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Chapter

Intervention of PAR-2 Mediated 
CGRP in Animal Model of Visceral 
Hyperalgesia
Manoj Shah

Abstract

Protease-activated receptor-2 (PAR-2) mediates calcitonin gene-related peptide 
(CGRP) release and collectively plays a crucial role in inflammation-induced visceral 
hyperalgesia (VH). The present review chapter outlines the substantial advances that 
elucidated the underlying role of PAR-2 and CGRP in gut inflammation-induced 
VH and highlights their relevancies in the management of VH. PAR-2 is expressed 
in a wide range of gastrointestinal cells and its activation on primary afferent nerves 
by tryptase, trypsin or cathepsin-S is the key mechanism of sensitization during 
intestinal inflammation. The activated PAR-2 sensitizes transient receptor potential 
vanilloid subtype-1 receptors and triggers the release of substance-P (SP) and CGRP 
that are involved both in the transmission and modulation of VH. Approximately, 
two-thirds of sensory neurons express PAR-2 and 40% of the PAR-2-expressing 
sensory neurons also express SP and CGRP. Accumulating set of experiments devised 
that the blockade or antagonism of PAR-2 in inflammatory diseases of the gut depicts 
double advantages of reducing inflammation and VH. Simultaneously, the uses of 
CGRP-antagonists inhibit VH and completely suppress PAR-2-agonists-induced 
intestinal inflammation in animals. However, further study is imperative to improve 
our understanding of the blockade or antagonism of PAR-2 and CGRP release before 
its implication as a novel therapeutic for the clinical management of VH in human 
patients.
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1. Introduction

Visceral hyperalgesia (VH) is a pathological state of inflammatory bowel diseases 
(IBDs) and irritable bowel syndrome (IBS) or other functional bowel disorders, in 
which sensory threshold for abdominal pain and discomfort decreases due to tissue 
injury, inflammation, and persistent exposure of tissues/organ to noxious stimuli. In 
this state, the continuous release of inflammatory mediators results in sensitization 
of primary afferents and abdominal pain, both during the acute flare of diseases 
and their remission [1, 2]. Despite several proposed factors including inflammation, 
psychology and aberrant sensory-motor function of the gut contribute to peripheral 
and central sensitization [3], the exact underlying mechanism of VH has not been 



Animal Models and Experimental Research in Medicine

2

fully elucidated. The cell-membrane protease-activated receptor-2 (PAR-2) mediates 
calcitonin gene-related peptide (CGRP) release, and their associated roles in neuro-
genic inflammation-induced sensitization could be of great interest for the research-
ers to address this persistent nature of VH.

A G-protein coupled receptor PAR-2, distributed throughout the gastrointestinal 
(GI) tract, is activated particularly by proteases such as tryptase, trypsin, and cathep-
sin-S [4–6]. PAR-2 activation on several cells (epithelial cells, endothelial cells, neu-
trophils, macrophages, monocytes, mast cells, fibroblasts, neurons, dendritic cells, 
lymphocytes, etc.) could lead to the release of cytokines, chemokines, prostaglandins 
[7], as well as CGRP and substance-P (SP) in the enteric neurons and afferent neurons 
[8, 9]. Numerous reports indicated the diverse SP and CGRP expressions within the 
dorsal root ganglia (DRG) and spinal neurons during colitis and ileitis [10–15]. The 
expressions of SP and CGRP within the gut not only excite extrinsic afferents but also 
perpetuate the central transmission of nociceptive traffic between afferent neurons 
and higher-order neurons in the spinal cord and brainstem [16]. Thus, it is worth-
while to consider the key role of PAR-2 in the release of CGRP, which subsequently 
triggers neurogenic inflammation mediated VH.

Currently, the pharmacotherapy for VH is unsatisfactory because of its unknown 
precise mechanism. Earlier study suggests that the blockade of PAR-2at the periphery 
and/or the inhibition of luminal protease activity may be of interest for treating the 
VH [17]. Likewise, the administration of CGRP antagonists inhibits VH in animals 
[18, 19]. Therefore, the blockade or antagonism of either PAR-2 or CGRP may be a 
promising therapeutic target for VH. This review chapter explores the important roles 
of PAR-2 and PAR-2-mediated CGRP during inflammatory gut and their antagonism 
or blockade for the treatment of VH.

