
Journal of International Information Management

Volume 2 | Issue 2 Article 7

1993

Orion: A menu-driveri source code generator for
end users
Jay M. Lightfoot
University of Northern Colorado

Follow this and additional works at: http://scholarworks.lib.csusb.edu/jiim

Part of the Management Information Systems Commons

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International
Information Management by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Lightfoot, Jay M. (1993) "Orion: A menu-driveri source code generator for end users," Journal of International Information
Management: Vol. 2: Iss. 2, Article 7.
Available at: http://scholarworks.lib.csusb.edu/jiim/vol2/iss2/7

http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol2%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol2?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol2%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol2/iss2?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol2%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol2/iss2/7?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol2%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol2%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol2%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jiim/vol2/iss2/7?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol2%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

Orion Journal of Intemlational Information Management

Orion: A menu-driveri source code
generator for end users

I

Jay M. Lightfoot
University of Northern Colorado

ABSTRACT

Low software development productivity is a major concern for corporations. This paper
describes one approach to improve productivity by allowing end users to build their own
business data processing systems. The approach uses Orion, a menu-driven software develop­
ment tool. Orion generates source level COBOL programs that compile and run without
modification. The tool does not require end users to know COBOL or high-level query
languages. Orion was used for nearly two years to build real business systems. The approach
resulted in a significant improvement in software development productivity.

I
I

i

INTRODUCTION

Software development productivity is a key issue for the success of corporations in the
future. The challenge of global competition dictates that reliable computer systems be built
more rapidly than ever before (Alter, 1991). Unfortunately, traditional software development
methods are not up to the task. According to one information systems manager, "the cxurent
software development environment [is] like the pre-Ford era of automobiles" (Freedman, 1991,
p. 63). Every program is a custom product built by hand. The process is slow and labor inten­
sive, neither of which promote high productivity. j

A solution to this problem is to build domain-specific code generation tools that can
automate the process (Rich & Waters, 1988; Barstow, 1984, 1985). These tools could deliver
the expertise gained from prior development projects to thei end user. If sufficiently automated,
the tool would not require its users to be familiar with programming. This would allow those
who are closest to the problem domain to develop systems to meet their needs. According
to Barstow (1984), the best way to develop this t3qje of tool is to build working models and
test them on "red users who want real programs that can be run on real data" (p. 26). Orion
is such a system.

Orion is a menu-driven programming tool patterned after the code generation approach
to end user computing. Orion allows end users to "write" COBOL programs for business
oriented systems without having to leam anything about COBOL or programming. These pro­
grams nm without modification and are standardized for consistency and efficiency. This paper
describes the development of Orion and its basic functions. It then discusses the merit of the
approach to end user computing. 1

81
1

Lightfoot: Orion: A menu-driveri source code generator for end users

Published by CSUSB ScholarWorks, 2014

Journal of International Information Management Volume 2, Number 2

PHILOSOPHY UNDERLYING ORION
The Orion system is based on the observation that all the programs in a business system

can be classified into one of the following four categories.

Inquiry. Inquiry programs read information from a data file and paint that data on the
computer screen. The user is normally allowed random and sequential access to the data bas­
ed on some key field.

Maintenance. Maintenance programs read information from a data file and display it on
the computer screen in the same manner as an inquiry program. In addition, these programs
allow the user to modify, delete, and add new data to the file.

Report. Report programs read information from a data file and print it on paper in various
formats.

Speaal Processing. All business systems have a few programs that perform domain specific
calculations and file operations (e.g., a general ledger posting program and a payroll calcula­
tion module). Each program of this type is unique to its domain and must be specially writ­
ten for its function.

Most business system development consists of writing programs that fall into the first three
categories. Based upon the experience gained from developing Orion, 80% to 90% of a business
system can be classified as inquiry, maintenance, and report programs. All the programs written
within each category tend to be very similar. Consequently, a tremendous amount of produc­
tivity can be gained by writing a generic version of each of the "universal programs" and us­
ing it as a template for future systems development. The technique of modifying existing pro­
grams of similar function is familiar to all experienced software engineers.

