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Chapter

An Immune Multiobjective
Optimization with Backtracking
Search Algorithm Inspired
Recombination
Hamed Ould Sidi, Rachid Ellaia, Emmanuel Pagnacco

and Ahmed Tchvagha Zeine

Abstract

We propose a novel hybrid multiobjective (MO) immune algorithm for tackling
continuous MO problems. Similarly to the nondominated neighbor immune algo-
rithm (NNIA), it considers the characteristics of OM problems: based on the fitness
values, the best individuals from the test population are selected and recombined to
guide the rest of the individuals in the population to the Pareto front. But NNIA
uses the simulated binary crossover (SBX), which uses the local search method. In
our algorithm, the recombination is essentially inspired by the cross used in the
backtracking search algorithm (BSA), but the adaptations are found in the immune
algorithm. Thus, three variants are designed in this chapter, resulting in new
recombination operators. They are evaluated through 10 benchmark tests. For the
most advanced proposed variant, which is designed to have global search ability,
results show that an improved convergence and a better diversity of the Pareto
front are statistically achieved when compared with a basic immune algorithm
having no recombination or to NNIA. Finally, the proposed new algorithm is dem-
onstrated to be successful in approximating the Pareto front of the complex 10 bar
truss structure MO problem.

Keywords: multiobjective optimization, evolutionary algorithms, backtracking
search, hybrid recombination, artificial immune systems, truss optimization

1. Introduction

Planty of the multiobjective (MO) optimization problems lie in the engineering
field. The objective functions are contradictory, the optimal solutions of these
problems are known by the Pareto front. To get the optimal solutions of these
problems, evolutionary algorithms (EAs) have been recognized to be very efficient
in solving MO optimization problems by finding a representative Pareto front in
one run. State-of-the-art algorithms are presented in [1–5]. These algorithms, which
are population-based, are able to simultaneously explore various regions of the
Pareto front.

In last past few years, immune systems have inspired new algorithms for
resolutions OM problems. The fundamental principles of the artificial immune
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system (AIS) algorithm are clonal selection, [6] mutation, and more recently,
recombination [7–15].

The nondominated neighbor-based immune optimization algorithm (NNIA) is
effective to deal with MO problems [9]. NNIA has proved that it is advantageous to
incorporate a crossover operator into the algorithm. To do this, it uses simulated
binary crossover (SBX). But SBX is a recombination operator, which performs
search near the recombination parent [16].

Backtracking Search Optimization Algorithm (BSA) is a new nature-inspired
algorithm proposed by [17]. BSA’s special mechanism to ensure a trial individual is
effective, ability to learn fast solving different numerical optimization problems
sequentially and quickly, with a clear structure. Since it was introduced, the BSA
has attracted many research studies, and it has been applied to various optimization
problems [18–20].

In this chapter, we develop a novel hybrid MO immune method to solve the
problems of continuous multiobjective optimization. The NNIA algorithm uses the
best individuals in the trial population to drive the search to Pareto front. But NNIA
uses SBX, which mainly has local search capability. In our proposal, the recombina-
tion is inspired by the cross used in the BSA algorithm, but adaptations are found to
fit the immune algorithm. Therefore, three variants are considered in the context of
this chapter, which gives rise to new recombination operators for immune
algorithm.

This chapter is organized as follows: In Section 2, we introduce the MO problem.
In Sections 3 and 4, NNIA algorithm and BSA recombination are presented, and we
propose new algorithms to solve the MO problem. The effectiveness of these algo-
rithms is investigated in Section 5 when confronting to various MO test problems.
In Section 6, the chosen algorithm is applied to solve the multiobjective topology
optimization of truss structures. A short summary is proposed to conclude this
paper.

2. Multiobjective optimization problem

The multiobjective optimization problem is formalized in this section.
Concepts related to the Pareto front are introduced, firstly from a theoretical point
of view and then when considering its approximation through a numerical
approach [21].

