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Chapter

Perspective Chapter: Classification
of Grasping Gestures for Robotic
Hand Prostheses Using Deep
Neural Networks
Ruthber Rodríguez Serrezuela, Enrique Marañón Reyes,

Roberto Sagaró Zamora and Alexander Alexeis Suarez Leon

Abstract

This research compares classification accuracy obtained with the classical classifi-
cation techniques and the presented convolutional neural network for the recognition
of hand gestures used in robotic prostheses for transradial amputees using surface
electromyography (sEMG) signals. The first two classifiers are the most used in the
literature: support vector machines (SVM) and artificial neural networks (ANN). A
new convolutional neural network (CNN) architecture based on the AtzoriNet net-
work is proposed to assess performance according to amputation-related variables.
The results show that convolutional neural networks with a very simple architecture
can produce accurate results comparable to the average classical classification
methods and The performance it is compared with other CNN proposed by other
authors. The performance of the CNN is evaluated with different metrics, providing
good results compared to those proposed by other authors in the literature.

Keywords: electromyography, convolutional neural networks, support vector
machine, artificial neural network, underactuated hand prosthesis

1. Introduction

Upper limb amputations are injuries that substantially limit a person’s quality of
life by drastically reducing the number of independent activities they perform in daily
life (ADL). Current myoelectric prostheses are electronically controlled by the user’s
voluntary muscle contractions. A general scheme of how these and other devices that
use biosignals work is presented in Figure 1. In this sense, the prostheses for amputees
with higher performance follow this common pattern of development. There is a wide
variety of very sophisticated myoelectric prostheses commercially available that use
sEMG signals [2–6].

A relevant limitation in the development of pattern recognition methods for myo-
electric control is that their tests are mainly performed offline. It is now established
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that high offline precision, does not necessarily translate into accurate functional
control of a physical prosthesis. In this sense, several recent studies have shown the
discrepancy between “on and offline” in performance metrics [7–11]. However, very
few studies have published validation results of pattern recognition in terms, and even
fewer in clinical settings, relating the variability of the signal and the performance of
the classifiers with those parameters related to amputation (disability index, length
remaining limb, amputation time, phantom limb sensation, etc.) [12–15].

By other hand, the number of features extracted also depends on the number of
EMG sensors and the feature extraction strategy for each sensor. Many investigations
in have implemented alternatively, dimensionality reduction has been shown to be an
effective feature projection (PC) method [16]. Among the most used methods are:
principal component analysis (PCA) [17–19], linear-nonlinear PCA composite analy-
sis, self-organizing feature maps [16] and supervised discretization together with PCA
[20, 21].

Convolutional neural networks have been applied for myoelectric control with
interest in inter-sessions/subjects and inter-session performance, in addition to many
other applications in biomedical signal processing [22–24]. Some authors have
commented on the advantages of these deep neural networks and their ability to
assimilate the recognition of hand gestures corresponding to groups of sEMG signals.
Although the results obtained come from a small number of investigations, their
employment possibilities are promising [25–27].

However, most of the research has been carried out on healthy subjects. In recent
decades, different authors [28–31] have shown that the variation of the signal over
time in amputated patients is even greater than in healthy subjects. The EMG signal is
weaker due to the amputation of certain muscle groups and as the amputation time
elapses, the muscles become more atrophied and weak. There are also few databases
of amputees, a situation that constitutes a significant obstacle for these researches. and
for the gestures recognition at the international level [29, 30]. Additionally, amputees’
performance was found to be proportional to residual limb size, indicating that an
anthropomorphic model might be beneficial [28–31]. The previous findings motivated

Figure 1.
Most common configuration of human–machine interaction [1].
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the study on the variance of results between amputee patients and fit populations
under disturbances of dynamic factors such as the length of the remaining limb, age,
level of atrophy, among others. That is why the results obtained in amputated patients
are far from those presented.

