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A differential refresh scheme
for remote end-user’s views

David Chao
San Francisco State University

George Diehr
California State University, San Marcos

Aditya N. Saharia
University of Illinois at Chicago

ABSTRACT

The growth of end-user computing and recent developments in information technology,
such as client/server architecture and data warehouse, promote the use of remote materialized
views (RMVs) to support end-users. This article presents a differential scheme to refresh remote
end-user's views. The scheme stores the effects of updates relevant to the RMV in a "difference
table" which is transmitted to the remote site upon receiving the refresh request to update the
RMV. The scheme provides a fast response to a user's refresh request. We discuss the data
structures and algorithms of the scheme. Performance measures are developed and compared
with the regeneration scheme.

INTRODUCTION

The currency requirements for the information needs of different members of an organiza-
tion vary considerably. For example, the activities at the operations management level usually
require detailed internal data reflecting the current operational state of the organization. On the
other hand, at the strategic management level where various planning activities take place, staleness
in data may be tolerated. Sprague and Carlson (1982) claimed that, "Few decision support sys-
tems have a requirement for real time data" and decision support system users may prefer to work
with a static version of the data. Adiba and Lindsay (1980) suggested that users who do not have
to or do not wish to work with the operational (and hence constantly changing) database be
supported via "snapshots." A snapshot reflects a user's view of the operational data at a fixed
point in time. Thus, snapshots correspond to "materialized views" except that they are "refreshed”
(i.e., brought to a state consistent with the operational database) only when the user explicitly
issues a refresh request.
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With the common availability of personal computers and work stations, end-user comput-
ing has grown tremendously. Snapshots, usually in the form of downloaded data, have been
commonly used to satisfy the end-user's needs for data and as a way to maintain the security of
the operational database. Current developments in information system technology, such as client/
server network architecture, also promote the use of snapshots as a cost effective alternative to
achieve distributed computing. Typically, a client/server system maintains a centralized opera-
tional database at the server site, and client site applications are supported using snapshots.
Recently, widespread interest has developed in the use of so-called "data warehouses" to store
information which is extracted from operational and external databases and used primarily in
decision support applications (Radding, 1995; White, 1995). With these developments, snap-
shots have taken the form of "remote materialized views" (RMVs): a user who is interested in
working with a snapshot requests a copy of the appropriate subset of the operational database at
the client site. The RMV is then used without further interaction with the operational database
until the user perceives that the RMV has become stale due to updates to the operational data-
base. Note that in a distributed environment, even in situations where it is desirable to make the
current data available to the users, the overhead associated with concurrency control protocols
may make the use of current data prohibitively expensive. Another factor that discourages a
tightly coupled distributed database is the lack of homogeneity of software across the network
and various types of DBMSs such as Access and dBASE. In such cases, the use of RMVs with
frequent refreshes provides an attractive alternative.

There are a number of ways to refresh RMVs. An obvious and easy solution is to regener-
ate the materialized view each time it is referenced. However, the cost of the refresh can be
substantially reduced by following a differential refresh strategy which is even more attractive
because of reduced communication costs. The current view is obtained by posting the additions
and deletions to the view as a result of updates to the base table:

New view = Old view - Deletions + Additions

For example, Hanson (1987) suggested that updates to a materialized view be deferred
until it is actually referenced by a user. To facilitate identification of changes in the base tables
since the last refresh, Hanson suggests the use of a hypothetical relation for each permanent
relation, which is made up of the base table itself, a table which keeps additions, and a table
which keeps deletions. Blakeley et al. proposed a differential view maintenance scheme in which
each update tuple is pre-screened to determine whether the update is relevant for a view or not
before applying the update to the view (Blakely, Larson & Tompa, 1986; Blakeley, Coburn &
Larson, 1989). Lindsay et al. proposed timestamping database records to identify changes since
the last refresh (Lindsay, Hass, Moham, Pirahesh & Wilms, 1986). The refresh message for an
RMYV is generated by sequentially scanning the base table and identifying the tuples relevant to
the snapshot which have been inserted or deleted since the last snapshot. Also to allow for effi-
cient identification of the deleted records, they use pointers embedded within base table records
which identify the boundaries of the empty regions. Since the only purpose of the timestamp and
pointer system is to facilitate RMV refresh, the timestamp and the pointer are fixed at the time the
refresh message is generated. The scheme is easily applied to multiple RM Vs but is not easily
extended to the RMVs based on multiple tables (i.e., defined by SPJ views).
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Segev and Park (1989) and Roussopoulos and Kang (1986) provided schemes in which the
history of updates to the base tables is kept in log files. To determine the entries in a log file which
have come up since the last refresh, Segev and Park suggested timestamping the log file entries
whereas Roussopoulos and Kang suggested using a pointer maintained by the remote site. To
limit the growth of the log file, entries which have been used to refresh all the RMVs are deleted
from the top of the log file. Both the schemes can be applied to the case of multiple RMVs. The
scheme reported in Roussopoulos and Kang (1986) has been extended to RMVs based on mul-
tiple base tables. Segev and Park do not provide extension to the RM Vs based on multiple tables.
In case the communication lines between the central site and the remote sites are available through-
out, the RMV refresh can be initiated by the central site. The central site forced refresh scheme
has been recently suggested by Alonso et al. where the user at a remote site specifies the maxi-
mum divergence allowed between an object at the central site and its copy (called "quasi-copy")
at the remote site (Alonso, Barbara & Garcia-Molina, 1990). The refresh is postponed to the last
moment possible allowed by the divergent conditions specified by the user.

The differential refresh methods reviewed above require the processing of the base tables or
the update logs to generate the differential refresh messages after receiving the refresh request
from the user, thus prolonging the response time to the user. In this work we describe the differ-
ence table scheme for maintaining RMVs. In this scheme, the effect of all the updates to the base
tables on an RMV is maintained in a difference table. The difference table keeps the tuples to be
deleted from and to be added to the RMYV, i.e., the difference table contains the net refresh mes-
sages to the view. On receiving the refresh request, the contents of the difference table are sent to
the remote site and the difference table is initialized to empty. This scheme provides a fast re-
sponse to the user's refresh request. It supports RMVs based on the joins of multiple tables as
well as multiple RMVs. The added costs of supporting the difference table scheme are the cost of
performing relevance checks on the updates to determine their relevance to the view and the cost
of maintaining the difference tables. At low updates rates and low qualification rates (proportion
of base table records that satisfy the view definition) the cost of performing the relevance checks
and maintaining the difference table will be relatively small compared to the cost of scanning the
base tables for the regeneration scheme. Section 2 gives an overview of the scheme, and descrip-
tions of additional procedures needed in the scheme. Section 3 compares the performance of the
scheme with the regeneration scheme, and section 4 gives the conclusions.

THE DIFFERENCE TABLE SCHEME

In this scheme, each RMV 1s supported by a difference table (called DT in the sequel)
which maintains the net changes to be posted against the RMV since the previous refresh. The
query defining the RMYV is stored at the central site. When an update arrives it is checked against
the RMV definition to determine if it is relevant for the RMV. If so, the effect of the update on the
RMYV is posted in the DT. When a refresh request arrives from the remote site, the current entries
in the DT are transmitted to the remote site and the DT is initialized to status empty. The remote
site then runs an updating algorithm to incorporate the changes in its RMV,
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Multiple updates to the same tuple in a base table result in at most two entries in the DT.
For example, consider an existing base table tuple which receives multiple updates. If both the
original (before update) tuple and the final updated tuple are relevant, the DT will contain the
effect of deleting the original version of the tuple and the effect of inserting the latest version. If
the original version was not relevant, but the latest is relevant, the DT will contain only the effect
of the latest version. If the original version was relevant, but the latest was not relevant, the DT
will contain only the effect of the original version. The fourth possibility, neither original nor final
versions are relevant, results in no entries in the DT.

Algorithms and Data Structures

The additional data structures required at the central site are the RMV defining query and
the difference table. Algorithms at the central site are needed (o: 1a) decide whether an update to
a base table is relevant for the RMV and (if so) 1b) make proper updates to the DT. Additional
algorithms are executed upon receipt of a refresh command from the remote site to: 2a) transmit
the contents of the difference table to the remote site and 2b) initialize the difference table to
empty status. A remote site algorithm is needed to 3) update the RMV table using the difference
table received from the central site.