2.1 Pareto front

Let us consider the following multiobjective optimization (MO) problem:

min
x∈Ω

f xð Þ ¼ f 1 xð Þ,⋯, fm xð Þ
� �T

(1)

where m is the number of objective functions, x ¼ x1,⋯, xnð Þ∈Ω is the
nx-dimensional decision space where each decision variable xi is bounded by lower
and upper limits xli ≤ xi ≤ xui for i ¼ 1,⋯, nx.

Pareto-front-related concepts are [22]:

1.Pareto dominance: Suppose xa and xb are two different feasible solutions to the MO
problem. Then xa dominates xb if and only if

f i xað Þ≤ f i xbð ÞÞ∀i∈ 1,⋯,mf g (2)

2
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and:

∃k∈ 1, … ,mf g f k xað Þ< f k xbð Þ (3)

1.Pareto-optimal solution: A solution x ∗ is said to be Pareto-optimal if there does
not exist another solution that dominates it.

2.Pareto-optimal set: The Pareto-optimal set is the set X ∗ of all Pareto-optimal
solutions.

3.Pareto-optimal front: The Pareto-optimal front is the set F ∗ of values or
outcomes of all the objective functions, which corresponds to the solutions:

F ∗ ¼ f x ∗ð Þ ¼ f 1 x ∗ð Þ, … , fm x ∗ð Þ
� �T

such that : x ∗ ∈X ∗
n o

(4)

2.2 Multiobjective solution

Otherwise, the following terms are cited in the reference [9]:

1.Antibody: An antibody refers to the coding of a decision variable x. In this
study, a real-valued representation is adopted, being x itself.

2.Crowding distance: The crowding distance (CD) is a measure for diversity
maintenance [1]. It reads:

CD bX
� �

¼
Xm

j¼1

D j
bX
� �

fmax
j � fmin

j þ εD
(5)

where fmax
j and fmin

j are maximal and minimal values of the j-th objective

respectively, εD is a small number and:

D j
bX
� �

¼
∞ if bxk isaboundary point of bX

min f k
bX
� �

� f l
bX
� ����

��� otherwise

8
<

: (6)

for k, l∈ 1,⋯, nxf g such that k 6¼ l 6¼ j.

3. Immune optimization algorithm and recombination operator

3.1 Nondominated neighbor immune optimization algorithm

Nondominated neighbor immune algorithm (NNIA), using the nondominated
neighbor-based selection and proportional cloning, pays more attention to the less-
crowded regions of the current trade-off front.

We denote by bX the dominant population, XA the active population and XC the
clone population at time t are stored by time-dependent variable matrices, Their
sizes are nX̂, nA, and nC respectively.

3
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The NNIA algorithm is presented in 1 where: = is the update operator. nD, nX̂max ,
nAmax , nC, and nit, the number of iterations.

Algorithm 1 Pseudo code of NNIA

Function bX ¼ NNIA nx,m, f xð Þ,xl,xu, nX̂max , nAmax , nC, nit
� �

1: Generate a uniform random initial population bX of size nC � nx in respect to xl

and xu;

2: bX≔Find_Non_Dominated bXjf xð Þ
� �

;

3: for t ¼ 0 : nit, do

4: XA ≔CD_Truncation bX, nAmax

� �
;

5: XC ≔Cloning XA, nCð Þ;
6: XC ≔Recombination XC,XA,xl,xuð Þ;
7: XC ≔Hypermutation XC,xl,xuð Þ;

8: bX≔Find_Non_Dominated bX;XC

h i
jf xð Þ

� �
;

9: bX≔CD_Truncation bX, nbXmax

� �
;

end for

3.2 Recombination and crossovers

3.2.1 NNIA recombination

For a recombination, operation of NNIA has been adopted in many MO EAs
[1, 4], an antibody of the cloning population and an antibody of the active popula-
tion are selected and modified as:

XCf gij ≔

1� β

2
XCf gij þ

1þ β

2
XAf gkj if a ¼ 1 & b ¼ 0

1þ β

2
XCf gij þ

1� β

2
XAf gkj if a ¼ 1 & b ¼ 1

XCf gij if a ¼ 0

8
>>>><

>>>>:

