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Chapter

Identification of RNA
Oligonucleotide and Protein
Interactions Using Term Frequency
Inverse Document Frequency and
Random Forest
Eugene Uwiragiye and Kristen L. Rhinehardt

Abstract

The interaction between protein and Ribonucleic Acid (RNA) plays crucial roles in
many biological aspects such as gene expression, posttranscriptional regulation, and
protein synthesis. However, the experimental screening of protein-RNA binding
affinity is laborious and time-consuming, there is a pressing desire of accurate and
reliable computational approaches. In this study, we proposed a novel method to
predict that interaction based on both sequences of protein and RNA. The Random
Forest was trained and tested on a combination of benchmark datasets and the term
frequency–inverse document frequency method combined with XgBoost algorithm
was used to extract useful information from sequences. The performance of our
method was very impressive, and the accuracy was as high as 94%, the Area Under the
Curve of 0.98 and the Matthew Correlation Coefficient (MCC) of 0.90. All these high
metrics, especially the MCC, show that our method is robust enough to keep its
performance on unseen datasets.

Keywords: protein, RNA, interaction, random forest, TFIDF, machine learning

1. Introduction

The protein-RNA pairs are highly involved in various regulatory processes. Find-
ing the binding sites of the RNA-binding Proteins (RBP) is therefore an important
research goal. Studies have shown that RBPs bind to RNA molecules by recognizing
both sequences (sequence motifs) and secondary structure contexts (structure
motifs) [1–4]. Some of them have been based on sequence-derived features such as
amino acid composition, dipeptide composition, composition-transition-distribution
of seven physicochemical properties, evolutionary information in terms of position-
specific scoring matrices and functional domain composition [5–7]. Although progress
has been made in the implementation of predictive methods for RBPs, insufficient
attention has been paid to the development of predictive methods for RNA-protein
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interactions (RPI). The history is brief, and there are not many existing computational
tools because of the scarcity of available data [8].

The machine learning (ML) methods, which have become standard tools in many
fields of science and engineering, are computationally efficient methods that employs
computer science, artificial intelligence, computational statistics, and information
theory to fit high-dimensional models to large amounts of data. The ML methods read
in data points which are generated within some application domain and each data
point is characterized by two properties, such as features (predictor variables) and
labels (predicted variables). The machine learning algorithms aims at learning to
predict the label of a data point based solely on the features of this data point or
identify the pattern those data points if they are neither classified nor labeled. The ML
algorithms applied to labeled data points is called supervised learning in contrast to
unsupervised learning which does not require knowing the label value of any data
point. The dataset we used in this research was tagged with known labels (binding
pairs are labeled as positive while non-binding pairs are labeled as negative). While
the principle behind supervised ML sounds trivial, the challenge of modern ML
applications is the data points non-linearity and complexity. This research focuses on
three supervised learning algorithms: Logistic Regression, Random Forest, and Multi-
nomial Naïve Bayesian.

The logistic regression is a binary classification method that can be applied to data
points with feature vector X ∈Rn and binary labels y. These binary labels take on values
from a label space that contains two different label values (most cases y = {0,1}). The
linear operator h xð Þ ¼ wTx,with w∈Rn, can take an arbitrary real random number and
can predict the label y when compared to a given threshold. The data point with feature
x would be classified as y = 1 if the h xð Þ≥0 and y ¼ 0 if the h xð Þ<0. The multinomial
naïve Bayesian is a simple but important probabilistic model which is defined by a
function h from the feature space X to the label space Y (h : X ! Y) such that the
predicted value h xð Þ,x∈X,agrees enough with the true value y∈Y. The random forest
is a flowchart-like description of a function from the feature space to label space that
maps the features to their respective labels. While a random forest can be applied to an
arbitrary feature space, we will discuss it for a specific space later in this paper.