2. Materials and methods

2.1 Databases subjects

The review of these databases allows knowing the characteristics of the population
involved and the signal capture protocols. The literature review showed that there are
few databases with sEMG data collection in a significant number of patients, with
subjects without known prior deficiencies and whose data are heterogeneous, so the
most used is the NINAPRO database [32–34], which contains the electromyography
recording using the system of 8 sEMG sensors Thalmic Labs - MYO. The data in
this repository is free to use and is intended for use in developing hand gesture
movement classifiers [22]. The NINAPRO database in its DB3 section establishes the
parameters with which the sEMG data of 11 subjects with transradial amputation were
recorded [35].

In the DB3 dataset, as explained above, the transradial amputee wears two Myo
cuffs side by side. The superior MYO cuff is placed closest to the elbow with the first
electrode at the radio-humeral joint, following the configuration of the NINAPRO
electrode. The lower MYO cuff is placed just below the first one, closer to the
amputation region (Table 1).

In order to build our own database, the subjects invited to participate in this stage
are amputated subjects, without neurological deficiencies. Invited subjects followed
the population parameters used in the NINAPRO Database [36, 37]. Ten male and

Patient Hand Laterality Age Remained

Forearm

(%)

Years since

amputation

Amputation

cause

DASH

Score

Time

wearing

prostheses

(years)

1 Right right handed 32 50 13 Traumatic injury 1.67 13

2 Left right handed 35 70 6 Traumatic injury 15.18 6

3 Right right handed 50 30 5 Traumatic injury 22.50 8

4 Right right handed 34 40 1 Traumatic injury 86.67 0

5 Left left handed 67 90 1 Traumatic injury 11.67 0

6 Left right handed 32 40 13 Traumatic injury 37.50 0

7 Right right handed 35 0 7 Traumatic injury 31.67 0

8 Right right handed 33 50 5 Traumatic injury 33.33 0

9 Right right handed 44 90 14 Traumatic injury 3.33 0

10 Right right handed 59 50 2 Traumatic injury 11.67 0

11 Right right handed 45 90 5 Cancer 12.50 0

Table 1.
Clinical characteristics of subjects with amputation. NinaPro DB3.
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female amputees ranging in age from 24 to 65 years participated in the experiments.
The procedures were performed in accordance with the Declaration of Helsinki and
were approved by the ethics committee of the Universidad del Tolima (approval
number: N – 20,160,021). All subjects participated voluntarily, providing their written
informed consent before the experimental procedures. Any amputee who has experi-
ence in the use of hand prostheses will be included in the study, registering in advance
their experience in the use of passive or myoelectric prostheses.

Aspects and demographic data to be recorded: For each subject, age, sex, educa-
tion level, related to the amputation: dominant hand, amputated side, year of amputa-
tion, cause, type of prosthesis if used or has been used, and level of amputation.

Inclusion criteria: Adults in an age range of 20–65 years, no history of neurological
and/or psychiatric diseases, voluntary participation in the study and acceptance of the
medical staff. Only the transradial level of amputation will be considered, amputations
above the elbow or beyond the wrist will not be admitted to the study. Any non-
compliance with these parameters becomes criteria for exclusion from the study.
Table 2 shows the characteristics of the amputee patients who participated in the trials.

2.2 Sensor EMG MYO armband

Data was recorded using the commercial MYO armband (MYO). MYO is a porta-
ble EMG sensor developed by Thalmic Lab and has eight dry electrode channels with a
sampling rate of 200 Hz. It is a low cost, consumer grade device with a nine inertial
measurement unit (IMU) [22], that connects wirelessly with the computer via
Bluetooth. It is a non-invasive device, easier to use compared to conventional elec-
trodes [38, 39]. Despite the low sampling frequency, its performance has been shown
to be similar to that of full-band EMG recordings using conventional electrodes
[22, 40], and the technology has been used in many studies [29, 35, 38] (Figure 2).

sEMG recording: Prior to carrying out the tests, the patients will be instructed on
the experimental procedure and as a first step. The sensor operation will be calibrated
for both limbs. To make the records in each gesture, the subjects will be seated
comfortably in front of the computer with both limbs with their elbows flexed at 90

Patient Age

(years)

Gender Remained Forearm

Length (Below elbow)

