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The object-oriented paradigm as an 
implementation of systems theory in IS 

William A Newman 
Anthony R. Hendrickson 

University of Ne vada, Las Vegas 

ABSTRACT 

Cla ssical General Systems Theory (GST) is rich with fundamental concepts relating to 
the explanation of how systems behave and operate. The new concept of object-oriented tech­
niques and methodologies was found to be closely aligned with most of the fundamental theo­
ries of GST. This article presents these alignments and similarities and clearly shows that 
object-oriented techniques provide a better fit to GST than older design methodologies. 

INTRODUCTION 

Classical General Systems Theory (GST) as we know it was derived from theorists work­
ing from approximately 1920 to the 1950s. These theorists first attempted to understand the 
behavior of organic systems by formulating a set of general system frameworks. Systems Theory 
has expanded over the years to now include inorganic systems and identifies fundamental prin­
ciples about the behavior of these systems and their makeup. Applying the concepts of Systems 
Theory to the object-oriented paradigm clearly shows that object-oriented concepts better follow 
the fundamental concepts system theory. This article briefly discusses both the concepts of sys­
tem theory and object-oriented methodologies and expands earlier work' characterizing the rela­
tionship of classical systems theory with the practical world of Local Area Networks which 
showed distinct parallels in system theory and practical computing methodologies in form and 
function. 
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HISTORY OF SYSTEMS THEORY 

A formal theory of the behavior and fundamental principles surrounding all systems was 
derived from a variety of disciplines around the 1950s and numerous books and papers have been 
produced since then, further expanding the concepts and intricacies of systems. General Systems 
Theory itself evolved from the biological sciences and attempted to explain the behavior of or­
ganic systems after biologists became disenchanted with the analytical approach. The analytical 
approach attempted to understand systems by just examining their components, ignoring the 
relationships of the components to the larger entity. Fundamental GST works^ like "Die Physischen 
Gestalten in Ruhe und im stationarem Zustand" laid the basis for looking at a system as an 
assemblage of parts making up a whole and included the Gestalten concept of holistic behavior -
understanding the system by understanding its fundamental makeup and its relationship to other 
systems and objects within the system itself. Ludwig von Bertalanffy, a biologist, is considered 
the originator of GST^ and formulated the concept that all living systems are open systems and 
interact with their environment.'' Later, writers like Kenneth Boulding, Norbert Weiner, and Herbert 
Simon included inorganic systems in their fundamental system models and greatly expanded the 
boundaries of the discipline. Churchman^ formulated five basic considerations that should be 
examined to understand the behavior and function of systems: 

1. The obj ectives of the system and measurement instruments 
2. The environment of the system 
3. The resources of the system 
4. The components of the system 
5. The management of the system 

Each of these subparts of a system must be examined in order to understand that system 
and constitute the holistic view. The system examination is incomplete if less than all five areas 
have been investigated. 

WHAT IS A SYSTEM? 

Numerous definitions exist for what a system is; however, all the definitions center on 
defining systems as being made up of objects or entities which have relationships among them­
selves. The entities have attributes that determine how these entities communicate and interrelate 
with themselves and other systems. Some of the definitions of a system are complex while others 
are simple. Two examples of a definition of systems are: 

A system is a device, procedure, or scheme which behaves according to 
some description, its function being to operate on information and/or en­
ergy and/or matter.® 

A system is a complex of interrelated entities.^ 
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For this discussion, we define a system as an assemblage of components designed for some 
purpose to achieve an objective. These components, objects, or entities always share the follow­
ing fundamental implications: 

1. A system must be designed to accomplish an objective. 
2. The elements of a system must have an established arrangement. 
3. Interrelationships must exist among the individual elements of a system, and these interre­

lationships must be synergistic in nature. 
4. The basic ingredients of a process (the flows of information, energy, and materials) are 

more vital than the basic elements of a system. 
5. Organization objectives are more important than the objectives of its elements, and thus, 

there is a de-emphasis of the parochial objectives of the elements of a system.® 

To ]3araphrase the above, all systems have organization, interaction, interdependence, inte­
gration and purpose. Systems have a hierarchy within other systems and among their compo­
nents. Systems also have attributes or properties that manifest both themselves and their relation­
ships to other objects and systems. Systems live; within a definable boundary that differentiates 
them from their general environment. Systems perform on the basis of some standards set for the 
system and systems are controlled by at least one controller or organizer whose job it is to see that 
the system follows the standards that have been set. Systems communicate with the other objects 
in the system through outputs and inputs and with the external world or other systems through 
feedback. Feedback can either encourage correct behavior of the system (positive feedback) or 
bring the system back into conformity with its objective (negative feedback). Without feedback 
and maintenance, systems slide inevitably toward collapse (entropy). Negative entropy maintains 
the system and may in fact improve it. 