2. PAR-2 activation in the gastrointestinal tract

PAR-2 is activated through proteolytic cleavage by specific serine proteases, such 
as trypsin and mast cell (MC)-tryptase [4] and lysosomal macrophagic cysteine 
protease cathepsin-S [5, 6]. PAR-2 is generally expressed in the basolateral and apical 
side of epithelial cells [20], fibroblasts, MCs, smooth muscle cells, endothelial cells 
of the GI tract [21], enteric sensory neurons, terminals of mesenteric afferent nerves, 
and immune cells [17]. The higher number of mast cells and mast cell tryptase in 
biopsied colonic tissues enhanced the PAR-2 activity to regulate CGRP, SP, and VIP 
expressions resulting in symptoms associated with IBD [22]. Recently, Hassler et al. 
[23] suggested that PAR2-expressed sensory neurons are a key target for mechani-
cal and spontaneous pain triggered by the release of endogenous proteases from the 
many immune cells. In-vitro study exhibits the up-regulation of PAR-2 expression in 
cultured endothelial cells of human umbilical vein treated with TNF-α, IL-1α, and 
bacterial lipopolysaccharide in a dose-dependent manner [24]. Therefore, it is impor-
tant to note that PAR-2 activation on intestinal immunocytes induces acute enteritis 
[9, 25] while its neuronal expression incites neurogenic inflammation [26, 27].

2.1 Role of PAR-2 in inflammation

PAR-2 seems essential in the interplay between nerves, immunocytes, MCs, and 
epithelial cells within the luminal wall during GI diseases [17]. Histopathologically, 
PAR-2-agonists (SLIGRL) induced acute colitis has been observed with erythema, 
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granulocyte infiltrations and thickened colonic wall [25, 28], the colonic tissue 
sampled from the PAR-2 knockout mice that are infused intracolonically with 
2,4,6-trinitrobenzene sulfonic acid (TNBS) showed lower myeloperoxidase activities, 
microscopic- and macroscopic-damage scores [29]. Mediators such as intracellular- 
and vascular cell adhesion-molecule-1 were decreased while cyclooxygenase-1 was 
increased in the PAR-2 knockout mice, which clearly confirms the pro-inflammatory 
role of PAR-2. Notably, PAR-2, inactive during colitis, has been expressed for induc-
ing VH after resolution of colitis [30]. Furthermore, PAR-2 has also been over-
expressed in biopsies obtained from ulcerative colitis (UC) and CD patients, which 
strongly suggests its intricate role in IBDs [31–33].

2.2 Effects of PAR-2 on gastrointestinal functions

PAR-2 modulates GI functions, such as motility, ionic exchange, paracellular 
permeability, sensory functions, and inflammation [34]. The excitatory, as well as 
inhibitory actions of PAR-2-agonists on isolated smooth muscles, have been devised 
earlier [35, 36]. In-vitro, PAR-2 activation shows a region-specific role because it 
enhances the contractibility of gastric smooth muscles and reduces the contractility 
of circular and longitudinal colonic smooth muscles in mice [35, 37]. However, the 
intraperitoneal administration of PAR-2-agonists accelerated GI transit in mice [38]. 
Moreover, Mall et al. (2002) reported that PAR-2 activation on the enterocytes trig-
gers intestinal water secretion through a direct cellular mechanism, while Kong et al. 
[20] described the same by a prostaglandin E2-dependent mechanism. Additionally, 
activated PAR-2 stimulates mucus secretion by a nerve-mediated mechanism [39]. 
It weakens the intestinal barrier, resulting in an increased passage of fluids or even 
microorganisms across the gut mucosa. The intracolonic administration of PAR-2-
agonist in mice increases colonic permeability and results in a general inflammatory 
response [25, 34].

