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Chapter

DEFEMMethod and Its Application
in Pebble Flows
Xu Liu, Nan Gui, Mengqi Wu,Takashi Hibiki, Xingtuan Yang,

Jiyuan Tu and Shengyao Jiang

Abstract

Based on the concept of embedded discrete elements (EDEs), the discrete element-
embedded finite element model (DEFEM) is extended in this work. The new method
can be used to calculate the motion and stress variation of particles. This work dis-
cusses its application in granular flow simulation for particle motions with small
deformations. The updated Lagrangian finite element method is used to obtain the
coupling solution of the internal stress and the overall motion of particles in the
DEFEM. The computation of deformation displacement is based on the concepts of
displacement decomposition (translational and rotational motions and deformation
displacement). The deformation displacement is the difference between particles and
template particles [rigid body, using the discrete element method (DEM) to calculate
translational and rotational displacements]. It is used to calculate the dynamic stress
distribution of particles and the internal force of the node. Therefore, it has a wide
scope of application (for example, it can be extended to non-spherical particles). The
software validation proves the accuracy of this method. The application of the DEFEM
in the accumulation process of particles is given. The motion characteristics and
deformation of particles are discussed, and the stress distribution and force chain
structure in particle accumulation are obtained.

Keywords: discrete element method, finite element method, dynamic stress
distribution, pebble bed, pebble flow, coupled method

1. Introduction

A particle system is a complex system composed of many discrete materials widely
existing in nature and applied to industrial production [1]. In particular, it is of great
engineering significance and academic value to discuss and analyze the relationship
between motion characteristics and the internal stress of particles.

The discrete element method (DEM) is widely used to study the macroscopic and
microscopic physical properties of granular materials. A particle is regarded as a
discrete element if its motion satisfies Newton’s second law in the DEM. The DEM can
quickly obtain the overall motion information of particles (position, velocity, etc.).
Kačianauskas et al. [2] proposed a parallel three-dimensional DEM simulation of
polydisperse materials described by normal size distribution. Fang et al. [3] developed
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a CUDA-GPU parallel algorithm based on super-quadric elements, which is
applicable to and reliable for the large-scale engineering applications of non-spherical
granular systems. Sun et al. [4] simulate the interactions of the bionic subsoilers
and an ordinary subsoiler (O-S) with the soil based on the DEM. However,
particles are regarded as discrete elements, and the whole particles are considered
as a whole because of ignoring the internal changes of particles. One cannot
obtain the internal information of particles (internal stress distribution,
deformation, etc.).

When calculating the physical information inside the particles, the finite element
method (FEM) is widely used [5–7]. It is a numerical solution method for elastic
mechanics problems that developed rapidly with the advancement of computer
power. It is applied in continuum mechanics to obtain the deformation, stress, natural
frequency, and vibration mode of the structure [8]. The analyzed objects have been
extended from elastic materials to plastic, viscoelastic, viscoplastic, and composite
materials and from the continuum to a discontinuity [9]. The FEM is widely used in
the internal stress simulation of objects. Fang et al. [3] studied the particle–wall
collision process using by the FEM, which could solve local stress and strain rate.
Kabir et al. [10] used the explicit FEM to simulate the flow phenomenon of particles.
The results of shear behavior, particle kinetic energy, and particle stresses within the
shear cell with time were given. Wagner et al. [11] proposed a new particle flow
simulation method based on the extended FEM (x-FEM), which simulates moving
particles without re-meshing. Krok et al. [12] conducted a systematic finite element
analysis of the thermo-mechanical behavior of pharmaceutical powders during the
molding process using the finite element solver ABAQUS.