Amputated

hand

Years since

amputation

DASH

Score

P01 36 M 10 cm Dominant hand 1 45

P02 51 M Wrist Disarticulation Dominant hand 30 19

P03 62 M Wrist Disarticulation Dominant hand 36 39.16

P04 26 M 10 cm Dominant hand 12 20

P05 60 M Wrist Disarticulation Not dominant Hand 41 26.6

P06 55 M Wrist Disarticulation Dominant hand 5 16.66

P07 28 M 10 cm Dominant hand 9 24.16

P08 48 F Wrist Disarticulation Dominant hand 22 20.83

P09 65 M Wrist Disarticulation Dominant hand 29 42.5

P10 35 M 10 cm Dominant hand 2 47.5

Table 2.
Clinical characteristics of subjects with amputation.
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degrees and will be instructed to perform the gestures that are reflected on the
monitor, in the case of amputated patients with the contralateral limb and with the
amputated limb (Figures 4 and 5).

The graphic interface will provide the patient with the times for performing the
tests and the state of rest (Figure 5). Amputee recordings were performed in repeated
sessions for 1 week.

Figure 2.
Signals acquisition through the application developed in Matlab 2020b. Author. Six movements were identified in
MYO sensor to achieve grip improvement: power grip (AP), palm inward (PI), palm outward (PO), open hand
(MO), pincer grip (AT) and rest (RE) (Figure 3).

Figure 3.
Gestures to identify with the MYO device.

Figure 4.
(a) Amputee patient in front of the computer with a graphic signal to perform the movements. (b) MYO device
arrangement.
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The procedure carried out to capture the myoelectric signals is as follows: for each
grip or gesture of the hand, 200 samples are taken during an interval of 30 seconds.
Transitions are made between each of the six proposed gestures for spaces of 1 minute
as recommended in [41]. sEMG signals were captured during several sessions and on
different days of the week. The data of these myoelectric signals are stored in dataset
for later offline processing.

2.3 Signal pre-processing

The segmentation and overlay methods used in this work improved the training
efficiency by increasing the number of training samples based on recent work such as
[17, 20, 42].

2.4 Feature extraction

Each captured sEMG signal is subdivided into 200 ms windows. The signal cap-
tured by the MYO was obtained at a frequency of 200hz [11, 21]. In order to be
analyzed, it is divided every 200 ms, leaving a total of 40 data in each sub-window.
Each sub-window has a 50% overlap with the immediately previous window, which
allows increasing the number of samples and thus expanding the database obtained.
The extraction described here is applied to each of the MYO channels. These data
obtained for each of the channels [19], are concatenated horizontally, thus allowing a
database to be obtained with 10 data features for each channel and a column with the
information on the grasping gestures that are performed.

Different kinds of features extracted are used by different researchers, such as
mean absolute value (MAV), root mean square (RMS), autoregression coefficients
(AC), variance (VAR), standard deviation (SD), crossover by zero (CC), the length of
the waveform (LO), Amplitude of Wilson (AW), slope of mean absolute value
(PVAM). Features in the time domain were treated in [42]. These extracted features
are used in SVM and in ANN and the raw signals for the CNN classifier.

2.5 Classifiers

Artificial neural networks Artificial neural networks (ANN) are a nonlinear classi-
fier that simulates brain information processing through a series of weighted nodes,
called neurons. Neurons are organized in layers and interconnect with each other to

Figure 5.
User interface that indicates the imaginary movement to be performed and includes completion and rest time.
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create a network. ANNs use a nonlinear function of a linear combination of the inputs,
where the coefficients of the linear combination are adaptive parameters. The basic
model of an ANN will be described as a series of functional transformations. First, M
linear combinations of the input variables are constructed x1, x2, … , xD in a way:

aj ¼
XD

i¼1

w
1ð Þ
ji þw

1ð Þ
j0 (1)

where j ¼ 1,… ,M, y the superscript (1) indicates that the corresponding parameters

correspond to the first layer of the network. Parameters w 1ð Þ
ji are weights and the param-

eters w 1ð Þ
j0 are polarization constants. The magnitude aj is named activation, and each

activation is transformed using a nonlinear and differentiable activation function [22].
In ANN classifier (Table 3), the chosen hyper parameters are highlighted and the

variations that were proposed for each of them. Among the hyper parameters that
were varied are the weight optimizer, the activation method, the maximum number
of iterations and the type of learning.

