
Journal of International Information Management

Volume 4 | Issue 1 Article 3

1995

MOSAIC: A dynamic menu interface for end users
and system administrators
Jay M. Lightfoot
University of Northern Colorado

Follow this and additional works at: http://scholarworks.lib.csusb.edu/jiim

Part of the Management Information Systems Commons

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International
Information Management by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Lightfoot, Jay M. (1995) "MOSAIC: A dynamic menu interface for end users and system administrators," Journal of International
Information Management: Vol. 4: Iss. 1, Article 3.
Available at: http://scholarworks.lib.csusb.edu/jiim/vol4/iss1/3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/55331792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol4%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol4?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol4%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol4/iss1?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol4%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol4/iss1/3?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol4%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol4%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol4%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol4/iss1/3?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol4%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


MOSIAC Journal of International Information Management 

MOSAIC: A dynamic menu interface 
for end users and system administrators 

Jay M. Lightfoot 
University of Northern Colorado 

ABSTRACT 

The environment for corporate computing has become much more complex than the aver
age end user is willing to comprehend. A solution to this problem is the development of menu 
shells and user-interface management systems. This paper describes the design and use of a 
menu shell called Mosaic. In addition to the traditional shell function of running user programs, 
Mosaic provides security, improves data integrity, furnishes debugging and data usage support, 
and aids the system administrator in day-to-day tasks. Mosaic was used successfully at a me
dium-sized electronics corporation for two years. 

INTRODUCTION 
The environment for business computing has grown far more complex than the average 

end user is willing to comprehend. As an example, compare the microcomputer operating sys
tem of today with those of 10 years ago. Today's end user need be concerned with memory 
management, swap space, terminate and stay resident programs, esoteric device drivers, and 
disk compression to name a few. Add to this the confusion inherent in telecommunication. 
Multiple nodes connected to different operating: systems across vast expanses of cyberspace 
confuse e\'en the most diligent power user. 

Those attempting to solve this problem have; concentrated on improving the user interface. 
The idea is to make accessing the computer (and the data it oversees) more natural and less 
intimidating. The trend toward menu shells and graphical user interfaces are the direct result of 
these efforts. While these interfaces normally achieve the base-level goal of making data and 
programs more accessible, they typically fall short of the potential power of the interface. Menu 
shell interfaces on a network are capable of administering user accounts, providing security, 
furnishing; program and data usage information, and giving debug support (Day, 1992). 

This paper describes the design and use of a menu shell called 'Mosaic'. The shell was 
devel oped and used in a medium-sized electronics corporation for two years. Mosaic goes be
yond merely accessing data and programs and extends the interface toward its full potential. The 
shell was very successful and points out a specific instance where the payoff from end user 
computing is better productivity. 

41 
1

Lightfoot: MOSAIC: A dynamic menu interface for end users and system adminis

Published by CSUSB ScholarWorks, 1995



Journal of International Information Management Volume 4, Number 1 

MOSAIC OVERVIEW 
Design Philosophy 

The Mosaic shell' was developed to resolve the problems experienced by the financial 
users of an electronics corporation. Before the system was developed, each end user was respon
sible for knowing where their programs resided, which data files were required, and the order in 
which the programs were executed. Security in this environment was practically nonexistent. If 
errors occurred during execution, systems personnel were forced to depend upon information 
and observations provided by the end user to track down the problem. This was non-productive 
and frustrating for both end users and systems personnel. 

The developers of Mosaic were familiar with the limitations of existing commercial menu 
shells, so they decided to build their own. COBOL was used to write the system because it was 
the only major language supported by the data processing department. As it turned out, using 
COBOL was beneficiary because the language has strong support for indexed-sequential file 
organizations and dynamic file access. Both were used extensively in the shell. 

Mosaic was developed with a basic philosophy that can best be described by four design 
objectives. The first objective was to design a system that is easy to use, powerful, and robust. 
Most commercial menu products are designed for the casual user who logs in occasionally; not 
for the person who spends most of the day on-line. Specifically, these systems provide a rigid 
menu tree that must be navigated in a hierarchical fashion. The Mosaic design team decided to 
allow end users to dynamically define their own menu paths to improve productivity. In addi
tion, the menu shell includes copious help facilities. At any point, a user can type "help" and 
obtain context dependent instructions. Finally, the system is designed to he bullet proof. The end 
user never sees the system prompt. 

