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Chapter

Saliency Detection from Subitizing
Processing
Carola Figueroa-Flores

Abstract

Most of the saliency methods are evaluated for their ability to generate saliency
maps, and not for their functionality in a complete vision pipeline, for instance, image
classification or salient object subitizing. In this work, we introduce saliency subitizing
as the weak supervision. This task is inspired by the ability of people to quickly and
accurately identify the number of items within the subitizing range (e.g., 1 to 4
different types of things). This means that the subitizing information will tell us the
number of featured objects in a given image. To this end, we propose a saliency
subitizing process (SSP) as a first approximation to learn saliency detection, without
the need for any unsupervised methods or some random seeds. We conduct extensive
experiments on two benchmark datasets (Toronto and SID4VAM). The experimental
results show that our method outperforms other weakly supervised methods and even
performs comparable to some fully supervised methods as a first approximation.

Keywords: saliency prediction, subitizing, object recognition, deep learning and
convolutional neural network

1. Introduction

For humans, object recognition is a nearly instantaneous, precise, and extremely
adaptable process. Furthermore, it has the innate ability to learn new classes of objects
from a few examples [1, 2]. The human brain reduces the complexity of incoming data
by filtering out some of the information and processes only those things that grab our
attention. This, combined with our biological predisposition to respond to certain
shapes or colors, allows us to recognize at a glance the most important or outstanding
regions of an image. This mechanism can be observed by analyzing which parts of the
images humans pay more attention to; for example, where they fix their eyes when
they are shown an image [3, 4]. The most accurate way to record this behavior is by
tracking eye movements, while the subject in question is presented with a set of
images to evaluate. Computational estimation of saliency (or salient or salient regions)
aims to identify to what extent regions or objects stand out from their surroundings or
background to human observers. Saliency maps can be used in a wide range of
applications, including object detection, image and video understanding, and eye
tracking. On the other hand, it is known that the human visual system can effortlessly
identify the number of objects in the range 1 to 4 by having just one glance [5]. Since
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then, this phenomenon, coined later by [6] as subitizing, has been studied and tested
in various experimental settings [7].

Therefore, inspired by subitizing and the results obtained in [8, 9], the main
objective of this project is to incorporate the subitizing of salient objects (SOS), in
order to improve our previous results. This means that the subitizing information will
tell us the number of outgoing objects in a given image and thus subsequently provide
us with the location or appearance information of the outgoing objects explicitly, and
everything will be done within a weakly supervised configuration. It should be noted
that when the network is trained with the subitizing supervisions, the network will
learn to focus on the regions related to the outgoing objects. Therefore, it will design a
saliency subitizing process (SSP) architecture that is responsible for extracting atten-
tion regions as saliency map. A second module that is in charge of improving the
quality of the saliency masks can be defined as the saliency map update process
(SUP), which will basically be in charge of refining the activation regions in an end-
to-end way. It will then merge the source images and saliency maps to get the masked
images as new inputs for the next refinement. Finally, in this work we propose to
design and build a convolutional neural network (CNN), which will basically consist
of a process that will be in charge of SSP and a function that will help us in the task of
SUP. The first SSP will serve as a support to obtain and calculate the number of
outstanding objects and thus extract the saliency maps with their respective locations.
Instead, SUP will help us update the saliency masks produced by the first module. The
general model of our proposal is shown in Figure 1.

However, as this work is a first attempt at the final result, it will only consider the
development, experimentation, and explanation associated with step 1.

It briefly summarizes below its main contributions:

• It proposes an approach that generates saliency maps from subitizing of saliency
process (SSP),

Figure 1.
Overview of our proposed method with the saliency subitizing process (SSP) and the saliency updating process
(SUP).
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• Our saliency does not require any saliency maps for training (like previous works
[10, 11]) but instead is trained indirectly in an end-to-end fashion by training the
network for image classification with subitizing saliency process (SSP).

• The saliency maps obtained without using any saliency groundtruth data shows
competitive results.

The chapter is organized as follows. Section 2 is devoted to review the related work
in saliency detection. Section 3 presents our approach. Experimental results are
reported in Section 4. Finally, Section 5 contains our conclusions.