HISTORY OF OBJECT-ORIENTATION 

The concepts of code modularity, loose coupling, high cohesion, and information hiding, 
which are most closely tied to object-orientation were proposed by a number of software develop­
ers beginning in the early 1960s. Simula I and. Smalltalk, both object-based languages, were 
conceived and initially appeared in the 1960s.® Several early attempts at incorporating these 
concepts into the structure of a language were made by various researchers. Yonezawa and Torkoro 
state: 

The term 'object' emerged almost independently in various fields in com­
puter science, almost simultaneously in the early 1970s, to refer to no­
tions that were different in their appearance, yet mutually related. All of 
these notions were invented to manage the complexity of software sys­
tems in such a way that objects represented components of a modular 
decomposed system or modular units of knowledge representation.'" 
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However, no one person or group can be credited with inventing the paradigm. Advances in 
computer architecture, programming languages, and design methodologies all contributed to the 
development of OO concepts." The object concept began in hardware technology with descrip­
tor-based and capability-based designs in the 1970s.'^ These designs attempted to bridge the gap 
between low-level machine languages and higher level abstractions necessary in modem pro­
gramming languages. 

Smalltalk (versions 72, 74, 76, and 80) built upon Simula's OO paradigm and conceptual­
ized everything into an object which belonged to some object-type class. Other languages such as 
Alphard, CLU, Euclid, Gypsy, Mesa, and Modula all attempted to extend the ideas of data 
abstraction and build higher level programming languages. 

Dijkstra''* first introduced the concept of using layers of abstraction to create systems com­
prised of component modular design. Dijkstra's THE language was the culmination of this lay­
ered approach to OO architectures. Independent of programming languages, database technology 
evolved primarily via the entity relationship (ER) concept of Chen.'^ The ER model conceptual­
izes entities with attributes and relationships between the entities. Rumbaugh'® proposed an inte­
gration of the ER model with an OO approach. 

Along the way other researchers have contributed portions that now comprise the OO para­
digm. Pamas'^ introduced the notion that aspects of data do not always need to be visible to the 
user of the data. This concept of information hiding restricts the details of how an operation is 
accomplished. While the operation is known, the actual process used to complete the operation is 
not. This is necessary to protect the data from arbitrary and/or unauthorized use. Mechanisms for 
abstract data typing were developed by several researchers in the 1970s.'® Finally, an underlying 
theory of abstract typing and subclasses was presented by Hoare." 

Although OO concepts were initialized some 20 to 30 years ago, they have not gained 
widespread industry popularity and acceptance until recently. Limitations related to computer 
architecture, programming languages, design methodology, database theory, and cognitive sci­
ence have all contributed to the slow acceptance of OO concepts. However, OO concepts are 
closely aligned to the fundamental concepts found in systems theory and the OO paradigm may 
be seen as an implementation methodology and tool for systems theory concepts in IS. The next 
section will show the alignment that the object-oriented paradigm has with the GST model. 

SYSTEMS THEORY AND OBJECT-ORIENTATION 

Systems theory provides a natural way of conceptualizing and analyzing the real world 
within the information systems (IS) discipline. One problem with mapping system theory to IS 
however, is that the technology in past IS applications was relatively primitive (i.e., the model 
was not a good fit due to technological limits of the application software). Systems analysis and 
design techniques and programming languages of the past could not support the same level of 
abstraction embodied in systems theory. Thus, applications were record and file based, not entity 
or object-based. 
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OO concepts are closely aligned to the fundamental concepts found in systems theory and 
the OO paradigm may be seen as an implementation methodology and tool for systems theory 
concepts in IS. One of the fundamental problems with explaining the concept of object-orienta­
tion and its mapping to GST, is the lack of common terminology outside the concept on which to 
base the definition of the paradigm's terms. Each of the OO paradigm's terms seems to be cur­
rently explained with terms contained within the paradigm itself. The interdependence of the 
concepts in OO, like the interdependence of systems theory components, may contribute to the 
difficulty in easily understanding the approach. Goldberg and Robson summarize the problem in 
discussin g the Smalltalk language: 