3. CGRP-receptors and their distribution

CGRP-receptor is a heterotrimeric complex, composed of calcitonin receptor-like 
receptor (CLR), receptor activity-modifying protein-1, and a small intracellular 
protein component and receptor component protein. CLR, a classical G-protein 
linked receptor, couples through adenylyl cyclase [40]. CGRP is expressed through-
out the peripheral and central nervous systems (CNS). Of the two forms, α-CGRP 
is mainly expressed in the CNS, especially in striatum, amygdalae, hypothalamus, 
colliculi, brainstem, cerebellum, and trigeminal complex [41–43], while β-CGRP is 
primarily expressed in the enteric neurons and vascular smooth muscle cells [44, 45]. 
Interestingly, α-CGRP is also found to be expressed in primary spinal afferent C- and 
Aδ-fibers [46].

The majority of spinal afferents innervated into the GI tract express CGRP and 
SP [47]. CGRP has been reported to be expressed markedly higher in the lumbosacral 
DRG and spinal cord dorsal horn (SCDH) during visceral inflammation [11, 48]. 
Zhang et al. [49] confirmed the absence of secondary hyperalgesia in the mice missing 
α-CGRP expression in the CNS. The SP and CGRP released from afferent terminals 
lead to neurogenic inflammation at the peripheral sites, resulting in MCs degranula-
tion, plasma extravasation, and arteriolar vasodilation [50]. CGRP causes vasodilata-
tion via its receptors on the smooth muscle cells at peripheral synapses. However, at 
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central synapses, it acts postsynaptically on the second-order neurons to transmit pain 
via the brainstem and midbrain to higher cortical pain regions [51].

3.1 CGRP modulates mast cell functions

CGRP is secreted from non-myelinated C-fibers and thinly myelinated Aδ-fibers 
originating from DRG neurons [52]. Sun et al. [53] showed peak CGRP levels in 
the colonic tissues, spinal cord, and hypothalamus of rats with IBS, and its correla-
tion with VH. Our earlier studies also demonstrated the remarkably higher CGRP 
expression in DRG and spinal cord that was correlated with VH in the TNBS-
induced ileitis rats and goats, respectively [13, 15]. Therefore, CGRP and CGRP-
receptors are found to be involved in the transmission and modulation of pain in the 
periphery and CNS [54, 55].

MCs that reside near the nerve fibers are true candidates for modulating neural 
activity and nociception [56]. The mediators such as SP, CGRP, vasoactive intestinal 
protein (VIP), dopamine, and arachidonic acid are able to influence MCs activation. 
The aforementioned mediators act on nociceptors, send signals to the CNS, and 
cause the simultaneous central release of SP and CGRP [57], which further activate 
MCs, and create a bidirectional positive feedback-loop for resultant neurogenic 
inflammation [58].

3.2 CGRP-release mediated by PAR-2

Activated PAR-2 sensitizes Transient Receptor Potential Vanilloid subtype-1 
receptors (TRPV-1) and triggers the release of sensory CGRP and SP [59]. CGRP 
and SP released from intestinal afferent terminals cause vascular dilatation, plasma 
extravasation, granulocyte infiltrations, and neurogenic inflammation [8, 9, 60]. An 
earlier study [8] reported that PAR-2-agonists-induced edema was entirely medi-
ated by the release of SP and CGRP from sensory neurons and further activation 
of neurokinin-1 (NK-1)- and CGRP-receptors on endothelial cells. In DRG, PAR-2 
co-expresses with TRPV-1, TRPV-4, TRPA-1 (Transient Receptor Potential Cation 
Channel, Subfamily-A, Member-1), SP and CGRP [8, 61, 62]. It is also reported that 
63% of sensory neurons express PAR-2 and up to 40% of them express both SP and 
CGRP [8]. Activated PAR-2 transmits C-fiber afferent input to the SCDH for the 
release of excitatory amino acids and neuropeptides from the central terminals [63].