2. Related work

Saliency is generally known as local contrast [12], which generally originates from
contrasts between objects and their surroundings, such as differences in color, tex-
ture, shape. This mechanism measures intrinsically salient stimuli to the vision system
that primarily attracts the attention of humans, in the initial stage of visual exposure
to an input image [13]. To quickly extract the most relevant information from a scene,
the human visual system pays more attention to highlighted regions, as seen in
Figure 1. Research on computational saliency focuses on the design of algorithms that,
like human vision, predict which regions of a scene stand out [14, 15].

Initial efforts to model saliency involved multi-scale representations of color, orien-
tation, and intensity contrast. These were often biologically inspired, such as the well-
known works [12, 16]. From that model, a large number of models were based on the
manual elaboration of these features to obtain an accurate saliency map [17, 18], either
maximizing [19] or learning statistics from natural images [13, 20]. Relevancy research
was further driven by the availability of large datasets that enabled the use of machine
learning algorithms [21], primarily pre-trained on existing human fixation data.

The question of whether saliency is important for object recognition and tracking
has been raised in [22]. More recent methods [23] take advantage of end-to-end
convolutional architectures by fine graining on fixation prediction [4, 24, 25]. But the
main goal of these works was to estimate a saliency map, not how saliency might
contribute to object recognition.

Several works have shown that having the saliency map of an image can be useful
for object recognition, for example, [8, 10, 11]. Since the saliency map can help focus
attention on the relevant parts of the image to improve recognition, additionally, it
can help guide training by focusing backpropagation on relevant image regions. Pre-
vious work has shown that saliency modulated image classification (SMIC) is espe-
cially efficient for training on data sets with few labeled data [10]. The main drawback
of these methods is that they require a trained saliency method. Also, Refs. [8, 9] show
that this restriction can be removed and that it can hallucinate the saliency image from
the RGB image. By training the network for image classification on the ImageNet
dataset [26], it can obtain the saliency branch without using human reference images.

Recently, the progress in the detection of salient objects has grown substantially,
mainly benefiting from the development of deep neural networks (CNN). In [27], a
CNN based on the use of superpixels for saliency detection was proposed. Instead, Li
et al. [28] used multi-scale features extracted from a deep CNN. Zhao et al. [29]
proposed a multi-context deep learning framework to detect salient objects with two
different CNNs, which were useful for learning local and global information. Yuan
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et al. [30] proposed a saliency detection framework, which extracted the correlations
between object contours and RGB features of the image. On the other hand, Wang and
Shen [31] defined a pyramid-shaped structure to expand the receptive field in visual
attention. Hou and Zhang [32] introduced short connections for edge or contour
detection. Zhu [33], on the other hand, proposed a visual attention architecture called
DenseASPP, to extract information. Chen [34] proposed a spatial attenuation context
network, which recursively translated and aggregated the context features in different
layers. Tu [35] introduced an edge-guided block to embed boundary information in
saliency maps. Zhou [36] proposed a multi-type self-attention network to learn more
semantic details from degraded images. However, these methods rely heavily on
pixel-based monitoring. Overcoming the scarcity of pixel-based data, it focusses on
the saliency detection task.

2.1 Weakly supervised saliency detection

There are many works using weak supervisions for the saliency detection task. For
example, Li [37] used the image-level labels to train the classification network and
applied coarse activation maps as saliency maps. Wang [38] proposed a weakly
supervised two-stage method by designing an inference network to predict fore-
ground regions and global smooth pooling (GSP) to aggregate responses from those
predicted objects. On the other hand, Zeng [39] designed a unified network, which is
capable of weak monitoring of multiple sources, including image labels, captions, and
pseudo-labels. Furthermore, they designed a loss of attention transfer to transmit
signals between subnetworks with different supervisions.

Different from the previous methods, it proposes to use subitizing information as
weak supervision in the saliency detection task, where it will first study the problem
of subitizing of the outgoing object and the relationships between subitizing and
saliency detection.

3. Proposed method

This work proposes to design and implement a convolutional neural network,
which will consist mainly of saliency subitizing process (SSP). The SSP will help us to
count the highlighted objects and at the same time extract the saliency from the maps
that will contain the locations (positions) of the objects.