The second design objective was to build a shell that facilitates system administration and 
provides security. Most commercial shells are designed to produce a layer of abstraction be
tween the end user and the computer. If successful, the end user is not required to know the 
operating system or the location of programs and data. While this is an important feature, a shell 
should also supply flexible tools for the system administrator to control data and program ac
cess. This is achieved in Mosaic by a password module that allows the system administrator to 
define accounts and security profiles for individual users, groups of users, and public access. 
The security profile can control very fine granularity access (e.g., controlled access to indi
vidual programs for individual users on specific terminals). The shell also keeps a full log of 
each users activity. This feature, when combined with appropriately written programs, can col
lect data concerning the specific field values that were modified during the execution of a pro
gram. 

'The system was called Moja/c because it brought together diverse, disjointed programs into a single compos
ite picture. It is in no way related to any commercially available software of the same name. 

42 
2

Journal of International Information Management, Vol. 4 [1995], Iss. 1, Art. 3

http://scholarworks.lib.csusb.edu/jiim/vol4/iss1/3



MQSIAC Journal of International Information Management 

The third design goal was that the shell should aid systems personnel in debugging prob
lems that occur when end users execute programs. Nothing in data processing is more frustrat
ing than a sporadic, seemingly random bug. Thie only way to fix this type of problem is to 
meticulously reproduce the situation in which thie bug occurred. Unfortunately, end users can 
seldom recall every detail of an extended work session, so this information is not available. 
Mosaic solves this problem by using the data stored in the security logs. Programmers can use 
the details captured in the log to duplicate the situation that caused the bug. 

The final Mosaic design objective was that the shell should be dynamically extensible. 
That is, the system administrator can modify the behavior of the shell from within the shell. 
Commercial shell products normally are maintained by modifying files using special commands 
which are run at the operating system level (i.e., external to the shell). This requires the system 
administrator to learn the shell and a special shell maintenance language. This is unnecessary 
duplication. Mosaic can be maintained by selecting menu elements from within the shell. This 
ensures simple, consistent shell maintenance and gives Mosaic the desirable characteristics found 
in a user-interface management system (Linton, Vlissides, & Calder, 1989). 

Resnilts of Using Mosaic 

The Mosaic shell was used by the financial and human resource functions of the corpora
tion ler over two years. During that time, it dramatically improved end user productivity. Users 
were able to concentrate on the task for which the y were hired rather than on the eccentricities of 
the operating system and the network. In addition, new employees were productive much sooner 
and eixisting employees were automatically cross-trained due to the simple, consistent interface. 

Mosaic made system administration and program maintenance much easier. Since changes 
could be globally implemented by a single modification, the system administrator was able to 
effect changes in minutes instead of days. Programmers benefited because they were better able 
to duplicate the conditions that caused program errors. Finally, overall system security and in
tegrity were improved because end users were allowed to access only the programs and data for 
which they were authorized. 

IMPLEMENTAl ION DETAILS 

The End User Interface 

When the end user first logs into the Mosaic shell, he is presented with a standard pass
word screen that asks for the usemame and password (without screen echo).^ If help is desired, 
he may also type "help." If he does not succesisfully enter the password information in three 
attempts, the user account is deactivated for ten minutes and an entry is made in the security log 
conc erning the time and terminal location of the failure. 

^The personal pronoun "he" will be used throughout this paper to represent both male and female users. This 
is done to avoid the grammatically incorrect use of 'they' and to reduce the confusion caused by switching pronoun 
gender. 

43 
3

Lightfoot: MOSAIC: A dynamic menu interface for end users and system adminis

Published by CSUSB ScholarWorks, 1995



Journal of International Information Management Volume 4, Number 1 

Once the user has successfully entered password information, he is presented with a text-
based menu of valid system options. An example user menu is shown in Figure 1 below. The 
options presented vary depending upon the contents of the user security profile. Users with high 
security clearance have more options than those with low clearance. A major design character
istic of Mosaic is that users are shown only functions for which they have permission to execute. 
This differs from many commercial shell programs that gray out or disable functions that users 
may not access. This improves overall system security since the end user does not know what he 
is not allowed to do. 

TC Timecard Menu 
TAX Tax Reports Menu 
MAN Create Manual Checks 
IN Input New Employees 
CAE Calculate Payroll 
MNT Maintain Payroll File 
PRT Print Payroll Checks 
RES Restore Old Files 
BAK Backup Payroll Files 
UTL System Utilities 

Enter selection, route name, help, exit. 

The prompt for the menu screen is automatically placed at the bottom of the screen. This 
prompt asks the user to enter his menu selection, a route name, help, or exit. Each of these 
options are described below. 

