the paradigm itself. The interdependence of the
concepts in OO, like the interdependence of systems theory components, may contribute to the
difficulty in easily understanding the approach. Goldberg and Robson summarize the problem in
discussin g the Smalltalk language:

Smalltalk is based on a small number of concepts, but defined by usual ter­
minology. Due to the uniformity with which the object-message orienta­
tion is carried out in the system, there are very few new programming con­
cepts to leant in order to understand Smalltalk. On the one hand, this means
that the reader can be told all the concepts quickly and then explore the vari­
ous ways in which these concepts are applied in the system. These concepts
are presented by defining the five words mentioned earlier that make up the
vocabulary of Smalltalk - object, message, class, instance and method. These
five words are defined in terms of each other, so it is almost as though the
reader must know everything before knowing anything.^"

OBJIECTS

The term Object, is a key element of both the GST and OO concepts. An object in GST is
often called an entity; however the terms are defined synonymously and refer to a fundamental
building block of which the system is comprised. Objects under GST can range from the most
simple (a grain of sand) to extremely complex (the universe). For one to understand a system, one
must understand the objects or components from which it is made and how these objects behave.

In OO, the notion of the concept of obj&its lay within earlier work on Semantic Models
dating back as far as Chen's Entity Relationship modeP' and many of the earliest investigations
into this area refer to objects as entities, using the terms synonymously and seeking to define
entities as objects in the real world. As the idea, of object-oriented was conceived, however, the
opposite became true and objects were defined as unique entities - real world occurrences of
unique, iself-contained items.^^ This is not surprising since the basis of much of this research is to
accurately pattern systems development activities to the behavior of real world data elements.

Objects can be extremely simple, such as a single biological cell, or as complex as a com­
plete anatomical life form. The level of complexity depends upon the level of abstraction one
desires. At some level of abstraction the single cell would appear quite elementary. However,
when one considers the complex operations performed by the cell to sustain life, then the object
appears much more complex. This ability to modify our level of abstraction to fit the problem

113

5

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

Journal of International Information Management Volume 5, Number 2

environment allows us to break extremely complex problems into manageable solutions. Thus, as
Figure 1 shows, our level of abstraction creates simple and complex objects.

Figure 1. System Complexity

(figure 1 goes here)

CLASS

After objects, class is the next major construct of both the GST and OO paradigm. In GST,
class is represented as the fundamental hierarchy of systems. Objects in the same frame make up
a set. Aristotle was one of the first scientists to be credited with the classifying of the approxi­
mately, then known one thousand plants and animals. His work simplified the division of animals
into animals with backbones and red blood and those without backbones and no red blood. He
also classified plants by size and appearance. Later in the 18th century, Linnaeus reclassified
plants by structured arrangement.^^ In 1971, Boulding represented his hierarchy of major system
levels by modeling a structure of system complexity based on nine levels.^"* Again, the level of
abstraction determines the level of complexity. Systems theory provides an abstraction tool for
decomposing and aggregating object into manageable components.

In OO, paradigm objects are also organized hierarchically into classes. Objects that are of
a similar type or kind are combined into common types. Since any object will contain certain
characteristics which make it unique, it will also contain characteristics which will be shared in
common with other objects. Then objects possessing the same or similar kinds of characteristics
are grouped together in common groups called classes. A class is a logical grouping of

114

6

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

The Obiec;t-Oriented Paradigm Journal of International Information Management

objects based on criteria parameters of the characteristics possessed in common by the objects as
a group, object contains characteristics which provide for the object's unique distinction from
other obj(;cts, and characteristics which help to identify the object as a member of a group of
objects with the same or similar characteristics. The common characteristics become the basis
for the objects to be classified.^' Figure 2 shows the relationship of class to hierarchy.

Figure 2. The Hierarchy of Classes

(SOURCE: Wirfs-Brock, R., Wilkerson, B., and Wiener, L. (1990). Designing Object-Oriented Software. Englewood
Cliffs, NJ: Prentice Hall, p. 58.)

Within GST systems are decomposed into subsystems and aggregated into supersystems.
More primitive systems can be combined to create higher order systems. The more primitive
systems become subsystems of the higher order systems. Schoderbek, Schoderbek, and Kefalas
state:

While an obvious hierarchy of systems exists (the ultimate system being
the universe), still, almost any system can be divided and subdivided into
subsystems and subsubsystems depending upon the particular resolution
level desired.^

Depending upon one's level of abstraction, the higher order system may be considered a
supersystem of the component subsystems. Schoderbek, Schoderbek, and Kefalas further offer
five propositions for systems hierarchy:

115

7

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

Journal of International Information Management Volume 5, Number 2

1. A system is always made up of other systems.

2. Given a certain system, another system can always be found that comprises it,
except for the Universal System, which comprises all others.

3. Given two systems, the one system comprising the other can be called the high-
level system in relation to the system it comprises, which is called the low-level
system.