In 2011, Pancaldi and Bähler [8–10] predicted the RNA-binding proteins and
messanger-RNA using two conventional machine learning classifiers: support vector
machine (SVM) and random forest (RF), while Bellucci et al. developed an algorithm
called catRAPID to facilitate the predictions of 592 RPIs from the Protein Database Bank
(PDB). They used the physicochemical properties of sequences as features and found
three most predictive features: secondary structure propensities, hydrogen bonding,
and van der Waals [8, 11]. The two benchmark datasets, called RPI369 and RPI2241,
were constructed from PRIDB (a database of protein-RNA interfaces) [8, 12, 13] and
achieved remarkable prediction accuracies on these two datasets using Conjoint Triad
Feature (CTF) and normalized 4-gram frequencies. In 2013, the CatRAPID Omics was
generated as an improved CatRAPID that used the information on protein and RNA
domains involved in macromolecular recognition [8, 14, 15]. Zhao Hui-Zhan et al.
[8, 16] proposed a deep learning model to predict RPIs using bi-gram from Position
Specific Scoring Matrix (PSSM) approaches to extract features from proteins, and k-
mers approach combined with a stacked auto-encoder for RNAs feature extraction.

In 2015, Suresh et al. [8, 17] integrated sequence information and predicted struc-
ture together to produce an accurate prediction of non-coding RNA-protein pairs on a
newly constructed dataset, called RPI1807. When tested on the RPI369 and RPI2241
datasets mentioned above, some improvements were achieved on prediction
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accuracies. In 2017, Liu et al. proposed a semi-supervised method called LPI-NRLMF
[18, 19] to predict lncRNA-protein interactions by neighborhood regularized logistic
matrix factorization. One year later, Zhao et al. came up with IRWNRLPI method
[20], integrating random walk and neighborhood regularized logistic matrix factori-
zation for lncRNA-protein interactions prediction and LPI-BNPRA method using the
bipartite network projection recommended algorithm to identify lncRNA-protein
interactions. The last four semi-supervised methods and the BNPMDA method pro-
posed by Chen et al. [21] in late 2018, performed well only on interactive pairs with a
high predictive accuracy but weakly for non-interactive pairs. In 2018, Hu et al.
proposed HLPI Ensemble method [22] for identifying lncRNA-protein interactions in
human only, which integrated three common machine learning algorithms, SVM, RF
and Extreme Gradient Boosting (XGB).

All the machine learning methods discussed above, use handcrafted features from
proteins. In this study we proposed a new method, called TF-IDF borrowed from
natural language processing, to extract features from RPI pairs. The TF-IDF standing
for Term Frequency–Inverse Document Frequency takes as input a sequence of
strings and transform it into a vector of numerical values.

2. Material and methodology

According to Hongchu Wang and Pengfei Wu in 2017 [8] there are 1973 RPI
complexes available in the Protein Data Bank (PDB), which contains over 15,000
protein chains and more than 3000 RNA chains. However, according to research
using high-throughput sequencing techniques (such as RNA-Seq), at least 30,000
lncRNAs were identified by 2013. In this study we combined the three different
datasets; The RPI2241 dataset, containing 2241 RNA–protein pairs was extracted from
PRIDB [13] and reconstructed by Wang in 2013, the RPI488, a non-redundant lncRPI
dataset based on structural complexes which consists of 488 lncRNA-protein pairs,
including 245 non-interacting pairs and 243 interacting pairs from Pan et al. [23, 24]
and the RPI12737 dataset containing 12,737 experimentally validated RNA–protein
pairs that extracted from NPInter v2.0 database [25]. This dataset contains the same
number of non-interacting RNA–protein pairs (negative examples) as the number of
interacting RNA–protein pairs. After the dataset combination, we cleaned the data by
removing all pairs containing a non-amino acid character for proteins or a non-
nucleotide for RNA. The difference between lengths of sequences could increase the
sparsity of the TF-IDF data frame and affect the performance of our predictive model.
The exploratory data analysis gave more details on the dataset (see Table 1). The first
quartile of proteins lengths was 252 while the third quartile was 614, which means that
the lengths of 50% of our combined dataset lie between 252 and 614. After all consid-
erations, we decided to use this 50% of the dataset, containing 10,715 clean pairs, to
train and test the predictive model.