3.3 Role of CGRP in sensitization

Afferent fibers innervating the gut vessels have cell bodies in the DRG. These fibers 
are peptidergic, containing both CGRP and SP, and have collaterals in enteric ganglia, 
mucosa, muscularis externa, and sympathetic prevertebral ganglia [64]. SP, CGRP, VIP, 
and somatostatin act as mediators of neurogenic inflammation in IBDs [65–67]. After 
stimulation, TRPV-1 depolarizes sensory neurons either directly or indirectly to initiate 
the release of these neuropeptides from the afferent terminals [68]. TRPV-1-positive 
nerve fibers co-express with SP, NK-1, and CGRP in mucosa, submucosal layer, deep 
muscular plexus, circular muscle, myenteric plexus, and longitudinal muscle layer in the 
rectum and colon of mice [69]. CGRP which is expressed largely in splanchnic afferents 
and CGRP-immunoreactivities from the GI tract disappears with capsaicin treatment 
[70]. Interestingly, about 50% of CGRP-immunoreactive extrinsic afferent neurons 
express SP- or NK-1-immunoreactivities [71] and their expressions fluctuate during 
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colitis [72]. The earlier decrease of the above neuropeptides may be due to their deple-
tion from the peripheral nerve terminals or the damaged nerves at the initial inflamma-
tory stage. CGRP and SP increase during inflammation or afferent nerve stimulation. 
TNBS-induced colitis/ileitis and or colorectal distension (CRD) results in higher expres-
sion of neural activation markers (such as c-Fos, pERK) as well as releases of SP and 
CGRP in the SCDH that are commonly linked with pain signaling [15, 73, 74].

Plourde et al. [75] confirmed the role of CGRP in pain modulation because intra-
venously administered CGRP-1-receptor-antagonists (h-CGRP8-37) reversed the sen-
sitization provoked by infusion of intracolonic acetic acid. SP and CGRP may either 
increase the peripheral sensory gain of extrinsic afferents within the gut or contribute 
to primary afferent transmission within the CNS [16, 76]. Despite irritation, immune 
challenge and inflammation cause the release of CGRP and SP from extrinsic afferents 
and intrinsic neurons within the gut [45, 77], the precise site at which CGRP-receptor 
and NK-1 mediate visceral pain is not known.

4. Role of PAR-2 in VH

PAR-2 activation in GI resident cells such as MCs, macrophages, or neutrophils 
induces the release of tiny amounts of inflammatory mediators that sensitizes 
primary afferents. It regulates vascular tone and causes immense pro- or anti-
inflammatory as well as pro-nociceptive effects in somatic or visceral pain [78]. 
PAR-2 expressed at the peripheral afferent neurons is more importantly involved in 
inflammation-induced VH [29, 30]. The glial cells of the enteric nervous system play 
pivotal roles in neuroimmune interactions and modulate enteric neurotransmission, 
inflammation, and intestinal barrier functions as they express receptors for purines 
and contain precursors for neurotransmitters such as GABA and NO. They can 
produce cytokines (TNF-α, IL-1β, IL-6), NGF, and neuropeptides (NK-1, SP, CGRP) 
after their activation. Both PAR-2 and proinflammatory cytokines impair the epithe-
lial barrier by decreasing tight junction protein expression and consequently facilitate 
the entry of luminal aggressors perpetuating inflammation and pain [9].

PAR-2 expressed in enterocytes increases permeability, which is linked with 
the immune activation and generation of VH [25, 79]. It is found that PAR-2-
agonists evoke the transient depolarization of submucosal enteric neurons with 
long-lasting hyperexcitability in guinea pigs [80]. Similarly, intracolonically 
administered PAR-2 agonist (SLIGRL-NH2, 100 μg/mouse) increased intestinal 
permeability and VH in mice [81]. The intracolonic administration of sub-
inflammatory doses of PAR-2-agonist led to prolonging the VH in response to 
CRD in rats [78]. PAR-2 activation on enteric neurons is also directly responsible 
for the development of VH as it conveys nociceptive signals for the excitability 
of submucosal neurons, colonic projections of DRG, and jejunal afferent neu-
rons [7]. Shi et al. [82] reported PAR-2 activation and higher CGRP levels in the 
serum and colonic tissue during VH in a rat model of IBS. Accumulating set of 
evidence suggests that protease activity is remarkably prominent in diarrheic-IBS 
and UC patients. The fecal supernatant or colonic biopsies from these patients 
when infused intracolonally into rodents resulted in higher intestinal perme-
ability, mucosal inflammation, and subsequent VH through a PAR-2 activation 
mechanism [83–86], while the same treatment failed to cause the VH in the PAR-2 
knockout mice [83]. Table 1 summarizes the findings of preclinical studies that 
intervened in the effects of PAR-2 on underlying VH.
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PAR Agonist/ antagonist Species 

(hypersensitivity 

model)

Study 

type

Effects Ref.