Smalltalk is based on a small number of concepts, but defined by usual ter­
minology. Due to the uniformity with which the object-message orienta­
tion is carried out in the system, there are very few new programming con­
cepts to leant in order to understand Smalltalk. On the one hand, this means 
that the reader can be told all the concepts quickly and then explore the vari­
ous ways in which these concepts are applied in the system. These concepts 
are presented by defining the five words mentioned earlier that make up the 
vocabulary of Smalltalk - object, message, class, instance and method. These 
five words are defined in terms of each other, so it is almost as though the 
reader must know everything before knowing anything.^" 

OBJIECTS 

The term Object, is a key element of both the GST and OO concepts. An object in GST is 
often called an entity; however the terms are defined synonymously and refer to a fundamental 
building block of which the system is comprised. Objects under GST can range from the most 
simple (a grain of sand) to extremely complex (the universe). For one to understand a system, one 
must understand the objects or components from which it is made and how these objects behave. 

In OO, the notion of the concept of obj&its lay within earlier work on Semantic Models 
dating back as far as Chen's Entity Relationship modeP' and many of the earliest investigations 
into this area refer to objects as entities, using the terms synonymously and seeking to define 
entities as objects in the real world. As the idea, of object-oriented was conceived, however, the 
opposite became true and objects were defined as unique entities - real world occurrences of 
unique, iself-contained items.^^ This is not surprising since the basis of much of this research is to 
accurately pattern systems development activities to the behavior of real world data elements. 

Objects can be extremely simple, such as a single biological cell, or as complex as a com­
plete anatomical life form. The level of complexity depends upon the level of abstraction one 
desires. At some level of abstraction the single cell would appear quite elementary. However, 
when one considers the complex operations performed by the cell to sustain life, then the object 
appears much more complex. This ability to modify our level of abstraction to fit the problem 
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environment allows us to break extremely complex problems into manageable solutions. Thus, as 
Figure 1 shows, our level of abstraction creates simple and complex objects. 

Figure 1. System Complexity 

(figure 1 goes here) 

CLASS 

After objects, class is the next major construct of both the GST and OO paradigm. In GST, 
class is represented as the fundamental hierarchy of systems. Objects in the same frame make up 
a set. Aristotle was one of the first scientists to be credited with the classifying of the approxi­
mately, then known one thousand plants and animals. His work simplified the division of animals 
into animals with backbones and red blood and those without backbones and no red blood. He 
also classified plants by size and appearance. Later in the 18th century, Linnaeus reclassified 
plants by structured arrangement.^^ In 1971, Boulding represented his hierarchy of major system 
levels by modeling a structure of system complexity based on nine levels.^"* Again, the level of 
abstraction determines the level of complexity. Systems theory provides an abstraction tool for 
decomposing and aggregating object into manageable components. 

In OO, paradigm objects are also organized hierarchically into classes. Objects that are of 
a similar type or kind are combined into common types. Since any object will contain certain 
characteristics which make it unique, it will also contain characteristics which will be shared in 
common with other objects. Then objects possessing the same or similar kinds of characteristics 
are grouped together in common groups called classes. A class is a logical grouping of 
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objects based on criteria parameters of the characteristics possessed in common by the objects as 
a group, object contains characteristics which provide for the object's unique distinction from 
other obj(;cts, and characteristics which help to identify the object as a member of a group of 
objects with the same or similar characteristics. The common characteristics become the basis 
for the objects to be classified.^' Figure 2 shows the relationship of class to hierarchy. 

Figure 2. The Hierarchy of Classes 

(SOURCE: Wirfs-Brock, R., Wilkerson, B., and Wiener, L. (1990). Designing Object-Oriented Software. Englewood 
Cliffs, NJ: Prentice Hall, p. 58.) 

Within GST systems are decomposed into subsystems and aggregated into supersystems. 
More primitive systems can be combined to create higher order systems. The more primitive 
systems become subsystems of the higher order systems. Schoderbek, Schoderbek, and Kefalas 
state: 

While an obvious hierarchy of systems exists (the ultimate system being 
the universe), still, almost any system can be divided and subdivided into 
subsystems and subsubsystems depending upon the particular resolution 
level desired.^ 

Depending upon one's level of abstraction, the higher order system may be considered a 
supersystem of the component subsystems. Schoderbek, Schoderbek, and Kefalas further offer 
five propositions for systems hierarchy: 
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1. A system is always made up of other systems. 

