
Communications of the IIMA

Volume 13 | Issue 2 Article 4

2013

Composite Ontology-Based Medical Diagnosis
Decision Support System Framework
Hsien-Tseng Wang
The City University of New York

Abdullah Uz Tansel
The City University of New York

Follow this and additional works at: http://scholarworks.lib.csusb.edu/ciima

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Communications of the IIMA by
an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Wang, Hsien-Tseng and Tansel, Abdullah Uz (2013) "Composite Ontology-Based Medical Diagnosis Decision Support System
Framework," Communications of the IIMA: Vol. 13: Iss. 2, Article 4.
Available at: http://scholarworks.lib.csusb.edu/ciima/vol13/iss2/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/55330388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol13?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol13/iss2?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol13/iss2/4?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol13/iss2/4?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


Composite Ontology-Based Medical Diagnosis Decision Support System Framework Wang & Tanzel 

 

Communications of the IIMA ©2013 43 2013 Volume 13 Issue 2 

Composite Ontology-Based Medical Diagnosis 

Decision Support System Framework 

 

 

Hsien-Tseng Wang 

The City University of New York, USA 

elvinnyc@gmail.com 

 

Abdullah Uz Tansel 

The City University of New York, USA 

tansel@baruch.cuny.edu 

 

 

ABSTRACT 

 

Current medical decision support systems have evolved from the automation of medical decision 

routines to improving the quality of health care services. Knowledge-based systems, compared to 

conventional data-driven techniques, are promising to support medical decision making. 

However, knowledge acquisition is usually a bottleneck in the process of developing such 

systems. One possibility for acquiring medical knowledge, particularly tacit knowledge, is to use 

data or cases in both syntactic and semantic ways. Case-based Reasoning (CBR) methodology 

provides a practical way of problem solving with recalled knowledge memory of solved cases. To 

reduce the difficulty of knowledge acquisition, this paper proposes a design of the system 

framework that utilizes the simplified medical knowledge: disease-symptom ontology for pre-

diagnosis, given patient's symptoms and signs as input. In the first stage, simple pattern 

matching is used to gather candidate diseases in diagnosis. Following that, case-based 

reasoning is used to refine diagnostic decision. The case base is structured with ontological 

knowledge model. The case retrieval process is based on semantic similarity. The diagnostic 

system uses a composite knowledge base, and will allow automated diagnosis recommendation. 

The system framework also aims at facilitating semantic explanations to the solution derived. 

 

Keywords: Medical diagnosis, ontology, semantic web, case-based reasoning, pattern 

matching. 

 

 

INTRODUCTION 
 

Medical decision making covers important tasks such as diagnosis, therapy planning, interacting 

with patients, identifying medical errors etc. Medical diagnosis is a process aiming at identifying 

diseases based on findings, such as symptoms and lab reports. The development of Medical 

(Clinical) Diagnosis Decision Support Systems (MDDS or CDSS) dates back to 1950s. Such 

developments, particularly in diagnosis decision support, have high complexity. A limited 

number of systems are adopted for practical use in the clinical environment. In the diagnosis 

process, an appropriate representation scheme is necessary for both problem interpretation and 

knowledge retrieval. From a medical cognition point of view, Long (2001) states that most 

medical reasoning methods are based on organizing various types of relations that exist in 
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medical domain. These relations were identified by Long (2001) and include: associations, 

probabilities, causality, functional relationships, temporal relations, locality, similarity, and 

clinical practice (cases and experiences). 

 

In computer science community, early diagnosis decision support (appeared as expert systems 

(ES)) research focused on rule-based reasoning (RBR) methods, decision table/tree, and later on 

Bayesian probabilistic, case-based reasoning (CBR). More recently as the computational power 

improves, machine learning-based systems emerged. These efforts were novel at the time; 

however, they did not employ a formal knowledge model (e.g., model of diseases, causation 

etc.), instead, they relied on the characteristics of data. Further, these approaches mostly operate 

in syntactic manner. Therefore, it is typically difficult to generate semantic explanation to the 

decision made by the system. The evolving Semantic Web research has brought a new platform 

for better knowledge representation, its sharing and semantic reasoning. The ontological model 

now serves as building blocks for the representation tasks in most knowledge-based applications. 