Descriptions of these algorithms are facilitated by the introduction of the following stan-
dard relational algebra terminology: The RMV is defined on the scheme R = {R,UR,U.. .UR } by
the query Q: 7 ,0.,,(r), where r = r><dr,bq. . b, is a base table on the scheme R, for
k=1,2..... p; B<represents the natural join; X and Y are each sets of attributes included in R;
C(Y) is a Boolean expression specifying the selection condition. The RMV table r, is defined by
the scheme V={X} if X includes a key for the relation r, otherwise by the scheme {X, COUNT}.
The field COUNT inr, takes on positive integer values to indicate the number of occurrences of
each tuple. This allows us to eliminate duplicates of a tuple from the RMV which may come up
because of projection operation on r while still allowing us to retain the tuple unless all the
matching tuples from r have been deleted. The difference tabler, is defined by the scheme S={X,
COUNT} where a positive value of COUNT indicates the number of additions and a negative
value indicates the number of deletions. Thus, for an RMV which is defined by a select operation
onr (i.e., X = R), a tuple is inserted into the difference table with COUNT = +1 for an add,
COUNT = -1 for a delete. A value modifying update is treated as a pair of entries--a deletion and
an addition. A tuple in a table r, for k=1,2,. . .,p, v, s, is denoted by t,.

The impact of an update to the table r on the RMV depends on the type of update (add,
delete, or value modifying update). This is now formalized:

If X includes a key for the relation r, then

(i) an addition to r, denoted t*, will cause an addition t *= 1t (t*), if t* is relevant for r,;

(ii) a deletion t will cause a deletion t ¢ = () if t* is relevant for r ;

(iii) a value modifying update, represented by the pair of tuples t't*, will cause a deletion t ¢ =
7, (t%, if t* is relevant for r, and an addition t * = 7, (t*), if t* is relevant for r ;
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(iv) a sequence of value modifying updates for one entry in r will create the pairs t4(1),t%(1),
t%2), £%(2) . . . t9(m), t(m), where t%(2)=t*(1), t%(3) = t*(2) etc. The impact on the RMV table
depends only on the relevance/non-relevance of the original tuple value, t(1) and final up-
dated value, t*(m). If t(1) is relevant, a deletion t ¢ = _(t°(1)) results. If T*(m) is relevant,
an addition t * = 7_(t*(m)) results.

If X does not include a key for the relation r, then
(v) t?is expanded with COUNT =1, and t ¢ is expanded with COUNT =-1.

Central Site Algorithms for Relevance Check and Difference Table Maintenance

The relevance check is straightforward when the RMV scheme is limited to selections and
projections (i.e., when p = 1). In this case all the attributes of a tuple t being inserted into or being
deleted from the base table are known and hence determining if C(Y) is True or False can be done
in time linear in number of conditions.

For each t generated by the update:

1. Perform a relevance check of t, i.e., determine if t = ©t_0 e is non-null.

2. Ift is non-null update the difference table as follows:
a. If no tuple in r_ matches t (i.e., is identical ignoring the COUNT field), add the tuple

t=ttor with t. COUNT = +1 if tis an addition, t. COUNT = -1 if t is a deletion.

b. Ifa tuple inr matches t, add or subtract one to the COUNT field of the matching tuple
inr_depending on whether tis an add or a delete. (Note that there can be at most one such
matching tuple in r_.) If the resulting COUNT field value is zero, delete the tuple.

RMVs defined by joins will, in general, complicate relevance checking. This is because
deciding that an update is relevant will always require performing the joins. However, a non-
relevance determination may be possible without performing the joins. For example, a simple
non-relevance check is possible if the RMV defining query has a special form. First, define Y =
{Y1, Y2} where Y1 = YﬁRk where 1, is the base table receiving the update t, and Y, = Y-Y .
Then if the following conditions hold the update is not relevant:

C(Y) is a conjunction of terms,

one or more of the terms involves only attributes containedin Y ,
the defining query does not involve a self join of r,,

replacing attributes Y, by t, = .Y, makes at least one term false.

e

This preliminary test for re.cvance (more properly, test for non-relevance) is clearly very
inexpensive. It is essentially the same type of test performed for the relevance check for simple
projection/selection RMVs. No file access operations are required.