2. Given a certain system, another system can always be found that comprises it, 
except for the Universal System, which comprises all others. 

3. Given two systems, the one system comprising the other can be called the high-
level system in relation to the system it comprises, which is called the low-level 
system. 

4. A hierarchy of systems exists whereby lower-level systems are comprised into 
high-level systems. 

5. The low-level systems are in turn made up of other systems and can, therefore, be 
considered the high-level system for the lower-level systems to be found in it.^' 

A similar mechanism is utilized with the GO paradigm. Classes may be grouped into higher 
classes called superclasses or divided into subsets called subclasses. Classes, superclasses, and 
subclasses are the vehicle for grouping and subdividing objects into logical categories based on 
the instance variables, which are the criteria for the separation and/or accumulation of objects. In 
some definitions an object can belong only to one class, while in others, objects can be a member 
of multiple classes. 

The real power of the GO approach lies within the ability to define instance variables which 
create new classes from existing objects. Therefore, more primitive objects can be grouped to­
gether to form more complex objects. Conversely, complex objects can be divided into subclasses 
creating more primitive objects.^ 

IS A RELATIONSHIPS 

The relationships between objects and classes are described generally as/5-A relationships. 
IS-A relationships form the hierarchical structure between objects and between classes. Since 
this structure is hierarchical in nature, it infers a strict series of one-to-many relationships. Any 
member of a subordinate class is a member of the superior class. As with the hierarchical models 
of database modeling, some researchers allow a parent node to have many children, but a child 
must have one unique parent. Gthers in the literature allow what is analogous to a network 
structure supporting many-to-many relationships. The IS-A relationship is maintained in that 
subordinate classes are members of superior classes; however, a child can be a member of many 
superior classes.^' 
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AGGREGATION/GENERALIZATION 

There are two major types of IS-A relationships, aggregation and generalization. Both of 
these concepts refer to a process of combining lower level objects and classes into higher level 
objects or classes. The distinction is the type of subclass or subordinate object that is combined 
into the higher level object or class. Aggregation is the combining of component pieces into the 
product entity. For example, the components of a computer would be aggregated to form the 
object COMPUTER. Also, the class of each component could be aggregated to form the class of 
COMPUTERS. Another example would be the aggregation of the components BOOK TITLE, 
BOOK AUTHOR, etc. into the higher product oh]eci PUBLICATION. ^°The inverse of aggrega­
tion is decomposition, the breaking apart of a higher object into its component parts.^' 

Generalization is the combining of lower level objects or classes into higher level classes by 
generalizing the attributes of the lower level components. In contrasting generalization with the 
PUBLICATION example in the previous paragr aph, generalization would be the combining of 
objects or classes like BOOK, JOURNAL PAPER, and CONFERENCE PAPER into a higher 
level object or class cdll&APUBLICATION. Conversely, the combination of COMPUTER with 
CALCULATOR, DESK, and FILE CABINET would be a generalization into the class OFFICE 
EQUIPMENT Specialization is the inverse process of generalization. Specialization is the 
segmentation of a more general class into more specialized classes, i.e., OFFICE EQUIPMENT 
into COMPUTERS, CALCULATORS, etc.^" 

Figure 3. Aggregation 

Publieation 
Author 
Title 

Aggregation of Component Objects 
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Figure 4. Generalization 

Publication Class 

Generalization of Objects into a Class 

PROPERTIES/ATTRIBUTES/INHERITANCE 

In GST, attributes are properties of both objects and the relationships of objects among 
themselves.^^ Attributes can take two forms. Deterministic attributes define the object itself while 
accompanying attributes are simply passed along as part of the object class. In OO, objects 
convey characteristic properties between lower level objects via inheritance. The inheritance 
concept is actually the possession of one or more accompanying attributes. 