∣a � U 0, 1ð Þ, b � U 0, 1ð Þ

(7)

for i∈ 1, … , nCf g, j∈ 1, … , nxf g, and k a random integer uniformly chosen in
1, … , nAf g. Above, U is the uniform discrete distribution, and β is a sample from a

random distribution having the density:

p βð Þ ¼

0 if β<0
ηþ 1

2
βη if 0≤ β≤ 1

ηþ 1

2βηþ2 if β> 1

8
>>>><

>>>>:

where η is a real nonnegative distribution. Hence, four independent random
variables are involved in this recombination operation: a, b, k, and β. A boundary
control is performed by:
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XCf gij ≔

xli if XCf gij < xli

XCf gij if xli ≤ XCf gij ≤ xui

xui if XCf gij > xui

8
><

>:

3.2.2 Crossover operator of backtracking search optimization algorithm

Crossover strategy of BSA [17]. It consists in mixing two input populations XP

and XQ to form a new output population XR, of equal sizes: nX � nx. Then, BSA’
crossover reads:

XRf gij ≔
XPf gij if Tij ¼ 0

XQ

� �
ij

if Tij ¼ 1

(

(8)

for i∈ 1, … , nXf g, j∈ 1, … , nxf g and where T is a boolean matrix of sizes: nX �
nx, which is formed by following the algorithm 2.

To control the amount of mixing between the two populations XP and XQ ,
we must define the parameter η such that 0< η≤ nx. Moreover, we perform a
random permutation on the lines of the XP population before applying the
relation (8).

Algorithm 2 Algorithm for the generation of the Tmatrix used in the BSA crossover

1: Initialize T≔0 and a≔U 0, 1ð Þ;
2: if a ¼ 0 then
3: for i ¼ 1 : nX do
4: u≔Permuting 1 : nxð Þ;
5: b≔U 0, ηð Þ;
6: for k ¼ 1 : b do
7: j ¼ uk;
8: Tij ¼ 1;
9: end for
10: end for
11: else
12: for i ¼ 1 : nX do
13: j≔U 0, nxð Þ;
14: Tij ¼ 1;
15: end for
16: end if

4. Recombination propositions for an hybrid algorithm

To get a more efficient immune algorithm, we will propose a hybridization
method, which consists of exchanging the crossover operator used for recombina-
tion in NNIA with a new recombination operator inspired by BSA [23].

To find this new algorithm, we have to use two ideas:

1.The first idea consists of expanding the active population in order to obtain an
extended active population, having its size equal to the clonal population size.
The simplest way to achieve this consists of duplicating the active population;
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2.The second idea consists of replacing the active population for the crossover by
the clonal population, leading finally to a crossover that uses only the clonal
population.

5. Experiments

In this section, we study the performance of the hybridization when solving
some well-known MO techniques including five ZDT problems [24] and five DTLZ
problems [25].

An optimization problem is typically written as:

min
x∈Ω

f xð Þ ¼ f 1 xð Þ,⋯, fm xð Þ
� �T

(9)

where m is the number of objective functions, x ¼ x1,⋯, xnð Þ∈Ω is the nx-
dimensional decision space where each decision variable xi is bounded by lower and
upper limits xli ≤ xi ≤ xui for i ¼ 1,⋯, nx.

5.1 Performance metrics

Approximate Pareto front solution of MO algorithms must achieve these two
goals:

1.Convergence toward the true Pareto front; and

2.Diversity of solutions: the Pareto front must be uniformly distributed and
spread over the entire feasible objective space to adequately capture the
trade-offs.

For benchmark test problems, the true Pareto front is known, allowing to exploit
performance metrics that used it.

