
Communications of the IIMA

Volume 13 | Issue 1 Article 5

2013

Defense Against REST-based Web Service Attacks
for Enterprise Systems
Hsun-Ming Lee
Texas State University

Mayur R. Mehta
Texas State University

Follow this and additional works at: http://scholarworks.lib.csusb.edu/ciima

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Communications of the IIMA by
an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Lee, Hsun-Ming and Mehta, Mayur R. (2013) "Defense Against REST-based Web Service Attacks for Enterprise Systems,"
Communications of the IIMA: Vol. 13: Iss. 1, Article 5.
Available at: http://scholarworks.lib.csusb.edu/ciima/vol13/iss1/5

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CSUSB ScholarWorks

https://core.ac.uk/display/55330383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol13?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol13/iss1?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol13/iss1/5?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol13/iss1/5?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 57 2013 Volume 13 Issue 1

Defense Against REST-based Web Service

Attacks for Enterprise Systems

Hsun-Ming Lee

Texas State University, San Marcos, USA

sl20@txstate.edu

Mayur R. Mehta

Texas State University, San Marcos, USA

mm07@txstate.edu

ABSTRACT

In recent years, Representational State Transfer or REST-based Web Services have become

popular for building Web systems. They have become an integral and critical part of information

systems to facilitate and integrate the business processes across the enterprise. However, the

simplicity of a REST-based implementation has caused the neglect of its systematic security

threat analysis and design. One of the issues of systems built with REST services integration is

their susceptibility to JSON input attacks. Such attacks could compromise the integrity of critical

data in enterprise business processes. We analyze such a security issue in this paper. Some

mechanisms used to secure Web sites and servers, such as encryption via HTTPS, static source

code analysis, and input validation, can be integrated to defend against the attack.

Keywords: Information security, REST, web services, input injection, enterprise information

systems, JSON

INTRODUCTION

In the past, most enterprises adequately assured information security through operation systems

dealing with access controls on resources such as files and network connections. However,

according to Pistoia and Erlingsson (2008), attacks may happen at higher levels of abstractions

and may target the internal behavior of applications. Recently, enterprises have quickly been

moving toward the development of decentralized, flexible, and layered application architecture

to reach their clients on the Web or mobile environments. In order to successfully make this

transition, they must treat application level security as a major threat (Jain & Shanbhag, 2012;

Kundu, Sural, & Majumdar, 2010; Shar &Tan, 2012).

The application level security has become even more critical since the emergence of Web 2.0.

Due to its openness and ease of adoption, there has been an explosion of public API’s

(Application Programming Interface) allowing developers to call functions and data from

multiple diverse services to create new applications (Werts, Mikhailova, Post, & Sharp, 2012).

Representational State Transfer or REST-based Web Services, such as Google Geocoding API

and Facebook Graph API, are among the most popular today. It is not surprising that application

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 58 2013 Volume 13 Issue 1

developers have started to take advantage of this technology to facilitate business processes in

enterprise (Su & Chiang, 2012). In today’s business environment, business processes are more

likely to be dynamic, distributed, and collaborative, making it necessary to adapt business

processes more often, and integrate processes across organizational boundaries with business

partners. Further, organizations also need to expose business-critical functionalities, embedded

within millions of lines of mainframe code developed over the past four decades (Mitchell,

2006), and integrate these functionalities with new Web-based or mobile user interfaces. The

REST technology provides a cost-effective and an efficient alternative to support tight business

process integration.

The simplicity and adoptability of the REST-based web services, however, come with a price. A

REST implementation provides no pre-defined security protection methods. Application

developers utilizing such services as system components must diligently ensure that information

integrity in all of maintained business records is not compromised. A significant monetary loss is

very likely should such integrity is compromised. This paper is aimed at presenting

vulnerabilities of REST-based Web services built for distributed applications in enterprise

information systems. In particular, we focus on the integrity of application output of such

business systems. If a security flaw exists, hackers can register as legitimate users and carry out

attacks through data input or “input injection attacks.” This paper discusses a possible defense

against these attacks.

To provide a necessary foundation for understanding security vulnerabilities in distributed

applications, the paper first provides a brief overview of the technology, including Web Service

security, in the next section.

TECHNOLOGY BACKGROUND

Web Services and the MVC Framework

Application architectures such as Model-View-Controller (MVC) framework and its variations

that decouple presentation and business logic has become a de-facto blueprint that application

developers use to design and implement flexible, scalable, and maintainable Web solutions.