PAR-2 Agonist (SLIGRL-NH2) Mice 
(PAR2-agonist)

In vivo ↑ hyperalgesia [39]

PAR-2 Agonist (SLIGRL-NH2, 
Tc-NH2, trypsin, 
tryptase)

Mice, rat 
(PAR-2-agonist)

KO ↑ hyperalgesia, 
absent in KO 
mice

[87]

PAR-2 Agonist (SLIGRL-NH2, 
trypsin)

Rat 
(PAR2-agonist)

In-vivo ↑ hyperalgesia [78]

PAR-2 PAR-2 agonists 
(trypsin, tryptase, and 
a selective PAR-2-
activating peptide)

Mice received 
intracolonically 
PAR-2 agonists

KO Colonic 
administration 
of PAR-2 
agonists 
up-regulated 
PAR-2 
expression and 
induced colonic 
inflammatory 
reaction and 
permeability.

[25]

PAR-2 Agonist (SLIGR) Intracolonic 
infusion to mice

In-vivo Colonic 
inflammation 
and enhanced 
colonic 
permeability, 
while the 
intravenous 
injection 
of CGRP 
antagonist, i.e., 
CGRP (8–37) 
prevented PAR-2 
induced colonic 
inflammation.

[9]

PAR-2 Agonist (SL-NH2, 
trypsin, tryptase)

Guinea pig 
submucosal 
neurons 
(PAR-2-agonist)

Ex-vivo ↑ neuron 
excitability

[80]

PAR-2 Agonist (SLIGR) Intracolonic 
infusion of SLIGR 
(5 and 100 μg per 
mouse)

In-vivo At lower 
dose, SLIGRL 
increased colonic 
permeability 
while higher 
dose resulted 
in colonic 
inflammation

[79]

PAR-2 Agonist 
(2-furoyl-LIGRL-NH2)

Mice (capsaicin) KO ↑ hyperalgesia, 
absent in KO

[88]

PAR-2 Antagonist 
(ENMD-1068)

Mice 
(IBS-supernatant)

KO ↓ 
hypersensitivity, 
absent in KO

[83]
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Currently, the role of cathepsin-S is considered insightful because it activates spinal 
nociceptive neurons through a PAR-2-dependent mechanism and amplifies VH. Over 
the years, studies reported that cathepsin-S released from spinal microglial cells during 
nerve injury or colitis secretes fractalkine, thereby intensifying and maintaining the 
chronic pain [91, 92].

PAR Agonist/ antagonist Species 

(hypersensitivity 

model)

Study 

type

Effects Ref.

PAR-2 PAR-2 deficient TNBS- and 
dextran sodium 
sulfate-induced 
colitis in mice

KO Endogenous 
PAR-2 activation 
controls 
leukocyte 
recruitment in 
the colon and 
thus possesses 
a new potential 
therapeutic 
target for the 
treatment of 
IBD.

[29]

PAR-2 PAR-2 activation TNBS-induced 
colitis rats

In-vivo PAR-2 activation 
resulted in colitis 
and VH

[30]

PAR-2 Mediators from colonic 
biopsies of diarrhea-
predominant IBS 
patients

Mice DRG (IBS-D 
supernatant)

KO ↑ neuron 
excitability, 
absent in KO 
mice

[89]

PAR-2 Colono-scopic biopsies IBS-D and IBS-C 
patients

In-vivo Elevated PAR-2 
expression to 
regulate the 
expression of 
CGRP, VIP and 
SP resulting 
in symptoms 
associated with 
IBD

[22]

PAR-2 IntracolonicPAR-2 
agonist (SLIGRL-NH2, 
100 μg/mouse)

PI-IBS Mouse 
Model

In-vivo ↑ intestinal 
permeability and 
VH

[81]

PAR-2 PAR-2 activation TNBS-induced 
post-
inflammation 
irritable bowel 
syndrome 
(PI-IBS) rats

In--vivo ↑ visceral 
hypersensitivity

[90]

PAR-2 PAR-2 activation TNBS-induced 
ileitis goat

In-vivo ↑ visceral 
hypersensitivity

[15]

Abbreviations: DRG, dorsal root ganglia; IBD, inflammatory bowel diseases; IBS, irritable bowel syndrome; KO, Knock-
out; PAR-2, Protease-activated receptor-2.

