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Chapter

Deep Learning-Based Segmentation
of Cellular Membranes in
Colorectal Immunohistochemical
Images
Maisun Mohamed Al-Zorgani, Hassan Ugail, Klaus Pors

and Abdullahi Magaji Dauda

Abstract

The segmentation of cellular membranes is essential for getting crucial informa-
tion in diagnosing several cancers, including lung, breast, colon, gastric cancer, etc.
Manual segmentation of cellular membranes is a tedious, time-consuming routine
and prone to error and inter-observer variation. So, it is one of the challenges that
pathologists face in immunohistochemical (IHC) tissue images. Although automated
segmentation of cellular membranes has recently gained considerable attention in
digital pathology applications, little research is based on machine learning
approaches. Therefore, this study proposes a deep framework for semantic
segmenting cellular membranes using an end-to-end trainable Convolutional Neural
Network (CNN) based on encoder and decoder architecture with Atreus Spatial
Pyramid Pooling (ASPP). The backbone of the encoder depends on the residual
architecture. The performance of the proposed framework was evalu ated and com-
pared to other benchmark methods. As a result, we show that the proposed frame-
work exhibits significant potential for cellular membranes segmentation in IHC
images.

Keywords: cellular membrane segmentation, immunohistochemistry (IHC) staining
images, GLUT-1 protein expression, deep learning approach

1. Introduction

Immunohistochemistry (IHC) is an efficient staining technique used in pathol-
ogy to localise a certain antigen in a tissue specimen. Hence, It is now employed in
state-of-the-art research to identify specific antigens within a tissue sample from
formalin-fixed paraffin-embedded (FFPE) tissue, e.g. in tissue microarrays (TMAs)
and 3D dimensional spheroids grown from cells. The cellular membranes segmenta-
tion of IHC images is usually required in histopathology to provide more relevant
information for diagnosing particular cancers because specific tumour antigens are
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expressed in certain cancers. Glucose transporter-1 (GLUT-1) is one of the well-
known biomarkers bound with the cellular membrane that induces and increases
hypoxic conditions in different solid tumours, including breast, prostate, and colo-
rectal cancer [1]. The production of Hypoxia-Inducible Factors (HIFs) proteins in
tumour hypoxia regions activates GLUT-1 genes that promote hypoxia [2]. Oxygen
gradient, supply and distribution in hypoxic areas lead to the difference in size and
extension in all solid tumour regions [3]. Tumour hypoxia is a unique hallmark of
cancer due to the difference in oxygen demand and supply, which produces cancer
stem cell niche, resistance to therapy (chemotherapy and radiotherapy), immune
damping, poor clinical prognosis and genomic instability [3, 4]. Currently, tumour
hypoxia is receiving significant attention as the centre for the hallmarks of cancer;
this is because of its many characteristics of chemotherapy and radiotherapy resis-
tance and a primary prognostic factor [5]. In clinical practice, assessing the devel-
opment and spread of hypoxia across solid tumours is an essential routine performed
by pathologists to describe the appropriate therapy. In the deep hypoxic environ-
ment, It is getting more difficult for chemotherapy and radiotherapy to reach
tumour sites. Thus, the need for using hypoxia-activated pro-drugs (HAPs) as
targeted therapy is needed.

In recent years, Computer-Aided Diagnosis (CAD) technologies have emerged as
one of the potential solutions for histopathological image analysis. The CAD tech-
nologies have been used to quantitatively and objectively evaluate IHC biomarkers
in a whole tissue slide or a specific region of interest delineated by a pathologist. So,
they have been employed to assist histopathologists in some laborious routines, such
as visual examination of IHC images for scoring and segmenting the cellular mem-
brane. Thus, the advantages of CAD technologies are avoiding inconsistency in the
diagnosis among pathologists, improving the diagnosis quality and reducing the
diagnostic time. On the other hand, machine learning-based CAD technologies rely
heavily on hand-crafted features that can be significantly prone to feature extractor
bias. In addition, relevant domain knowledge is necessary to select the valuable
features. Thus, hand-crafted techniques can only deal with some low-level informa-
tion of images. In contrast, deep learning-based CAD techniques are characterised
by; 1) Their ability to extract high-level abstract features from images automatically
in a standardised way [6, 7], 2) Their ability to analyse entire slides in detail rather
than focusing on a region of interest (ROI) [8], 3) Their ability to learn complex
mapping functions directly from the input data and 4) Their ability to avoid per-
sonal user bias, as it does not require manual extraction of specific visual features
[9]. Hence, they deliver unbiased outcomes for dataset images [9]. So, this work
proposes deep learning based-segmentation of the cellular membranes in colorectal
IHC images.