3.1 Subitizing of saliency process (SSP)

It should be noted that the information provided by the subitizing process will
indicate the number of outgoing objects in a given image [40]. Therefore, it will not
explicitly provide the location or information related to the appearance of the output
objects. However, when the network is being trained with subitizing (simulating
supervised learning), the network will learn to focus on the regions related to the most
salient (or salient) objects. Training images are divided into five categories based on
the number of salient objects: 0, 1, 2, 3, and 4 or +. For the same reason, it will design
the SSP to extract these regions as if it were a saliency mask. During this process, a
classification network will be used for the object subitizing task, in this context
ResNet-152 or ResNet50 [41] and AlexNet [42] as “backbone network,” which are
pre-trained from the ImageNet dataset [43].
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Also, it uses cross-entropy as the classification loss (see Eq. (1)). In order to obtain
denser saliency maps, the stride of the last two down-sampling layers is set as 1 in our
backbone network, which produces feature maps with 1/8 of the original resolution
before the classification layer. In order to enhance the representation power of the
proposed network, it also applies two attention modules: channel attention module
and spatial attention module, which tell the network “where” and “what” to focus,
respectively. Both of them are placed in a sequential way between the ResNet blocks
and AlexNet convolutional layers.

I ¼
X

I∈D

logpc Ið Þ yjIð Þ (1)

In addition, it applies the technique of the gradient-weighted class activation map-
ping (Grad-CAM) [44] to extract salient regions as the initial saliency maps, which
contains the gradient information flowing into the last convolutional layers during the
backward phase. The gradient information represents the importance of each neuron
during inference of the network. It assumes that the features produced from the last
convolutional layer has a channel size of K. For a given image, let f k be the activation of
unit K, where k∈ 1, K½ �. For each class c, the gradients of the score yc with respect to
activation map f k are averaged to obtain the neuron significant weight ack of class c:

ack ¼
1

N

X

m

i

X

h

j

∂yc

∂f ki,j
(2)

where i and j represent the coordinates in the features map N ¼ m� h. With the
neuron importance weight ack, we can compute the activation map Mc:

Mc ¼ ReLU
X

k

ackf
k

 !

(3)

And, finally it adds an activation map with ReLU (rectified linear unit) function
layer; this function filters negative gradient values, since only the positive ones con-
tribute to the class decision, while the negative values contribute to other categories.
The size of the saliency map is the same as the size of the last convolutional feature
maps (1/8 of the original resolution). This process is shown in Figure 2.

Figure 2.
The pipeline of the saliency subitizing process (SSP).
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4. Experiments

This section discusses the advantage of SSP that help us to learn counting of salient
objects and extract coarse saliency maps with the precise locations of the target
objects.

4.1 Experimental setup

Datasets. The saliency maps have been computed for images from a distinct eye-
tracking dataset, corresponding to 120 real scenes (Toronto) [19] and 230 synthetic
images with specific feature contrast (SID4VAM) (see Table 1) [45]. These images
datasets have been computed with our approach, a supervised artificial model that
specifically computes high-level features (DeepGazeII, ML-Net (multi-level net),
SAM (saliency attentive model), salGAN), and models biological inspiration (IKN
(Itti, Koch, and Niebur) [16], AIM [19] (saliency based on information maximiza-
tion), SDLF (saliency detection by using local features) [20], and GBVS (graph-based
visual saliency) [13]).

Networks architectures. It evaluates approach using two network architectures:
AlexNet [42] and ResNet-152 [41]. It is modified to meet our requirement. In both
cases, the weights were pretrained on ImageNet and then fine-tuned on each of the
datasets mentioned above. The networks were trained for 70 epochs with a learning
rate of 0.0001 and a weight decay of 0.005. The top classification layer was initialized
from scratch using Xavier method [46]. The SSP consists of four convolutional layers
for AlexNet and four residual blocks for ResNet-152.

Comparison. This work compares its proposal with other models (see Tables 2
and 3—rows 8) from fixation data. For instance, DeepGazeII summed the center
baseline, whereas in ML-Net and SAM, the learned priors are used for modulating the
result of the network.

4.2 Results

4.2.1 First experiment: Multiple networks

In order to evaluate how accurately the saliency map is able to match the location
of human fixations, it used a set of metrics previously defined by [17].

In Table 4 we show results of area under ROC (AUC), correlation coefficient
(CC), normalized scanpath saliency (NSS), Kullback-Leibler divergence (KL), and
similarity (SIM) for every network for all datasets.