Inheritance is the concept that properties of superior objects or classes are passed along to 
subordinate objects or classes. Just as human characteristics are passed genetically from genera­
tion to generation, the characteristics of parent nodes of an object or class are passed to the child 
node. The type of IS-A relationship, whether aggregation or generalization, can provide clues to 
the type of attributes to be inherited by a child node. From the previous example of PUBLICA­
TION, one can see the objectPf/i5L/CA770Vwhich is comprised of AUTHOR andBOOK TITLE, 
through aggregation, passes different attributes to the subordinate objects than does the object 
PUBLICATION, through generalization with JOURNAL PAPER, BOOK, and CONFERENCE 
PAPER. 

Inheritance provides a means by which more complex objects and classes can be created. In 
terms of modeling, inheritance allows lower level objects or classes to automatically include 
aspects of their parent nodes. For example, a genealogical hierarchy for "Bird" shown in Fig. 5. 
This structure illustrates how subclasses and their related objects inherit attributes from their 
respective superclasses. A general class is created which contains the defined attributes of all 
subordinate objects. The definition then carries through to the subordinate classes and objects. 
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Additional characteristics attributed to only a subclass can be added at the subclass level. 
In the illustration in Figure 5, the attributes of "warm-blooded," "egg-laying," and "feathered 
vertebrahjs" hold true for all subordinate objects, regardless of their subclassification. The at­
tribute of "vestigial wings" in the subclass NON-FLYING BIRD, is inherited only by the members 
of the subclass (KIWI and PENGUIN). In each c:ase, the attributes do not need repeating within 
the subordinate object or subclass. Simply arramging the objects in the hierarchical structure 
shown, attributes the corresponding attributes to the class or subclass via the inheritance concept. 
Thus, as siubclasses such as FLYING BIRD andNON-FLYING BIRD are created there is no need 
to includ<; the basic attributes in each subclass s ince they will be inherited from the superclass 
BIRD. 36 

Figure 5. Object Inheritance 

Deilnition Dehnition Definition Definition 
Attributes: Attributes: Attributes: Attributes: 
Notehed tail Rust-red breast Long, slender bill Hipper-like' wings 

(Adapted from: Henderson-Sellers and Edwards, op cit., Ref. 22, p. 149) 

Inheritance provides an implementation mechanism for the hierarchical structure. The hier­
archical structure found in GST assumes that objects or entities farther down on the hierarchical 
structure logically are a subcategory of their conesponding parent object(s). The arrangement of 
entities in this manner on the hierarchy diagram conveys this concept, intuitively. However, the 
00 paradigm seeks to implement this concept in reality, not just in mental abstraction. Thus, 
inheritance provides a mechanism for implementing this intuitive concept into a workable opera­
tion. 
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Inheritance is a major component in the reusability of code discussed later. Since objects 
can assume attributes of their parent nodes it is not necessary to code the same variable values for 
each object of a class. Instead, the attributes of the parent class are automatically incorporated 
into each object instance, simply by forming a class which contains the attributes required by 
each object instance. Thus, from a programming standpoint, the concepts of class and inheritance 
assist in making code modular and therefore more reusable.^' 

Inheritance provides for extensibility in the modeling process. That is, the models of OO 
approaches can be extended or built upon without adversely affecting the implementation of the 
work already accomplished. Through inheritance this is accomplished because each subsequent 
class or object acquires attributes from its predecessor(s).^® When a strict hierarchical structure 
is observed when ereating an IS-A relationship the inheritance is referred to as single inheritance. 
This is because the subordinate object or class has only one parent. Therefore, attributes can be 
acquired from one source. However, when there is no strict adherence to the hierarchical struc­
ture, a subordinate object or class can acquire attributes from multiple parents, hence multiple 
inheritance.^® 

An object's characteristics is commonly referred to in the literature as attributes. A class 
then is defined as a logical grouping of objects based on criteria parameters of the attributes for 
that particular class. These criteria parameters are called instance variables. A single occurrence 
of an object in a class is an instance. The variables that describe that particular group of objects 
are the instance variables. For example, the object STUDENT may be grouped into classes based 
on academic major. Academic major then is one of the instance variables for class ACCOUNT­
ING-STUDENTS. 

Some in the literature prefer the terminology instance variable,'^ while others prefer the 
term attribute,and still others use the terms synonymously within their work.'^^ With either term 
the concept remains to distinguish objects from one another and to augment objects with common 
characteristics. 

ENVIRONMENT/ABSTRACTION 

According to the GST, a system operates within a known environment. The system envi-
romnent is comprised of system inputs, system processes, and system outputs. While the system 
itself is limited to items directly in the system's span of control, the system environment includes 
those things that are input into the system which determine how the system behaves and those 
things that the system produces, its outputs. Everything within the complete control of the system 
is part of the system. 