The DEM and FEM have their advantages, so the combination of DEM and FEM is
widely recognized and studied [13–15]. Guo and Zhao [16] proposed a multiscale
framework to simulate the mechanical behavior of granular media based on DEM and
FEM. A DEM assembly with the memory of its loading history is embedded in the
Gauss integral points of the finite element mesh. The DEM assembly receives the
global deformation at its Gauss point from the FEM as input boundary conditions in
this new multiscale framework. Onate and Rojek [17] conducted a dynamic analysis of
geological mechanics problems based on the combination of DEM and FEM. The
combined models can employ spherical rigid and finite elements to discretize differ-
ent parts of the system. Zárate and Oñate [18] proposed a new numerical method to
predict the occurrence and evolution of fractures in continuous media, which com-
bines the FEM with DEM. Munjiza and John [19] further studied the sensitivity to the
mesh size of the combined single and smeared crack model in the context of the
combined finite–discrete element method. Azevedo and Lemos [20] applied the
hybrid method to analyze large structures. This method uses DEM to discrete the
fracture zone and a discretization based on the FEM for the surrounding areas.
Argilaga et al. [21] proposed a multiscale model based on an FEM � DEM approach.
The method uses discrete elements in a standard finite element framework, and it has
proven to be an effective way to treat real-scale engineering problems. However, it
should be emphasized that the coupling of the discrete element method and finite
element method still needs further research. For example, the solution of coupled
motion, internal stress, and other contents need to be further discussed and analyzed.

The discrete element-embedded finite element model (DEFEM) is proposed, and it
can be used to calculate particle motion and heat transfer ([22–24]). This method is
applied to the calculation of temperature gradient and deformation in particles. In this
paper, the DEFEM is extended based on the concept of the embedded discrete element
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(EDE). The computation of deformation displacement is based on the concepts of
displacement decomposition (translational and rotational motions and deformation
displacement). The DEFEM mainly adopts the Lagrange finite element method to
obtain the coupling solution about the stress and motion of particles. The finite
element software verifies the relevant algorithms. The motion characteristics and
deformation of particles are discussed, and the stress distribution and force chain
structure in particle accumulation are obtained.

2. The discrete element-embedded finite element model

In this paper, the DEFEM is extended and used to calculate the translational and
rotational motion and the stress of particles. In this method, the EDE is used to obtain
the contact force distribution of the particle. The coupling solution of the internal
stress and the overall motion of the particle are obtained by combining the advantages
of the DEM and FEM.

2.1 Introduction of the EDE

There is a set of EDEs around the particles, which cover the outermost boundary of
the particles (grid cells). In this way, the contact surfaces between the particles are
transformed into contact between the EDEs. Among them, the concept of the EDE can
refer to our team’s previous articles [22]. The EDE covers boundary elements of
particles, and the soft-sphere model in the DEM calculates the force distribution of
particles. The obtained force distribution of particles is used as the boundary condi-
tion in the FEM [23, 24]. In this paper, the two-dimensional spherical particles are
divided into triangular grid elements, and the other methods for three-dimensional
cases or other grid element types are similar.

2.2 Updated Lagrangian finite element method

The numerical method is used to simulate the impact and collision process, and the
discretization of the object is essential. In the FEM, the object is divided into grid
elements, and the motion equation satisfied is usually established by the node of each
element.

The Euler method and the Lagrange method are mainly used for solving the
impact and collision problem in the FEM. The Euler method fixes the computational
grid in the spatial coordinates and remains unchanged in the process of deformation
and motion. This method can avoid the distortion of the grid. Still, it is difficult to
track the deformation boundary of the object accurately, and it requires specific
processing methods to identify the shape and position of the deformation boundary.
The Lagrange method is used in the DEFEM. Its grid and object remain coincident in
the whole moving process; that is, the grid and object do not move relative to each
other. The Lagrangian method can track and process complex deformation bound-
aries. Since the small deformation problem is discussed in this paper, the Lagrange
method ignores the mesh distortion. In this paper, the updated Lagrangian scheme
is used in the DEFEM. The Eulerian coordinates are used for derivative and
integral simulation, and the stress and strain are expressed in the form of the
Eulerian metric.
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2.2.1 Weak form of control equation

The material derivative of the object’s momentum is equal to the sum of the
external forces acting on the object. The material derivative and momentum of the
object momentum are defined as follows:

f i tð Þ ¼

ð

V

ρbi x, tð ÞdV þ

ð

A

ti x, tð ÞdA, (1)

pi tð Þ ¼

ð

V

ρvi x, tð ÞdV, (2)

where f i is the material derivative of the object momentum, bi is the force (phys-
ical force) acting on the unit mass of the object, ti is the force (surface force) acting on
the surface of the object, pi is the momentum of the object, ρ is the density of the
object, and vi is the velocity of the object.

