
Journal of International Information Management

Volume 3 | Issue 2 Article 6

1994

Smalltalk: Big things forecast
Brian D. Lynch
University of Wisconsin- La Crosse

Follow this and additional works at: http://scholarworks.lib.csusb.edu/jiim

Part of the Management Information Systems Commons

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International
Information Management by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Lynch, Brian D. (1994) "Smalltalk: Big things forecast," Journal of International Information Management: Vol. 3: Iss. 2, Article 6.
Available at: http://scholarworks.lib.csusb.edu/jiim/vol3/iss2/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/55331701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol3%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol3?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol3%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol3/iss2?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol3%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol3/iss2/6?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol3%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol3%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol3%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol3/iss2/6?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol3%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


Smalltalk: Big things forecast

Cover Page Footnote
The fundamental objective of this paper is to provide an overview of Smalltalk's recent emergence as a major
programming language. Smalltalk's growth in popularity is being driven by information systems professionals'
increasing interest in learning and applying object-oriented technology. The paper proceeds as follows: first,
the historical significance and commercialization of Smalltalk is discussed; next, an overview of the object-
oriented paradigm is presented; then, pure and hybrid object-oriented languages are contrasted; and finally, a
brief summary of Smalltalk's history and future is presented.

This article is available in Journal of International Information Management: http://scholarworks.lib.csusb.edu/jiim/vol3/iss2/6

http://scholarworks.lib.csusb.edu/jiim/vol3/iss2/6?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol3%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages


Smalltalk Journal of International Information Management 

Smalltalk: Big things forecast 
Brian D. Lynch 

University of Wisconsin-La Crosse 

ABSTRACT 

The fundamental objective of this paper is to provide an overview of Smalltalk's recent 
emergence as a major programming language. Smalltalk's growth in popularity is being driven 
by information systems professionals' increasing interest in learning and applying object-ori
ented technology. 

The paper proceeds as follows: first, the historical significance and commercialization of 
Smalltalk is discussed; next, an overview of the object-oriented paradigm is presented; then, 
pure and hybrid object-oriented languages are contrasted; and finally, a brief summary of 
Smalltalk's history and future is presented. 

THE HISTORICAL SIGNIFICANCE OF 
COMMERCIALIZATION OF SMALLTALK 

The first language developed purely to support object-oriented programming was Smalltalk 
(Martin, 1993). It was during the development of Smalltalk that the term object-oriented origi
nated (Goldberg & Robson, 1983). However, the conceptual foundations for object-oriented 
technology dates back to the early 1960s and the development of the Simula programming 
language (Martin, 1993). 

Guided by the central ideas of Simula, Alan Kay while a graduate student at the Univer
sity of Utah in the late 1960s did research related to object-oriented technology. Then in the 
early 1970s, Kay went to Xerox's Palo Alto Research Center (PARC) and developed Smalltalk 
(Martin, 1993). Adele Goldberg and Daniel H. H. Ingalls are also credited with having made 
key contributions to Smalltalk. Over time, Smalltalk evolved into Smalltalk-76 and then Smalltalk-
80 with versions developed by Xerox and others to run on a number of different computers 
(Meyer, 1988). In the mid 1980s, Goldberg championed the formation of ParcPlace Systems as 
an independent company to make Smalltalk a more commercially viable product (Garber, 1993). 
Today, the two leading Smalltalk vendors are Digitalk and ParcPlace Systems (Verity, 1993). 

From a historical perspective, Smalltalk's development played a key role in the emergence 
of graphical user-interfaces (GUIs)-composed of graphical objects such as overlapping win
dows, icons, pop-up and pop-down menus, and buttons to be clicked with a mouse. For ex
ample, Steven Jobs' viewing of Smalltalk during a 1979 visit to Xerox PARC provided him with 
the idea that eventually led to the Apple Macintosh and its ground-breaking GUI approach 
(Verity, 1993). 