The remainder of this chapter is organised as follows. Section 2 presents the related
works. Section 3 provides the materials, proposed framework and evaluation indices
that are used in this work. Section 4 reports the experimental results from the pro-
posed model. Finally, in Section 5, we discuss analyses of the results and conclude the
chapter.

2. Related work

Automated segmentation of cellular membranes has received much attention
lately. Various machine learning-based approaches for segmenting the cell
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membranes in IHC images have been proposed [10–14]. Chang et al. [10] employed
the colour channel to extract the morphology, texture and intensity features that
then have been utilised to train the support vector machine (SVM) classifier.
Tuominen et al. [12] employed conventional machine learning techniques and
ImageJ in preparing their ImmunoMembrane web application. Kuo et al. [14]
employed a watershed algorithm for nucleus segmentation. But all these algorithms
are not up to the performance of deep learning approaches. Therefore, there is a
demanding need to employ deep learning approaches, which are advanced machine
learning approaches for solving the current issues related to membrane segmenta-
tion. Several researchers [15–17] investigated deep learning approaches for cell
membranes segmentation. Khameneh et al. [15] employed the SVM classifier to
specify ROI and then the deep U-net model for segmenting membrane regions. Saha
et al. [16] proposed a long short term memory (LSTM) architecture to detect cell
membrane and nucleus. Gaur et al. [17] proposed deep CNN based on the active
learning technique for membrane segmentation.

An atrous convolution layer is introduced in deepLab-v1 [18] network to widen the
receptive field of view over the input feature maps without a decrease in spatial
dimensions and an increase in the number of network parameters. And then, multiple
parallel atrous convolutional layers with different dilution rates are proposed in the
DeepLab v2 [19] network to segment objects at multiple scales. These layers are
known as Atrous Spatial Pyramid Pooling (ASPP) model. After that, the ASPP model
is improved in DeepLab v3 [20] to concatenate the image level features, a 1x1 convo-
lution and three 3x3 atrous convolutions with different dilution rates. Encoder-
Decoder structure and ASPP model are integrated into Deeplab v3+ [21] for applying
the depth-wise separable convolution in both ASPP and Decoder modules. The
encoder module reduces the spatial dimensions of the feature maps through the
repeated application for the convolution and pooling layers, whilst the decoder mod-
ule gradually recovers the spatial dimensions by using de-convolution and upsampling
layers. Then, skip connections are introduced between the encoder and decoder mod-
ules to have sharper segmentation results.

In this work, we propose a trainable CNN based-detector to incorporate encoder,
ASPP and decoder. We leveraged the identity mappings proposed by He et al. (2016a,
b) in their Residual architectures. So, the encoder part employs the pre-trained
ResNet-50 network [22] trained on the ImageNet [23] dataset as the feature extractor.
Hence, through the proposed detector, we can overcome the challenges of 1) training
the entire network from scratch, 2) the data scarcity problem and its consequences,
and 3) over-fitting and poor generation of features. The main contributions of our
proposed framework are as follows:

• The proposed detector introduces a new way of deep learning-based semantic
segmentation of cell membranes.

• The implementation of the ASPP structure improves the performance of the
proposed detector.

• The proposed framework incorporated an encoder-decoder network and dilated/
atrous convolutions units to tackle the presence of pooling layers issue that
reduces the feature maps dimensions ignore the positional information of objects.