 

Essentially, a good medical diagnosis system requires a structured knowledge representation 

component (model) that reflects most of the existing medical relations. It also needs employing 

efficient reasoning methods that closely follow medical cognition. Organizing these relations 

obviously needs one or more specific forms of knowledge representation, and computational 

artifacts that can manipulate them. None of these tasks is easy. Furthermore, physician-like users 

usually lack knowledge of how the framework works. In the worst case, a common bottleneck in 

knowledge-based systems is the knowledge acquisition, because of the acquisition mechanism is 

not transparent to the experts, or tacit knowledge is hardly complete enough to be usable. 

 

We explore the case-based reasoning (CBR) methodology, as CBR not only utilizes the actual 

data (cases), but also works similarly to how human solves problems by recalling most relevant 

experiences. We propose a framework for medical diagnosis decision making. This framework 

incorporates the disease-symptom ontology, and case-based reasoning (CBR) coupling with 

semantic similarity calculation. 

 

The paper is organized as follows: the next section introduces the readers to knowledge 

representation. The third section summarizes BioMedical ontologies and the semantic web 

technologies. The fourth section explains how CBR works. The fifth section presents our 

composite ontology framework. The diagnosis workflow is set up in the sixth section. This is 

followed by the conclusion. 

 

 

KNOWLEDGE REPRESENTATION 

 

In problem solving, knowledge provides the basis for reasoning in either a modal or an ad hoc 

way. Researches in artificial intelligence early on aimed at using computer power to act as 

human intelligence for problem solving. A human problem solver either exploits his own or 

others' experiences (if he understands well). Alternatively, he may visit available formal models 

(e.g., model of diseases), and search for relevant knowledge coupling with deduction to derive 

solutions. The latter approach is known to be model-based. Both approaches encounter issues in 

searching. Using exploit-experiences approach (e.g., machine learning, CBR or rule-based 
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methods) requires certain amount of data or cases. On the other hand, model-based (e.g., 

knowledge-based) approach usually requires a knowledge base and a reasoning component. The 

knowledge base is constructed through a sophisticated modeling process. A reasoning 

component for inferring ground answer to the given problem searches for relevant knowledge 

from the knowledge base. The knowledge base is present, and the reasoning component is 

algorithmic. Hence, the answer derived is justifiable. 

 

Knowledge representation (KR) research gained popularity in 1970s and developed main 

formalisms, such as logic-based and non-logic-based formalisms. Semantic network, production 

rule and frames are considered as non-logic-based. These were motivated from human cognition, 

and are high-level in languages and more human-centric. On the other hand, logic-based, such as 

First Order Logic (FOL) and Description Logic (DL), can unambiguously capture states about 

the world using logical constructs. The problem solving task becomes checking logic 

consequences. 

 

The recent development of Semantic Web technology brings ontology as a promising tool in 

knowledge representation and reasoning. In addition, languages for ontology, such as OWL 

(McGuinness & van Harmelen, 2004), SWRL (Horrocks et al., 2004), and SQWRL (O'Connor & 

Das, 2009) were matured. As OWL-family has DL foundation, reasoning services (subsumption 

and class properties) are built-in as checking logical consequence by deduction. Standard 

reasoning in OWL-Lite and OWL-DL is decidable, which is a desirable feature at least for 

inference application developers. 

 

 

BIOMEDICAL ONTOLOGY AND THE SEMANTIC WEB 

 

Biology and medicine are among the earliest domains that adopted ontological framework for 

controlled vocabularies and taxonomy, and facilitating semantic interoperability. To develop a 

universal domain ontology for biology or medicine is difficult, and in fact not possible. Efforts in 

biomedical ontology such as UMLS (Unified Medical Language System), GO (Gene Ontology) 

and SNOMED-CT (Systematized nomenclature of medicine clinical terms), emerge as 

cornerstones supporting better taxonomy for terminologies and semantic interoperability. These 

systems are based on (Schulz & Hahn, 2005): (1) classification, (2) Multiaxial coding system, (3) 

Thesaurus-like coding system, and (4) Topography-like system. For instance, SNOMED-CT 

belongs to multiaxial coding system. In that, each axis has a hierarchical structure and semantic 

links are allowed for more expressive power. This leads to multiple hierarchies of concepts that 

may suffer from issues and challenges arising from multiple inheritance. 