Table 1. 
Preclinical studies investigating the effects of protease activated receptor-2 on visceral hyperalgesia.
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5. Role of PAR-2 in pain transmission

Proteases directly activate PAR-2 as well as assist other pronociceptive mediators for 
the subsequent sensitization of afferent fibers [83]. Figure 1 illustrates the important 
role of PAR-2 in pain transmission during GI disorders. PAR-2 activation on affer-
ent neurons leads to specific calcium signals that could participate in conveying pain 
messages [93]. Elmariah et al. [6] reported that cathepsin-S played a role in molecular 
signaling either alone or together with activated PAR-2. Activation of PAR-2 on DRG 
by its agonists enhances potassium chloride ions and the capsaicin (TRPV-1 agonist)-
evoked release of CGRP [8, 94]. Protease-activated receptor-1 and PAR-2 on enteric 
afferent fibers facilitate nociceptive input to the CNS, while spinal PAR-2 activation 
aggravates pain behaviors [21]. These findings strongly suggest that visceral activation 
of PAR-2 has an important role in sensitizing the second-order neurons at spinal level.

Figure 1. 
Role of PAR-2 in pain transmission. (a) Peripheral sensitization. PAR-2 is activated by proteases released from 
inflammatory and immune cells as well as from mediators of the intestinal lumen. Proteases sensitize neurons to 
innocuous stimuli. After stimulation, TRPV-1 depolarizes sensory neurons either directly or indirectly to initiate 
the release of SP and CGRP from the afferent terminals. PAR-2 activation on afferent neurons leads to specific 
calcium signals. (b) Primary afferent fiber. Pain signal is transmitted along primary afferent fibers to the spinal 
dorsal horn and subsequently to the brain. (c) Central sensitization. Persistent small-afferent input leads to a 
central sensitization associated with local release of SP and CGRP. PAR-2, protease-activated receptor-2;TRP, 
Transient Receptor Potential; Ca2+, calcium ion; SP, substance-P; CGRP, calcitonin gene-related peptide;TRPV-1, 
Transient Receptor Potential Vanilloid subtype-1.
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6. Therapies targeting PAR-2 and CGRP for VH

Researchers have come a long way in terms of understanding and controlling 
the inflammation-induced VH in experimental animals. An overview of the studies 
described in the following paragraph is shown in Table 2. It is worth mentioning that 
the oral administration of PAR-2-antagonists (GB88) ameliorates acute and chronic 
colitis induced by PAR-2-agonists and TNBS, respectively, in rats [28]. Several studies 
have demonstrated that protease inhibitors and PAR-2-antagonists relieve the inflam-
mation and resultant VH in animals [78, 83, 86, 87, 95, 96, 102]. In chronic inflam-
mation and pain syndromes, the blockade of PAR-2 inhibits both pain signals and 
inflammatory responses [7]. The intraperitoneal administration of PAR-2 antagonist 
(FSLLRY-NH2, 3 mg/kg daily for 5 days) reversed intestinal permeability and also 
attenuated VH in PI-IBS mice which confirms the therapeutic potential of PAR-
2antagonist in VH [81].

Studies utilizing both CGRP knockout mice and antagonist hCGRP8-37 have 
confirmed the protective role of CGRP in colitis and devised its insightful roles in 
hyperalgesia [18, 97, 98, 103]. Intravenously administered hCGRP8-37 attenuated 
distension-evoked pain responses and completely reversed the sensitization effects 
in acetic acid-induced acute colitis rats [18]. Julia and Bueno [99] reported that 
hCGRP8-37 also suppressed the pain in rats provoked by intraperitoneal injection of 
acetic acid. Furthermore, its intrathecal administration reversed the CGRP expres-
sions and alleviated the VH in both acetic acid-induced acute and TNBS-induced 
chronic colitis rats [18, 19]. Recently, Noor-Mohammadi et al. [101] reported that the 
single dose of intraperitoneally administered anti-CGRP, i.e., F(ab’)2 fragment anti-
body attenuated the stress-induced colonic hypersensitivity in rats which confirms 
the prevailing role of CGRP in persistent visceral pain.