• It is value addition in terms of the main quantification in the existing techniques
for segmenting the cellular membrane.
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3. Material and evaluation methods

3.1 Image dataset acquisition

We evaluated the proposed detector on real IHC dataset images. Dataset images
were acquired from the institute of cancer therapeutics at University of Bradford,
United Kingdom. The authors have obtained ethical approval for publication. The
images were obtained by immunohistochemistry staining on colorectal cancer adeno-
carcinoma of human clinical specimens. GLUT-1 and ALDH7A1 prepared the immu-
nohistochemistry staining on HT-29 Tissue Microarray (TMA). The TMA clinical
sample slide holds 150 cores and has the number G063 (Biomax.us). These cores
represent the whole side of the clinical sample and give a total of 50 cases of colorectal
cancer in each whole TMA slide. Whereas 100 cores are colorectal tissues, and 50
cores were either malignant, adjacent tissue to the cancer tissue or normal tissues. The
clinical samples were collected from colorectal cancer patients (male and female) in
July and August 2019. The IHC images were scanned using an Aperio Digital Pathol-
ogy Slide Scanners (Aperio AT2) and then captured with �20 magnification and
200 μm diameter. The whole cores and examples of GLUT-1 expression of IHC colon
adenocarcinoma images are shown in Figures 1 and 2, respectively.

3.2 Pre-processing of dataset images

In a pre-processing step, there are procedures will be applied to the dataset images
as follows;

Figure 1.
The G063 TMA slide with 150 cores.
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3.2.1 Derivation of dataset images

We derived dataset images by hand-picking the ROI from TMA cores that com-
prised the most representative cells membrane stained. At first, we ran Aperio AT2
program and then selected the ROI regions at a (5�magnification) low resolution. We
captured the images from the ROI regions with 20�magnification. A total of 400 IHC
images were extracted with size 512 � 512 pixel and then stored in jpeg compression
format.

3.2.2 Annotation of dataset images

Two trained pathologists manually annotated the cellular membranes of IHC
images according to the proportion of Glut-1 and ALDH7A1 staining. The ground
truth images are generated in MATLAB R2020a environment.

3.2.3 Stain normalisation of dataset images

In order to highlight the diaminobenzidine (DAB) stain regions of reactive
membranes in the IHC images, we utilised a colour normalisation method
described in [24].

3.2.4 Partition of dataset images

We split the dataset images randomly into 80% training set (320 images) and 20%
testing set (80 images). The testing set does not utilise for training our proposed
detector.

3.2.5 Augmentation of dataset images

Data augmentation is an essential step to generate additional artificial training
images by using some transformations for increasing the deep network performance
[25, 26]. In this work, we augmented the training images and their ground truth images
of our IHC dataset by rotating them with angles of 90, 180 and 270 degrees and then
flipping in the horizontal and vertical direction. We chose the rotate and flip trans-
formations to enlarge the training images without affecting the quality of input images
[27] and thus avoid the features poorly generalisation and over-fitting problems [28].

Figure 2.
Examples of GLUT-1 expression at different stages of IHC colon adenocarcinoma images; magnification of upper
panel is �5 and bottom panel is �20.
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3.3 The evaluation index

The segmentation performance of the proposed detector was assessed by using the
popular four evaluation criteria. These criteria use the following metrics; TP, FP, FN
and TN denote respectively the number of true positive, false positive, false negative
and true negative from all images in the dataset. True positive (TP) is counted as the
intersection of a segmented cell membrane with its ground truth; otherwise, it is
counted as false positive (FP). False negative (FN) is calculated as the missed parts of
the ground truth, and true negative (TN), parts of the image beyond the union
segmentation plus ground truth.

3.3.1 Network accuracy metric

This criterion is used to measure a network’s ability to segment. It indicates correctly
predicted observations against total observations and it is calculated as follows:

Accuracy ¼
TPþ TN

TPþ FPþ FN þ TN
(1)

3.3.2 Detection accuracy metric

This criterion is used F1-score metric to measure the detection accuracy of indi-
vidual cellular membranes. The F1-score is defined by both Precision and Recall
metrics. Precision metric indicates the correctly predicted positive observations
against total predicted positive observations, whilst Recall metric indicates correctly
predicted positive observations against total actual positive observations. F1-score is
calculated as follows:

F1Score ¼
2:Precision:Recall

Precisionþ Recall
¼

2TP

2TPþ FN þ FP
(2)

where

Precision ¼
TP

TPþ FP

and

Recall ¼
TP

TPþ FN

3.3.3 Shape similarity metric

This criterion is used Intersection over Union (IoU) also known as Jaccard Simi-
larity Coefficient to compare similarities between segmented cell membranes and
their ground truth. The Jaccard index is calculated as follows:

Jaccard IoUð Þ ¼
TP

TPþ FPþ FN
(3)
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3.3.4 Dice coefficient score