4. A hierarchy of systems exists whereby lower-level systems are comprised into
high-level systems.

5. The low-level systems are in turn made up of other systems and can, therefore, be
considered the high-level system for the lower-level systems to be found in it.^'

A similar mechanism is utilized with the GO paradigm. Classes may be grouped into higher
classes called superclasses or divided into subsets called subclasses. Classes, superclasses, and
subclasses are the vehicle for grouping and subdividing objects into logical categories based on
the instance variables, which are the criteria for the separation and/or accumulation of objects. In
some definitions an object can belong only to one class, while in others, objects can be a member
of multiple classes.

The real power of the GO approach lies within the ability to define instance variables which
create new classes from existing objects. Therefore, more primitive objects can be grouped to­
gether to form more complex objects. Conversely, complex objects can be divided into subclasses
creating more primitive objects.^

IS A RELATIONSHIPS

The relationships between objects and classes are described generally as/5-A relationships.
IS-A relationships form the hierarchical structure between objects and between classes. Since
this structure is hierarchical in nature, it infers a strict series of one-to-many relationships. Any
member of a subordinate class is a member of the superior class. As with the hierarchical models
of database modeling, some researchers allow a parent node to have many children, but a child
must have one unique parent. Gthers in the literature allow what is analogous to a network
structure supporting many-to-many relationships. The IS-A relationship is maintained in that
subordinate classes are members of superior classes; however, a child can be a member of many
superior classes.^'

116

8

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

The Objec t-Oriented Paradigm Journal of International Information Management

AGGREGATION/GENERALIZATION

There are two major types of IS-A relationships, aggregation and generalization. Both of
these concepts refer to a process of combining lower level objects and classes into higher level
objects or classes. The distinction is the type of subclass or subordinate object that is combined
into the higher level object or class. Aggregation is the combining of component pieces into the
product entity. For example, the components of a computer would be aggregated to form the
object COMPUTER. Also, the class of each component could be aggregated to form the class of
COMPUTERS. Another example would be the aggregation of the components BOOK TITLE,
BOOK AUTHOR, etc. into the higher product oh]eci PUBLICATION. ^°The inverse of aggrega­
tion is decomposition, the breaking apart of a higher object into its component parts.^'

Generalization is the combining of lower level objects or classes into higher level classes by
generalizing the attributes of the lower level components. In contrasting generalization with the
PUBLICATION example in the previous paragr aph, generalization would be the combining of
objects or classes like BOOK, JOURNAL PAPER, and CONFERENCE PAPER into a higher
level object or class cdll&APUBLICATION. Conversely, the combination of COMPUTER with
CALCULATOR, DESK, and FILE CABINET would be a generalization into the class OFFICE
EQUIPMENT Specialization is the inverse process of generalization. Specialization is the
segmentation of a more general class into more specialized classes, i.e., OFFICE EQUIPMENT
into COMPUTERS, CALCULATORS, etc.^"

Figure 3. Aggregation

Publieation
Author
Title

Aggregation of Component Objects

117

9

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

Journal of International Information Management Volume 5, Number 2

Figure 4. Generalization

Publication Class

Generalization of Objects into a Class

PROPERTIES/ATTRIBUTES/INHERITANCE

In GST, attributes are properties of both objects and the relationships of objects among
themselves.^^ Attributes can take two forms. Deterministic attributes define the object itself while
accompanying attributes are simply passed along as part of the object class. In OO, objects
convey characteristic properties between lower level objects via inheritance. The inheritance
concept is actually the possession of one or more accompanying attributes.

Inheritance is the concept that properties of superior objects or classes are passed along to
subordinate objects or classes. Just as human characteristics are passed genetically from genera­
tion to generation, the characteristics of parent nodes of an object or class are passed to the child
node. The type of IS-A relationship, whether aggregation or generalization, can provide clues to
the type of attributes to be inherited by a child node. From the previous example of PUBLICA­
TION, one can see the objectPf/i5L/CA770Vwhich is comprised of AUTHOR andBOOK TITLE,
through aggregation, passes different attributes to the subordinate objects than does the object
PUBLICATION, through generalization with JOURNAL PAPER, BOOK, and CONFERENCE
PAPER.

Inheritance provides a means by which more complex objects and classes can be created. In
terms of modeling, inheritance allows lower level objects or classes to automatically include
aspects of their parent nodes. For example, a genealogical hierarchy for "Bird" shown in Fig. 5.
This structure illustrates how subclasses and their related objects inherit attributes from their
respective superclasses. A general class is created which contains the defined attributes of all
subordinate objects. The definition then carries through to the subordinate classes and objects.