• The menu selection is a three character abbreviation of a specific action or sub-menu. The 
menu selection is described in the body of the menu screen. If the user selects an action 
(i.e., executable program or command procedure) then the program is executed and control 
returns to the menu. If a sub-menu is selected, the appropriate lower-level menu is dis
played. When the return key is pressed without making a selection, control pops up to the 
next menu level. 

Figure 1. Mosaic Payroll System Menu 

44 
4

Journal of International Information Management, Vol. 4 [1995], Iss. 1, Art. 3

http://scholarworks.lib.csusb.edu/jiim/vol4/iss1/3



MOSIAC Journal of International Infonnation Management 

• ITie route name option allows the user to fsxecute a predefined menu path. These paths 
allow the user to bypass the traditional hierarchical menu structure. Each route name is 
unique for the user that creates it. This means that many users may create different routes 
vi'ith the same name without conflict. The route function is a useful productivity tool for the 
end user who performs routine tasks often and does not wish to chain through a menu 
hierarchy. Instead, he can jump directly to the desired action. Routes are created by execut
ing a special utility function that memorizef! keystrokes in a learn mode. Any number of 
routes may be defined. 

• Help shows a help screen that describes the functions available. 

• The exit function allows the user to exit the shell (logoff) from any point within the menu 
tree. This is another feature to improve user productivity. At no time is the end user allowed 
to see the system prompt. Confirmation is required before the exit is performed. 

As long as the user works consistently at the terminal, he is not required to re-enter a 
passvi'ord. Anything he is allowed to do within the system is 'pre-approved'. If the terminal is 
idle for more than ten minutes then password entry is required for any action except the exit 
function. This provides security when a user leaves his desk without logging off. 

INTERNAL SYSTEM DETAILS 

The key to a successful shell program is a simple, flexible user interface. The previous 
section adequately describes the Mosaic system from the standpoint of the end user. The system 
is powerful, easy to learn, and versatile. As might be expected, many things must take place 
behind the scenes to make this possible. This section describes the major low-level implementa
tion details of the Mosaic system. 

Systiim Environment 

Mosaic was designed to run on a Digital VAX 11/780 computer using the VMS 5.0 oper
ating system; consequently, certain characteristics are unique to this environment. First, VMS 
allov/s long filenames (up to 64 characters at the installation where Mosaic was written). Sec
ond, the VMS environment is capable of running command procedures written by other com
mand procedures. Thus, a hierarchy of executable procedures can be dynamically generated and 
performed directly from the operating system. Finally, VMS 5.0 is a character based operating 
system (i.e., no Windows icons and no mouse capabilities). Because of this, all screen displays 
are rfjlatively simple ASCII characters. Modem computers manufactured by Digital continue to 
support thie VMS operating system, so Mosaic does not require an antique computer. 

End User Profile 

Every valid Mosaic user must have a user profile before he is allowed to login. The user 
profile is defined by the system administrator via a utility program that is only available from 

5

Lightfoot: MOSAIC: A dynamic menu interface for end users and system adminis

Published by CSUSB ScholarWorks, 1995



Journal of International Information Management Volume 4, Number 1 

the administrator s menu. The profile is stored in an indexed-sequential file which contains the 
user name, password, valid terminals for access (is applicable), valid systems for access, and 
protection level for each system. These elements are described below. 

• The username is the primary key for the file and can be up to twenty characters long. 
Traditionally, it is the end users last name, but can be any meaningful combination of char
acters that denote individual users or groups of users. 

• The password holds the user passwords required for login. They are initially set to the 
username by the system. Once access is gained, the user may set the password to any string 
(up to 20 characters). 

• Valid terminals allows the system administrator to specify the terminal identification 
number(s) from which the user is allowed to access the system. Up to five terminals can be 
specified, or the word "ALL" can be entered to denote any terminal. If the computer instal
lation uses a terminal server, then the valid terminal option is disabled. This is necessary 
because terminal servers assign a new logical terminal number for each login session. There 
is not a consistent physical connection established to each terminal. 

• The valid systems array is very important. This entry names the three-letter abbreviation of 
the system(s) that the individual user may access. Each system has a unique abbreviation 
that identifies it throughout Mosaic. For example, GL could stand for general ledger, AP 
for accounts payable, PR for payroll, etc. If a system is not named in the valid systems 
array, the user is not allowed to see or access the sub-menu associated with that system. Up 
to 99 systems can be assigned to each user. The system administrator has a special code of 
"SYS" to denote any system currently defined. In this way the administrator always has 
complete access to all systems. 