Thus, modern enterprise information systems that are implemented on the Internet or Intranet

frequently use the MVC framework. In an MVC framework, Models (M) are meant to serve as a

computational abstraction of real entities. For example, a model of a product in an e-commerce

application contains the identity and quantity of the inventories that are available for the product.

Views (V) present or render the information that is contained in a model. A controller (C)

component controls the application flow. It accepts input from the user, interprets the input, and

invokes the appropriate service in response to the input. For example, a Web service activated by

a controller provides the functions for finding all products or a product by a product identity

number.

The traditional or SOAP-Based Web services implementation at the minimum involves a

collection of three Extensible Markup Language (XML) standards to support communication

between interacting services. These include standards to describe services, standards to publish

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 59 2013 Volume 13 Issue 1

services, and standards to discover services. The three main standards that enable

implementation of traditional Web services are the Simple Object Access Protocol (SOAP), Web

Services Description Language (WSDL), and Universal Description, Discovery, and Integration

(UDDI). The implementation of Web service based systems may require a significant investment

by organizations, as indicated in Wachovia Bank’s example (Margulius, 2006), and will most

likely also necessitate a change in the organizational IT culture and practices (Brown, Delbaere,

Eeles, Johnston, & Weaver, 2005).

Web Service Security

SOAP-based Web services are prone to all of the same attacks that can be launched on a standard

Web application, such as SQL injections, capture and replay attacks, buffer overflows, denial-of-

service attacks, and improper error handling (Jaamour, 2005). To address the specific concerns

of privacy, authentication, and integrity for Web services, Jaamour points out that WS-Security

is a standard way of securing a single message by applying Username Tokens, XML Signatures,

and XML Encryption. Several WS-Security implementations have been suggested. An IBM team

developed a security service bundled within WebSphere Application Server (Makino, Tamura,

Imamura, & Nakamura, 2004). XML transcripts transmitted between two colleges were secured

by implementing WS-Security using Bea WebLogic Workshop (Lim, Sun, & Vila, 2004).

The WS-Security implementation on Web servers provides basic Web service security with

performance costs. There are potential bottlenecks in the XML parsing and the public key

operations for encryption. Additionally, a straight implementation requires performance

improvement (Makino et. al, 2004). Even protected by WS-Security, a SOAP-based Web service

was still vulnerable to various types of newly found attacks including XML external entity

attacks, XML bombs, malicious SOAP attachment, and XPath injections (Jaamour, 2005). Thus,

to ensure security and integrity of any web services, it is essential to keep updating their security

measures and safeguards.

REST-based Web Service and JSON

Compared to SOAP-Based Web services, which face many limitations discussed above and are

somewhat difficult to implement, a REST-based approach to Web services is much easier to

implement since its design simply relies on the HTTP protocol. It uses (a) URIs (Uniform

Resource Identifiers) to identify resources; and (b) the GET, PUT, POST and DELETE actions

to retrieve, update, create, and delete the resources remotely through Web servers. In addition,

JavaScript Object Notation (JSON), a text-based data interchange format that is completely

language independent and provides significant performance gains over XML due to its light

weight nature and native support for JavaScript (Ying & Miller, 2013), is an excellent way to

transport/exchange messages between services as well as between client and servers.

According to the JSON website, JSON is simply built on two data structures:

 Data to be exchanged are enveloped as an unordered set of name/value pairs. Each data item

is represented by a name followed by a colon and then its value.

 Multiple data items may be packaged in a single object as an array of ordered name/value

pairs, with each pair separated by a comma. The array is enclosed between a left opening

bracket and ends with right closing bracket. An example is provided below:

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 60 2013 Volume 13 Issue 1

Because of its simplicity of implementation and lightweight nature resulting in improved

performance, REST-based Web services that use JSON objects as data transports have gained

popularity amongst developers. JSON is beginning to become a clear choice among developers

and application architectures for mainstream data applications (Severance, 2012). Severance also

points out that programmers use it extensively to connect two servers communicating via Web

services. In this paper, we focus on the security issues where JSON strings are used to represent

the request and response messages in a REST-based Web services.