According to the momentum equation, the Reynold’s transport theorem, and the
Gaussian theorem, the following equation can be obtained:

ð

V

ρ
Dvi
Dt

� ρbi �
∂σji

∂xj

� �

dV ¼ 0: (3)

The momentum equation described by the updated Lagrangian is obtained as
follows:

ρ
Dvi
Dt

¼
∂σji

∂xj
þ ρbi or ρ _v ¼ ∇ � σþ ρb: (4)

The boundary conditions are given as follows:

n � σð ÞjAt
¼ t, vjAv

¼ v , (5)

where At is the specified surface force boundary in the current configuration and
Av is the specified velocity boundary in the current configuration.

The solution region satisfies Eq. (4). However, it is difficult to directly solve the
above equation in an actual situation, so it is necessary to find an approximate solution
with certain accuracy. The weighted residual method is commonly used to obtain
approximate solutions to differential equations. It allows the equations and boundary
conditions to have quantities at each node but requires that the weighted integrals of
these quantities on the region and the boundary are zero.

The following equation can be obtained by using the weighted residual method:

ð

V

δvi
∂σji

∂xj
þ�ρbi � ρ€ui

� �

dV ¼ 0 (6)

where δvi is the virtual velocity, which satisfies the following equation:

δvi Xð Þ∈0, 0 ¼ δvi
0 Xð Þjδvi Xð Þ∈C0 Xð Þ, δvijAv

¼ 0
n o

(7)
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By using partial integration and Eq. (7), the first term of Eq. (6) can be
transformed into the following form:

ð

V

δvi
∂σji

∂xj
dV ¼

ð

At

δvitidA�

ð

V

∂ δvið Þ

∂xj
σjidV (8)

Substituting Eq. (8) into Eq. (6), the weak form of the momentum equation is
obtained. It is also called the principle of virtual power, as follows:

ð

V

∂ δvið Þ

∂xj
σjidV �

ð

At

δvitidA�

ð

V
δviρbidV þ

ð

V
δviρ€uidV ¼ 0 (9)

Eq. (9) can also be translated into the following form:

δ _p ¼ δ _pint � δ _pext þ δ _pkin ¼ 0 (10)

where δ _pint, δ _pext, and δ _pkin are internal force virtual power, external force virtual
power, and inertia force virtual power. Their definitions are as follows:

δ _pint ¼

ð

V

∂ δvið Þ

∂xj
σjidV, δ _pext ¼

ð

At

δvitidAþ

ð

V
δviρbidV, δ _pkin ¼

ð

V
δviρ€uidV

(11)

2.2.2 Finite element discretization

The entire solution region is divided into N nodes and several unit regions. In the
initial configuration, the coordinate of the node is X1,X2,⋯XnN ; the node coordinate
is x1 tð Þ, x2 tð Þ,⋯xnN tð Þ in the current configuration. In the FEM, the spatial coordinates
of particle X at time t is xi X, tð Þ, which can be obtained by the following equation:

xi X, tð Þ ¼ NI Xð ÞxiI tð Þ (12)

where NI Xð Þ is the shape function of node I, and the repeated subscripts represent
the summation in the range of values. Similarly, the coordinate Xi of each node in the
initial configuration can also be approximately expressed by the coordinate XiI of the
unit node as follows:

Xi tð Þ ¼ NI Xð ÞXiI (13)

The displacement of the node can approximately express the displacement of any
point X in the element, and the specific form is given as follows:

ui X, tð Þ ¼ xi X, tð Þ � Xi ¼ NI Xð ÞuiI tð Þ (14)

Similarly, the approximate expressions of velocity and acceleration of any point X
in the element are given as follows:

_ui X, tð Þ ¼ NI Xð Þ _uiI tð Þ, €ui X, tð Þ ¼ NI Xð Þ€uiI tð Þ (15)

The approximate expression of virtual velocity is as follows:
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δvi Xð Þ ¼ NI Xð ÞδviI (16)

where δvi Xð Þ is virtual velocity and δviI is the virtual velocity of node I.
Substituting Eqs. (16) and (14) into Eq. (9) yields the following equation:

δviI

ð

V

∂NI

∂xj
σjidV �

ð

V
NIρbidV �

ð

At

NItidAþ

ð

V
NIρNJ€uiJdV

� �

¼ 0 (17)

From the boundary condition of virtual velocity, Eq. (7), and due to the arbitrar-
iness of virtual velocity δviI, the following equation can be obtained:

ð

V

∂NI

∂xj
σjidV �

ð

V
NIρbidV �

ð

At

NItidAþ

ð

V
NIρNJ€uiJdV ¼ 0 ∀I ∉ Av (18)

Eq. (18) can also be translated into the following form:

MIJ€uiJ þ f intiI ¼ f extiI ∀I ∉ Av (19)

where MIJ is the mass matrix of the system, f intiI is the internal force of the node,

and f extiI is the external force of the node. Their definitions are given as follows:

MIJ ¼

ð

V
NIρNJdV, f intiI ¼

ð

V

∂NI

∂xj
σjidV

f extiI ¼

ð

V
NIρbidV þ

ð

At

NItidA

8

>

>

<

>

>

:

(20)

2.3 Introduction of the deformation displacement

The DEFEM can obtain the translational and rotational motion and the deforma-
tions of particles. The material constitutive model describes the response of the mate-
rial of the object under an external force, which is mainly used to calculate the stress
change of the object. The stress distribution of particles can be obtained using the
deformation displacement and constitutive relation. During motion, particles have
collisions and deformations. The displacement and rotation, small deformation, and
the elastic material particle stress are discussed in this paper. The analysis of other
constitutive models is similar to that of elastic materials.

In the DEFEM, it is necessary to decompose the overall displacement of particles
when obtaining the deformation displacement, as shown in the following formula:

u ¼ umove þ urotate þ udeform (21)

where u is the absolute displacement of the node, umove is the translational motion
displacement, urotate is the rotational displacement, and udeform is the deformation

displacement. The displacement of any point can be decomposed into the above three
parts, in which the deformation displacement is used to calculate the strain and stress
of the element.

The translational motion displacement umove and rotational displacement urotate can
be solved by using the DEM. In the DEFEM, it is considered that there is a virtual
template particle, which is a rigid object, and it only moves and rotates without
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deformation. The translational motion and rotation of the template particles satisfy
Newton’s equations. The translational displacement and rotation angle of the template
particles at each time interval can be obtained by using the DEM and the central
difference method, as shown in the following equation:

χtþΔt ¼ χt�Δt þ _χtþΔt=2
Δt, θtþΔt ¼ θt�Δt þ _θ

tþΔt=2
Δt (22)

where χtþΔt and χt�Δt are the translational displacements of particle i at time tþ Δt

and t� Δt, θtþΔt and θt�Δt are the rotation angles of particle i at time tþ Δt and t� Δt,

_χtþΔt=2 is the translational velocity of particle i at time tþ Δt=2, and _θ
tþΔt=2

is the
angular velocity of particle i at time tþ Δt=2. The formulas of translational velocity
and angular velocity are as follows:

_χtþΔt=2 ¼ _χt�Δt=2 þ
Δt

mi

X

n

j¼1

Ft
i,

_θ
tþΔt=2

¼ _θ
t�Δt=2

þ
Δt

Ji

X

n

j¼1

Tt
i (23)

where mi is the mass of particle i, Ji is the rotational inertia of particle i, n is the
number of particles in contact with particle i, Ft

i is the contact force between particle i
and other contact particles at time t, Tt

i is the torque between particle i and other
contact particles at time t,

Pn
j¼1F

t
i and

Pn
j¼1T

t
i are the resultant force and resultant

torque of particle i at time t, _χtþΔt=2 and _χt�Δt=2 are the translational velocities of

particle i at time tþ Δt=2 and t� Δt=2, and _θ
tþΔt=2

and _θ
t�Δt=2

are the angular veloci-
ties of particle i at time tþ Δt=2 and t� Δt=2.