118

10

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

The Obie(;t-Oriented Paradigm Journal of International Information Management

Additional characteristics attributed to only a subclass can be added at the subclass level.
In the illustration in Figure 5, the attributes of "warm-blooded," "egg-laying," and "feathered
vertebrahjs" hold true for all subordinate objects, regardless of their subclassification. The at­
tribute of "vestigial wings" in the subclass NON-FLYING BIRD, is inherited only by the members
of the subclass (KIWI and PENGUIN). In each c:ase, the attributes do not need repeating within
the subordinate object or subclass. Simply arramging the objects in the hierarchical structure
shown, attributes the corresponding attributes to the class or subclass via the inheritance concept.
Thus, as siubclasses such as FLYING BIRD andNON-FLYING BIRD are created there is no need
to includ<; the basic attributes in each subclass s ince they will be inherited from the superclass
BIRD. 36

Figure 5. Object Inheritance

Deilnition Dehnition Definition Definition
Attributes: Attributes: Attributes: Attributes:
Notehed tail Rust-red breast Long, slender bill Hipper-like' wings

(Adapted from: Henderson-Sellers and Edwards, op cit., Ref. 22, p. 149)

Inheritance provides an implementation mechanism for the hierarchical structure. The hier­
archical structure found in GST assumes that objects or entities farther down on the hierarchical
structure logically are a subcategory of their conesponding parent object(s). The arrangement of
entities in this manner on the hierarchy diagram conveys this concept, intuitively. However, the
00 paradigm seeks to implement this concept in reality, not just in mental abstraction. Thus,
inheritance provides a mechanism for implementing this intuitive concept into a workable opera­
tion.

119

11

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

Journal of International Information Management Volume 5, Number 2

Inheritance is a major component in the reusability of code discussed later. Since objects
can assume attributes of their parent nodes it is not necessary to code the same variable values for
each object of a class. Instead, the attributes of the parent class are automatically incorporated
into each object instance, simply by forming a class which contains the attributes required by
each object instance. Thus, from a programming standpoint, the concepts of class and inheritance
assist in making code modular and therefore more reusable.^'

Inheritance provides for extensibility in the modeling process. That is, the models of OO
approaches can be extended or built upon without adversely affecting the implementation of the
work already accomplished. Through inheritance this is accomplished because each subsequent
class or object acquires attributes from its predecessor(s).^® When a strict hierarchical structure
is observed when ereating an IS-A relationship the inheritance is referred to as single inheritance.
This is because the subordinate object or class has only one parent. Therefore, attributes can be
acquired from one source. However, when there is no strict adherence to the hierarchical struc­
ture, a subordinate object or class can acquire attributes from multiple parents, hence multiple
inheritance.^®

An object's characteristics is commonly referred to in the literature as attributes. A class
then is defined as a logical grouping of objects based on criteria parameters of the attributes for
that particular class. These criteria parameters are called instance variables. A single occurrence
of an object in a class is an instance. The variables that describe that particular group of objects
are the instance variables. For example, the object STUDENT may be grouped into classes based
on academic major. Academic major then is one of the instance variables for class ACCOUNT­
ING-STUDENTS.

Some in the literature prefer the terminology instance variable,'^ while others prefer the
term attribute,and still others use the terms synonymously within their work.'^^ With either term
the concept remains to distinguish objects from one another and to augment objects with common
characteristics.

ENVIRONMENT/ABSTRACTION

According to the GST, a system operates within a known environment. The system envi-
romnent is comprised of system inputs, system processes, and system outputs. While the system
itself is limited to items directly in the system's span of control, the system environment includes
those things that are input into the system which determine how the system behaves and those
things that the system produces, its outputs. Everything within the complete control of the system
is part of the system.

Everything outside the system's complete control is external, but not necessarily within the
system environment. In order for something to be part of the system's environment, that thing
must exert some significant force which affects the system's performance. If an external object
has no significant impact upon the performance and operation of the system, then that object is
outside the system environment. Thus, for an object to be part of the system it must be both

120

12

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

The Obiect-Oriented Paradigm Journal of International Information Management

relevant and controllable. If it is only relevant and not controllable, it is then part of the environ­
ment. Finally, if the item is neither relevant nor controllable, it is outside the system's environ­
ment."^^

A key aspect of any system is the connection between system inputs and system outputs.
Within any system, some mechanism exists whic:h links the system outputs to the items input into
the system. This connection is the feedback mec hanism. This connection may be quite strong or
virtually non-existent, depending upon the system. However, feedback is always present to some
extent, eA'en if it is merely a chain reaction betwe en other entities within the system environment.
The mors; direct the feedback controls, the greater the ability of the system to adjust to changes
within its system environment."*"*

Closely related to any discussion of system environments is the concept of system bound­
aries. System boundaries are usually determined by an arbitrary delineation between the objects
of interest and those that are irrelevant. The concepts included in a model of a real world system
are determined based upon the observer's interest and determination of relevance.