This criterion is used to measure the agreement among segmented cell membranes
and their ground truth at object level. The Dice score metric is used the ground set (G)
and segment set (S). G; a group of pixels belonging to a ground truth object, and S; a
group of pixels belonging to a segmented object. It is utilised to measure similarity
between G and S and produces scores between 0 and 1, where 1 indicates perfect
segmentation. It is calculated as follows:

Dice G, Sð Þ ¼
2jG∩Sj

2jG∩Sj þ jGj þ jSj
(4)

3.4 Proposed methodology

We propose a semantic level segmentation of celluar membranes using an end-
to-end trainable CNN based on integrates three modules; an encoder, an ASPP,
and a decoder. We adapt the ResNet-50 [22] pre-trained on ImageNet [23] as the
backbone for encoder module. The inputs are first passed through an extended
ResNet50 network, followed by an ASPP module for multi-scale image processing
and a decoder module to resize the images to the original input dimensions and
produce sharp segmentation results. Figure 3 shows our architecture and its three
main modules. In the following section, there is a brief description of each
module:

Figure 3.
Show the proposed network architecture, “CONV” represents the convolution blocks that followed by rectified
linear unit activation layer (ReLU) and batch normalisation layer (BN); “ASC” represents the atrous separable
convolution blocks; “#F” represents the output number of filters for block; “S” represents the stride of all
convolutions; P is padding.
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3.4.1 Encoder module

It acts as a feature extractor that uses several residual units to reduce the size of an
input image. It contains the following blocks;

• An initial block consists of a 7 � 7 convolutional layer with stride 2 and a 3 � 3
max-pooling layer with stride 2, so the output size after this block is reduced by
four times (Output stride = 4), and its output is 64 channels.

• Res2 Unit is composed of three blocks (residual error units), all of which are
small convolutions of 1 � 1 or 3 � 3, and stride is 1, so the output size after Res2
block is still lower than the original image by four times, the Res2 output is 256
channels.

• Res3 Unit is composed of four blocks, among which the 3 � 3 convolution kernel
stride of the first block is 2. Therefore, the output size after Res3 is reduced by
eight times relative to the original image (output-stride = 8), and the output of
Res3 is 512 channels.

• Res4 Unit is composed of six blocks. The first block is a regular residual
block, and the 3 � 3 convolution of the following five blocks use a hole
convolution with rate = 2. Therefore, the output size after Res4 is reduced by
eight times relative to the original image (output-stride = 8), but the
receptive field is reduced by four times close to the original image. The Res4
output is 1024 channels.

• Res5 Unit is composed of three blocks. The first block is the same as Res4, which
is a residual with rate = 2. The rate of the 3 � 3 convolution in the last two blocks
is 4. Therefore, the output size after Res5 is reduced by eight times relative to the
original image (output-stride = 8), but the receptive field is as large as the original
image. The Res5 output is 2048 channels.

3.4.2 ASPP module

It applies four parallel Atrous Separable Convolutions (ASC) with different dila-
tion rates; this allows analysing the extracted features at different scales. Whereas,
The ASC is a depthwise convolution with atrous convolutions followed by a pointwise
convolution. The ASPP output is 1024 channels.

3.4.3 Decoder module

The outputs of the ASPP module are concatenated and passed through a 1 � 1
convolution to reduce the number of channels to 256. This result is upsampled by a
factor of four and concatenated with low-level features of the same dimension.

Since the input structure should be aligned with the output structure, thus it is
appropriate to share the low-level information, such as edges or shapes, with the
higher ones. Then, we apply two 3 � 3 ASCs and, finally, a 1 � 1 convolution with
two-channel, so that a binary mask is obtained. This result is upsampled by a factor of
four to recover the original size of the image.
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4. Experiment and results

In this section, we describe our experiment, analyse the experimental results
obtained and then compare the obtained results with the other networks results
produced for the same purpose.

4.1 Setup the experiment

The experiment was implemented in MATLAB R2020a on a PC with Intel⊗R,
Dual-Core i7–7700 at 3.60 GHz CPU, 64 GB RAM, and NVIDIA GeForce GTX.

1070 GPU. The experiment was carried out using our IHC dataset images as
follows;

• The augmented training dataset images were divided randomly into training set
80% (x images) and test set 20% (y images).