2.1 Transformation of the sequence into text format

The biological sequences are sequences of successive letters without space with
different lengths which are relevant to their biochemical structure and for their
biological function. The bioinformaticians use the alignment process to arrange the
primary structure of a protein to identify regions of similarity that may be a conse-
quence of functional, structural, or evolutionary relationships between the sequences.
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This approach leaves a lot of holes in a sequence when a region from sequence of
interest is not similar to the region of the other sequence. The alignment of multiple
sequences is not as simple as it may seem at the first glance and the position feature of
amino acids is threatened. Therefore, we propose a method which conserves the
position feature of amino acids in the sequence by translating sequences into terms to
apply the same representation technique for text data. T232he window with a
subrange in the sequence that gives the best metrics was used and slipped through the
given sequence with a fixed step, and each nucleotide (amino acid) segment was
stored as a term. The shortest size of the sliding window that gave better metrics
values was the size 3. As in the example below, the illustration of sequence transfor-
mation using a sliding window with size from one to four (Figure 1):

2.2 TF-IDF for feature engineering

The natural language processing has various types of approaches to transform the
sequence of words into numerical values, such as the bag of words, words embedding,
the term frequency inverse document frequency (TF-IDF), and so on. The TF-IDF
measures the frequency of a term in a sequence which highly depends on the length of
the sequence. The purpose of this method is to vectorize sequences [26–30]. To solve the
sequence issue with the complicated alignment, TF-IDFmethod uses the combination of
all possible terms in the dataset to have vectors of the same length with two extreme
cases where TF value will be zero if the term does not appear in the dataset and 1 if all
terms in the sequence are the same. The Term Frequency (TF) is used to measure how
many times a term is present in a sequence and The Inverse Document Frequency assigns
lower weight to frequent terms and assigns greater weight for the terms that are infre-
quent [31–33]. The TFIDF is the most widely used term weighting scheme. Yang and
Huang [34] used it for calculating termweight according to the location and length of the

Dataset Positive pairs Negative pairs #RNA #Protein

RPI488 243 245 25 247

RPI2241 2241 2241* 841 2042

RPI12737 12,737 12737* 4636 449

*The number with star means that the negative pairs were not reported. All non-reported pairs are considered as negative.

Table 1.
Description of different dataset used in random forest training.

Figure 1.
Illustration of a sequence to text format using a sliding window of different sizes.
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keyword and Tian Xia and Yanmei Chai [35] implemented it by calculating distribution
based on local term weighting and global term weighting to improve the efficiency of IR
and TC systems and many researchers used the TF-IDF for feature engineering [36–38]
to solve classification problems in reasonable time, efforts, and resources.

Assuming S a set of sequences: S = {s: s is a sequence} and T a set of terms: T = {t: t
is a term.

TF would be a function defined as follow:

TF : T ∗ S !
TF

0, 1½ � : t : sð Þ !
TF

TF t, sð Þ ¼
Number of apprearence of t

Number of terms in s
(1)

Where t is a given term in a sequence s. The IDF function or normalization
function which calculates the importance of a sequence in the dataset will be defined
as follow:

IDF Stð Þ : ST !
IDF

ℝ : St !
IDF

IDF Stð Þ ¼
N

St
(2)

Where ST is the set of all sequences containing the term t and N is the number of all
sequences in the dataset and st ¼ ∣ST∣. Thereafter, the TF-IDF is the multiplicative
value of TF(t,s) and IDF(st)

TFIDF t, sð Þ ¼ TF t, sð Þ ∗ IDF Stð Þ ¼
Ns

t ∗N

Nt ∗ St
(3)

WhereNs
t is the number appearances of term t in a sequence s andNt is the number

of sequences containing the term t (Figure 2).