We opted for two performance metrics for assessing algorithms efficiency. To
measure the extent of the convergence to the true set of Pareto-optimal solutions
and the spread of the Pareto front set, a normalized version of the inverted gener-
ational distance (IDG) metric proposed by [26] is adopted, while a normalized
version of the spacing metric introduced by [27] enables to measure the uniformity
of the obtained solutions.

5.1.1 Normalized inverted generational distance

The normalized inverted generational distance (NIGD) is based on a proposition
of [26]. For measuring of the distance between the true Pareto front F ∗ , which is
known at n ∗ discrete values—and stored in the matrix F X ∗ð Þ—and approximate

solutions of the Pareto-optimal front F bX
� �

:

NIGD F X ∗ð Þ,F bX
� �� �

¼
1

n ∗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn ∗

j¼1
c2j

r
, (10)

for:

c j ¼ min
i∈ 1, … , nXf g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼1
Fk X ∗

i

� �
� Fk

bX j

� �� �2
r !

, j∈ 1, … , n ∗f g
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where • denotes a normalized objective function, ranging from 0 to 1 and
defined by:

Fk xð Þ ¼
Fk xð Þ � min Fk X ∗ð Þð Þ

max Fk X ∗ð Þð Þ � min Fk X ∗ð Þð Þ
: (11)

To obtain smaller values of this measure, the approximated set F bX
� �

must be

very close to the Pareto front and cannot miss any part of the whole Pareto front at
the same time.

5.1.2 Normalized spacing measure

The spacing metric introduced by [27] is modified by taking normalized
objectives functions. This leads to the normalized NSP measure, defined by:

NSP F X̂
� �� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nX � 1

XnX

j¼1
d j � d
� �2

r
(12)

for:

d j ¼ min
i∈ 1, … , nXf g

i 6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼1
Fk X̂i

� �
� Fk X̂ j

� �� �2
r !

, j∈ 1, … , nXf g

where d is the mean of d.

5.2 Empirical comparison

In this section, performance of five NNIA variants are evaluated. The five
variants are:

1.NNIA-X: the NNIA algorithm without crossover;

2.NNIA: the algorithm proposed by [9];

3.NNIA+X1: the hybridization of the NNIA algorithm with the BSA crossover by
using the first strategy proposed in the Section 4. Inputs of the BSA crossover
function are (1) the clonal population and (2) a random permutation of an
extended active population obtained by duplicating individuals;

4.NNIA+X2: the hybridization of the NNIA algorithm with the BSA crossover by
using the second strategy proposed in the Section 4. Inputs of the BSA
crossover function are (1) the clonal population and (2) a random permutation
of the clonal population;

5.NNIA+X3: the hybridization of the NNIA algorithm with the BSA crossover by
using the third strategy proposed in the Section 4. Inputs of the BSA crossover
function are (1) the clonal population and (2) a random permutation of an
extended active population obtained by duplicating individuals with a
proportion of random individuals.

7
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For NNIA, parameters proposed in Ref. [9] are set:

• maximum size of dominant population: nX̂max ¼ 100,

• maximum size of active population: nAmax ¼ 20, and

• size of clone population nC ¼ 100,

with the distribution index for SBX that is 15, the distribution index for polyno-
mial mutation that is 20 and the mutation probability of 1=nx and the number of
iterations stopped at 250. For NNIA+X3, the proportion of random individuals is
chosen to be equal to nA and their distribution is uniform.

Figures 1 and 2 show the statistic box plots for NIGD and NSP obtained for 1000
independent runs performed on each test problems ZDT and DTLZ that are chosen
by [9]1.

Figure 1.
NIGD obtained from 1000 independent runs of problems ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, DTLZ1,
DTLZ2, DTLZ3, DTLZ4, and DTL7.