• Finally, the protection level is an array that associates the level of access allowed for all 
valid systems (up to 99). One protection level is associated with each system. The level 
ranges from 0 (no access) to 99 (full access). This works in concert with the leaf-level menu 
actions (i.e., programs and command procedures at the end of a menu tree). Each menu 
action is assigned a protection level. For a user to be able to see and execute an action he 
must have a system protection level equal to or greater than the menu action level. If a user 
has 0 level access, he may see the menu title, but nothing more. When used with the "SYS" 
administrator code, different levels of system administrator may be defined. A 99 level 
administrator is traditionally the database administrator. 

The login process takes the username and password provided by the user and attempts to 
read the user profile. If a profile does not exist then the login attempt is unsuccessful. A success
ful login attempt generates several internal actions. First, a unique timestamp is created that 
combines the username, terminal identification, and login time. This timestamp is used to uniquely 
identify all actions that occur during the specific work session. Next, a file containing a single 
record is written (using the timestamp as a name) that contains the system profile information. 
This file is checked each time the user attempts an action during the session. Finally, a sequen
tial history file is opened to record all activities that occur during the work session. Every 

46 
6

Journal of International Information Management, Vol. 4 [1995], Iss. 1, Art. 3

http://scholarworks.lib.csusb.edu/jiim/vol4/iss1/3



MOSIAC Journal of International Information Management 

user has his own history file and all new entries are appended to the end of this file. Thus, a 
complete history of everything the user does is recorded in the file. This will be discussed below 
in depth. 

Menu Structure 

The static menu structure is stored in an indexed-sequential file with a key that combines 
the sj'stem code with the parent menu code and a four-digit menu identifier. Every action in a 
menu has a different four-digit menu identifier. This generates a unique key that can be used to 
represent a hierarchy of menus and actions. For example, "ALGLOlOO" is the 0100 action of the 
allocation sub-menu under the general ledger s}'stem. Figure 2 shows a diagram of a sample 
static menu tree. Notice how the nodes in the diagram can either be menu nodes (identifier 
0000) or leaf nodes (any other four-digit identifier). Leaf nodes are associated with command 
proce dures of the same name. Thus, the name of the leaf node is also the name of the procedure 
to ex(;cute to perform the leaf action. Stored in the record for each action are a protection level 
and a valid terminal array. These are used to compare with the individual's user profile. A suc
cessful match allows the end user to execute the action represented by the entry. An unsuccess
ful match generates an error. 

Figure 2. Sample SItatic Menu Tree 

47 
7

Lightfoot: MOSAIC: A dynamic menu interface for end users and system adminis

Published by CSUSB ScholarWorks, 1995



Journal of International Information Management Volume 4, Number 1 

The menu structure is called static because it is merely a template to be used by individual 
work sessions. Each session reads the information stored in the menu file to generate a dynamic 
menu for that session.^ This design was adopted to allow different procedures to be generated 
for different levels of users and to avoid the problem of record locking when many users at
tempt to access a single file. It also makes the implementation of user defined menu routes very 
simple. Another benefit is that disk space is not wasted by storing the full menu tree; only the 
tree template and the generating procedures need be stored permanently. 

When a menu node is selected by the user, the nodes directly below the menu node are 
read and the screen is painted with a menu of those lower level actions that the user is allowed to 
execute. When a leaf-level action is selected, control is passed to the procedure with the same 
name as the node. This procedure subsequently executes some program or performs some ac
tion. When the procedure completes, control returns to the calling procedure. As the user backs 
out of the dynamic menu hierarchy, the lower levels of menu are automatically deleted by Mo
saic. 

Dynamic Extensihilifv 

All menu shells require some way for the system administrator to modify or update the 
shell interface. For example, new users need to be added, programs are modified, and security 
levels change. Most commercial shells require that this be done externally to the shell using a 
special shell language or initialization file. Further, in almost all cases, these changes cannot be 
made while active users are in the system. The Mosaic development team felt that this was 
overly restrictive; consequently, all shell modifications in Mosaic can be made from within the 
system while the system is active. 

Users with 99 level system privilege have access to the administrative utilities menu. This 
menu contains programs that maintain the user profiles, edit the leaf-level procedures, edit, 
purge, and print history files, backup and restore data files, and maintain the static menu file. 
The advantage of this design is that the system administrator can make changes from within the 
system and all changes are effective immediately. For example, if a new program is released, the 
static menu file can be modified in real time by making one change via the utilities menu (while 
users are active). As soon as users access the new menu screen, the changes are in place. The 
same holds true for security and password modifications. On-line, real-time maintenance is one 
of the most powerful features of Mosaic. 