Figure 2.
The term frequency-inverse document frequency flowchart.
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2.3 Feature selection

The TF-IDF method vectorises the RNA and RBP sequences and transforms them
into a 2D data frame with 10,715 rows and 7461 columns. I this situation, the dimen-
sionality reduction is required. The XgBoost method, an optimized implementation of
gradient boosted decision trees in python libraries, was used to estimate the impor-
tance of TF-values. That estimation consists in comparison of all attributes to each
other, to rank them based on their contribution to the general classification. Extreme
gradient boosting (XGBoost) is a new method that It can take weak feature classifiers
and into one strong classifier [39] due to its gradient boosting algorithm, efficiency,
flexibility, and portability [40, 41]. The XGBoost was used in the literature to discover
and retain the features that highly impact the prediction [42–46] and was ten time less
computationally expensive compared to other popular techniques [42].

2.4 Dataset balancing

In the 10,715 samples we have, 6333 were labeled as positive samples (interacting
pairs) while other 4382 were labeled as negative samples. The 1951 samples of difference
between two classes are not enormous. However, most machine learning algorithms do
not work very well with such imbalanced datasets [31, 47, 48]. This why we tried to
train our model on unbalanced dataset and balance it thereafter. There are several
techniques to balance datasets [32] but we chose to use two of them: Random Over-
sampling by using the bootstrapping method to increase the size of the minority class,
and Under sampling that applies a nearest-neighbors algorithm [48] and “edit” the
dataset by removing samples which do not agree “enough” with their neighborhood.

3. Predictive model: random Forest

The prediction of RPIs was done after training and testing the Random Forest among
other classifiers. The RF is a supervised machine learning algorithm that is constructed
from decision tree algorithms developed by Tin Kam Ho in 1995 [33, 34] and used to
solve classification and regression problems. The random forest establishes the result
according to the mean predictions of all the decision trees. A decision tree consists of
decision nodes, leaf nodes, and a root node. The algorithm behind the decision tree
divides the training set into branches, which further split into new branches branches
until a leaf node is attained (a leaf node cannot be splitted into other branches). This
sequence of branches uses the Classification And Regression Tree (CART) methodology
combined to the resampling with replacement [25]. The random forest has multiple
parameters that can be optimized by most of them were kept by default. Among the
parameters the criterion Gini and the minimum of sample required to split fixed at two
trees and hundred branches were chosen for better results.

3.1 Classification trees (Forest)

A decision tree is a way of representing knowledge obtained in the inductive
learning process. The space is split using a set of conditions, and the resulting struc-
ture is the tree. Assuming we have n pairs and TF-values vectors Xif gni¼1with out-
comes yi, our dataset can be presented as follow:
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Dataset ¼ X1, y1
� �

, X2, y2
� �

, … , Xn, yn
� �� �

(4)

Each TF-value vector is Xk ¼ Xk1, Xk2, …Xkdð Þ and d is the number of TF-values
from RNA and RBP altogether.

The decision tree is defined as binary process where a decision is made based on
whether the TF-value Xi is inferior to a threshold t or not. This threshold depends on
the node at which the decision is made. The top node contains all examples Xn, yn

� �

,
and these examples are subdivided into children nodes according to the possibility of
classification at that node. The subdivision of examples continues until every node at
the bottom has examples which are in one class only.

3.2 The Gini criterion

The Random Forest as a python implementation of the scikit-learn library, this is
made by the parameter ‘criterion ‘. This parameter is the function used to measure the
quality of a split and it allows users to choose between ‘Gini ‘, or ‘entropy ‘. We
preferred the Gini criterion because computationally, entropy is more complex since it
makes use of logarithms and consequently, the calculation of the Gini Index will be
faster. The Gini criterion is used to measure the diversity at each tree node when the
TF-value and optimal threshold are chosen. Assuming the set of all examples is S and
the set of examples at the node j is Sj, then S is a partition of children node sets, i.e.:

S ¼ ⋃l
1Sj where l is the number of children nodes

Each sample Sj is portioned into two classes C1 = interacting pair and C2 = non-
interacting pair. The proportion of a sample Sj in the set of all examples and the
proportion of Sj with a class Ci are respectively defined as follow:

P Sj
� �

¼
∣Sj∣

∣S∣

P CijSj
� �

¼
∣Sj∩Ci∣

S
(5)

The Gini criterion is the variation g(Sj) in the set Sj defined as follow:

g Sj
� �

¼
X

1

1

P CijSj
� �

1� P CijSjÞ
� ��

(6)

The variation g(Sj) reaches the maximum when the set Sj is equally divided in the
class Ci and the minimum when the set Sj is just made by one of the two classes. The
variation the full subdivision Sj (known as Gini Index) is defined as the weighted sum
of their respective proportions in the set of all examples.

Gini Index ¼ P S1ð Þ g S1ð Þ þ P S2ð Þ g S2ð Þ þ …P Slð Þ g Slð Þððð (7)

3.3 The random vector

A random vector is defined as an array X of random variables defined on the same
probability space. In this study the array is the TF-values vectors
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X ¼ X1, X2 … :Xdð Þ where Xiare column vectors (8)

The random y = {y1, y2,… yd} with yi⋲ {0,1} is the classification of examples where
1 represent a protein-RNA interaction (RPI) while 0 represent a non-interaction. The
model vector (X,y) is defined on the same probability space as the random vector X.

The goal of this predictive model is to build a classifier which predict the random
vector y (classes) from random vector X (TF-values) based on the examples in the
dataset from paragraph 3.1. This classifier is based on a family of classification trees
and the ensemble of those trees is called Random Forest.

3.4 Ten-fold cross-validation method

The cross-validation is a resampling procedure used to evaluate machine learning
models on a limited data sample. The procedure has a single parameter called k that
refers to the number of groups that a given dataset is to be split into, and it is called k-
fold cross-validation (k = 10 for this study). The 80% was used for the 10-fold cross
validation, randomly shuffled and split int. o 10 groups. Among the 10 groups, only
one group was kept as validation data to test the model and the remaining 9 sub-
samples were used as training data. Importantly, each observation in the validation set
is assigned to an individual group and stays in that group for the duration of the
procedure. This means that each sample is given the opportunity to be used in the hold
out set 1 time and used to train the model 9 times. The 10 results were then averaged
to produce a single estimate by summarizing the mean of the model scores. The
metrics we used to evaluate the model performance are Accuracy, Specificity, Sensi-
tivity and MCC (Matthews Correlation Coefficient)

Accuracy ¼
TPþ TN

TPþ TNþ FNþ TN

Specificity ¼
TN

TNþ FP

Sensitivity ¼
TP

TPþ FN

MCC ¼
TP ∗TN� FP ∗FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ TNð Þ FPþ FNð Þ TPþ FNð Þ TPþ FPð Þ
p (9)

Where TP, FP, TN, and FN stand for True Positive, False Positive, True Negative
and False Negative respectively.

3.5 Independent test

The remaining 20% of the dataset was used to test the classifier performance to the
unseen data. This test dataset was completely independent of the data sample used in
10-fold cross validation. The goal was to train the Random Forest with parameters
having the best performance on new data.

4. Results and discussion

We have applied the sliding window approach to transform RNA and protein
sequences into text format using different window’s sizes starting from size 2. We
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constated that there was not much difference between the model performance when
using a sliding window size of 3,4 or 5 and the performance started decreasing at
window size of 6. Therefore, we chose the window’s size 3 because it gives the best
results in less time. After we applied the TF-IDF to the dataset we got a data frame of
10,715 rows and 7461 attributes. The Random Forest applied to this dataset gave a
good performance with a scope of improvement because all 7461 features do not have
the same importance in the prediction. We applied the XgBoost algorithm to select the
best features. The best threshold showed that 232 features contribute to the prediction
at 0.2% at least. The performances of different classifiers are summarized in Table 2.