In a more general case, the preliminary relevance check amounts to determining if a substi-
tution for uninstantiated variables exist which will make the restricting condition true, a problem
well known to be NP-complete. Rosenkrantz and Hunt (1980) have shown that for the class of
expressions which are conjunctions of atomic formulas which do not include a "not equal to"
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operator, satisfiability can be decided in polynomial time in the number of uninstantiated vari-
ables. The algorithm proceeds via constructing a directed graph where the nodes are variables
y € Y, (i.e., the uninstantiated variables of Y) and a special node called null node corresponding
to constant zero. Each atomic formula of the type x< y +c, where x and y are either variables or
the constant zero and c is a constant, is replaced by a directed arc of weight ¢ from node x to node
y. The restricting condition is false as a result of substitution if the corresponding graph contains
acycle of negative length which can be verified in polynomial time using Floyd's algorithm. Note
that the substitution approach of the R/H algorithm allows us to determine if an update is nhot
relevant or if it is potentially relevant. If the relevance check determines potential relevance, the
joins must be performed. At this point, the final relevance check and the difference table update
are performed. These steps are identical to those described above for select/project queries. Clearly
the substitution approach is practical only when the restricting condition has a few clauses or
falls into the special class such that it can be transformed into a conjunction of atomic terms
which do not involve the "not equal to" operator.

Central and Remote Site Algorithms for RMV Update

Upon receipt of a message from the remote site for refresh, the central site must transmit the
contents of the difference table to the remote site and initialize the difference table to empty
status. Upon receipt of the difference table, the remote site algorithm updates the RMV table. The
central site algorithms are straightforward. An outline of the remote site RMV maintenance
algorithm follows.

For each tuple, t, in the difference table, the following steps occur:

1. If t matches a tuple t, in r, (i.e., is identical ignoring the COUNT field), then: Add
t .COUNT to t .COUNT. If t .COUNT = 0, delete this tuple from,.

2. Ift doesnotmatchatuplet inr,,insertt intor, . (Note, t. COUNT must be positive in this
case.)

PERFORMANCE CONSIDERATIONS

We assume that the objective is to minimize the overall system costs due to refresh activi-
ties. The two major components which contribute to overall cost are:

(i) Communication costs and
(i) Delay costs imposed on the operational activities.

The delay costs on operational activities are, in turn, determined by the amount of CPU time
spent and the number of I/O operations at the central site due to the refresh activity. Here we give
the cost estimates for RM Vs based on a single table. The analysis can be easily generalized to the
case of RMVs based on multiple tables. To obtain an estimate of the overall systems costs, we
assume that:
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(i) AnRMYV is defined by applying SELECT operation to a single base table.

(i) The updates to the base table are distributed randomly over the entire base table, the prob-
ability of a tuple receiving the next update is independent of how many updates it has
received in the past.

(iii) The size of the base table is not changing (or at the most changing slowly).

(iv) The probability that a base table tuple is qualified to be included in the RMV remains
constant irrespective of when the tuple was updated. This assumption, together with the
previous assumption of (essentially) constant base table size, results in an essentially con-
stant RMYV table size.

The following parameters are used in determining systems costs:

N: Number of tuples in the base table

A: Frequency of refresh requests

A:  Frequency of updates to the base table

q: Fraction of tuples in r which satisfy the snapshot condition
Communication Costs

In one refresh cycle, the number of updates posted against the base table is A/A. Making
exponential approximation to the binomial distribution, the expected number of tuples receiving
at least one update is given by:

Nf = N(1 - eV,

where f is the fraction of the base table modified. In case the updates to a single record are
identified by sending a delete (if the tuple was qualified before the updates) followed by an
insertion (if the tuple is qualified after the updates), the average number of tuples sent to the
remote site per updated tuple in the base table is given by 2q. The communication costs per
refresh is given by

2gN(1-e ANy, (1)