2.6 Support vector machine

Support vector machines are a very powerful method used to solve classification
problems, it is highly efficient onmultidimensional data sets. It consists of defining a
hyperplane or decision limit that separates the samples into two groups,where those above
the decision limit are classified as positive and those below it, are classified as negative. The
fundamental objective is to maximize the marginM or distance between the neighboring
samples called support vectors and the separating hyperplane (Figure 6) [43].

For the SVM classifier, the following kernels were used: linear, polynomial,
Gaussian and sigmoid as shown in Table 4. In the linear and Gaussian kernels, the
Gamma parameter was used with a value of 0.5. In the polynomial and sigmoid nuclei,
the Degree parameter was used: between: 0.5 and 3, respectively. For all nuclei, the
regularization constant C was used with values of 0.1, 1, 10 and 100 as recommended
in the literature [44, 45].

2.7 Convolutional neural networks

An CNN is a deep learning algorithm able to collecting an input matrix of size M X
N and attributing weights and biases in parallel under the constraints of a predictive

Parameters Options

Optimizer SDG, ADAM

Regularization 0.0001–0.00001

Activation Function Tanh, ReLu, Logístico

maximum numbers of iterations 10, 30, 50, 100

Hidden layers 3, 4, 5 y 6

Learning rate Constant, Adaptive

Table 3.
Hyper-parameters. ANN.
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problem [46], resulting in specific features. A convolutional layer performs a dot
product between two arrays, where one array is the set of learnable parameters and
the other is known as the kernel, producing an activation map, as shown below:

G m, n½ � ¼ f , hð Þ m, n½ � ¼
XM

j

XN

k

h j, k½ �, f m� j, n� k½ �, (2)

Where:
The input matrix is f and the kernel is denoted as h.
m is number of rows in the input matrix
n is the number of columns in the input matrix
j is the index for the offset in the rows of the input
k is the index for the offset in the columns of the input (Figure 7)
Table 5 shows the parameters used in the CNN that were selected for the experi-

ment carried out. Highlighted in the text are the hyper parameters: the batch size and
the number of epochs that yielded the best results. The batch sizes were worked with
values of 64, 128 and 256 respectively. The CNN architecture has four hidden
convolutional layers and one output layer (Figure 8).

The first two hidden layers consist of 32 filters of size 8x1 and 3 � 3. The third
consists of 64 filters of size 5 � 5. The fourth layer contains 64 filters of size 5 � 1,
while the last one is a convolutional layer with six possible outputs with 1 � 1 filters,

Figure 6.
Optimal separation hyperplane, for linearly separable classes.

Parameters Options

Kernel Lineal, Gaussian, Polynomial, Sigmoid

Gamma 0.5

Degree 0.5–3

C 0.1, 1, 10 y 100

Table 4.
SVM classifier parameters.
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Figure 7.
Architecture of the convolutional neural network used.

Figure 8.
Proposed model of CNN.

9

Perspective Chapter: Classification of Grasping Gestures for Robotic Hand Prostheses…
DOI: http://dx.doi.org/10.5772/intechopen.107344



corresponding to the six gestures to classify. Followed by Nonlinear Rectification
Units (ReLU) and Dropout layer with a probability of 0.15 to put to zero the output of
a hidden unit. Also, a subsampling layer performs maximum pooling in a 3 � 3
window after removal of the second and third layers. Finally, the last convolutional
layer is followed by a Softmax activation function (Table 5).

2.8 Metrics

The confusion matrix is used to calculate many common classification metrics. The
diagonal represents correct predictions and the other positions of the matrix indicate
incorrect predictions. If the sample is positive and is classified as positive, i.e. correctly
classified positive sample, and it is considered as a true positive (TP); if it is classified
as negative, it is considered a false negative (FN). If the sample is negative and is
classified as negative, it is considered true negative (TN); If the sample is negative and
is classified as negative, it is considered true negative (TN); if it is classified as
positive, it is counted as a false positive (FP), false alarm. The most common metrics
are sensitivity (Se), specificity (Sp), which indicate the ability of the CNN to identify
hand gestures. Accuracy (ACC) is used to assess overall detection performance and
Precision (Pr) is used to measure model quality in posture classification tasks. Like-
wise, the F1 score (F1) is a measure of the precision of a test, it is the average precision
and sensitivity of the classification. It has a maximum score of 1 (perfect accuracy and
sensitivity) and a minimum of 0. Overall, it is a measure of the accuracy and robust-
ness of your model. This metric gives information about the quantity that the model is
able to identify. In this work, six commonly used evaluation metrics were used:
accuracy, precision, sensitivity, specificity and F1 to evaluate the performance of
CNN:

Accuracy ACCð Þ ¼
TPþ TN

TPþ TN þ FPþ FN
(3)

Precision Prð Þ ¼
TP

TPþ FP
(4)

Sensitivity Seð Þ ¼
TP

TPþ FN
(5)

Specificity Spð Þ ¼
TN

TN þ FP
(6)

F1 score F1ð Þ ¼
2 ∗TP

TPþ FPþ FN
(7)

Parameters Selected choice

Lost function Categorical cross entropy

Optimizer ADAM (lr = 0.001)

Batch size 64, 128, 256

Epoch 100, 400, 500, 1000

Validation rate 30%

Table 5.
Hyper parameters tuning.
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3. Results

The analysis in amputated patients is preceded by the great variability of the sEMG
signal. Figure 9 shows this behavior of the sEMG signals for the power grab gesture in
amputated subjects. It is observed that the data are very scattered and do not have the
same symmetry, either the same mean, either standard deviation between each one of
patients.

3.1 ANN classifier

The results obtained with this classifier are shown in Table 6 in the specific
patients. The own database has been used for the test data set with the following
configuration: Optimizer: ADAM, activation function: ReLu, L2 regularization with a
constant of 0.0001, a constant learning rate of 0.001, with three hidden layers and all
layers with eight neurons.

On both data sets, that is, the test and trial data set, the ANN classifier showed an
increase in the accuracy metric, especially when increasing the number of training

Figure 9.
Box and Whisker Plot of the sEMG for the power grab gesture in amputees.

ANN

Patients Accuracy Lost

P01 85.71 0.1000

P02 80.22 0.1700

P03 56.04 0.0280

P04 82.00 0.8600

P05 76.92 0,4700

P06 79.12 0.1886

P07 85.71 0.1200

P08 72.53 0.1920

P09 67.03 0.2111

P10 81.32 0.1239

Table 6.
Accuracy results with the ANN classifier on the test data set at 100 epochs.
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epochs, passing on average from 76.66% to 100. periods with a minimum of 56.04%
and a maximum of 85.77%, respectively. The average accuracy was consistent with the
results shown by other authors for this classifier [35, 44, 45, 47].

In Table 6, superior results can also be seen on subjects P01, P02, P04, P05, P07
and P10, which is outstanding, since their accuracy was above 80% with this classifier
with a standard deviation of 9.23. This low standard deviation indicates that most of
the accuracies obtained tend to be clustered close to their mean.

3.2 SVM classifier

As mentioned above, different kernels were used: linear, polynomial, Gaussian and
sigmoid. Likewise, we worked on the regularization constant C with values of 0.1, 1,
10 and 100. On both data sets with the SVM classifier using the RBF and Sigmoid
kernels, the best results were obtained when evaluating the accuracy metric, obtaining
results up to 80%. in this metric. Table 7 shows the results obtained with all the
kernels.

3.3 CNN Classifier

Table 8 shows the comparative results of the CNN classifier evaluated in different
patients using regularization techniques such as: early stopping, dropout and batch
normalization. Which is a technique that tries to apply certain rules to know when it is
time to stop training, so that there is no overfitting to the input data, nor under fitting.
The average time required to train each convolutional neural network was 1 hour and
25 minutes. The average time needed to test the network was 15.2 s using a GPU
NVIDIA Titan-V, 12 GB RAM HBM2 y 640 Tensor Cores.

Table 9 shows a summary of the different classifiers by means of the accuracy
metric in the different patients. In patients P01 and P02, the best classifier is ANN.
Although the accuracy shown by the CNN is acceptable. These patients have a DASH
index of 45 and 19, respectively. They also present different levels of amputation: one
at 10 cm from the elbow and the other at the level of the wrist. Likewise, they present
amputation times of 1 and 30 years, correspondingly. These clinical factors affect the
performance of the classifiers.