Nowadays, alternative therapies have been attracting attention due to their 
potential in the treatment of VH. Sun et al. [53] described that electroacupuncture 
(EA) attenuates VH in rats with diarrheic-IBS by suppressing spinal CGRP. EA 
therapy also alleviated the VH symptoms through downregulation of the PAR2, SP, 
and CGRP levels in colon tissues in post-inflammation-IBS rats [90]. Likewise, Deng 
et al. [100] exhibited that the EA at ST-37 and ST-25 relieved the VH in IBS rats by 
decreasing the number of MCs and suppressing the expression of PAR-2, TRPV1, 
CGRP, SP and Try proteins in the colonic tissues. Our recent study also reported the 
effectiveness of repetitive EA for treating both acute and chronic pain because it 
down-regulated the PAR-2-mediated CGRP release in the spinal cord [15]. Shi et al. 
[82] administered Shugan decoction (herbal extracts) intragastrically in rats in IBS 
model and found that it abolished VH by attenuating the release of PAR-2-mediated 
CGRP.

7. Conclusions

GI tract is the organ that is exposed frequently to proteases both during physiolog-
ical and pathophysiological conditions. Besides degradative enzymatic roles, the pro-
teases also act as signaling molecules in various gut diseases. Understanding the exact 
mechanism of VH is pivotal to identifying the novel efficacious therapy for IBDs. 
PAR-2 activation by tryptase, trypsin, and cathepsin-S causes the release of CGRP 
and SP in extrinsic primary afferent fibers and intrinsic enteric neurons [45, 77]. Both 
CGRP and SP facilitate the excitation of extrinsic afferents as well as participate in the 
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Targeted 

substances

Antagonist/ 

inhibitors

Species (VH model) Study 

type

Effects Ref.

PAR-2 PAR-2 antagonist 
(GB88)

PAR-2-agonists and 
TNBS-induced colitis 
rats

In-vivo Acute and chronic colitis ↓ [28]

PAR-2 PAR-2 gene 
deletion

Paw inflammation in 
Rats and Mice

In-vivo Hyperalgesia ↓ [87]

PAR-2 PAR-2 agonist 
(SLIGRL-NH2)

PAR-2 agonist 
induced colitis and 
VH

In-vivo Increased intestinal 
permeability and the 
activation of NK1 
receptors.SLIGRL-NH2 
induced hyperalgesia 
was inhibited by a NK1 
receptor antagonist (SR 
140333).

[78]

PAR-2 PAR-2 agonist Intrapancreatic 
administration of 
PAR-2

In-vivo PAR-2 expression in all 
thoracic DRG. Increased 
c-FOS expression and pain 
behaviors.

[95]

PAR-2 PAR-2 antagonist 
PAR-2 knockout

Colonic biopsy from 
IBS patients

In-vivo Supernatants from colonic 
biopsies of IBS patients 
showed VH. Serine 
protease inhibitors and a 
PAR-2 antagonist inhibited 
VH. However, VH was 
absent in PAR-2 knockout 
mice.

[83]

Protease Fecal protease Fecal proteases from 
IBS-D patients

In-vitro Increased fecal protease 
and amylase in patients 
with IBS-D.

[86]

PAR-2 Serene protease 
inhibitor and 
PAR-2 antagonist 
Knockout

Fecal supernatant 
from IBS-D patients 
infused into the 
colon of mice

In-vivo Increased VH in mice 
infused with fecal 
supernatant while VH was 
suppressed in mice infused 
with intracolonic serene 
protease inhibitor and 
PAR-2 antagonist.