 

One special repository, UMLS, was designed to help interpretation and understanding of medical 

meanings across application systems. It is a huge umbrella system that contains Meta-thesaurus, 

Semantic Network, Specialist Lexicon and Lexical Tools. As UMLS draws information from 

mixing sources, it might contain cycles and other similar problems. The main hierarchy is 

defined by IS_A relation (i.e., specialization—generalization relation), which does not 

distinguish itself from partonomic relation (part-of relation). For information concerning other 

ontology-style knowledge repositories, such as OpenGalen, Open Biomedical Ontologies (OBO), 
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readers can refer to the BioPortal homepage by the U. S. National Center for Biomedical 

Ontology (NCBO, n.d.). 

 

Another interesting development is the disease ontology, introduced in (Schriml et al., 2012), 

and can be retrieved from (“Disease ontology,” n.d.). The human disease-ontology (DO) contains 

a comprehensive knowledge base of roughly 8043 inherited, developmental and acquired human 

diseases. DO also maps itself to common biomedical ontology, such as MeSH (Medical Subject 

Headings) and SNOMED-CT. The disease ontology browser provides a simple pattern matching 

mechanism. For instance, when an input bleeding keyword is entered, the retrieved list contains 

25 candidate diseases. Potentially, this retrieved result can be used as a pre-diagnosis step given 

an input keyword (symptom). 

 

As the above mentioned biomedical ontology repositories provide re-usability and 

interoperability, HL7 (High Level Seven) standards (Health Level Seven International, n.d.) 

provide a protocol-like mechanism for exchanging semantic information in healthcare. While 

UMLS and HL7 were being developed, the semantic web technology OWL (Ontology Web 

Language) concurrently emerged as a standard knowledge representation language in semantic-

oriented applications. As such, OWL was not incorporated into both UMLS and HL7 yet. 

However, there is still a possibility of using OWL or its extension as mapping language for 

UMLS and HL7. 

 

The most apparent use of the semantic web technology in medical domain is to facilitate: (1) 

querying multiple data sources (database and ontologies) with reduced semantic ambiguity, and 

(2) semantic preserving integration of distributed medical ontologies. Building on this, deploying 

a medical decision support system may prove to be very useful, in addition to the possible 

inclusion of different reasoning strategies. 

 

Since ontology provides a clear semantic and knowledge description of the concepts and 

interrelationships, it can be adapted to the case description, structuring, storage, and even the 

knowledge (case) retrieval with semantic operations. Further, more BioMedical ontologies 

become available, and medical CBR systems can take advantages of these ontologies. Utilizing 

ontologies in medical CBR systems will enhance the traditional syntactical CBR approach. For 

instance, semantic similarity measures could be developed for case retrieval in the CBR cycle. 

 

 

CASE-BASED REASONING 

 

Case-Based Reasoning (CBR) (Kolodner, 1993) is a cyclic problem solving paradigm that 

emphasizes the reuse of solutions to similar problems in experience memory. The solutions, 

along with the corresponding problems, are maintained in an indexed case base for faster case 

retrieval. A case is a problem-solution pair. A typical CBR cycle is shown in Figure 1. Basically 

each instantiation of a CBR process follows a retrieve, reuse, revise and retain cycle. 
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Figure1: The CBR Cycle. 

 

CBR methodology has been applied in many application domains, such as engineering, law, 

mechanics, medicine etc. It is usually applied to problems in which complex tacit knowledge 

plays important roles. In a CBR system, expertise knowledge is embodied in a library of past 

(solved) problems as cases, rather than being encoded in classical rules or formal models (such 

as ontology). Each case contains a description of the solved problem, and a solution and/or the 

outcome. The actual knowledge and reasoning process used by an expert to solve the problem is 

not recorded, but is implicitly embedded in the solution. 