^Recall that VMS allows command procedures to generate other procedures that can subsequently 
be executed. This capability is used to build the dynamic menu structure "on the fly." 

48 
8

Journal of International Information Management, Vol. 4 [1995], Iss. 1, Art. 3

http://scholarworks.lib.csusb.edu/jiim/vol4/iss1/3



MOSIAC Journal of International Information Management 

History Fiile 
New entries are added to the end of the user history file every time a dynamic menu 

structure is generated or actions are performed. The history file stores the session timestamp, the 
start and end time of the action, and a text description of what action was performed. Also stored 
in the history file are route invocations, menu navigation actions, final logout, and invalid login 
attempts. Since the history file is sequential, it can be accessed using any text editor (for debug
ging purposes) or analyzed by an external databa.se package to determine data usage patterns. 

An optional feature of the history file is the ability to store details of what the user does 
within each executable program. For example, the payroll maintenance program could be writ
ten to add entries to the appropriate history file that describe every record the user accesses and 
the b(;fore and after images of any fields that are modified. The end result would be a complete 
audit trail of every action impacting the payroll file.'^ 

DISCUSSION OF THE APPROACH 
Menu shells in general and the Mosaic appiroach in particular provide several advantages. 

First, shells create a level of data and program abstraction. This means that end users do not 
need to know where their programs or data are stored. In addition, since the command proce
dures that run the programs can perform logical assignments, sorts, and other housekeeping 
functions, users are freed from knowing the tedious technical details needed for program execu
tion. Second, the Mosaic password module allows users to access only the programs and data 
that they require and users are never allowed to directly access the operating system. Thus, the 
shell enhances overall system security and integrity. Third, programmer responsiveness is im
proved because the history files capture the exact chain of events that lead to an execution error. 
This allov/s the programmer to recreate quickly the problem that caused the error. Finally, Mo
saic makes system administration easier because the shell is dynamically extensible while users 
are active in the system. 

On the negative side. Mosaic is currently written to work only with the VMS operating 
system. This limits its usefulness. Also, since the operating system is character based. Mosaic 
does not use a graphical desktop metaphor or the mouse. Finally, the shell is not designed to 
work in a client-server environment. The system assumes a traditional mainframe with attached 
dumb tenninals. Despite these problems, the overall effect of Mosaic on the electronics corpo
ration where it was developed was very positive. 

*This requires that the executable programs be written to manipulate the history file independent 
from the raenu shell. This feature was fully implemented, but never used by the electronics firm upon 
which this paper is based. It was decided that this level of security was not necessary. 

49 

9

Lightfoot: MOSAIC: A dynamic menu interface for end users and system adminis

Published by CSUSB ScholarWorks, 1995



Journal of International Information Management Volume 4, Number 1 

FUTURE ENHANCEMENTS TO MOSAIC 

The key contribution of the Mosaic shell is its basic design philosophy. The system solved 
a complex problem in a very elegant manner. The same philosophy can be applied to a modem 
computer environment. To begin, Mosaic should be modified to use a mouse and a graphical 
interface. This would improve end user productivity even more. Next, the original system as
sumed the COBOL and the VMS operating system performed all file input/output. This is a 
limitation. The system should be designed to work on a client server network with different 
database backends. Lastly, the shell should have built-in tools to analyze the history logs. Long 
history logs are difficult to use without adequate processing support. 

SUMMARY 
This paper discussed the development and use of a menu shell called Mosaic. Mosaic was 

designed to provide a powerful, flexible menu shell interface for the final users of an electronics 
corporation. The shell helped improve the productivity of end users, programmers, and the 
system administrator in the company. It did this by creating a level of data and program abstrac
tion that allowed end users to concentrate more on their work and less on data processing de
tails. It also provided administration, security, and debugging support for the technical staff. 
Mosaic is a good example of how end user computing can improve overall corporate productiv
ity. 

REFERENCES 
Day, M. (1992, April 20). DOS menu packages fulfill varied needs. LAN Times, 9(7), 41. 

Linton, M, Vlissides, J. & Calder, P. (1989, Febmaiy). Composing user interfaces with InterMews. 
Computer, 22, 19. 

50 
10

Journal of International Information Management, Vol. 4 [1995], Iss. 1, Art. 3

http://scholarworks.lib.csusb.edu/jiim/vol4/iss1/3


	Journal of International Information Management
	1995

	MOSAIC: A dynamic menu interface for end users and system administrators
	Jay M. Lightfoot
	Recommended Citation


	MOSAIC: A dynamic menu interface for end users and system administrators