The process of creating modeling representations of real world objects is commonly re­
ferred to as abstraction. This process of abstraction is a necessary tool for the creation of more
complex operations and more complex relationships between data elements. One aspect of an
object is that it contains abstract qualities about the real world entity. The object contains a
degree of abstraction because it inherently carries qualities about the real world entity, which are
meaningful to the user of the model. For example the object STUDENT would inherently contain
information about the real world entity STUDENT. These qualities may include NAME, AD­
DRESS, STUDENT-ID#, etc. The user of the model would conjure a whole list of properties
about the object STUDENT without any further prompting. The idea of creating objects is that
this absti action quality allows the user of the model to relate a host of ideas about the entity
without listing each specific item. Thus, abstraction embodies the object with a concrete tie to
reality."*^

Obviously, this concept of abstraction is extremely necessary for successful modeling. The
design and analysis functions are accomplished much more efficiently and effectively if the end-
users can better understand the models of the process as laid out by the designers. This in turn is
accomplished more effectively if the model itself reflects reality as much as possible."*® Simple
procedures and projects require this to a lesser extent than more complex ones. As the level of
complexity of an application increases, the need for abstraction increases."*^

Thiis overall attempt to isolate the idea or concept of the data item from the implementation
and/or manipulation of the data item is also part of the term abstraction. This aspect of abstrac­
tion is very closely analogous to independence in most database management contexts. The ab­
straction property is seeking to insulate the data element concept from its manipulation in an
effort to allow more powerful modeling to be accomplished with the element."*®

Traditional record-based approaches lack the abstraction capabilities to link real world
items to elements in the most models. One of the major advantages of the GO approach is the
superior abstraction capabilities of the approach over traditional record-based models.

121

13

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

Journal of International Information Management Volume 5, Number 2

Researchers have embraced the object concept because the abstraction capabilities prove to be a
powerful tool for providing this abstract linking to real life items.'^' As discussed earlier this is a
major advantage as the complexity of the application increases. This link to real world items is
not a necessity for investigators of programming languages. Their focus is on the manipulation of
data regardless of the data's representation to real life items. Instead, programming languages
concentrate on defining objects as data elements in which the data, and the procedures which
operate on the data, are contained within one entity. This act of combining the data and its
procedures is referred to as encapsulation.^^

ENCAPSULATION/EQUIFINALITY/POLYMORPHISM

Encapsulation is one of the most important aspects of programming in the OO paradigm.
Encapsulation is the main form of implementing the abstraction principle within 00 program­
ming. The concept of abstraction requires that an object inherently contain the properties of real
world entities. This is accomplished at least in part through encapsulation. The premise of the
concept is to package together in one entity or object the data element and its corresponding
attributes or properties.

In the progranuning task, this requires that data elements and their corresponding proce­
dures are viewed, accessed, and manipulated in concert. Data elements and their specific oper­
ands grouped together into a 'capsule' of knowledge. This capsule of knowledge is the object.
Thus, one part of the process of creating an object is the aspect of encapsulation.'' When data is
encapsulated with its operands, the user of the data element no longer is obliged (or able) to
manipulate the data as they see fit. The user of the data element may request the manipulation of
the data in a particular manner but the actual processing is transparent to the user. A user has
visibility to the operations available, but not how these operations will actually be executed.'^
This concept is developed and explained further in a discussion of messages and methods, later in
this article.

For now, it is important to understand that encapsulation is critical to the concept of object.
For the object STUDENT, its properties such as NAME, ADDRESS, STUDENT-ID#, etc. would
be contained within the object along with the procedures for manipulating these properties in
order to provide information to users outside the context of the object itself. For a less complex
object, INTEGER, there would be a few properties outlining its size parameters. The procedures
appropriate for its manipulation such as addition, subtraction, multiplication, squaring, etc. would
also be contained within the object.

In GST systems, it is recognized that entities or objects may possess multiple goals. Ob­
jects may seek to satisfy these multiple goals simultaneously. Additionally, GST provides that
biological or social systems are not mechanistic and often achieve their goals utilizing different
initial conditions and different methods. Within the 00 paradigm, multiple objects continuously
interact with one another. This dynamic interaction often requires dissimilar objects to behave in
heterogeneous ways. OO allows this to occur via a concept called polymorphism.

122

14

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

The Obi&:t-Oriented Paradigm Journal of International Information Management

Polymorphism allows objects to react diff<;rently to different stimuli. Depending upon the
methods encapsulated in an object and the coded procedures embedded in it, an object may
accomplish a task in different ways at different times. The combination of external stimuli and
coded procedures allow objects to function dyitiamically. Additionally, objects not only react
differently themselves, but different objects can behave differently when they encounter the same
stimuli. This is obvious in natural systems. Chemicals, for example, react differently to alkaline
and acid, based upon their own molecular structure. The 00 paradigm attempts to more closely
link the real world to software development. Polymorphism provides a mechanism for the imple­
mentation of multiple goal seeking and EQUIFINALITY within the OO paradigm.

MESSAGES/METHODS

In the traditional data processing approach, data elements are manipulated by the proce­
dures coded by programmers for each particular application. A great deal of effort is usually
expended to ensure the separation and independence between data elements and the procedures
which act upon them. Since one of the major premises of the 00 approach is that the procedures
are encapsulated with the data elements themselves, a new methodology for processing the data is
required.

Th(j encapsulation of procedures with data elements creates an aspect of public and private
access. Portions of the object's properties are available for access by all users who have access to
the object itself. These properties are considered public. The operations available for use on an
object are part of the object's interface with the rest of the world. The operations available are
public; however, how the operations are accomplished are private. For example if an object
INTEGER has a value of "6" and a procedure PRODUCT available, the operation of procedure
PRODUCT is public. Users having access to ths INTEGER "6" will know that PRODUCT is an
operation available for use on "6." However, the; process by which PRODUCT is accomplished
is private. If a user were to request the PRODUCT of 3 times "6," the process may be accom­
plished by "3 X 6" or "6 + 6 + 6". How the task is accomplished is trivial. The user only wants the
information "18," the PRODUCT, the output of the operation.