The translational velocity and angular velocity of the template particles can
be calculated by Eq. (23). The translational displacement and rotation
displacement of the template particles can be obtained by Eq. (22), which is also
considered to be the translational displacement umove and rotational displacement
urotate of the particle after the decomposition of the overall displacement. Then,
the deformation displacement udeform of the particle can be obtained by using

Eq. (21).

2.4 Numerical process of the discrete element-embedded finite element model

In this paper, the DEFEM is extended to calculate the translational, rotational, and
stress variations of particles. In this method, the EDE is used to allocate the resultant
contact force and torque to the boundary node of particles.

The concept of template particles is used in the whole simulation process, which
only moves and rotates without deformation. The deformation displacement of the
particles is obtained by calculating the difference between the coordinates of the
particles and the template particles simultaneously. The related process is mainly
based on displacement decomposition, as shown in Eq. (21). The deformation dis-
placement here mainly has two functions in the DEFEM: [8] The stress distribution of
particles is calculated according to the constitutive relation (2) The internal force of
the node is calculated as a part of the finite element equation for the next time, as
shown in Eq. (19). It participates in the whole simulation cycle, as shown in Figure 1.

The numerical process of the DEFEM is as follows: [8] Initialization and conditio-
nalization: The initial time and initial conditions are assigned, and the state of the
template particle is the same as that of the particle (node coordinates, node velocity,
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acceleration, etc.). [21] The resultant force and moment (contact force with other
particles or the wall) of particles are calculated according to the soft-sphere model in
the DEM. [20] The DEM is used to calculate the next time information of the template
particle (node coordinates, node velocity, acceleration, etc.). [3] The resultant force of
particles is transformed into the force of the EDE, and finally, the force of the particle
boundary node is obtained. [5] The information about the next time step of the
particle is calculated by the updated Lagrangian FEM. The coordinate difference
between the particle and the template particle is denoted as the deformation displace-
ment, and the stress distribution of the particle at this moment and the internal force
of the next time step are calculated. [16] Return to step [21] until all particles are
calculated. [6] Update the simulation time. [1] Output: If the program calculates the
simulation deadline or maximum steps, stop the program. Otherwise, return to step
[21] to calculate the particle information at the next moment (Figure 2).

2.5 Software validation of particle–wall collision

In this paper, the ABAQUS software is used to simulate the particle–wall collision
process, and it is compared with the numerical results by using the DEFEM. The
ABAQUS is a finite element software applied to engineering simulation, which can
simulate the stress and strain of large structures. This paper simulates the collision
process between a spherical particle and the wall using the ABAQUS. The particle with
a diameter of 0.05 m vertically hit the wall at a velocity of 0.5 m/s. The elastic modulus
of the particles is 0.02 GPa, and the Poisson’s ratio is 0.3. The elastic modulus of the
wall is 2 GPa, and the Poisson’s ratio is 0.3. After the contact force of particles is
counted, the simulation results of ABAQUS and DEFEM are compared, as shown in
Figure 3(a). It can be observed that the changing trend of the two results is the same,
and the numerical value is similar. The contact force of the two numerical methods is
re-zero near 0.003 seconds. In addition, the displacement of particles during collision
and rebound is tracked, as shown in Figure 3(b). The results obtained by the two
methods are in good agreement. It can be seen from these two results that the
simulation results of the DEFEM are consistent with those of the ABAQUS.

Figure 1.
Numerical process diagram of deformation displacement.
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Compared with the DEM, one of the advantages of the DEFEM is to calculate
the dynamic deformation displacement and stress distribution of particles. It
shows the comparison of deformation displacement calculated using the
ABAQUS and the DEFEM, as shown in Figure 4. It can be observed that the
distribution of the two methods is similar. The black vector in Figure 4(b)
represents the deformation displacement at the grid node of the particle. Due to
the collision between particles and the wall, the deformation near the wall is
greater than that away from the wall, which also conforms to the relevant
physical law.