Everything outside the system's complete control is external, but not necessarily within the 
system environment. In order for something to be part of the system's environment, that thing 
must exert some significant force which affects the system's performance. If an external object 
has no significant impact upon the performance and operation of the system, then that object is 
outside the system environment. Thus, for an object to be part of the system it must be both 
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relevant and controllable. If it is only relevant and not controllable, it is then part of the environ­
ment. Finally, if the item is neither relevant nor controllable, it is outside the system's environ­
ment."^^ 

A key aspect of any system is the connection between system inputs and system outputs. 
Within any system, some mechanism exists whic:h links the system outputs to the items input into 
the system. This connection is the feedback mec hanism. This connection may be quite strong or 
virtually non-existent, depending upon the system. However, feedback is always present to some 
extent, eA'en if it is merely a chain reaction betwe en other entities within the system environment. 
The mors; direct the feedback controls, the greater the ability of the system to adjust to changes 
within its system environment."*"* 

Closely related to any discussion of system environments is the concept of system bound­
aries. System boundaries are usually determined by an arbitrary delineation between the objects 
of interest and those that are irrelevant. The concepts included in a model of a real world system 
are determined based upon the observer's interest and determination of relevance. 

The process of creating modeling representations of real world objects is commonly re­
ferred to as abstraction. This process of abstraction is a necessary tool for the creation of more 
complex operations and more complex relationships between data elements. One aspect of an 
object is that it contains abstract qualities about the real world entity. The object contains a 
degree of abstraction because it inherently carries qualities about the real world entity, which are 
meaningful to the user of the model. For example the object STUDENT would inherently contain 
information about the real world entity STUDENT. These qualities may include NAME, AD­
DRESS, STUDENT-ID#, etc. The user of the model would conjure a whole list of properties 
about the object STUDENT without any further prompting. The idea of creating objects is that 
this absti action quality allows the user of the model to relate a host of ideas about the entity 
without listing each specific item. Thus, abstraction embodies the object with a concrete tie to 
reality."*^ 

Obviously, this concept of abstraction is extremely necessary for successful modeling. The 
design and analysis functions are accomplished much more efficiently and effectively if the end-
users can better understand the models of the process as laid out by the designers. This in turn is 
accomplished more effectively if the model itself reflects reality as much as possible."*® Simple 
procedures and projects require this to a lesser extent than more complex ones. As the level of 
complexity of an application increases, the need for abstraction increases."*^ 

Thiis overall attempt to isolate the idea or concept of the data item from the implementation 
and/or manipulation of the data item is also part of the term abstraction. This aspect of abstrac­
tion is very closely analogous to independence in most database management contexts. The ab­
straction property is seeking to insulate the data element concept from its manipulation in an 
effort to allow more powerful modeling to be accomplished with the element."*® 

Traditional record-based approaches lack the abstraction capabilities to link real world 
items to elements in the most models. One of the major advantages of the GO approach is the 
superior abstraction capabilities of the approach over traditional record-based models. 
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Researchers have embraced the object concept because the abstraction capabilities prove to be a 
powerful tool for providing this abstract linking to real life items.'^' As discussed earlier this is a 
major advantage as the complexity of the application increases. This link to real world items is 
not a necessity for investigators of programming languages. Their focus is on the manipulation of 
data regardless of the data's representation to real life items. Instead, programming languages 
concentrate on defining objects as data elements in which the data, and the procedures which 
operate on the data, are contained within one entity. This act of combining the data and its 
procedures is referred to as encapsulation.^^ 

ENCAPSULATION/EQUIFINALITY/POLYMORPHISM 

Encapsulation is one of the most important aspects of programming in the OO paradigm. 
Encapsulation is the main form of implementing the abstraction principle within 00 program­
ming. The concept of abstraction requires that an object inherently contain the properties of real 
world entities. This is accomplished at least in part through encapsulation. The premise of the 
concept is to package together in one entity or object the data element and its corresponding 
attributes or properties. 