63 
1

Lynch: Smalltalk: Big things forecast

Published by CSUSB ScholarWorks, 1994



Journal of International Information Management Volume 3, Number 2 

Today, a convergence of technological advances—such as the growth in the use of GUIs 
and more powerful desktops—has furthered the growth and penetration of object-oriented lan
guages. GUIs like Apple's Macintosh and Microsoft's Windows lend themselves to the utiliza
tion of the object-oriented approach for systems development (The, 1992). 

Currently, the dominant object-oriented development environment is C-n-. The C-h-t- mar
ket is roughly 10 times the size of the Smalltalk market (Bozman, 1993). But Smalltalk is pro
jected to have a 30% market share by 1997 (Radding, 1994). A survey of 291 corporate systems 
developers object-oriented plans by Market Perspectives provides additional evidence of 
Smalltalk's commercial emergence. Twenty-eight percent planned to be involved with Smalltalk 
in the next two years (Ballon, 1994). Further, IBM plans to implement the Smalltalk language 
across all its hardware and operating systems platforms by the end of 1995 (Stedman, 1994). 

AN OVERVIEW OF THE OBJECT-ORIENTED PARADIGM 

Complete agreement among information systems professionals as to what exactly consti
tutes object-oriented software is still lacking (McGregor & Sykes, 1992). Nonetheless, five 
concepts underlie most discussions of the object oriented paradigm: objects, classes, inherit
ance, encapsulation and polymorphism (e.g., Davis, 1994; Jacobson et al., 1992; Martin, 1993; 
McGregor & Sykes, 1992; Melymuka, 1994; Parker, 1993; Wilde & Huitt, 1992). 

An object represents a single instance of a person, a place, or a thing. Objects have data 
(attributes) and methods (processes) associated with them. Similar objects are grouped together 
to form classes or object types—e.g., beagle and collie could be considered objects in a class 
known as dog. Similar classes can be grouped together based on their common characteristics to 
form class hierarchies. The key is to organize class hierarchies following a generalized to spe
cialized continuum—e.g., mammal->dog->beagle. 

Inheritance permits a class lower in a class hierarchy to inherit the attributes and methods 
of classes above it in the class hierarchy. Thus, when defining a new class in a class hierarchy, 
only the 'new' characteristics need be defined—i.e., those attributes and methods not present in 
the classes above it in the class hierarchy. 

Encapsulation or data hiding requires that an object's data and implementation details are 
hidden from other objects. Thus, an object's data can only be accessed through its own methods. 
Encapsulation prevents an object's data from being corrupted or misused, because it blocks 
users from accessing the data except through the object's own methods. 

Literally, polymorphism means many or multiple forms. With respect to the object-ori
ented paradigm, polymorphism deals with messages or communications (e.g., a request for 
information or an action) between objects. Polymorphism permits the same message to be un
derstood by different classes. Further, the response (method) implementation does not have to 
be the same across the different classes—i.e., different classes may respond in different ways to 

64 
2

Journal of International Information Management, Vol. 3 [1994], Iss. 2, Art. 6

http://scholarworks.lib.csusb.edu/jiim/vol3/iss2/6



Smalltalk Journal of International Information Management 

the same message. Polymorphism implies that the receiver of a message (as opposed to the 
sender) determines how a message shall be interpreted. For example, different classes of three 
dimensional geometric figures would have different method implementations for responding to 
message requests for surface area or volume. 

PURE VERSUS HYBRID OBJECT-ORIENTED LANGUAGES 

Several traditional languages (based on the top-down functional design approach to sys
tems development) have had object-oriented capabilities added to them—e.g., C++ which rep
resents an extension of C. C++ and languages like it are referred to as hybrid languages. Hybrid 
languages can use their traditional compiler by first using a preprocessor: object-oriented lan-
guage->preprocessor->traditional language->compiler->machine code. An advantage of 
using a hybrid language is that programmers can learn an extension of something they 
already know as opposed to having to learn a complete new language. However, given 
that hybrid languages support traditional structured thinking as well as object-oriented 
thinking, many programmers end up using hybrid languages in traditional ways and do 
not make the shift to object-oriented thinking and programming (Martin, 1993). 