1 From informations given in [25], it is believed that the problem denoted DTLZ6 in [9] is in fact the

DTLZ7 problem.
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NIGD’s statistical results show that the NNIA algorithm is better than NNIA-X for
the problems addressed. We also observe the efficiency of the NNIA+X1 and NNIA
+X2 algorithms compared with NNIA with the exception of the difficult DTLZ4 test
problem. For ZDT4 problem, NNIA+X3 is lower than NNIA+X1 and NNIA+X2. But
we can always notice that our proposed algorithm NNIA+X3 remains superior to
NNIA for the problems treated. Except for the two issues ZDT4 and DTLZ4, NSP
shows the superiority of NNIA over NNIA-X. In all treated cases, NNIA+X1, NNIA
+X2, and NNIA+X3 appear to be equal to or greater than NNIA. But for all these
algorithms, the DTLZ4 problem seems to be the most difficult, since there are runs
for which the Pareto front is approximated by a single, unique, point.

Table 1 shows the percentage of results showing a single point for the Pareto
front of the DTLZ4 test problem when a sequence of 1000 runs is performed with

Figure 2.
Statistics box plots of NSP obtained from 1000 independent runs of benchmark test problems ZDT1, ZDT2,
ZDT3, ZDT4, ZDT6, DTLZ1, DTLZ2, DTLZ3, DTLZ4, and DTL7.

NNIA-X NNIA NNIA+X1 NNIA+X2 NNIA+X3

2% 11% 13% 11% 0.2%

Table 1.
Percentage of results exhibiting a single point for the Pareto front of the DTLZ4 test problem when 1000 runs
are carrying out.

9
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each algorithm. Generally, we conclude that NNIA+X3 retains better population
diversity, and its convergence is faster than NNIA for these two and three objective
test problems.

6. Experiments on the 10 bar truss design problem

In this section, we address the multi-objective sizing optimization of
truss-like structures which is a continuous subject of researches in structural
design [28–30].

6.1 Problem formulation

In this study, we consider the 10 bar truss test, ketch in the Figure 3. Two
objective functions have to be minimized: the mass and the displacement; and one
objective function has to be maximized: the first flexible natural frequency of the
structure.

Denoting x∈Ω the vector of the topological and sizing optimization parameters,
such that 0≤ xi ≤ 1 for i∈ 1, … , nf g where n ¼ 10 is the number of elements, the
three individual objectives are:

1.The mass w of the structure

w xð Þ ¼
Xn

i¼1

ρAlixi,

where li is the length of the i-th element, ρ ¼ 2768 kg/m3 is the density of the
material and A ¼ 0:01419352 m2 is the element cross-section area.

2.The maximum displacement u of the structure

u xð Þ ¼ max u ∗ ¼ argmin
S

1

2
uTK xð Þu� uTF


 �
 �
,

where:

• F is the vector of loads

Figure 3.
Sketch of the 10 bar truss.
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• K is the stiffness matrix of the finite element (FE) model, having the Young’
modulus E ¼ 68:95 GPa.

The set S refers to the kinematic admissible space, i.e. the one that satisfies the
imposed boundary conditions given by the supports while carrying all the pre-
scribed loads, where P ¼ 448:2 kN.

3.The function (minimum flexible natural frequency f ) to maximize it

�f xð Þ ¼ �min
1

2π
ω ∗


 �
,

where : ω ∗ 2,u ∗
� �

¼ argmin
u∈S

ω2 ¼
uTK xð Þu

uTM xð Þu


 �
, uk k 6¼ 0

where M is the mass matrix of the FE model2.
Moreover, this MO problem is subjected to constraints for the mechanical stress

σi for each element i:

σi xð Þj j≤ σ i∈ 1, … , nf g

where σ ¼ 172:4 MPa is the yield strength.
As designs with local rigid body modes or kinematic modes are not of interest,

constraints are added to the MO problem formulation:

σi xð Þj j

σ
> ε, i∈ 1, … , nf gsuch thatxi >0

where ε ¼ 0:001.
Since the optimal Pareto front is unknown for this problem, unnormalized

metric indicators are to assess for the MO algorithm performance. Thus, in practice,
we introduce an a priori scaling of the three objectives, by defining:

f 1 xð Þ ¼
w xð Þ

7, 000
, f 2 xð Þ ¼

u xð Þ � 0:016

20
, f 3 xð Þ ¼

22, 500� 2πf xð Þð Þ2

5, 000

Moreover, in order to handle constraints of this MO problem, we use the penalty
method. This technique consists of replacing the constrained optimization problems
by an optimization problems without constraints, when introducing new objective
functions to be optimized:

ϕk xð Þ ¼ f k xð Þ þ rφ xð Þ (13)

where the penalty function chosen here is:

φ xð Þ ¼
Xn

i¼1

max 0,
σi xð Þj j

σ
� 1

� 

 �2

þ
Xn

i¼1

max 0, ε�
σi xð Þj j

σ

� 

 �2

(14)

and where r is a positive penalty parameter. We have chosen here r ¼ 1010.

2 To obtain the best numerical efficiency for the FE analysis, the FE disassembly strategy proposed in

Ref. [31] is involved.
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Finally, the MO problem definition for the 10 bar truss of this work is:

min
x∈Ω

f 1 xð Þ þ rφ xð Þ, f 2 xð Þ þ rφ xð Þ, f 3 xð Þ þ rφ xð Þ
� �

6.2 Numerical simulations for two objective functions

In this subsection, we will subdivide and transform the 10 bar MO problem from
the previous section into three MO subproblems. Objective functions are considered
two by two: w, uð Þ, w, fð Þ, and u, fð Þ To solve each of these 10 bar MO problems, we
use the NNIA algorithms and the NNIA+X3, keeping the parameters to those of the
previous subsection 5.2.

After 250 and 750 iterations, we obtain the two Figures 4 and 5 (respectively),
which show Pareto fronts of a typical execution, if the two algorithms start from the
same initial population. In these figures, we observe that the NNIA+X3 algorithm
shows better diversity for each subproblem, and that NNIA+X3 gives better con-
vergence for the subproblems w, fð Þ and u, fð Þ. Since each iteration of one of these
algorithms requires nc ¼ 100 evaluations of the mechanical problem, 25,000 func-
tion evaluations are performed when 250 iterations are performed, and 75,000
function evaluations are performed when 750 iterations are performed.

Figure 6 shows the evolution of two metric indicators along the number of
iterations for one typical run. Metric indicators chosen here are spacing and hyper-
volume of Pareto fronts. Spacing evolution is presented in log-log scale in the figure.
Each evaluation of the hyper-volume is achieved by using the same anti-utopia
point and utopia point for results consistency. Moreover, in order to compare the
three MO results on the same graph, a relative hyper-volume is plotted: the graph
corresponds to the hyper-volume obtained divided by its maximum value. These
graphs show a better diversity and convergence for NNIA+X3 compared with NNIA
when early number of iterations are considered.

Figure 4.
Pareto fronts of the 10 bar truss MO problem two by two: w, uð Þ (up-left), w, fð Þ (up-right), u, fð Þ (down),
after 250 iterations.

12
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Tendency observed in the previous figure is confirmed by statistical results of
Figure 7 and Figure 8. These figures show box plots statistic for spacing and
hyper-volume (respectively) when 300 runs stopped at 250 iterations are carried
out. For spacing, means and variance are clearly better for NNIA+X3.
Hyper-volume statistic results are also better for the NNIA+X3 when considering
the w, uð Þ and u, fð Þ subproblems, while they are almost identicals for the w, fð Þ
supbproblem, although the mean and variance are also better for the NNIA+X3.
From results for the hyper-volume of the w, fð Þ supbproblem, it is assessed that
this subproblem is the most difficult to solve since a wide spread is observed in
data for both algorithms.

Figure 6.
Metrics indicators of the 10 bar truss MO problem for the three objectives functions two by two: spacing (up)
and relative hyper-volume (down).