Data transfer security in a single REST-based Web service can be easily achieved by encryption

using HTTPS (Kennedy, Stewart, Jacob, & Molloy, 2011). In a server providing sophisticated

REST-based Web services, such as Facebook, Google, and Twitter, OAuth is a popular solution

for authorizing third-party applications (Shehab & Marouf, 2012), and so the application’s user

session can obtain a credential once and use it whenever the access to server resources is

necessary. It is noteworthy that security measures are optional for implementation and likely

overlooked when REST-based Web services are built upon ad hoc additions to legacy

applications. For an enterprise system to succeed, it must additionally require appropriate

protection that (a) is applied to information from the moment information is created to the

moment it undergoes final disposition, and (b) protect against unauthorized alteration,

destruction, loss, or disclosure of information (Manago, 2011). It can be argued that the

simplicity of the REST-based approach, causing its neglect in systematic security analysis and

design (Comerford & Soderling, 2010), makes it more vulnerable to security risks than the

traditional Web services. To meet the system requirements, it is essential to investigate

thoroughly potential security issues of REST-based Web services built for the enterprise.

THREAT AND COUNTERMEASURE

A simple scenario is presented here to exemplify security threats encountered in an enterprise

system that is built upon REST-based Web services. Consider a customer-facing system that

allows users to register as customers, browse a catalog, place an order, enter shipment

instructions, and pay for the order on the Web. To utilize the legacy systems in an enterprise, this

customer-facing web site is connected to many REST-based Web services, including those for

managing membership, order and fulfillment processes, and payment (see Figure 1). The system

uses firewalls to block illegal connections and user authentication/authorization processes to

ensure only registered and authorized users are allowed access to the e-Business site to create

and pay for their orders. Even with this strong network-level protection, the system is potentially

vulnerable to security flaws of REST-based Web services.

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 61 2013 Volume 13 Issue 1

Figure 1: An Enterprise Information System Built by REST-based Web Services.

Threat

We pay special attention to some critical data from the moment it is created to the moment it

undergoes final disposition. In this case, order and payment data are entered by users to create an

order on a Web site. Then, the data are sent to legacy systems for fulfillment and billing

processes. Once, the user has paid for the order and the credit card is charged, the data can be

archived and may be eventually be deleted. Thus, the data integrity of an order and its payment

should at least be examined carefully when (a) the data are received on the web site; and (b) they

are stored on the legacy systems.

The threat comes from an attacker that registers as a customer and places an order through the

site. Typically, such sites allow customers to add products to a shopping cart, select a shipping

method, enter a gift message for the shipping, and pay the order by a credit card. Assuming that

the customer-facing website interacts with legacy enterprise systems via REST-based Web

services, this interaction will result in two separate JSON messages being generated, order and

payment. These are sent to two separate legacy information systems via REST-based Web

services after checkout. Typical JSON messages, created by and sent from a business web site,

should look like those shown in Figure 2. It shows the JSON strings of an order and its payment,

respectively. The corresponding REST Web services will receive and then convert or parse these

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 62 2013 Volume 13 Issue 1

strings into appropriate software objects representing an order and a payment for further

processing in information systems (see Figure 3 for the results). For the sake of demonstration,

the JSON strings shown in Figure 2 are parsed by an Online JSON Parser

(http://jsonparser.com/) and shown in Figure 3.

Figure 2: Sample JSON Strings of an Order and its Payment.

In this example, John Dole could be a possible attacker trying to manipulate the gift message in

the order to receive an expensive product and pay much less for it. The JSON string for a

manipulated order is illustrated in Figure 4. As you can see, John enters a much more

complicated message in the Gift message field to include a string that would mimic an ordered

product’s name/value pair. Figure 5 shows the result of this JSON injection message when

parsed by the receiving Web service. Note that John ordered two products worth $41 through the

Web site. His credit card is charged $41. Because of the injected gift field message, the parsed

JSON message to be processed by the order fulfillment process shows that John ordered a $1000

computer. Thus, the company is fooled into shipping out a much more expensive product. This

illustrates a potential application-level security flaw when using REST-based Web services.

Figure 3: The Order and Payment Objects Generated (from the JSON Strings in

Figure 2) by Rest-based Web Services Using a JSON Parser.

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 63 2013 Volume 13 Issue 1

Figure 4. Sample JSON Injection of an Input Order and its Payment.

Figure 5: The Order and Payment Objects Generated by Rest-based

Web Services after a JSON Injection.