4. Discussion

From the results obtained, the following points are analyzed. Figure 10 presents
the confusion matrix of each of the classifiers (SVM, ANN and CNN) corresponding
to the patient (P03 0 P09), It is observed that both the SVM and ANN show a low
number of hits in the different gestures in this patient whose cause of amputation is
due to congenital factors that further affect the variability of the signal. Even though
only one case is analyzed in this work, this type of behavior has been reported by
other research works in patients of this type.

Once again, the performance of the SVM and the ANN is significantly affected.
The results of the present work show a significant accuracy rate for the classification
of various classes of amputated subjects in comparison with other studies carried out
(Table 10).
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C = 0.1 C = 1 C = 10 C = 100

Patients Kernel Accuracy F1

score

Sensitivity Precision Accuracy F1

score

Sensitivity Precision Accuracy F1

score

Sensitivity Precision Accuracy F1

score

Sensitivity Precision

P01 Polynomial 47.5 41.25 51.39 48.23 47.5 51.62 58.06 51.64 25.00 23.94 28.94 29.12 25.00 23.94 28.94 69.12

Linear 62.5 59.82 64.63 60.89 62.5 61.17 65.32 62.74 25.00 17.29 30.00 25.00 25.00 20.21 29.86 27.50

RBF 12.5 2.78 16.67 2.08 22.5 19.36 27.08 52.38 65.00 62.66 67.55 66.44 65.00 59.82 64.63 60.89

Sigmoid 12.5 2.78 16.67 12.5 12.5 18.21 33.33 27.5 60.00 59.07 63.24 61.55 60.00 62.39 65.09 64.60

P02 Polynomial 20.00 9.20 25 7.78 20 30.97 32.16 30.86 20.00 15.87 23.21 43.98 20.00 15.87 23.21 43.98

Linear 52.5 52.78 52.46 59.76 52.5 49.77 51.03 57.13 2.50 1.74 3.33 2.50 2.50 2.15 6.11 5.00

RBF 12.5 2.78 16.67 2.08 10 2.7 13.33 2.08 42.50 35.85 47.16 38.57 42.50 36.37 47.16 47.62

Sigmoid 12.5 2.78 16.67 12.5 12.5 2.78 16.67 12.5 35.00 41.42 43.27 42.26 35.00 30.44 38.27 31.15

P03 Polynomial 32.50 24.25 36.30 33.65 32.5 37.23 42.22 34.72 20.00 13.21 25.00 19.12 20.00 13.21 25.00 19.12

Linear 55 49.47 55.6 46.89 55 49.47 55.6 46.89 5.00 3.13 6.67 5.00 5.00 10.3 10.2 11.5

RBF 12.50 2.78 16.67 2.08 20 13.21 25 19.12 55.00 50.33 55.60 48.28 55.00 47.09 49.49 44.44

Sigmoid 12.50 2.78 16.67 12.5 12.5 2.56 13.33 10 50.00 44.78 49.63 45.69 50.00 46.61 52.27 43.22

P4 Polynomial 47.5 42.18 47.22 39.58 47.5 64.15 65.65 65.93 20.00 15.99 24.31 52.25 20.00 15.99 24.31 52.25

Linear 65 64.36 64.07 69.83 65 64.36 64.07 68.83 2.50 3.91 2.78 2.50 2.50 2.80 2.70 2.30

RBF 12.5 2.79 16.67 2.08 17.5 11.48 22.22 35.53 65.00 64.15 64.07 68.75 67.50 67.24 68.10 70.24

Sigmoid 12.5 2.78 16.67 12.5 12.5 2.78 16.67 12.5 67.50 66.82 67.41 71.53 65.00 68.25 66.85 70.83

P05 Polynomial 17.5 7.06 22.22 5.65 17.5 27.37 38.33 28.84 20.00 14.75 25.00 33.16 20.00 14.75 25.00 33.16