 

A new problem is matched against the cases in the case base, and similar cases are retrieved 

based on pre-defined similarity measures. For example, in K-nearest neighbor algorithm, the 

simplest similarity measure could be the Euclidean distance. The retrieved cases are used to 

suggest a solution. If necessary, the solution is adapted and revised to satisfy the new problem. 

Finally the current problem and the suggested solution are retained as a newly solved case if 

necessary. The retaining of cases is one of the most advantageous features of CBR. This enables 

the learning and growth of problem solving ability. Using CBR is more intuitive to users because 

it is essentially working with concrete examples, rather than conclusions separated from their 

context. A case base can also be a powerful resource from a knowledge management point of 

view. 

 

Since the 1990's, CBR has grown into a field of widespread interest, both in academic and 

commercial domains. Mature tools are available, and application-focused conferences exist. For 

instance, in (Bichindaritz & Montani, 2011), advances and efforts of CBR in health science are 

briefly ranked by dates from the 1980s. Case-based reasoning is often used as a generic term to 

describe techniques including, but not limited to, CBR as described above. 

 

In traditional CBR-based problem solving, more syntactical manipulation is applied to cases. For 

instance, to retrieve the most relevant cases in the case base, sometimes only the calculation of 

distance is needed, followed by the actual retrieval process. The usability of distance calculation 

is assumed and based on a vector-style representation of cases. In this mode, the distances 

derived may not have any contextual meaning. To improve the performance and usability of 
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CBR-based systems, one can consider applying the semantic web technology and ontological 

knowledge model, in addition to the syntactical CBR. 

 

In (Bichindaritz, 2006), formal semantics and CBR in biology and medicine are discussed. The 

conclusion shows that adding semantic support to traditional CBR systems is common, and the 

ontological support improves the performance of CBR systems. In addition, traditional CBR case 

representation and contents do not usually contain enough details required by a CBR system to 

act effectively in all CBR cyclic tasks. Examples seen in (Bichindaritz, 2006), show that most 

medical CBR systems use ontology for case representation and interpretation. Therefore, simple 

distance calculation can possibly be adapted to semantic distance calculation. In addition, some 

type of hybrid methodologies emerges in medical CBR-based systems for decision support or 

problem solving. Examples are "CBR combined with Electronic Patient Record" in (van den 

Branden, Wiratunga, Burton, & Craw, 2011), and "CBR combined with RBR (Rule-Based 

Reasoning)" in (Berka, 2011). 

 

 

SYSTEM ONTOLOGY FRAMEWORK 

 

The proposed composite ontology framework is motivated from the usefulness of disease-

ontology (DO) and hybrid CBR approaches. The composite ontology contains the following 

ontology parts: 

 

Medical Scenario Ontology 

 

This is the episode driving ontology that specifies the context, domain, situation, and the 

structure of case library. 

 

Medical Knowledge Ontology 

 

This part specifies general categories of medical knowledge as templates of fundamental medical 

concepts, generic concepts, anatomy concepts, and disease concepts in the domain that is 

referenced by Medical Scenario ontology. 

 

Electronic Medical Record Ontology (EMR) 

 

EMR ontology contains clinical data created for health professionals (including their notes) in 

the course of providing care in a hospital or clinician's office. A piece of typical EMR may 

contain administrative data, diagnosis and treatment history of the patient. The EMR ontology 

could support the construction of medical cases. 

 

Disease - Symptom Ontology 

 

Disease-Symptom ontology contains a generalized disease ontology derived from DO mentioned 

in (“Disease Ontology,” n.d.). In DO, no explicit symptoms are defined, other than referenced 

textual definition. So applying Natural Language Processing techniques to derive the symptoms 

for corresponding diseases is necessary. The disease domain could be confined based on the 
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specification in Medical Scenario ontology. In addition, this ontology part is expected to expand 

as new supporting conceptualization model, such as disease causal model or prototypical model 

is developed. 