Figure 3.
(a) Comparison of the results of DEFEM and ABAQUS software for contact force of the particle; (b) comparison
of DEFEM and ABAQUS software for the displacement of the particle.

Figure 2.
Schematic diagram of the simulation process of the DEFEM.
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As shown in Figure 5, the static stress distribution of the particle calculated using
the ABAQUS software has the same variation trend as the dynamic stress distribution
calculated by the DEFEM, but there are some differences in values. Because the FEM
is used to solve the problem in the ABAQUS software, it is considered that the contact
force between particles only exists at the contact point. As shown in Figure 5(b), face
contact is selected in the DEFEM. The multiple EDEs cover the boundary of particles.
Therefore, the contact between particles can be transformed into the contact between
EDEs, involving multiple nodes. The judgment and simulation process of the contact
force are different between the two methods, so the stress distribution calculated by
the two methods is different, but these differences are acceptable within the allowable
error range.

Through the comparison between the ABAQUS software and the DEFEM, it can be
observed that the DEFEM can well track the contact force, stress distribution, and
movement in the process of particle collision, which also proves the accuracy of the
DEFEM.

Figure 4.
(a) Static deformation displacement distribution calculated by ABAQUS software; (b) dynamic deformation
displacement distribution calculated by the DEFEM (black vector represents the deformation displacement of
nodes).

Figure 5.
(a) Static stress distribution calculated by the ABAQUS software; (b) dynamic stress distribution calculated by the
DEFEM (black vector represents the contact force of the node).
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3. Simulation of particle accumulation by DEFEM

In this paper, the particle accumulation process is simulated by using the DEFEM.
The motion characteristics of particles in the whole process of accumulation in pebble
beds are discussed and analyzed. The stress distribution and force chain structure
during particle accumulation are also obtained.

3.1 Geometric parameter settings

The particle accumulation process in a two-dimensional pebble bed is simulated.
As shown in Figure 6, the bottom inclination angle of the pebble bed is changed in a
certain range. The bottom diameter of the pebble bed is 0.2 m, and the bottom
inclination angle is 15 degrees or 45 degrees, as shown in Figure 6. In the initial state,
the particles with a regular arrangement move downward vertically at a certain
velocity. The particles collide with the wall of the pebble bed or other particles and
finally form a stable accumulation structure at the bottom of the pebble bed. Two
regions in the pebble bed are defined: the central and the near-wall regions. The
particle motion characteristics in two different regions are discussed. In the case of
this paper, the near-wall region is within 0.2 m from the left and right walls, and the
central region is within 0.2 m from the central axis of the pebble bed (the selection of
values with careful consideration of particle diameter and pebble bed size). The
velocity, stress, and deformation during particle accumulation are discussed and ana-
lyzed under the different pebble bed geometry structures. The specific parameters in
the numerical simulation are shown in Table 1.

3.2 Motion characteristics in the near-wall and central regions

The particles initially fall vertically at a certain velocity, forming a stable accumulation
structure in the pebble bed. The particle motion characteristics are different in the

Figure 6.
Diagram of pebble bed structure.
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accumulation process of the different shapes of pebble beds. Due to the effect of gravity,
particles may collide with the wall or other particles. If the particles collide, the velocity of
the particles changes due to the effect of contact force. The average velocity and average
velocity difference of particles in different regions are defined as follows:

vave ¼
1

m

X

m

i¼0

vi (24)

vdiff ¼
1

m

X

m

i¼0

vi �
1

n

X

n

j¼0

vj

 !

(25)

where vave is the average velocity of particles in the region, vi is the velocity of
particle i in the region, n is the number of particles in the region. vdiff is the average

velocity difference of particles in the region, vj is the velocity of particle j contacting
particle i, and m is the total number of other particles in contact with particle i.