Counter Measures

Insiders, including former employee and contractors are often the most motivated and

resourceful at breaching the network security of an organization (Ortega, 2007). The

vulnerability of the REST-based Web services provides easy targets for internal attackers. By

sniffing a JSON string, they can easily figure out its object properties and carry out attacks

through the open eBusiness Web sites. What counter measures are available to mitigate such

application-level threats?

Two simple counter measures may be put in place to mitigate such security threats. First, the

basic input validation can be programmed in the application to prevent a JSON injection even

after the attackers have learned the JSON message format. The Web services could validate

received the JSON message for unwanted characters such as double quotes, colons, and brackets,

before parsing the messages into software objects, However, this technique is somewhat

problematic since certain special characters such as colons in time notations need to be allowed

in some applications (Valli, 2006). Secondly, to prevent the internal attackers from stealing or

modifying the JSON message once this message has entered the enterprise system, the

encryption of the JSON string in the internal network should be a high priority, especially if

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 64 2013 Volume 13 Issue 1

there is a high cost resulted from compromised system data integrity. In a typical system, only a

very few internally transferred messages are encrypted due to the high implementation cost and

perceived low risks.

Static analysis, examining the text of a program statically without attempting to execute it (Chess

& McGraw, 2004), may be necessary to ensure that programmers implement the counter

measures appropriately. For a REST web service installed with the HTTPS capability (Wasson,

2012), programmers must code the word “HTTPS” literally in a statement to test and activate the

secure message transfer for the clients. Static analysis is crucial since most security attacks

exploit either human weaknesses - such as poorly chosen passwords and careless configuration -

or software implementation flaws (Evans & Larochelle, 2002). A static code analysis tool could

be created to detect and warn overlooked HTTPS activations.

A key to design the tool is the specification of semantic characterization for the known security

vulnerability (Bishop & Dilger, 1996). To generate the specification for REST-based Web

services, the topology of links between pages (navigation model) is first needed and could be

created using the Web Modeling Language (Ceri, Fraternali, & Bongio, 2000). We give an

example of WebML composition and navigation specification (see Figure 6) based on the

eBusiness website of the Enterprise Information System illustrated in Figure 1.

Figure 6: An Example of Navigation Model for an eBusiness Website

in the Enterprise Information System.

Next, the page links are used to define a vulnerable pattern of Web service execution (see Figure

7). We use the popular Curl command (http://curl.haxx.se/) to represent the programming code

for transferring data with URL syntax in a Web page script. To activate a REST-based Web

service, the command must include an action (GET, POST, PUT, or Delete) and an URL formed

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 65 2013 Volume 13 Issue 1

by a protocol (HTTP or HTTPS), a hostname, and an object name. We describe the vulnerable

pattern as follows.

1. A user navigates to the first page (the checkout page in Figure 6) for an operation and later

visits the second page (the order update page in Figure 6).

2. On the first page, there are two REST-based Web services activated to perform two POST

actions (creating two types of objects) in a function. On the checkout page in Figure 6, an

order object and a payment object are added to the servers.

3. On the second page, one Web service used on the first page is activated to perform a PUT

action (updating the saved object). On the order update page in Figure 6, the order object is

updated for modifying the gift message.

Figure 7: JSON Injection—A Vulnerable Pattern of Rest-based Web Service Execution.

The static analysis tool should raise a warning if a HTTP protocol is used for the data transfers in

the above page scripts.

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 66 2013 Volume 13 Issue 1

CONCLUSIONS

We study the application-level security attacks in an enterprise information system, where

REST-based Web services are connected using an MVC framework and utilize JSON as a data-

exchange format. While JSON allows developers to easily construct and quickly parse messages

transferred through REST Web services, it also leaves these Web services open to potentially

serious attacks. An example of a JSON injection input attack was used to illustrate such a threat.

The paper investigated this security issue caused by REST-based Web services and presented a

couple of possible alternative to defend against such attacks in addition to techniques used to

secure the operating systems of Websites. Input validation is quick and easy to filter some

suspicious inputs. In spite of being an expensive protection method, message encryption by

HTTPS ultimately ensures the confidentiality of critical data. To ensure that programmers

activate the HTTPS-based data transfer appropriately, application development teams may adopt

static analysis to detect and correct software implementation flaws before software releases.