The receiver operating characteristic (ROC) curves of the three classifiers confirms
our preference of the Random Forest to other classifiers. The Area under the curve is
0.98, 0.95 and 0.93 for Random Forest, Logistic Regression and Multinomial Naïve
Bayesian respectively (Figure 3). Sometimes, one algorithm can overperform other
algorithms for one metric measure and loses for other metrics. But in this study, the

Classifiers 10-Fold cross validation Independent test

Spe Sen Acc MCC Spec Sen Acc MCC

RF 0.96 0.94 0.95 0.92 0.95 0.94 0.94 0.90

LR 0.96 0.89 0.92 0.84 0.93 0.89 0.91 0.83

MNB 0.95 0.89 0.92 0.84 0.93 0.88 0.91 0.82

RF = Random Forest; LR = Logistic Regression; MNB = Multinomial Naïve Bayesian.

Table 2.
Comparative summary of three different predictive models.

Figure 3.
Illustration of classification trees with three nodes. The thresholds ti depends on each note and are learned during
the training process.
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Random Forest overperformed other two classifiers in all metrics and more impor-
tantly for Matthew Correlation Coefficient (MCC) because it is an ensemble-based
algorithm using the resampling with replacement method to reduce variance. This
method makes that the Random Forest takes a lot of time to be trained but it is worth
it because: a tree-based learning algorithm, on large datasets, allows to quantitative
and qualitative input variables, can be immune to redundant variables or variables
with high correlation which may lead to overfitting in other learning algorithms and
has few parameters to tune (Figures 4 and 5).

Figure 4.
A systematics review of imbalanced data challenges and dimensionality reduction.

Figure 5.
Representation of ROC of the AUC for three classifiers showing that the random Forest curve is higher than other
classifiers.
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5. Conclusions

The Term Frequency Inverse Document Frequency borrowed from natural lan-
guage processing was combined with the sliding window to transform the RNA and
protein sequences into a data frame of numerical values and 232 most contributing
TF-values were selected using the XgBoost feature importance. Based on these fea-
tures, we trained the Random Forest classier on 10,132 samples and tested it on 2534
remaining samples. The results in the Table 2 show that the Random Forest
overperformed all other predictive models that we trained on this dataset for com-
parison such as Logistic Regression and Multinomial Naïve Bayesian. The highest AUC
for the Random Forest, combined with the high specificity and sensitivity, provides
an indication of its ability to correctly predict all classes in large datasets. The Random
Forest is computationally expensive, but there is a significant performance difference
compared to other classifiers which is worth the training time.

Acknowledgements

This study was supported by Visualization and Computation Advancing Research
(ViCAR) Center and funded by National Science Fund (NSF).

Author details

Eugene Uwiragiye and Kristen L. Rhinehardt*
Computational Data Science and Engineering, North Carolina Agricultural
and Technical State University, Greensboro, NC, United States of America

*Address all correspondence to: klrhineh@ncat.edu

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

11

Identification of RNA Oligonucleotide and Protein Interactions Using Term Frequency…
DOI: http://dx.doi.org/10.5772/intechopen.108819



References

[1] Jain DS, Gupte SR, Aduri R. A data
driven model for predicting rna-protein
interactions based on gradient boosting
machine. Scientific Reports. 2018;8(1):1-10

[2] Licatalosi DD, Darnell RB. RNA
processing and its regulation: Global
insights into biological networks. Nature
Reviews Genetics. 2010;11(1):75-87

[3] Kishore S, Luber S, Zavolan M.
Deciphering the role of RNA-binding
proteins in the post-transcriptional control
of gene expression. Briefings in Functional
Genomics. 2010;9(5–6):391-404

[4] Beckmann BM et al. The RNA-
binding proteomes from yeast to man
harbour conserved enigmRBPs. Nature
Communications. 2015;6(1):1-9