Researchers have investigated this general idea under the guise of software reuse (Biu-
ton, Aragon, Bail^, Kbehler, & Mayes, 1987; Ledbetter & Cox, 1985) software redesign (Fischer
& Heinz-Dieter, 1982; Fischer, Lemke, & Rathke, 1987; Neighbors, 1984), and specification reuse
(Fmkelstein, 1988; Maiden, 1991; Maiden & Sutcliffe, 1992). The concept has received this much
attention because the idea of reusing programming components that are known to work is
very appealing. Many corporate programming shops are burdened with a backlog measured
in man-years; thus, any technique that improves programmer productivity is significant.

The Orion system takes the concept of reusable programs a step further. Orion automates
the process of modifying the universal program templates. This allows end users to build their
own domain specific applications without the aid of programmers. Users do not need to be
familiar with programming nor are they required to leam high-level query languages. The
entire process is menu-driven with copious help functions.

The second aspect of the Orion philosophy is that the system automates only those tasks
that computers currently do better than people. Orion can generate a 2,000 line domain-specific
maintenance program in less than a minute. It cannot automate the programming of tasks
that fall into the special processing category. These programs, hy their nature, require human
intelligence as supplied by experienced programmers. Despite significant progress in the field
of automatic programming (Barstow, 1979, 1985; Gomez & Wingate, 1989; Neighbors, 1984),
much work must be done before computers can replace human programmers. Likewise, Orion
does not attempt automatic program enhancement or maintenance.

82
2

Journal of International Information Management, Vol. 2 [2014], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol2/iss2/7

Orion Journal of International Information Management

Another phUosophic concept behind the Orion system is that it produces programs that
adhere to a narrow problem domain. The current state-of-the-art for successful code genera­
tion systems requires that they be limited to solving specie problems (Barstow, 1979, 1984,
1985; Rich & Waters, 1988). Because of this, Orion is designed specifically to generate the in­
quiry, maintenance, and report programs characteristic of business data processing.

The final aspect of the Orion design philosophy is that the system is easy to use. Orion
was intended to off-load as much programming as possible to non-technical end users. End
users will not use tools that are overly complex. Accordmgly, a significant amount of effort
went into designing a simple, non-threatening user interface.

RESULTS OF USING OmON
Orion was used in an actual business setting for alinost two years. During that time it

was utilized to computerize several major business systems (viz., purchasing, receiving,
budgeting, and personnel). Each of these systems required dozens of programs and well over
100,000 lines of COBOL soturce code.

The tool was a great success. The prime advantage of using Orion was the incredible pro­
ductivity it provided. Users were able to generate 3,000 to 5,000 lines of working COBOL code
in a single day. Since program generation was fast, users could prototjqje different ideas quickly
and discard bad ones without remorse. Because the code |was built using standard universal
templates, all programs were standardized and tuned for efficiency. According to one user,
the only bad aspect of Orion was that it generated systems faster than the problems could
be defined.

OVERIEW OF THE ORION SYSTEM
j

Orion is composed of a menu shell, utility routines, [and programs to generate each of
the three supported imiversal program categories (i.e., inquiry, maintenance, and report). The
generator programs have three "template files" that are used to structure the resulting code
and control the operation of the generator. The entire system is written in COBOL and does
not require any special screen drivers or layered products! The remainder of this section pro­
vides an overview of the major components of the system.

Orion Template Files

The Orion template files provide the structure and control information needed by the
generator programs. The template files are separate from the generator programs to allow the
templates to be updated, using a word processor, without modifying or recompiling the
generator. This provides the flexibility to quickly incorporate new standards and efficiency
measures into future systems without major maintenance.

Each template file is an ASCII text file made up of static COBOL statements and dynamic
control statements. The static statements represent those|parts of the universal program that
do not change from one business system to the next. Rjr example, the WORKING-STORAGE

83
3

Lightfoot: Orion: A menu-driveri source code generator for end users

Published by CSUSB ScholarWorks, 2014

Journal of International Information Management Volume 2, Number 2

SECTION for a purchasing inquiry program is almost identical to the same area of a budgeting
inquiry program. Likewise, the error handling routines do not change from one system to
another. The static statements represent the combined knowledge acquired from all prior system
development projects. In effect, this is a working example of anal)^is and specification reuse.