REUSABILITY/MAINTENANCE/ENTROPY

The second major concept of the OO paradigm is reusability. Reusability, inheritance, and
encapsulation comprise the major components necessary for the implementation of the OO ap­
proach. ITie OO paradigm and GST have a hierarchical structure. Inheritance allows the systems
farther down the hierarchical structure to logical ly inherit the characteristics and attributes of the
higher order systems. The hierarchical structure of GST provides for complex systems to be
constmcted from more primitive subsystems. Just as inheritance provides an implementation

123

15

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

Journal Of ItiterhatiOilal Infoimatibn Management Volume 5, Number 2

mechanism for the transfer of object characteristics, reusability provides the OO paradigm with
an implementation strategy for the construction of complex objects from simple objects. For
example, in biological systems simple cells are aggregated to create increasingly complex sys­
tems and supersystems. Reusability provides this aggregation mechanism, within the OO para­
digm.

Reusability implies a certain degree of modularity in code that is developed. The essence of
the OO paradigm from the programming aspect is the idea of reusability of code. The only real
benefit to programmers from using this approach is that it promotes a highly structured environ­
ment and ability to create more complex processing via previously defined, coded, and compiled
code. While encapsulation is necessary in programming for the OO approach to be implemented,
it is a very difficult task to encapsulate procedures with data elements. However, the reusability
of code is a highly desirable aspect of the approach.'^

While technically the 00 approach could possibly be implemented without reusable code,
there would be little, if any, tangible benefits from a programming standpoint of using the ap­
proach. Cox^ stresses this issue of the paradigm by presenting an analogy between OO program­
ming and electronic integrated circuits. He terms this "software-ICs." Just as electronic circuitry
is modular with boards being designed for a specific task, Cox" indicates that OO programming
creates software modules that can be plugged into each other. As the overall application changes
and requires modifications, the "software-ICs" can be changed to provide the currently required
circuitry.

Reusability also addresses the problems of system maintenance and system entropy. Sys­
tem maintenance activities are designed to extend a system's life by upgrading its functionality
for dynamic systems environments. Reusable code extends the application software life cycle by
forcing highly cohesive, loosely coupled code modules which can be more easily modified and
reused providing greater flexibility in application design. Since the code is forced to be more
cohesive and more loosely coupled, its inherent life expectancy is longer and therefore system
entropy is reduced.

CONCLUSION

The GST is a cornerstone of scientific theory. It provides an instrument for the evaluation
and construction of highly sophisticated concepts in virtually all areas of scientific endeavor.
GST represents a framework for ordering and organizing human cognition concerning the as­
pects of the world around us. Contrary to the analytical approach, which seeks to understand the
component parts of an item, the systems approach attempts to examine something from a more
holistic point of view. An item of interest is viewed as a component part of a larger whole. The
item is analyzed as a subsystem of the larger system, and at another level of abstraction this
subsystem is decomposed into its own component parts.

124

16

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

The Object-Oriented Paradigm Journal of International Information Management

Within information systems, the historical approaches to application software development
have failed to capture the essence of GST. Structured approaches to software development lack
the abstraction framework presented in the GST approach. Structured approaches more closely
resemble the analytical approach in their attempt to fully understand a specific application, or
application function, without examining the func tion in terms of a related system of functionality.
Applications are analyzed from a very limited vi ew of functionality. An applications functional­
ity is dissected and analyzed, and only then are specific interfaces to that functionality developed.

The OO paradigm offers an approach to application development that more closely re­
sembles the framework set forth in the GST. The 00 approach decomposes complex systems
into successively smaller subsystems and subsubsystems. The more primitive or elementary ob­
jects are aggregated into more complex objects. The objects are arranged in a hierarchical struc­
ture by generalizing objects into object-type claisses.

The OO concepts of inheritance, encapsulation, and reusability provide a functional means
of implementing the concepts set forth in the GST. The paradigm allows objects to be decom­
posed into more manageable units. These discr<;et units are completely encapsulated objects of
information, including data and the required procedures necessary to manipulate the data. Encap­
sulation provides a clear delineation between the internal object attributes and functions and the
extemal object environment. At the object level encapsulation provides an implementation of the
system boundaries concept found in GST.

The hierarchical structure of GST is facili tated within 00 via the concepts of inheritance
and reusability. Objects are generalized into classes based upon their attributes and behavior.
Attribute s and characteristics attributable to an entire class need not be repeated in every class
member. Instead these characteristics and behaviors may be attributed to the class and each
member object can inherit these traits in much the same manner as biological inheritance oper­
ates. Thus, inheritance provides a methodolog;,^ for creating logical hierarchies of objects and
classes.