[5] Allers J, Shamoo Y. Structure-based
analysis of protein-RNA interactions
using the program ENTANGLE. Journal
of Molecular Biology. 2001;311(1):75-86

[6] Terribilini M et al. Prediction of RNA
binding sites in proteins from amino
acid sequence. RNA. 2006;12(8):
1450-1462

[7] Kim OT, Yura K, Go N. Amino acid
residue doublet propensity in the
protein–RNA interface and its
application to RNA interface prediction.
Nucleic Acids Research. 2006;34(22):
6450-6460

[8]Wang H, Wu P. Prediction of RNA-
protein interactions using conjoint triad
feature and chaos game representation.
Bioengineered. 2018;9(1):242-251

[9]Mercer TR, Mattick JS. Structure and
function of long noncoding RNAs in
epigenetic regulation. Nature Structural
& Molecular Biology. 2013;20(3):
300-307

[10] Pancaldi V, Bähler J. In silico
characterization and prediction of global
protein–mRNA interactions in yeast.
Nucleic Acids Research. 2011;39(14):
5826-5836

[11] Bellucci M et al. Predicting protein
associations with long noncoding RNAs.
Nature Methods. 2011;8(6):444-445

[12]Muppirala UK, Honavar VG, Dobbs
D. Predicting RNA-protein interactions
using only sequence information. BMC
Bioinformatics. 2011;12(1):1-11

[13] Lewis BA et al. PRIDB: A protein–
RNA interface database. Nucleic Acids
Research. 2010;39(suppl_1):D277-D282

[14] Agostini F et al. Cat RAPID omics: A
web server for large-scale prediction of
protein–RNA interactions.
Bioinformatics. 2013;29(22):2928-2930

[15] Agostini F et al. X-inactivation:
Quantitative predictions of protein
interactions in the Xist network. Nucleic
Acids Research. 2013;41(1):e31-e31

[16] Zhan Z-H et al. BGFE: A deep
learning model for ncRNA-protein
interaction predictions based on
improved sequence information.
International Journal of Molecular
Sciences. 2019;20(4):978

[17] Suresh V et al. RPI-Pred: Predicting
ncRNA-protein interaction using
sequence and structural information.
Nucleic Acids Research. 2015;43(3):
1370-1379

[18] Liu H et al. LPI-NRLMF: lncRNA-
protein interaction prediction by
neighborhood regularized logistic matrix
factorization. Oncotarget. 2017;8(61):
103975

12

Oligonucleotides - Overview and Applications



[19] Cheng S et al. DM-RPIs: Predicting
ncRNA-protein interactions using
stacked ensembling strategy.
Computational Biology and Chemistry.
2019;83:107088

[20]Zhao Q et al. IRWNRLPI: Integrating
random walk and neighborhood
regularized logistic matrix factorization
for lncRNA-protein interaction
prediction. Frontiers in Genetics.
2018;9:239

[21] Chen X et al. BNPMDA: Bipartite
network projection for MiRNA–disease
association prediction. Bioinformatics.
2018;34(18):3178-3186

[22]Hu H et al. HLPI-ensemble:
Prediction of human lncRNA-protein
interactions based on ensemble strategy.
RNA Biology. 2018;15(6):797-806

[23] Pan X et al. IPMiner: hidden ncRNA-
protein interaction sequential pattern
mining with stacked autoencoder for
accurate computational prediction. BMC
Genomics. 2016;17(1):1-14

[24] Zhan Z-H et al. Accurate prediction
of ncRNA-protein interactions from the
integration of sequence and evolutionary
information. Frontiers in Genetics. 2018;
9:458

[25] Yuan J et al. NPInter v2. 0: An
updated database of ncRNA interactions.
Nucleic Acids Research. 2014;42(D1):
D104-D108

[26]Trstenjak B, Mikac S, Donko D. KNN
with TF-IDF based framework for text
categorization. Procedia Engineering.
2014;69:1356-1364