• The network is constructed by initialising the weights from a pre-trained
ResNet50 model.

• The proposed network was trained by tuning hyperparameters as shown in
Table 1.

4.2 Results analysis

4.2.1 Traing Progress analysis

The evaluation of proposed detector accuracy and loss function over training time
on our IHC dataset images is shown in Figure 4. After each training epoch, the
accuracy and the loss function were calculated on the training and validation sets to

Hyperparameter Value

Optimizer SGDM

LearnRateSchedule ‘piecewise’

LearnRateDropPeriod 10

LearnRateDropFactor 0.3

Momentum 0.9

InitialLearnRate 0.001

L2Regularization 0.005

MaxEpochs 30

MiniBatchSize 8

Shuffle ‘every-epoch’

ValidationPatience 10

ValidationFrequency 1 per epoch

Table 1.
Hyperparameter.
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observe its ability to generalise and avoid overfitting. Throughout the training period,
there were raised in the performance in the training set, which corresponded to a
decrease in loss value. This behaviour is because the model is still learned to be able to
generalise well; however, when the model is able to generalise, the validation loss
fluctuates with close to the training loss. As shown in Figure 4, the proposed detector
converges in the training process through the first 40 epochs, and there are wide
fluctuations in performance in the training set, which correspond to fluctuations in
loss value. This is expected behaviour during the first epochs of training since the
model is still unstable; however, when the model stabilises, the training loss becomes
steady with a slight variation close to the validation loss.

4.2.2 Performance analysis

A 2� 2 confusion matrix was used to represent the prediction results of the cellular
membranes. The matrix was built on two rows and two columns: membranes and
non-membranes representing the classes. The 2 � 2 normalised confusion matrix is
shown in Figure 5. To statistically analyse the behaviour of our detector at the pixel
level, we calculated metrics from the test set using equations; 1, 2 and 3, as reported in
Table 2. Whereas Dice-Coefficient was calculated at object level using eq. 4.

4.2.3 Comparative analysis

To our knowledge, there are few works that employed a deep learning models to
segment cell membranes in IHC images. Hence, to validate our detector and to com-
pare its performance with the state of the art segmentation methods, we first
implemented some the public pre-trained models including FCN-8 [29], U-Net [30]
and SegNet [31]. The comparative analysis of our detector against the other networks
is reported in Table 3. When comparing the results produced by our detector with
others, we derive that the proposed detector achieved good performance metrics. We
get high performance than the popular networks; SegNet, U-Net and FCN-8. At pixel-
level, it achieved an F-score value of 0.910. At the object level, it achieved a Dice score
value of 0.829.

Figure 4.
The training, loss and validation values over the training time.
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Figure 5.
Normalised confusion matrix for proposed detector.

Metrics Proposed Detector

Accuracy 0.9227

Recall 0.9335

Precision 0.8874

F1-score 0.9099

IoU 0.8347

Dice Index 0.829

Table 2.
The statistical metrics of our detector.

Deep model F1 Score

Eycke et al. [32] 0.844

SegNet 0.858

U-Net 0.862

FCN-8 0.783

Proposed Detector 0.910

Table 3.
Comparative analysis of different models on the IHC dataset.
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5. Conclusions

Although the number of training images in our IHC dataset was small, it is
observed from the obtained results in these experiments that the proposed detector
has significantly achieved promising results in semantic segmentation. This is due to
its architecture, which employs the following; firstly, it uses atrous/dilated convolu-
tion layers as a way to widen the field of view over the input feature maps without
increasing the number of parameters. It also uses the ASPP module to deal with the
different scales problem of objects in the image. Furthermore, It uses an encoder-
decoder architecture. Hence it reduces the resulting output dimensions through pass-
ing multiple convolution layers with strides of 1 or more to avoid pooling layers in the
network. Finally, it passes the output through a decoder with learnable parameters to
regain the original dimensions. For this reason, we have chosen this architecture for
the proposed detector to segment the cellular membranes of colorectal IHC images
semantically.

In conclusion, we have presented an end-to-end trainable deep neural network to
tackle the problem of cellular membranes in colorectal IHC images. The proposed
architecture has achieved a good performance compared with other methods. Hence,
the proposed detector is able to objectively and automatically detect glands, thus
easing the burden of pathologists.
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