In the progranuning task, this requires that data elements and their corresponding proce­
dures are viewed, accessed, and manipulated in concert. Data elements and their specific oper­
ands grouped together into a 'capsule' of knowledge. This capsule of knowledge is the object. 
Thus, one part of the process of creating an object is the aspect of encapsulation.'' When data is 
encapsulated with its operands, the user of the data element no longer is obliged (or able) to 
manipulate the data as they see fit. The user of the data element may request the manipulation of 
the data in a particular manner but the actual processing is transparent to the user. A user has 
visibility to the operations available, but not how these operations will actually be executed.'^ 
This concept is developed and explained further in a discussion of messages and methods, later in 
this article. 

For now, it is important to understand that encapsulation is critical to the concept of object. 
For the object STUDENT, its properties such as NAME, ADDRESS, STUDENT-ID#, etc. would 
be contained within the object along with the procedures for manipulating these properties in 
order to provide information to users outside the context of the object itself. For a less complex 
object, INTEGER, there would be a few properties outlining its size parameters. The procedures 
appropriate for its manipulation such as addition, subtraction, multiplication, squaring, etc. would 
also be contained within the object. 

In GST systems, it is recognized that entities or objects may possess multiple goals. Ob­
jects may seek to satisfy these multiple goals simultaneously. Additionally, GST provides that 
biological or social systems are not mechanistic and often achieve their goals utilizing different 
initial conditions and different methods. Within the 00 paradigm, multiple objects continuously 
interact with one another. This dynamic interaction often requires dissimilar objects to behave in 
heterogeneous ways. OO allows this to occur via a concept called polymorphism. 
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Polymorphism allows objects to react diff<;rently to different stimuli. Depending upon the 
methods encapsulated in an object and the coded procedures embedded in it, an object may 
accomplish a task in different ways at different times. The combination of external stimuli and 
coded procedures allow objects to function dyitiamically. Additionally, objects not only react 
differently themselves, but different objects can behave differently when they encounter the same 
stimuli. This is obvious in natural systems. Chemicals, for example, react differently to alkaline 
and acid, based upon their own molecular structure. The 00 paradigm attempts to more closely 
link the real world to software development. Polymorphism provides a mechanism for the imple­
mentation of multiple goal seeking and EQUIFINALITY within the OO paradigm. 

MESSAGES/METHODS 

In the traditional data processing approach, data elements are manipulated by the proce­
dures coded by programmers for each particular application. A great deal of effort is usually 
expended to ensure the separation and independence between data elements and the procedures 
which act upon them. Since one of the major premises of the 00 approach is that the procedures 
are encapsulated with the data elements themselves, a new methodology for processing the data is 
required. 

Th(j encapsulation of procedures with data elements creates an aspect of public and private 
access. Portions of the object's properties are available for access by all users who have access to 
the object itself. These properties are considered public. The operations available for use on an 
object are part of the object's interface with the rest of the world. The operations available are 
public; however, how the operations are accomplished are private. For example if an object 
INTEGER has a value of "6" and a procedure PRODUCT available, the operation of procedure 
PRODUCT is public. Users having access to ths INTEGER "6" will know that PRODUCT is an 
operation available for use on "6." However, the; process by which PRODUCT is accomplished 
is private. If a user were to request the PRODUCT of 3 times "6," the process may be accom­
plished by "3 X 6" or "6 + 6 + 6". How the task is accomplished is trivial. The user only wants the 
information "18," the PRODUCT, the output of the operation. 

REUSABILITY/MAINTENANCE/ENTROPY 

The second major concept of the OO paradigm is reusability. Reusability, inheritance, and 
encapsulation comprise the major components necessary for the implementation of the OO ap­
proach. ITie OO paradigm and GST have a hierarchical structure. Inheritance allows the systems 
farther down the hierarchical structure to logical ly inherit the characteristics and attributes of the 
higher order systems. The hierarchical structure of GST provides for complex systems to be 
constmcted from more primitive subsystems. Just as inheritance provides an implementation 
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mechanism for the transfer of object characteristics, reusability provides the OO paradigm with 
an implementation strategy for the construction of complex objects from simple objects. For 
example, in biological systems simple cells are aggregated to create increasingly complex sys­
tems and supersystems. Reusability provides this aggregation mechanism, within the OO para­
digm. 