[96]

PAR-2 PAR-2 antagonist 
(FSLLRY-NH2, 
3 mg/kg daily 
intraperitoneally 
for 5 days)

PI-IBS Mouse Model In-vivo Intestinal permeability and 
VH ↓

[81]

CGRP Intravenous 
antagonist 
CGRP [human 
CGRP-(8–37)
Intrathecal 
administration of 
hCGRP-(8–37) 
(mid-lumbar)

Acetic acid induced 
colitis Intravenous 
CGRP to induce VH

In-vivo VH ↓ [18]

CGRP CGRP antagonist 
(h-CGRP 8–37)

TNBS-induced colitis In-vivo VH ↓ [97]
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Targeted 

substances

Antagonist/ 

inhibitors

Species (VH model) Study 

type

Effects Ref.

CGRP Mutant mice 
lacking α-CGRP 
or β-CGRP 
expression

DSS induced colitis In-vivo α-CGRP and β-CGRP play 
a protective role in the 
generation of spontaneous 
colitis, supporting a role for 
both extrinsic and intrinsic 
CGRP-containing neurons.

[98]

CGRP CGRP antagonist 
(hCGRP8–37)

Intraperitoneal acetic 
acid-induced VH

In-vivo VH ↓ [99]

CGRP CGRP antagonist 
(hCGRP8–37)

TNBS-induced acute 
colitis rats

In-vivo Intrathecal administration 
of hCGRP8–37 reversed 
the CGRP expressions and 
alleviated the VH.

[19]

CGRP EA Chronic and acute 
stressed rats with 
IBS-D

In-vivo EA attenuates VH in 
rats with IBS-D through 
suppressing spinal CGRP.

[53]

CGRP Shugan decoction 
(herbal extracts)

A rat model of IBS 
induced by chronic 
water avoidance 
stress

In-vivo Intragastrically 
administered Shugan 
decoction abolished VH by 
attenuating the PAR-2 and 
CGRP.

[82]

PAR-2 and 
CGRP

EA at ST-37 and 
ST-25

A rat model of IBS 
induced by chronic 
water avoidance 
stress

In-vivo Attenuation of VH 
attributed due to 
decreasing number of MCs 
and down-regulation of 
PAR-2, TRPV1, CGRP, SP 
and Try proteins in the 
colonic tissues.

[100]

PAR-2 and 
CGRP

EA at ST-25 and 
ST-37

TNBS instilled 
into anus to induce 
post-inflammation 
visceral 
hypersensitivity

In-vivo EA alleviated visceral 
hypersensitivity symptoms 
through downregulation of 
the PAR-2, SP and CGRP 
in colonic tissues in post 
inflammation-IBS rats.

[90]

PAR-2 and 
CGRP

EA at ST-36 TNBS-induced ileitis In-vivo Repetitive EA therapy 
attenuated visceral 
hypersensitivity through 
the suppression of spinal 
PAR-2 and CGRP in  
goats.

[15]

CGRP F(ab’)2 fragment 
antibody 
(30 mg/kg 
intraperitoneally)

Chronic Adult Stress 
in rats Induced by 
Water Avoidance 
Stress

In-vivo A single dose of F(ab’)2 
fragment antibody 
inhibited stress-induced 
colonic hypersensitivity

[101]

Abbreviations: PAR-2, protease-activated receptor-2;TNBS, 2,4,6-trinitrobenzene sulfonic acid; DRG, dorsal root 
ganglia; NK-1, neurokinin-1;IBS, irritable bowel syndrome; IBS-D, irritable bowel syndrome with diarrhea; CGRP, 
calcitonin gene-related peptide; α-CGRP, alpha-calcitonin gene-related peptide; β-CGRP, beta-calcitonin gene-related 
peptide; VH, visceral hyperalgesia; EA, electroacupuncture.

Table 2. 
Preclinical studies targeting the antagonism or blockade of PAR-2 and CGRP as a therapeutic strategy for the 
management of inflammation and visceral hyperalgesia.
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central transmission of nociceptive traffic between afferent neurons and higher-order 
neurons in the spinal cord and brainstem. The blockade and/or antagonism of PAR-2 
and CGRP release can effectively relieve VH in IBDs, IBS, or other functional bowel 
disorders. Further research is required to deepen our understanding of the blockade 
or antagonism of PAR-2 or CGRP before these potential therapies can be clinically 
translated for the management of VH in humans.
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