Linear 52.5 50.76 56.62 53.89 52.5 53.28 59.95 56.83 12.50 3.29 16.67 12.50 12.50 3.97 5.56 5.00

RBF 12.5 2.78 16.67 2.08 20 14.66 25 33.08 55.00 53.74 59.95 57.45 55.00 50.80 57.87 54.99

Sigmoid 12.5 2.78 16.67 12.5 12.5 2.78 16.67 12.5 40.00 37.70 44.35 40.08 40.00 51.51 56.62 55.40

P06 Polynomial 32.5 25.44 36.3 36.31 32.5 41.29 50.37 40.1 25.00 19.41 30.56 35.71 25.00 19.41 30.56 35.71

Linear 65 65.85 65.32 74.63 65 65.85 65.32 74.63 2.50 4.17 3.33 2.50 2.50 3.10 4.20 3.70

RBF 12.5 2.78 16.67 2.08 17.5 10.41 22.22 18.86 57.50 51.28 60.56 49.81 57.50 57.21 61.16 62.82

Sigmoid 12.5 2.78 16.67 12.5 12.5 2.78 16.67 12.5 65.00 65.85 65.32 74.63 65.00 68.26 68.10 75.32
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C = 0.1 C = 1 C = 10 C = 100

P07 Polynomial 75 70.18 71.51 63.07 75 79.18 76.51 79.54 27.50 31.06 29.64 54.44 27.50 31.06 29.64 54.44

Linear 80 79.76 77.76 79.4 80 79.76 77.76 79.4 15.00 8.94 15.48 15.00 15.00 9.37 15.48 15.00

RBF 12.5 2.78 16.67 2.08 17.5 14.5 20.87 35.19 80.00 65.77 64.56 66.05 80.00 66.04 63.87 69.44

Sigmoid 12.5 2.78 16.67 12.5 12.5 19.36 30.95 27.5 62.50 63.13 60.40 68.06 62.50 63.35 60.54 63.33

P08 Polynomial 45 35.28 51.67 34.47 45 44.13 55.37 52.15 25.00 20.71 30.56 35.78 25.00 20.71 30.56 35.78

Linear 45 46.43 46.71 50.89 45 49.32 49.49 55.51 17.50 10.06 21.67 17.50 17.50 9.47 18.33 15.00

RBF 12.50 2.78 16.67 2.08 17.50 10.48 22.22 18.92 57.50 52.28 59.44 50.67 57.50 49.79 58.15 48.96

Sigmoid 12.50 2.78 16.67 12.50 12.50 12.98 25 20 47.50 45.76 49.49 49.74 47.50 40.89 47.41 39.98

P9 Polynomial 40 38.25 43.33 48.57 40 41.75 42.78 44.7 17.50 11.19 22.22 25.00 17.50 11.19 22.22 25.00

Linear 45 42.38 45 40.37 45 44 45 43.94 10.01 9.27 7.35 8.12 12.0 9.27 8.48 12.86

RBF 12.5 2.78 16.67 2.08 15 6.81 19.44 8.24 45.00 42.72 45.00 40.42 45.00 47.82 53.33 46.52

Sigmoid 12.5 2.78 16.67 12.50 12.50 3.01 10.00 7.50 47.50 43.71 47.22 41.94 47.50 38.56 38.89 36.55

P10 Polynomial 35 26.76 40.56 30.11 35 77.21 77.59 78.02 22.50 19.57 26.16 52.38 22.50 19.57 26.16 52.38

Linear 72.5 72.9 71.25 72.02 72.5 73.07 71.25 72.32 12.50 7.86 14.44 12.50 12.50 9.79 14.44 12.50

RBF 12.5 2.78 16.67 2.08 20 15.05 24.07 35.65 75.00 75.21 74.03 74.40 75.00 70.70 69.40 70.06

Sigmoid 12.5 2.78 16.67 12.5 12.5 12.44 21.67 17.5 75.00 75.05 73.10 73.21 75.00 69.68 69.40 70.00

Table 7.
Results of the metrics with the SVM classifier in the specific patients.
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CNN