Finally, reusability provides the 00 paradigm with a method of incorporating the GST
concept of interchangeable subsystems. Software designs and code are bundled into discreet
conceptual modules. These modules can be interchangeably linked to form diverse software ap­
plications. This modularity also facilitates the hierarchical structure in that the modules are com­
pletely se;lf-contained and thus can be rearranged without significant impact on other subsystems.

Since the OO paradigm evolved over an extended period of time and contributions to the
approach came from a variety of disciplines, it v/ould be inaccurate to present the paradigm as an
approach designed specifically to implement the GST. However, this article clearly presents
alignments and similarities which indicate that 00 techniques provide a closer fit to GST than
older design methodologies. As such, the value of the OO paradigm as a tool for system develop­
ment is significantly enhanced.

125

17

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

Journal of International Information Management Volume 5, Number 2

ENDNOTES

' Newman, William A. (1989). Systems Theory and Local Area Networks. Journal of
Systems Management, February, 1989.

^ Kramer, Nic. J. T. A. and Smit, Jacob de (1977). Systems Thinking. Martinus Nijhoff
Social Sciences Division, p. 3.

^Bertalanffy, Ludwig von (1950). The Theory of Open Systems in Physics and Biology,
Science, Vol. III.

'' Schoderbek, Peter P., Schoderbek, Charles G., and Kefalas, Asterios, G. (1985). Man­
agement Systems: Conceptual Considerations, Business Publications, Inc., Piano, TX, 3rd ed.,
p. 34.

^ Churchman, C. West (1968). The Systems Approach. New York: Delacorte Press.

® Elis, David O. and Ludwig, Fred J. (1977). Systems Philosophy, Prentice-Hall Inc.,
Englewood Cliffs, N.J., p. 7.

Ackoff, R. L. (1962). Scientific Method: Optimizing Applied Research Decisions, John
Wiley & Sons, New York, NY.

® Luchsinger, Vincent P. and Dock, V. Thomas (1988). General Systems Theory. In Read­
ings in Information Systems, West Publishing, p. 3.

' Martin, James and Odell, James J. (1992). Object-Oriented Analysis & Design, Prentice
Hall, Englewood Cliffs, NJ.

Yonezawa, A. and Tokoro, M. (1987). Object-Oriented Concurrent Programming: An
Introduction. In Object-Oriented Concurrent Programming. MIT Press, Cambridge, MA, p. 2.

" Levy, H. (1984). Capability-Based Computer Systems. Digital Press, Bedford, MA, p.
13.

Ramamoorthy, C. and Sheu, P. (1988). Object-Oriented Concurrent Programming. IEEE
Expert, 3 (No. 13), p. 14.

Myers, G. (1982). Advances in Computer Architecture, 2nd ed. New York, NY: John
Wiley and Sons, p. 58.

'''Dijkstra, E. (1968). the Structure of "THE" Multiprogramming System. Communica­
tions of the ACM, 77(No. 5).

"Chen, P. (1976). The Entity-Relationship Model - Toward a Unified View of Data. ACM
Transactions on Database Systems, 7(No. 1).

" Rumbaugh, J. (1988). Relational Database Design Using an Object-Oriented Methodol­
ogy. Communications of the ACM, 31 (No. 4), p. 415.

126

18

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

The Object-Oriented Paradigm Journal of International Information Management

" Pamas, D. (1979). On the Criteria to Be Used in Decomposing Systems into Modules. In
Classics in Software Engineering. New York, hifY: Yourdon Press.

Liskov, B. and Zilles, S. (1977). An Inti oduction to Formal Specifications of Data Ab­
stractions. Current Trends in Programming Methodology: Software Specification and Design,
1. Englewood Cliffs, NJ: Prentice Hall; Guttag, J. (1980) Abstract Data Types and the Develop­
ment of the Simula Languages. In Programming Language Design. New York, NY; Compute
Society Press; Shaw, Abstraction Techniques.

Nygaard, K. and Dahl, O.J. (1981). The Development of the Simula Languages. In
History of Programming Languages. New York, NY: Academic Press, Inc., p. 460.

20 Goldberg, A. and Robson, D. (1983). Smalltalk-80 The Language and its Implementa­
tion. Reading, MA: Addison-Wesley, p. 12.

2' Op. cit., Ref. 15.

22 BaiUn, S. C. (1989). An Object-Oriented Requirements Specification Method. Commu­
nications of the ACM, 32 (No. 5), pp. 608-623; Blaha, M. R., Premerlani, W. J., and Rumbaugh,
J. E. (1988). Relational Database Design Using an Object-Oriented Methodology. Communica­
tions of the ACM, 31 (No. 4), pp. 414-427; Hammer, M. and McLeod, D. (1981). Database
Description with SDM: A Semantic Database ̂ 4odel. ACM Transactions on Database Systems,
6(No. 3), pp. 351-386; Henderson-Sellers, B. and Edwards, J. M. (1990). The Object-Oriented
Systems Life-cycle. Communications of the ACM, 33, (No. 9), pp. 142-159; Kroenke, D. M. and
Dolan, K. A. (1988). Database Processing - Fundamentals * Design * Implementation. 3rd ed.,
Chicago, IL: Science Research Associates, Inc.; Maier, D. (1984). Capturing More Meaning in
Databases. Journal of Management Information Systems, I (No. 1), pp. 33-49; McFadden, F. R.
andHoffer, J. A. (1991). Database Management. 3rded., Redwood City, CA: Benjamin/Cummings
Publishing Co., Inc.; Peckham, J. and Maryanski, F. (1988). Semantic Data Models. Communi­
cations of the ACM, 20 (No. 3), pp. 153-189.