The difference in the average particle velocity between the central and near-wall
regions at the bottom inclination of 45 degrees is shown in Figure 7. It can be seen that

Parameters Values Units

Elastic modulus 2 � 107 Pa

Poisson’s ratio 0.3

Density 1000 kg/m3

Diameter 0.05 m

Initial velocity 0.5 m/s

Number of particles 72

Time step 5 � 10�6 s

Friction coefficient 0.18

Table 1.
Parameters of the particle accumulation process.

Figure 7.
(a) Average velocity of particles in the central region and near-wall region with the bottom inclination of 45
degrees; (b) average velocity difference of particles in the central region and near-wall region with the bottom
inclination of 45 degrees.
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the horizontal velocity of particles is zero in the initial state. Moreover, the vertical
velocity of particles increases steadily at the beginning of the accumulation process
due to the effect of gravity. Then, it can be observed that some particles collide with
the side wall, so the average velocity and average velocity difference of particles near
the wall region fluctuate first.

In terms of vertical velocity, the peak velocity of particles in the central region is
much larger than that in the near-wall region. This is because compared with the
particles in the near-wall region, the particles in the central region can keep free
falling motion for a longer time before colliding with the wall or other particles. The
change in the vertical velocity of particles in the central region after the collision is
more obvious; that is, the vertical velocity difference of central velocity particles is
significantly greater than that of the near-wall region. In terms of the horizontal
velocity, it is more about the impact of particles. Compared with the near-wall region,
the probability of particle collision in the central region is greater. Therefore, the
fluctuation of the average horizontal velocity and velocity difference in the central
region is significantly greater than that in the near-wall region. Finally, the particles
reach the state of stable accumulation; that is, the particles remain stationary (the
average velocity and velocity difference of the particles are zero).

3.3 Deformation of particles in the near-wall and central regions

A major advantage of the DEFEM compared with the DEM is that it can calculate
the deformation of particles. This part discusses the whole deformation of particles in
the accumulation process of the pebble bed. The accumulation process of two-
dimensional particles is simulated in this paper, so the deformation of particles is
represented by the change of area. The average coefficient of area ratio in the defined
region is given as follows:

Save ¼
1

m

X

m

i¼0

Si
S0

(26)

where Save is the average coefficient of area ratio, m is the number of particles in
the region, Si is the area of particles at the current time, and S0 is the area of the initial
moment of the particle (no deformation state). If the particle does not deform, the
average coefficient of area ratio is equal to 1 (Save ¼ 1); if the particle is compressed,
the average coefficient of area ratio is less than 1 (Save < 1).

The average coefficient of area ratio in the central and near-wall regions with the
bottom inclinations of 45 degrees and 15 degrees is shown in Figure 8. It can be seen
that some particles are compressed (the average coefficient of area ratio is less than 1;
Save < 1) during the accumulation process. When the bottom inclination is 45 degrees,
the absolute value of the peak about the average coefficient of area ratio is less than
that of 15 degrees, and the changing trend is the same as that of the average stress of
the particles. When the particle has severe deformation, the average coefficient of the
area ratio and absolute internal value of stress also increases.

3.4 Stress of particles in the near-wall and central regions

Particles may have strain and stress in the accumulation process because they may
collide with other particles or walls. In this paper, the von Mises stress is used, and its
formula is as follows:
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σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
σ1 � σ2ð Þ2 þ σ2 � σ3ð Þ2 þ σ3 � σ1ð Þ2

h i

r

(27)

Where σ is the von Mises stress and σ1, σ2, and σ3 are the first, second, and third
principal stresses, respectively.

The average stress of particles in the region is defined as:

σave ¼
1

m

X

m

i¼0

σi (28)

where σave is the average stress in the region, σi is the stress of particle i in the
region, and m is the number of particles in the region.

The average stress of particles in the central and near-wall regions with the bottom
inclinations of 45 degrees and 15 degrees is shown in Figure 9.

[8] Different effects of bottom inclination.

Figure 8.
(a) The average coefficient of area ratio in the central region and near-wall region with the bottom inclination of
45 degrees; (b) the average coefficient of the area ratio in the central region and near-wall region with the bottom
inclination of 15 degrees.