EPOCHS

100 200 300 400 500 600 700 800 900 1000

Patients Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

P01 61.53 64.87 67.38 69.26 71.61 73.86 76.08 78.11 80.26 80.51

P02 54.15 58.23 60.16 60.80 63.65 67.76 69.57 72.98 76.13 76.52

P03 55.32 60.41 60.94 62.84 64.54 68.71 70.97 73.64 75.95 76.34

P04 67.28 70.46 72.20 72.91 74.09 76.24 79.39 81.54 83.12 83.69

P05 60.07 62.99 65.62 67.08 68.38 71.64 73.91 76.28 77.95 78.58

P06 55.53 59.51 62.64 62.51 67.37 69.61 71.89 74.32 76.54 78.85

P07 70.44 73.25 74.61 76.54 77.12 78.88 80.65 82.51 84.62 86.63

P08 56.51 60.80 63.30 64.81 65.87 67.97 71.11 74.25 77.39 80.53

P09 56.72 63.53 63.20 66.44 69.83 71.37 73.86 76.38 78.54 81.20

P10 62.04 67.71 70.01 71.39 73.27 74.85 76.58 78.31 80.14 81.77

Table 8.
Comparative results of the CNN classifier of the different patients at different epochs.
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Patients SVM

(Accuracy %)

ANN

(Accuracy %)

CNN

(Accuracy %)

P01 65.00 85.71 80.51

P02 52.20 80.22 76.52

P03 55.00 56.04 76.34

P04 67.50 82.00 83.69

P05 55.00 76.92 78.58

P06 65.00 79.12 78.85

P07 80.00 90.11 86.63

P08 57.50 84.62 80.53

P09 47.50 67.03 81.20

P10 75.00 81.32 81.77

Average 61.97 78.30 80.46

Table 9.
Accuracy metric comparison between all classifiers. The values in bold represent the highest accuracy values
recorded by each patient in the classifiers.

Figure 10.
Confusion matrices of the different classifiers for the patient P09 (a) SVM (b) ANN (c) CNN using the metric of
the accuracy of the data corresponding to the training (session two).

Methods Accuracy Authors

AtzoritNet, CNN classifier, healthy subjects and amputees 70.48�1.52% Tsinganos et al., 2018 [39]

Time domain, regressive models, Bayesian Network,

ANN, CNN, AD, SVM, healthy subjects

80.4�2.6% Ramirez-Martinez, et al.,

2019 [40]

CNN, multiclass classifier, input TWC, amputees subjects 68.98�29.33% Cote-Allard et al., 2019 [22]

WeiNet, CNN classifier, NinaPro dataset, healthy subjects 99.1% Wei et al., 2020 [27]

AD Classifier, ACP, MD, Multiclass Classifier, amputees

patients

77.3�17.5% Rabin Neta et al., 2020 [38]

SVM classifier, LDA and TWD, healthy subjects 94.73% Lin Chen et al., 2020 [48]

CNN classifier, TWD, healthy subjects 98.82% Tsinganos et al., 2020 [49]

Multiclass classifiers, SVM, ANN, CNC, amputees patients 80.46% This research

Table 10.
Studies conducted using CNN as an EMG-based hand prosthesis movement classifier in healthy subjects and amputated
subjects.
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5. Conclusions

Over the past decade, deep learning and convolutional neural networks have
revolutionized several fields of machine learning, including speech recognition and
computer vision. Therefore, its use is promising for obtaining better classification
indexes of the sEMG signals if the great variation of these is considered in accordance
with clinical variables of the amputation, all of which would contribute to closing the
gap between the prosthesis market (which requires fast and robust control methods)
and the results of recent scientific research in disability support technologies.

The protocol for obtaining sEMG measurements in amputated patients was
applied, as well as the extraction and classification of the signal, all of which is
consistent with the proposal for the integrated design of the prosthesis. A database of
10 amputated patients according to the 6 defined hand gestures was constructed. The
data is publicly available in the repository of the Huila-Corhuila University Corpora-
tion (CORHUILA).

The classification accuracy obtained with CNN using the proposed architecture is
80.46%, but the most significant thing is its ability to obtain a higher performance in
the classification between subjects in relation to parameters such as length of the
remaining limb, years of amputation or disability index, compared with the results
obtained by conventional classifiers such as the support vector machine and artificial
neural networks.
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