Gas-phase formation and spectroscopic characterization of the disubstituted cyclopropenylidenes $c-C_3(C_2H)_2$, $c-C_3(CN)_2$, and $c-C_3(C_2H)(CN)$

Athena R. Flint¹, Alexandria G. Watrous¹, Brent R. Westbrook¹, Dev J. Patel¹, and Ryan C. Fortenberry¹

¹Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA

January 17, 2023

Abstract

Aims. The detection of c-C₃HC₂H and possible future detection of c-C₃HCN provide new molecules for reaction chemistry in the dense ISM where R-C₂ and R-CN species are prevalent. Determination of chemically viable c-C₃HC₂H and c-C₃HCN derivatives and their prominent spectral features can accelerate potential astrophysical detection for this chemical family. This work will characterize three such derivatives: c-C₃(C₂H)₂, c-C₃(CN)₂, and c-C₃(C2H)(CN).

Methods. Interstellar reaction pathways of small carbonaceous species are well-replicated through quantum chemical means. Highly-accurate cc-pVXZ-F12/CCSD(T)-F12 (X=D,T) calculations generate the energetics of chemical formation pathways as well as the basis for quartic force field and second-order vibrational perturbation theory rovibrational analysis of the vibrational frequencies and rotational constants of the molecules under study.

Results. The formation of c-C₃(C₂H)₂ is as thermodynamically and, likely, stepwise favorable as the formation of c-C₃HC₂H, rendering its detectability to be mostly dependent on the concentrations of the reactants. c-C₃(C₂H)₂ and c-C₃(C₂H)(CN) will be detectable through radioastronomical observation with large dipole moments of 2.84 D and 4.26 D, respectively, while c-C₃(CN)₂ has an exceedingly small and likely unobservable dipole moment of 0.08 D. The most intense frequency for c-C₃(C₂H)₂ is ν_2 at 3316.9 cm⁻¹ (3.01 μ m) with an intensity of 140 km mol⁻¹. c-C₃(C₂H)(CN) has one frequency with a large intensity, ν_1 , at 3321.0 cm⁻¹ (3.01 μ m) with an intensity of 82 km mol⁻¹. c-C₃(CN)₂ lacks intense vibrational frequencies within the range that current instrumentation can readily observe.

Conclusions. $c-C_3(C_2H)_2$ and $c-C_3(C_2H)(CN)$ are viable candidates for astrophysical observation with favorable reaction profiles and spectral data produced herein, but $c-C_3(CN)_2$ will not be directly observable through any currently-available remote sensing means even if it forms in large abundances.