Ordinary programmers also find C++ difficult to leam, taking up to 18 months to 
become proficient. Whereas, programmers have far less difficulty in mastering Smalltalk. 
Programmers can become productive within weeks and proficient in six months or less 
(Garber, 1993). When used properly, pure object-oriented languages like Smalltalk have 
many advantages over traditional programming languages and approaches: Easier learn
ing, reduction of complexity (a McCabe metric of 3 as opposed to 10), easier debug
ging, reusable classes, reusability due to inheritance, complexities hidden by encapsu
lation, easier to make changes, and thus, greater creativity (Martin, 1993). 

Historically, pure object-oriented languages have given lower machine performance 
than traditional or hybrid languages. However, better design of optimizing compilers 
for pure object-oriented languages is significantly reducing this advantage (Martin, 1993). 

SUMMARY 

Given that Smalltalk was the early trailblazer in the object-oriented area, it is only fitting 
that Smalltalk should be reemerging as a key language now that the object-oriented paradigm is 
growing in popularity. Commercially, Smalltalk and its users are now poised to benefit from the 
conceptual seeds that Smalltalk first sowed over two decades ago. In conclusion, the growing 

65 
3

Lynch: Smalltalk: Big things forecast

Published by CSUSB ScholarWorks, 1994



Journal of International Information Management Volume 3, Number 2 

utilization of the object-oriented paradigm by information systems professionals coupled with 
the aggressive marketing of Smalltalk platforms by firms such as Digitalk, ParcPlace and old 
information technology stalwarts like IBM point to a bright future for Smalltalk and those versed 
in it. 

REFERENCES 

Ballou, M. (1994, March 28). Vendor promises puzzle users. Computerworld, 2S(13), 61-62. 

Bozman, J. S. (1993, November 29). Pact excites Smalltalk users. Computerworld, 27(48), 75-
76. 

Davis, W. S. (1994). Business systems analysis and design. Belmont, CA: Wadsworth Publish
ing. 

Garber, J. R. (1993, April 12). Working faster. Forbes, 110. 

Goldberg, A. & Robson, D. (1983). Smalltalk-80: The language and its implementation. Read
ing, MA: Addison-Wesley. 

Jacobson, I., Christerson, M., Jonsson, P. & Overgaard, G. (1993). Object-oriented software 
engineering: A use case driven approach. Workingham, England: ACM Press of Addison-
Wesley. 

Martin, J. (1993). Principles of object-oriented analysis and design. Englewood Cliffs, NJ: P T 
R Prentice Hall. 

McGregor, J. D. & Sykes, D.A. (1992). Object-oriented software development: Engineering 
software for reuse. New York, NY: Van Nostrand Reinhold. 

Melymuka, K. (1994, March 21). Getting to "aha!" Computerworld, 2S(12), 99-108. 

Meyer, B. (1988). Object-oriented software construction. London, Great Britain: Prentice Hall 
International. 

Parker, J. (1993, March 15). Windows developers get object lessons. Datamation, 39(6), 94-97. 

Radding, A. (1994, May 30). Smalltalk sizzle. Computerworld, 28(22), 103. 

Stedman, C. (1994, May 16). IBM bets big on Smalltalk. Computerworld, 28(20), 16. 

The, L. (1992, November 1). Windows drives OOP on the desktop. Datamation, 38(22), 50-53. 

Verity, J. W. (1993, April 19). Finally the buzz is about Smalltalk. Business Week, 111-112. 

Wilde, N. & Huitt, R. (1992, December). Maintenance support for object-oriented programs. 
IEEE Transactions on Software Engineering, 18(\2), 1038-1044. 

66 
4

Journal of International Information Management, Vol. 3 [1994], Iss. 2, Art. 6

http://scholarworks.lib.csusb.edu/jiim/vol3/iss2/6


	Journal of International Information Management
	1994

	Smalltalk: Big things forecast
	Brian D. Lynch
	Recommended Citation

	Smalltalk: Big things forecast
	Cover Page Footnote


	Smalltalk: Big things forecast