The area under ROC (AUC) is considered as true positives, the saliency map values
coincide with a fixation and false positives, and the saliency map values that have no
fixation then compute the area under the curve. Similarly, the NSS computes the

Data Set Type # Images # PP pxva Resolution

Toronto Indoors and outdoors 120 20 32 681x511

SID4VAM Synthetic pop-out 230 34 40 1280x1024

pxva: pixels per 1 degree of visual angle, PP: participants.

Table 1.
Characteristics of eye-tracking datasets.
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average normalized saliency map that coincides with fixations. Other metrics such as
CC, KL, and SIM compute the score upon the region distribution statistics of all pixels
(KL calculating the divergence and CC/SIM the histogram intersection or similarity of
the distribution).

Method AUC KL ↓ SIM sAUC InfoGain

IKN [16] 0.782 1.249 0.366 0.650 �0.024

AIM [19] 0.716 1.612 0.314 0.663 �0.580

SDLF [20] 0.703 1.518 0.304 0.664 �0.398

GBVS [13] 0.803 1.168 0.397 0.632 0.077

DeepGazeII [24] 0.838 1.367 0.325 0.763 �0.200

SAM-ResNet [4] 0.725 2.420 0.516 0.666 �1.555

SalGAN [47] 0.818 1.272 0.435 0.715 0.392

Our Approach (SSP) 0.740 1.409 0.399 0.597 �0.399

GroundTruth (Humans) 0.954 0.000 1.000 0.902 2.425

Table 2.
Comparison of our saliency output with standard benchmark methods over real image Toronto dataset for
saliency prediction. (Top) Baseline low-level saliency models. (Bottom) State-of-the-art deep saliency models. Best
score for each metric is defined as bold and TOP-3 scores are italicized.

Method AUC KL ↓ SIM sAUC InfoGain

IKN [16] 0.678 1.748 0.380 0.608 �0.233

AIM [19] 0.566 14.472 0.224 0.557 �18.181

SDLF [20] 0.607 3.954 0.322 0.596 �3.244

GBVS [13] 0.718 1.363 0.413 0.628 0.331

DeepGazeII [24] 0.610 1.434 0.335 0.571 �0.964

SAM-ResNet [4] 0.673 2.610 0.388 0.600 �1.475

SalGAN [47] 0.662 2.506 0.373 0.593 �1.350

Our Approach (SSP) 0.741 1.658 0.445 0.633 �0.122

GroundTruth (Humans) 0.882 0.000 1.000 0.860 2.802

Table 3.
Comparison of our saliency output with standard benchmark methods over synthetic image SID4VAM dataset for
saliency prediction. (Top) Baseline low-level saliency models. (Bottom) State-of-the-art deep saliency models. Best
score for each metric is defined as bold and TOP-3 scores are italicized.

Dataset Model AUC-Judd AUC-Borji CC NSS KL↓ SIM

AlexNet 0.7655 0.7298 0.4603 1.3888 1.5155 0.3955

Toronto ResNet152 0.7911 0.7443 0.5440 1.6391 1.6891 0.4410

AlexNet 0.6910 0.7366 0.3889 1.4106 1.7152 0.4385

SID4VAM ResNet152 0.7015 0.7723 0.3910 1.1155 1.9890 0.3996

Table 4.
Benchmark of our method with different networks (top 1 networks are italicized).
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After computing the saliency maps for all datasets (see in Table 4) with AlexNet
and ResNet152, we observed that metric scores vary considerately depending on
dataset or network. AlexNet is shown to provide best results for pop-out patterns
(SID4VAM), whereas ResNet152 shows overall higher scores with real images of
Toronto dataset.

4.2.2 Second experiment: Qualitative results

These saliency prediction results show that our model has robust metric scores on
both real and synthetic images for saliency prediction. Again, we would like to stress
that our model is not trained on fixation prediction datasets (Figure 3). Its model with
subitizing supervision performs best on detecting pop-out effects (from visual atten-
tion theories [16]) while performing similarly for real image datasets (Figure 4).
Some deep saliency models use several mechanisms to leverage (or/and train) perfor-
mance for improving saliency metric scores, such as smoothing/thresholding (see
Figure 4, row 4). It is also considered that some of these models are already fine-
tuned for synthetic images (e.g., SAM-ResNet [4]). Our approach (which has not been
trained in these type of data sets) has shown to be robust on these two distinct
scenarios/domains.