Figure 5.
Pareto fronts of the 10 bar truss MO problem, after 750 iterations for two by two: w, uð Þ (up-left), w, fð Þ (up-
right), u, fð Þ (down).
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6.3 Numerical simulation for three objective functions

Figure 9 shows different views of the Pareto front obtained for one typical run
when solving the three objectives 10 bar truss problem, using NNIA+X3 with the
following parameter values: size of active population 30, clonal scale 150 and 750
iterations. In this case, the size of the dominant population is not limited to any
number and all Pareto points found are kept. Figure 10 shows the evolution of the

Figure 7.
Statistics box plots of spacing for 300 runs of the two-by-two MO 10 bar subproblems: w, uð Þ (left), w, fð Þ
(middle), u, fð Þ (right).

Figure 8.
Statistics box plots of relative hyper-volume for 300 runs of the two-by-two MO 10 bar subproblems: w, uð Þ
(left), w, fð Þ (middle), u, fð Þ (right).

Figure 9.
Four different views of the Pareto front obtained for solving the three objective functions of the 10 bar truss
problem; Colorized surface of the down-right subfigure is added for a better visualization, and the color
corresponds to the frequency objective f .
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number of points in the dominant population for the Pareto front given in Figure 9.
It ends at 2216 Pareto points for this run.

Figure 11 shows box plot statistics when 300 runs are carried out with NNIA and
NNIA+X3. It is observed that the number of points for the Pareto front is higher for
NNIA+X3, with a better spacing. But the hyper-volume is better for NNIA.
Detailled analysis of results has revealed that bad results for hyper-volume are due
to a slow convergence to an extreme Pareto front point: the individual optima for
the frequency objective. For this problem, the individual minima found for the
frequency objective are most of the time better for NNIA than for NNIA+X3.
However, it is also found that individual minima of the three objectives are rarely
found in the Pareto front by both algorithms.

For better results, the idea is to handle the three individual minima found by a
mono-objective optimization into the random initial population of both NNIA and
NNIA+X3. This simple modification greatly improves performance results.
Figure 12 shows statistics box plots when 300 runs of MO problem are carried out
when the three individual optima are given in the initial population. In such a
situation and for each of the 300 runs done, NNIA+X3 appears to be superior to
NNIA for all performance aspects, including the computed hyper-volume.

Figure 10.
Evolution of results for a typical run of the MO 10 bar problem: Number of points for the Pareto front (left),
spacing (middle), and relative hyper-volume (right); Blue line with cross markers: NNIA; Red line with
squared markers: NNIA+X3.

Figure 11.
Statistics box plots for 300 runs of the three objectives 10 bar problem with NNIA and NNIA+X3 with random
initial population: Number of Pareto front points (left), spacing (middle), and relative hyper-volume (right).

Figure 12.
Statistics box plots for 300 runs of the three objectives 10 bar problem with NNIA and NNIA+X3 when
individual optima are handled in the initial population: Number of Pareto front points (left), spacing
(middle), and relative hyper-volume (right).

15

An Immune Multiobjective Optimization with Backtracking Search Algorithm Inspired…
DOI: http://dx.doi.org/10.5772/intechopen.100306



7. Summary

This work is devoted to recombination for an NNIA algorithm. We propose
three recombinations, inspired by the BSA algorithm crossing operator when
adapting input populations.

In the first NNIA+X1 algorithm, the clonal population and an extended active
population are concerned, when the extended active population is founded by
duplicating individual antibodies.

In the second algorithm, NNIA+X2, recombination is achieved by using the
clonal population and itself.

The NNIA+X3 algorithm uses the clonal population and an extended working
population, which finds by duplicating individual antibodies and a proportion of
random individuals. From this algorithm, a certain degree of mutation is carried
out. The results obtained for the benchmark, ZDT, and DTLZ functions show that
our proposed algorithm NNIA+X3 can accelerate the speed of convergence and
maintain the desirable diversity, especially when solving problems with many local
Pareto-optimal fronts. The experimental results of this algorithm to solve the prob-
lems of bi-objectives and three-objectives of optimization of 10 bar trellis structure
indicate that the proposed NNIA+X3 surpasses the NNIA algorithm in terms of
convergence rate and of course of quality of the solution.
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