Figure 9.
(a) Average stress of particles with the bottom inclination of 45 degrees; (b) average stress of particles with the
bottom inclination of 15 degrees.

14

Finite Element Method and Its Extensions



It can be seen from Figure 9 that the peak stress is smaller when the bottom
inclination is 45 degrees. The initial positions of particles at different bottom inclina-
tion angles are the same. When the bottom inclination is 45 degrees, the particles have
contact with the wall on both sides earlier in the process of falling, which can also be
verified as shown in Figure 9(b). When the bottom inclination is 15 degrees, the stress
remains zero at the beginning, and then the stress begins to become non-zero around
0.185 seconds gradually. If the bottom inclination angle is smaller, the acceleration
time of particles is longer due to the action of gravity, and the velocity of collision with
the wall is larger. Hence, the contact force and stress are larger. In the stable state
formed during the accumulation process, it can be seen that there is a great difference
in the average stress of particles between the near-wall region and central region when
the bottom inclination is 45 degrees. When the bottom inclination is 15 degrees, there
is little difference between the two. When the bottom inclination is larger, the pres-
sure on the side wall of the pebble bed is larger, and the average stress difference
between the particles in the near-wall region and central region is larger.

[21] Differences between the near-wall region and central region.
Due to the structure of the pebble bed, particles come into contact with the side

wall first, so the stress value of particles in the near-wall region changes first com-
pared with that in the central region. However, the collision of particles in the central
region is more intense, so the peak stress in the central region is greater than that in
the near-wall region. Moreover, the velocity of particles changes after being affected
by the wall, and the velocity-changed particles are more likely to collide with the
particles in the central region. Therefore, there is a certain phase difference between
the average stress change of particles in the near-wall region and the central region;
that is, the average stress change of particles in the central region always lags behind
that in the near-wall region. The average stress of particles in the central region is
greater than that in the near-wall region.

3.5 Dynamic stress distribution and force chain of particles

In the final stable stage, the change of particle position is not drastic. Particles have
a stable accumulation structure and force chain due to gravity. Under different bot-
tom inclinations, the internal stress distribution and force chain are given, as shown in
Figure 10. It can be seen that the accumulated particles form a stable force chain
structure, and the stress distribution and force chain distribution have a certain

Figure 10.
(a) Dynamic stress distribution and force chain of particles with the bottom inclination of 45 degrees; (b) dynamic
stress distribution and force chain of particles with the bottom inclination of 15 degrees.
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corresponding relationship. The stress of particles far from the force chain is smaller,
and the stress near the force chain is larger in the stable force chain structure. The red
vector in Figure 10 represents the contact force of the node.

4. Conclusions

Based on the concept of the EDE, the DEFEM is extended for simulating transla-
tional and rotational motions and small deformations of particles.

When the particle contacts other particles, it is assumed that there is a group of
EDEs on the outermost boundary element of the particle. The updated Lagrangian
finite element method is used to obtain the coupling solution of internal stress and the
overall motion of particles in the DEFEM. It is necessary to decompose the overall
displacement of particles into three parts: the translational and rotation displacement
and the deformation displacement. The concept of template particles is proposed in
the whole simulation process, which only moves and rotates without deformation.
The translational displacement and rotation displacement of the template particles can
be obtained by using the DEM. The difference between the updated coordinates of the
particles and the template particles is considered the deformation displacement in the
DEFEM. And it is used to calculate the stress distribution of particles and the internal
force of the node. Therefore, this method has a wide range of applications, such as the
simulation of non-spherical particles.

The accuracy of this method is proved by the software validation. The application
of the DEFEM in the particle accumulation process is given. The motion characteris-
tics and deformation of particles are discussed, and the stress distribution and force
chain structure in particle accumulation is obtained in this paper. This paper extends
the application of the DEFEM in translational and rotational motions of particles with
deformations. This new method can also be used to solve multi-physical field coupling
problems such as thermal and mechanical coupling in the future.
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