[27] Joachims T. Text categorization with
support vector machines: Learning with
many relevant features. In: European
Conference on Machine Learning.
Berlin, Heidelberg: Springer; 1998

[28] Yang Y, Liu X. A re-examination of
text categorization methods. In:
Proceedings of the 22nd Annual
International ACM SIGIR Conference on
Research and Development in
Information Retrieval. 1999

[29] Soucy P, Mineau GW. Beyond
TFIDF weighting for text categorization
in the vector space model. In:
International Joint Conferences on
Artificial Intelligence Organization.
Vol. 5. 2005

[30] Xu G et al. Improved TFIDF
weighting for imbalanced biomedical
text classification. Energy Procedia.
2011;11:2360-2367

[31] Beckmann M, Ebecken NF, de Lima
BSP. A KNN undersampling approach
for data balancing. Journal of Intelligent
Learning Systems and Applications.
2015;7(04):104

[32] Santos MS et al. A new cluster-based
oversampling method for improving
survival prediction of hepatocellular
carcinoma patients. Journal of
Biomedical Informatics. 2015;58:49-59

[33] Li B-Q et al. Prediction of protein-
protein interaction sites by random
forest algorithm with mRMR and IFS.
PLoS One. 2012;7(8):e43927

[34] Zhu C, Cheng G, Wang K. Big data
analytics for program popularity
prediction in broadcast TV industries.
IEEE Access. 2017;5:24593-24601

[35] Tian, X., and W. Tong. An
improvement to tf: Term distribution-
based term weight algorithm. 2010
Second International Conference on
Networks Security, Wireless
Communications and Trusted
Computing. 2010. IEEE

[36] Liu L, Peng T. Clustering-based
method for positive and unlabeled text

13

Identification of RNA Oligonucleotide and Protein Interactions Using Term Frequency…
DOI: http://dx.doi.org/10.5772/intechopen.108819



categorization enhanced by improved
TFIDF. Journal Information Science
Engineering. 2014;30(5):1463-1481

[37]Qu S, Wang S, Zou Y. Improvement
of text feature selection method based on
tfidf. In: 2008 International Seminar on
Future Information Technology and
Management Engineering. IEEE; 2008

[38] Goswami P, Kamath V. The DF-ICF
algorithm-modified TF-IDF.
International Journal of Computer
Applications. 2014;93(13)

[39] Li D et al. Feature selection and
model fusion approach for predicting
urban macro travel time. Mathematical
Problems in Engineering. 2020;2020

[40] Brownlee J. XGBoost With python:
Gradient boosted trees with XGBoost
and scikit-learn. Machine Learning
Mastery; 2016

[41] Chang W et al. A machine-learning-
based prediction method for
hypertension outcomes based on medical
data. Diagnostics. 2019;9(4):178

[42] Chen T, Guestrin C. Xgboost: A
scalable tree boosting system. In:
Proceedings of the 22nd Acm Sigkdd
International Conference on Knowledge
Discovery and Data Mining. 2016

[43]He X et al. Practical lessons from
predicting clicks on ads at facebook. In:
Proceedings of the Eighth International
Workshop on Data Mining for Online
Advertising. 2014

[44] Pal A, Shrivastava N, Tripathi P.
Comparison of Classification Algorithms
Using Machine Learning. 2019

[45]Horrell M. Wide Boosting. arXiv
preprint arXiv:2007.09855, 2020

[46] Bennett J, Lanning S. The netflix
prize. In: Proceedings of KDD Cup and
Workshop. New York; 2007

[47]Domingues I et al. Evaluation of
oversampling data balancing techniques
in the context of ordinal classification.
In: 2018 International Joint Conference
on Neural Networks (IJCNN). IEEE;
2018

[48] Rodríguez JP, Corrales DC, Corrales
JC. A process for increasing the samples
of coffee rust through machine learning
methods. International Journal of
Agricultural and Environmental
Information Systems (IJAEIS). 2018;9
(2):32-52

14

Oligonucleotides - Overview and Applications