 

Medical Case Store 

 

Medical case store is a case ontology that contains necessary descriptive constructs for 

constructing and maintaining a case base. In addition, a concept of context forming is included 

for case retrieval and case matching purpose. 

 

 

COMPOSITE MEDICAL ONTOLOGY SUPPORTING PATTERN MATCHING AND 

CASE-BASED REASONING 

 

With the composite ontology mentioned above, a work flow for a diagnosis problem solving is 

outlined (assuming input of Symptoms) in Figure 2. The main stages in the workflow are as 

follows: 

 

 
 

Figure 2: System Workflow. 

 

Episode Driving Engine 

 

The Episode Driving Engine is the central controlling unit that facilitates the workflows. It first 

initiates a diagnosis episode and organizes a workspace and decides the context of the diagnosis 

problem. More importantly, the Episode Driving Engine serves as the common denominator of 

all system components. 

 

Simple Disease-Symptom Matching 

 

In this stage, an iterative pattern matching is performed by the pattern matching engine, similar 

to algorithm found in (Carvalho, Isola, & Tripathy, 2011). Basically, an input symptom fed to the 

system, then it presents a list of all possible disease ranked based on the number of matched 

symptoms. This process goes iteratively until all input symptoms are consumed by the system. 

The end product of this stage is a rank list of candidate diseases. If the list contains only one 

disease, the one is the primary solution for the diagnosis problem. Otherwise, differential 

diagnosis is needed. 

 

Differential Diagnosis With CBR and Semantic Similarity Calculation 

 

Following the result of the first stage, a CBR cycle is performed. The CBR inference engine 

(reasoner) first retrieves the most similar cases based on the input case (i.e. symptoms and 

EMR). The retrieval process is time consuming, as it has to search through the specified case 
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ontology. To reduce the searching complexity, candidate diseases derived from previous stage 

can be used to confine the searching space. As for similarity measure, a recent developed method 

called DOPCA presented in (Gan, Dou, Wang, & Jiang, 2011) is adopted. This similarity 

measure will guide the retrieval of similar cases. 

 

After the retrieval, the CBR cycle encounters candidate cases that may not be exact match to the 

problem in consideration. Before the adaptation process starts, the CBR module invokes the 

Disease-Symptom Ontology and determine if any supporting model is available and uses it. 

Otherwise, the adaptation (revise) process is activated. The adaptation is based on pre-defined 

rules. Once the adaptation is finished, the solution is derived. 

 

Explanation and Interpretation 

 

The Episode Driving Engine keeps track of all tasks performed and is able to provide a complete 

episode for the diagnosis with integrated formal semantics. 

 

A template system diagram is shown in Figure 3. 

 

 
Figure 3: System Diagram. 
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CONCLUSION 

 

CBR methodology not only utilizes the actual data (cases), but also works similarly to how 

human solves problems by recalling most relevant experiences. We propose a composite 

ontology for diagnosis that encompasses both simple pattern matching and CBR for differential 

diagnosis. The composite ontology is constructed using semantic web standard languages such as 

OWL and its variants. In the iterative simple pattern matching step, candidate diseases are 

obtained. Potentially, differential diagnosis step continues the diagnosis process. The search 

space for the CBR is confined to that suggested by the candidate diseases. The case retrieval 

accuracy is augmented by semantic similarity calculation. The candidate disease set can be 

further refined by invoking the extended causal inference model. 

 

The value of composite ontology is two folds: the ontology parts are all constructed by using 

semantic web standard languages. This enables the interoperability of the composite ontology 

store to agents outside of the system. On the other hand, the composite ontology is applicable to 

multiple reasoning strategies. Since reasoning strategies applied in the system are algorithmic, 

explanation to the diagnosis derived can be constructed with the Episode Driving Engine. 

 

This paper only proposes a design sketch. In the future, we anticipate research on core 

components of a system prototype based on the proposed design. Further, we shall design the 

Episode Driving Engine, and explore efficient ways of constructing cases from EMR. 
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