2Y)p. Cit., Ref. 4, p. 41.

2^ IBoulding, Kenneth (1971). General Systems Theory-The Skeleton of Science. In Man­
agement Systems, John Wiley and Sons. 2nd ed., p. 20-28.

2' Agha, G. (1990). Concurrent Object-Oriented Programming. Communications of the ACM,
33 (no. 9), pp. 125-141; Gibbs, S., Tsichritzis, D., Casais, E., Nierstrasz, O., and Pintado, X. (1990).
Class Management for Software Communities. Communications of the ACM, 33 (No. 9), p. 90-103;
Hammer and McLeod, op cit, Ref. 22; Howard, G. S. (1988). Object-Oriented Programming Ex­
plained. Journal of Systems Management, July 1989, pp. 13-19; Korson, T. and McGregor, J.D.
(1990). Understanding Object-Oriented; A Unifying Paradigm. Communications of the ACM, 33
(No. 9), pp. 40-60; Lemer, B. S. and Habermann, A. N. (1990). Beyond Schema Evolution to Data­
base Reorganization. In Proceedings of OOPSLAv '90 SIGPLANNotices, 25 (No. 10), 67-88; Sciore,
E. (1989). Object Specialization. ACM Transactions on Information Systems, 7 (No. 2), pp. 103-
000; Unland, R. and Schlageter, G. (1989). An Object-Oriented Programming Environment for Ad­
vanced IDatabase Applications. Journal of Object-Oriented Programming. May-June 1989, pp. 7-
19.

127

19

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

Journal of Intefnational Infomiation Management Volume 5, Number 2

Op. cit., Ref. 4, p. 51.

Ibid.

Agha, op. cit., Ref. 25; Banerjee, J., Chou, H., Garza, J. P., Kim, W., Woelk, D., Ballou,
N., Kim, M., and Kita, H. (1987). Data Model Issues for Object-Oriented Applications. ACM
Transactions on Office Information Systems, 5 (No. 1), pp. 3-26; Cox, B. J. (1986). Object-
Oriented Programming, An Evolutionary Approach. Reading, MA: Addison-Wesley Publishing
Company; Fishman, D. H., Beech, D., Cate, H. P., Chow, E. C., Connors, T., Davis, J. W.,
Derrett, N., Hoch, C. G., Kent, W., Lyngbaek, P., Mahbod, B., Neimat, M. A., Ryan, T. A., and
Shan, M. C. (1987). Iris: An Object-Oriented Database Management System. ACM Transac­
tions on Office Information Systems, 5 (no. 1), pp. 48-69; Gibbs, et. al., op. cit., Ref. 25; Ham­
mer and McLeod, op. cit., Ref. 22; Hudson, S. E. and Kung, R. (1989). Cactis: A Self-Adaptive,
Concurrent Implementation of an Object-Oriented Database Management System, ACM Trans­
actions on Database Systems, 14 (No. 3), pp. 291-321; Lemer and Habermann, op. cit., Ref. 25;
Sciore, op. cit., Ref. 25; Unland and Schlageter, op. cit., Ref. 25; Wirfs-Brock, R. J. and Wilkerson,
B. (1989). Object-Oriented Design: A Responsibility-Driven Approach. In Proceedings OOPSLA
'89 SIGPLAN Notices, 24 (No. 10), pp. 71-75.

Banerjee, et al., op. cit., Ref. 28; Blaha, et al., op cit., Ref. 22; Hull, R. and King, R.
(1987). Semantic Database Modeling: Survey, Applications, and Research Issues. ACM Com­
puting Surveys, 19 (No. 3), pp. 201-260; Papazoglou, M. P. and Marinos, L. (1990). An Object-
Oriented Approach to Distributed Data Management. Journal of Systems Software. November
1990, pp. 95-109; Peckham and Maryanski, op. cit., Ref. 22; Sciore, op. cit., Ref. 25.

Bailin, op. cit., Ref. 22; Blaha, et al., op. cit., Ref. 22; Henderson-Sellers and Edwards,
op. cit., Ref. 22; Hull and King, op cit., Ref. 29; McFadden and Hoffer, op. cit., Ref. 22; Papazoglou
and Marinos, op. cit., Ref. 29; Peckham and Maryanski, op. cit., Ref. 22.

Goldberg and Robson, op. cit., Ref. 20; Ricardo, C. (1990). Database Systems: Prin­
ciples, Design, & Implementation. New York, NY: Macmillan Publishing Company, inc.

Peckham and Maryanski, op. cit., Ref. 22.