Reusability implies a certain degree of modularity in code that is developed. The essence of 
the OO paradigm from the programming aspect is the idea of reusability of code. The only real 
benefit to programmers from using this approach is that it promotes a highly structured environ­
ment and ability to create more complex processing via previously defined, coded, and compiled 
code. While encapsulation is necessary in programming for the OO approach to be implemented, 
it is a very difficult task to encapsulate procedures with data elements. However, the reusability 
of code is a highly desirable aspect of the approach.'^ 

While technically the 00 approach could possibly be implemented without reusable code, 
there would be little, if any, tangible benefits from a programming standpoint of using the ap­
proach. Cox^ stresses this issue of the paradigm by presenting an analogy between OO program­
ming and electronic integrated circuits. He terms this "software-ICs." Just as electronic circuitry 
is modular with boards being designed for a specific task, Cox" indicates that OO programming 
creates software modules that can be plugged into each other. As the overall application changes 
and requires modifications, the "software-ICs" can be changed to provide the currently required 
circuitry. 

Reusability also addresses the problems of system maintenance and system entropy. Sys­
tem maintenance activities are designed to extend a system's life by upgrading its functionality 
for dynamic systems environments. Reusable code extends the application software life cycle by 
forcing highly cohesive, loosely coupled code modules which can be more easily modified and 
reused providing greater flexibility in application design. Since the code is forced to be more 
cohesive and more loosely coupled, its inherent life expectancy is longer and therefore system 
entropy is reduced. 

CONCLUSION 

The GST is a cornerstone of scientific theory. It provides an instrument for the evaluation 
and construction of highly sophisticated concepts in virtually all areas of scientific endeavor. 
GST represents a framework for ordering and organizing human cognition concerning the as­
pects of the world around us. Contrary to the analytical approach, which seeks to understand the 
component parts of an item, the systems approach attempts to examine something from a more 
holistic point of view. An item of interest is viewed as a component part of a larger whole. The 
item is analyzed as a subsystem of the larger system, and at another level of abstraction this 
subsystem is decomposed into its own component parts. 
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Within information systems, the historical approaches to application software development 
have failed to capture the essence of GST. Structured approaches to software development lack 
the abstraction framework presented in the GST approach. Structured approaches more closely 
resemble the analytical approach in their attempt to fully understand a specific application, or 
application function, without examining the func tion in terms of a related system of functionality. 
Applications are analyzed from a very limited vi ew of functionality. An applications functional­
ity is dissected and analyzed, and only then are specific interfaces to that functionality developed. 

The OO paradigm offers an approach to application development that more closely re­
sembles the framework set forth in the GST. The 00 approach decomposes complex systems 
into successively smaller subsystems and subsubsystems. The more primitive or elementary ob­
jects are aggregated into more complex objects. The objects are arranged in a hierarchical struc­
ture by generalizing objects into object-type claisses. 

The OO concepts of inheritance, encapsulation, and reusability provide a functional means 
of implementing the concepts set forth in the GST. The paradigm allows objects to be decom­
posed into more manageable units. These discr<;et units are completely encapsulated objects of 
information, including data and the required procedures necessary to manipulate the data. Encap­
sulation provides a clear delineation between the internal object attributes and functions and the 
extemal object environment. At the object level encapsulation provides an implementation of the 
system boundaries concept found in GST. 

The hierarchical structure of GST is facili tated within 00 via the concepts of inheritance 
and reusability. Objects are generalized into classes based upon their attributes and behavior. 
Attribute s and characteristics attributable to an entire class need not be repeated in every class 
member. Instead these characteristics and behaviors may be attributed to the class and each 
member object can inherit these traits in much the same manner as biological inheritance oper­
ates. Thus, inheritance provides a methodolog;,^ for creating logical hierarchies of objects and 
classes. 

Finally, reusability provides the 00 paradigm with a method of incorporating the GST 
concept of interchangeable subsystems. Software designs and code are bundled into discreet 
conceptual modules. These modules can be interchangeably linked to form diverse software ap­
plications. This modularity also facilitates the hierarchical structure in that the modules are com­
pletely se;lf-contained and thus can be rearranged without significant impact on other subsystems. 

Since the OO paradigm evolved over an extended period of time and contributions to the 
approach came from a variety of disciplines, it v/ould be inaccurate to present the paradigm as an 
approach designed specifically to implement the GST. However, this article clearly presents 
alignments and similarities which indicate that 00 techniques provide a closer fit to GST than 
older design methodologies. As such, the value of the OO paradigm as a tool for system develop­
ment is significantly enhanced. 
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