The number of messages in the limit of A/AN is 2q A/ANand asymptotically approaches 2qN for
large A/AN. By comparison, the number of messages transmitted in a regeneration scheme is
always gN, independent of the frequency of update or the frequency of refresh. The comparison
of the two schemes is given in Figure 1. The difference table scheme does better than the regen-
eration scheme for A/A <log 2 si’ ce in this case the expected size of the difference table at each
refresh is less than gN. In developing expression (1), we have assumed that both of the before and
after versions of a tuple being updated are relevant to the RMV and, therefore, each generates one
message. In case the key fields of the base table are included in the attributes of the RMV, we can
preprocess the difference table to combine the two messages into a single message and send it
with COUNT set to O to indicate that the tuple in the RMV is to be replaced by the new tuple. In
this case the number of messages is given by:
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(29-q2)N(1-eVAny, (1a)

In this case the difference table scheme will provide savings over the regeneration scheme over a
larger range. Also if keys are available to identify tuples, we can further reduce the communica-
tion costs by just sending the keys of the tuples which are to be deleted from the RMV.

Delay Costs

The refresh activity imposes delay costs on the operational activity becuase of the follow-
ing two processes:

(a) Relevance check. Each update must be checked for relevance against the RMV definition.
Assume that the cost per tuple for a relevance check is given by C, . Since for each update
to the base table, both the versions before the update and the versmn after the update have
to be checked for relevance, the cost of relevance checking per refresh is given by 2C_ A/A.

(b) Difference table maintenance. Update of the DT involves a search for a matching tuple
followed by addition, deletion, or modification. The search will involve both CPU time and
I/O processes. Assume that the cost of searching and updating the DT is constant, C,, (e.g.,
the DT is a hashed file). Thus, the cost of difference table maintenance is given by
2qC,,A/A. The overall delay costs is thus given by

2(C+ q C)AA 2)

To compare these costs to the corresponding costs for the full regeneration scheme, note
that for the latter scheme when a refresh request is issued, the base table is scanned and each tuple
in the base table is checked for relevance. Thus, the costs given by (2) have to be compared
against the cost of scans, which will involve the I/O costs, comparison costs, and the delay costs
imposed on other users. We denote such scanning costs by C,N. In Figure 2 we give a comparison
of the relevance check and DT maintenance costs with the scanning costs. Again we note that for
low values of A/A, our scheme is expected to work much better than a regeneration scheme or any
other schemes which will require scanning the base table to determine qualified tuples.

(Figures 1 and 2 are on next page.)
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Figure 1. Fraction of base table transmitted as function of number of base table
updates per refresh as a fraction of the base table size.
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Figure 2. Delay costs per refresh as a function of number of base table updates.
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DISCUSSION AND CONCLUSIONS

The difference table scheme compares very well with the regeneration scheme in terms of
the amount of data communication. Implementation of the difference table scheme, however,
requires large overhead in terms of CPU time and delay imposed on operational activities. In the
regeneration scheme this delay cost is paid in terms of base tables being unavailable during the
scans, whereas in our scheme the delay cost is paid at each update as the update has to be checked
for relevance against the query definition of the RMV. From Figures 1 and 2 we observe that the
difference table scheme should be implemented if

A/AN<log 2
and  A/AN<C/(2C + 2qC,).

The parameters C, C, C,; A, A and q will be determined by the central database adminis-
trator when the request to support the RMV is specified. If at that time it is determined that the
above two conditions are met, the differential refresh scheme should be implemented. If neither
condition is met, clearly regeneration (or some other scheme) should be used. If only one of the
conditions is met, the tradeoff between communication and delay costs must be considered. Also
in an environment where a quick response to a user's refresh request is critical, DT should be
considered because other schemes pay higher delay cost after receiving the refresh request. There
are clearly other potential approaches to RMV maintenance. In particular, there are alternative
ways to handle a transaction which applies to multiple tuples (e.g., increase the salary of all
employees by 10%). To the extent that such an update causes no additions or deletions from the
RMYV, it is possible to transmit the update request itself rather than the modified table entries.
Such an extension may be implemented by closing the current segment of the difference table,
attaching the range modification entry, and starting a new segment.
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