4.3 Evaluation benchmark of saliency estimation

Here, we compare the saliency estimation that is obtained after only performing
Step 1 in Figure 1 with existing saliency models (see Table 5). This saliency estima-
tion is trained without access to any groundtruth saliency data.

Saliency prediction metrics assign a score depending on how well the predicted
saliency map is able to match with locations of human fixations (see definitions in
Borji et al. [17]). It selected the area under ROC (AUC), Kullback-Leibler divergence
(KL), similarity (SIM), shuffled AUC (sAUC) and information gain (IG) metrics
considering its consistency of predictions of human fixation maps. It compares scores

Figure 3.
Qualitative results for real images (Toronto dataset). Each image is represented in a different column and each
model saliency map in each row. The ground truth density map of human fixations is represented in the second
row.

8

Vision Sensors - Recent Advances



with classical saliency models, both with handcrafted low-level features (i.e., IKN
[16], AIM [19], SDLF [20], and GBVS [13]) and with state-of-the-art deep saliency
models (i.e., DeepGazeII [24], SAM-ResNet [4], and SalGAN [47]) mainly pretrained
on human fixations. The results are surprising; our method, which has not been
trained on any saliency data, obtains competitive results. For the case of Toronto
(Table 2), the best model is GBVS, followed by our model, which scores in the top 3
of KL and SAM-ResNet and scores slightly higher in InfoGain metric. For the case of
SID4VAM (Table 3), our approach gets the best scores for most metrics compared
with other deep saliency models, being mainly among the top 2 acquiring similar
scores to GBVS in most metrics (outperforming it in AUC measures).

These saliency prediction results show that our model has robust metric scores on
both real and synthetic images for saliency prediction. Again, we would like to stress
that our model is not trained on fixation prediction datasets and our model with
subitizing supervision (SUP) performs best on detecting pop-out effects (from visual
attention theories [16]), while performing similarly for real image datasets (Figure 4).
Some deep saliency models use several mechanisms to leverage (or/and train) perfor-
mance for improving saliency metric scores, such as smoothing/thresholding (see
Figure 4, rows 5). It also considers that some of these models are already fine-tuned
for synthetic images (e.g., SAM-ResNet [4]). Our approach (which has not been
trained in these types of datasets) has shown to be robust on these two distinct
scenarios/domains.

5. Conclusions

In this chapter, we proposed a method for the saliency estimation with weak
subitizing supervision. We designed a model with the saliency subitizing process
(SSP), which generates the initial saliency map using subitizing information. Without
any seeds from unsupervised methods, this method outperforms other weakly super-
vised methods and even performs comparable to some fully supervised methods.

Figure 4.
Qualitative results for synthetic images (SID4VAM dataset). Each image is represented in a different column and
each model saliency map in each row. The ground truth density map of human fixations is represented in the second
row.
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Finally, as this work is a first approximation, future work would be to verify how its
saliency map would improve if the SUP update module were added.
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# Name Year Features/Architecture Mechanism

1 IKN 1998 DoG (color+intensity) —

2 AIM 2005 ICA (infomax) max-like

3 GBVS 2006 Markov chains graph prob.

4 SDLF 2006 Steerable pyramid local+global prob.

5 ML-Net 2016 VGG-16 Backprop.(finetuning)

6 DeepGazeII 2016 VGG-19 Backprop.(finetuning)

7 SAM 2018 VGG-16/ResNet-50 + LSTM Backprop.(finetuning)

8 SalGAN 2017 VGG-16 Autoencoder Finetuning+GAN Loss

# Name Learning Training Data (#img) Bias/Priors

1 IKN — — —

2 AIM Unsupervised Corel (3600) —

3 GBVS Unsupervised Einhauser (108) graph norm.

4 SDLF Unsupervised Oliva (8100) scene priors

5 ML-Net SALICON (10 k), MIT (1003) learned priors —

6 DeepGazeII Supervised SALICON (10 k), MIT (1003) center bias

7 SAM Supervised SALICON (10 k) & others Gaussian priors

8 SalGAN Supervised SALICON (10 k), MIT (1003) —

DoG: difference of Gaussians, ICA: independent component analysis, C-S: center-surround, max-like: max-likelihood
probability, BCE: binary cross-entropy, GAN: generative adversarial network.

Table 5.
Description of saliency models.
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