Blaha, et al., op. cit., Ref. 22; Henderson-Sellers and Edwards, op. cit., Ref. 22; Hudson
and King, op. cit., Ref. 28; Papazoglou and Marinos, op. cit., Ref. 29; Unland and Schlageter,
op. cit., Ref. 25.

Goldberg and Robson, op. cit., Ref. 20; Ricardo, op. cit., Ref. 31; Unland and Schlageter,
op. cit., Ref. 25.

Schoderbek, Schoderbek, and Kefalas, op. cit., Ref. 4, p. 18.

Cox, op. cit., Ref. 28; Fishman, et al., op. cit., Ref. 28; Gibbs, et al., op cit., Ref. 25;
Hammer and McLeod, op. cit., Ref. 22; Howard, op cit., Ref. 25; Jones, J. H. (1989). Object
Properties of ANS '85 COBOL. In Proceedings of Seventeenth Annual North American Confer­
ence International Business Schools Computer Users Group, July 1989; McFadden, F. R. and
Mclntyre, S. C. (1990). Intelligent Databases. In Proceedings of Decision Sciences, November

128

20

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

The Object-Oriented Paradigm Journal of International Information Management

1990, pp. 1122-1124; Mclntyre, S. C. and Higgins, L. F. (1988). Object-Oriented Systems Analysis
and Design: Methodology and Application. Journal of Management Information Systems, 5
(No. 1), pp. 25-35; Peckbam and Maryanski, op. cit., Ref. 22; Unland and Scblageter, op. cit.,
Ref. 25; Wirfs-Brock, R. J. and Johnson, R. E. (1990). Surveying Current Research in Object-
Oriented Design. Communications of the ACM, 33 (No. 9), pp. 104-124.

Agha, op. cit., Ref. 25; Cox, op. cit.. Fief. 28; Gibbs, et al., op. cit., Ref. 25; Korson
and McGregor, op. cit., Ref. 25.

Harrison, W. H., Schilling, J. J. and Sweeney, P. F. (1989). Good News, Bad News:
Experience Building a Software Development Environment Using the Object-Oriented Para­
digm. In Proceedings OOPSLA '89 SIGPLAN Notices, 24 (No. 10), pp. 85-94; Sciore, op. cit.,
Ref. 25; Unland and Scblageter, op. cit., Ref. 25.

Gibbs, et al., op. cit., Ref. 25; Goldbertimd Robson, op. cit., Ref. 20; Hudson and King,
op. cit., Ref. 28; Sciore, op. cit., Ref. 25.

Banerjee, et al., op. cit., Ref. 28; Goldberg and Robson, op. cit., Ref. 20; Lemer and
Habermann, op. cit., Ref. 25; Wirfs-Brock, A. and Wilkerson, B. (1989). Variables Limit Reus­
ability. Journal of Object-Oriented Programming, May/June 1989, pp. 34-40.

Blaha, et al., op. cit., Ref. 22; Hammer and McLeod, op. cit., Ref. 22; Hull and King,
op. cit., Ref. 29; McFadden and Mclntyre, op. cit., Ref. 36.

McFadden and Hoffer, op. cit., Ref. 22; Unland and Scblageter, op. cit., Ref. 25.

Schoderbek, Schoderbek, and Kefalas, op. cit., Ref. 4, p. 19.

Ibid., p. 23.

Korson and McGregor, op. cit., Ref. 25; Maier, op. cit., Ref. 22; Wirfs-Brock and
Johnson, op. cit., Ref. 36.

Loomis, M. E. (1990). The Basics. Journal of Object-Oriented Programming, May/
June 1990, pp. 77-81; Maier, op. cit., Ref. 22.

I,oomis, op. cit., Ref. 46; Wirfs-Brock and Wilkerson, op. cit., Ref. 28.

Maier, op. cit., Ref. 22.

Hammer and McLeod, op. cit., Ref. 22; Hull and King, op. cit., Ref. 29; Peckbam and
Maryanski, op. cit., Ref. 22; Wirfs-Brock and Johnson, op. cit., Ref. 36.

Agha, op. cit., Ref. 25; Howard, op. cit., Ref. 25; Jones, op. cit., Ref. 36.

Cox, op. cit., Ref. 28; Howard, op. cit., Ref. 25; Korson and McGregor, op. cit., Ref.
25; Wirfs-Brock and Wilkerson, op. cit., Ref. 28.

Cox, op. cit., Ref. 28.

Cox, op. cit., Ref. 28; Gibbs, et al., op. cit., Ref. 25; Wirfs-Brock and Wilkerson, op.
cit., Ref. 40.

Cox, op. cit., Ref. 28.
55 Ibid.

129

21

Newman and Hendrickson: The object-oriented paradigm as an implementation of systems theo

Published by CSUSB ScholarWorks, 1996

22

Journal of International Information Management, Vol. 5 [1996], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol5/iss2/7

	Journal of International Information Management
	1996

	The object-oriented paradigm as an implementation of systems theory in IS
	William A. Newman
	Anthony R. Hendrickson
	Recommended Citation

	The object-oriented paradigm as an implementation of systems theory in IS