The dynamic control statements are used to generate those parts of the programs that
change between applications. For example, most of the INPUT-OUTPUT SECTIQN and the
I/O statements must be modified for different problem domains. These statements are delimited
by special processing codes that the generator program reads. Each processing code instructs
the generator to perform a specific type of symbol substitution, and in some cases, iteration.
The result of each control statement is a custom COBOL routine built using the file and field
information specific to the application.

Orion Utilities

The Orion system has many utility routines. Most perform simple tasks such as copying
programs from one area to another. Others are more important. The screen utility and the
report utility are the two routines that have the most significant roles.

The screen utility is a program that reads a screen image text file and writes a table that
defines that image to the inquiry and maintenance generator. A screen image is an ASCII file
built by the user to depict the computer screen painted by inquiry and maintenance programs.
Specid symbols in the image represent the data type, data length, and alias of each data field.
The screen utility reads the image and asks the end user to identify the data field associated
with each screen element. The output of the utility is a table that provides enough informa­
tion to build a program to produce the image. After program generation, the image file serves
as documentation for the resulting program.

The report utility performs essentially the same function as the screen utility—except that
it builds report tables. The input to the report utility is a report image file built by the user
to represent the layout of the desired report. Special sjunbols are used to represent data type
and data length. The report utility processes the image and asks the user to supply the data
names associated with each report field. The output of the utility is a table that the report
generator uses to build a corresponding report program. As before, the report image is useful
for system documentation.

Inquiry/Maintenance Generator

A single generator program is used to build inquiry and maintenance programs. This is
possible because an inquiry program is basically a maintenance program without the modifica­
tion routines (i.e., inquiry is a subset of maintenance). A separate template file controls the
generator for each of the two program types. As was stated before, the program templates
control the generator. The maintenance template merely uses those generator routines necessary
to build a maintenance program. Likewise, the inquiry template uses a subset of the generator
routines. \^ewed from this perspective, the template files are a type of high-level specification
language.

84
4

Journal of International Information Management, Vol. 2 [2014], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol2/iss2/7

Orion Journal of International Information Management

The inquiry/maintenance (I/M) program generator requires two predefined inputs—a screen
image table and a file layout. The screen image table is built using the screen utility. The file
layout defines the application master file. Orion file layouts are the same as standard COBOL
layouts with the exception of a special header section. The header states the prime and alter­
nate keys (and their aliases) in a format that Orion can use. The file layouts are prepared by
the programming staff and are kept in the computer's common data ^ctionary, so they are
available to all users.

Building an I/M program is a three-step process once the predefined inputs are available.
First, the user is asked to identify the file layout and the screen image table. Next, the user
is asked to supply a name for the new program. Last, the user is asked to supply a comment
to describe what the program does. Program generation usually takes about a minute. The
user can then instruct Orion to compile and run the pro^am.

Internally, the I/M generator copies the static template statements directly to the new pro­
gram. The dynamic statements are built via symbol substitution and iteration from informa­
tion contained in the screen image table, the file layout, and end user queries.

Report Program Generator !
The report generator requires an Orion file layout and a report image table as predefined

input. A report building session begins by the system asking the user for the names of the
file layout and the report image table. The user is then asked to supply the name of the resulting
program and a comment describing its function. Following that the user is asked if the data
should be sorted and, if so, on what data fields. Finally, the user is asked to list the data fields
to use for control breaks (i.e., subtotals). Reports are normally generated in less than 30 seconds
and can be compiled and run immediately. j

The report generator performs the same type of internal operations as the I/M generator.
That is, it copies the static template statements directly to the new program and performs symbol
substitution on the control statements. The processing routines in the report generator are
different from those in the I/M generator; thus, only the report template can control the report
generator. j

DISCUSSION OF THE ORION APPROACH
i

Orion was used to build real business systems in an electronics corporation for nearly
two years. The approach was successful because it allowed end users to write their own systems
without the aid of programmers. This speeds up software development and frees program­
mers to work on more technically demanding tasks. The code that Orion generates uses stan­
dard COBOL syntax and good program structure; hence, it merges seamlessly with the code
written by the programming staff. V^en modifications are required, end users have the choice
of submitting a change request to the programming staff or modifying the image table and
regenerating the program themselves. The latter option was normally used in the electronics
corporation because the maintenance backlog was always large. This allowed end users to
do some of their own system maintenance.

85
5

Lightfoot: Orion: A menu-driveri source code generator for end users

Published by CSUSB ScholarWorks, 2014

Journal of International InformaKon Management Volume 2, Number 2

The approach also has some negative aspects. Programmers are still needed to write code
for the special processing functions. This ties end user system development to the availability
of programming staff. Another problem occurs because of the remarkable productivity that
Orion provides. In practice, some end users start building programs before they have ade­
quately defined the function of the system. This leads to the problems commonly associated
with poor problem specification.

The net effect of using the Orion approach is very positive. The system improves software
development productivity dramatically. It also makes maintenance easier because all the pro­
grams it generates are similar. Once programmers understand the structure of the template
files, they understand the structure of all the programs that Orion creates.

SUMMARY

Low software development productivity is a major concern for corporations. This paper
describes one approach to improve productivity by allowing end users to build their own
systems. The approach uses Orion, a menu-driven software development tool based on the
code generation approach to end user computing. Orion writes soiuce level COBOL programs
to perform the common business data processing functions of inquiry, maintenance, and repor­
ting. Orion does not require end users to know COBOL or a high-level query language. The
tool was used in industry for nearly two years and resulted in significantly better software
development productivity.

REFERENCES
Alter, A. (1991, March). Increasing the yield. CIO, pp. 23-25.

Barstow, D. (1979). An experiment in knowledge-based automatic programming. Artificial
InteUigence, 12(1), 73-119.

Barstow, D. (1984). A perspective on automatic programming. AI Magazine, 5(1), 5-27.

Barstow, D. (1985). Domain-specific automatic programming. IEEE Transactions on Software
Engineering, SE-11, 1321-1336.

Bmrton, B. A., Aragon, R. W., Bailey, S. A., Koehler, K.D., & Mayes, L. A. (1987). The re­
usable software library. IEEE Software, 4(3), 25-33.

Finkelstein, A. (1988). Re-use of formatted requirements specifications. Software Engineering
Journal, 3(3), 186-197.

Fischer, G. & Heinz-Dieter, B. (1992). The nature of design processes and how computer
systems can support them. In Proceedings of the European Conference on Integrated,
Interactive Computer Systems (ECICS (pp. 73-88). Stresa, Italy, Amsterdam: North
HoUand.

Fischer, G., Lemke, A. C., & Rathke, C. (1987). From design to redesign. In Proceedings
of the 9th International Conference on Software Engineering (pp. 369-376). Monterey,
California.

86
6

Journal of International Information Management, Vol. 2 [2014], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol2/iss2/7

Orion Journal of International Information Management
i

Freeciman,.D. (1991, March). Leveraging tools. CIO, pp. 62-67.

Gomez, F. & Wingate, V. (1989). Automatic programming for end users: The TOAD system.
IEEE Transactions on Knowledge and Data Engineering, 1, 398-405.

!

Ledbetter, L. & Cox, B. (1985, June). Software-ICs. Byte, pp. 307-316.

Maiden, N. A. M. (1991). Analogy as a paradigm for specification reuse. Software Engineer­
ing Journal, 3(1), 3-15.

Maiden, N. A.M. & Sutcliffe, A. G. (1992). Exploiting reusable specification through analogy.
Commurucations of the ACM, 35(4), 55-64. j

Neighbors, J. M. (1984). The Draco approach to constructing software from reusable com­
ponents. IEEE Transactions on Software Engineering, 10, 564-574.

Rich, C. & Waters, R. C. (1988). Automatic programming: Myths and prospects. IEEE
Computer, 12(8), 40-51. I

87
7

Lightfoot: Orion: A menu-driveri source code generator for end users

Published by CSUSB ScholarWorks, 2014

8

Journal of International Information Management, Vol. 2 [2014], Iss. 2, Art. 7

http://scholarworks.lib.csusb.edu/jiim/vol2/iss2/7

	Journal of International Information Management
	1993

	Orion: A menu-driveri source code generator for end users
	Jay M. Lightfoot
	Recommended Citation

	Orion: A menu-driveri source code generator for end users