REFERENCES

Bishop, M., & Dilger, M. (1996). Checking for race conditions in file accesses. Computing

Systems, 9(2), 131-152. Retrieved from http://seclab.cs.ucdavis.edu/projects/

vulnerabilities/scriv/1996-compsys.pdf

Brown, A. W., Delbaere, M., Eeles, P., Johnston, S., & Weaver, R. (2005). Realizing service-

oriented solutions with the IBM Rational Software Development Platform. IBM Systems

Journal, 44(4), 727-752.

Ceri, S., Fraternali, P., & Bongio, A. (2000). Web modeling language (WebML): A modeling

language for designing Web sites. Computer Networks, 33(1), 137-157. Retrieved from

http://58.59.135.118:8081/BOOKS%5C026%5C21%5CHXYWPJH144310.pdf

Chess, B., & McGraw, G. (2004). Static analysis for security. Security & Privacy, IEEE, 2(6),

76-79. doi: 10.1109/MSP.2004.111

Comerford, C., & Soderling, P. (2010, February 24). Why REST security doesn't exist?

Computerworld, Retrieved from http://www.computerworld.com/s/article/9161699/Why_

REST_security_doesn_t_exist

Evans, D., & Larochelle, D. (2002). Improving security using extensible lightweight static

analysis. Software, IEEE, 19(1), 42-51. Retrieved from http://www.cs.purdue.edu/homes/

xyzhang/fall07/Papers/splint.pdf

Jaamour, R. (2005). Securing web services. Information Systems Security, 14(4), 36-44.

Jain, A. K., & Shanbhag, D. (2012). Addressing security and privacy risks in mobile

applications. IT Professional, 14(5), 28-33. doi: ieeecomputersociety.org/10.1109/MITP.

2012.72

http://seclab.cs.ucdavis.edu/projects/%20vulnerabilities/scriv/1996-compsys.pdf
http://seclab.cs.ucdavis.edu/projects/%20vulnerabilities/scriv/1996-compsys.pdf
http://58.59.135.118:8081/BOOKS%5C026%5C21%5CHXYWPJH144310.pdf

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 67 2013 Volume 13 Issue 1

Kennedy, S., Stewart, R., Jacob, P., & Molloy, O. (2011). StoRHm: A protocol adapter for

mapping SOAP based web services to RESTful HTTP format. Electronic Commerce

Research, 11(3), 245-269. doi: 10.1007/s10660-011-9075-3

Kundu, A., Sural, S., & Majumdar, A. K. (2010). Database intrusion detection using sequence

alignment. International Journal of Information Security, 9(3), 179-191.

Lim, B. B. L., Sun, Y., & Vila, J. (2004). Incorporating WS-security into a web services-based

portal. Information Management & Computer Security, 12(3), 206-217. doi:

10.1108/09685220410542570

Makino, S., Tamura, K., Imamura, T., & Nakamura, Y. (2004). Implementation and performance

of WS-security. International Journal of Web Services Research, 1(1), 58-72. doi:

10.4018/jwsr.2004010104

Manago, W. (2011). Protect, maintain information integrity to reduce business risk. Information

Management, 45(3), 36-41.

Margulius, D. L. (2006, July 13). Banking on SOA. InfoWorld. Retrieved from http://www.

infoworld.com/t/architecture/banking-soa-389

Mitchell, R. L. (2006, January 30). Morphing the mainframe. Computerworld, 30(5), 29-31.

Ortega, R. (2007). Defending the corporate crown jewels from the dangers that lurk within:

Effective internal network security focuses on behavior. Information Systems Security,

16(1), 54-60.

Pistoia, M., & Erlingsson, U. (2008). Programming languages and program analysis for security:

A three-year retrospective. ACM SIGPLAN Notices, 43(12), 32-39. doi:

10.1145/1513443.1513449

Severance, C. (2012). Discovering JavaScript object notation. Computer, 45(4), 6-8. doi:

ieeecomputersociety.org/10.1109/MC.2012.132

Shar, L. K., & Tan, H. B. K. (2012). Defending against cross-site scripting attacks. Computer,

45(3), 55-62. doi: ieeecomputersociety.org/10.1109/MC.2011.261

Shehab, M., & Marouf, S. (2012). Recommendation models for open authorization. IEEE

Transactions on Dependable and Secure Computing, 9(4), 583-596. doi: 10.1109/TDSC.

2012.34

Su, C. -J., & Chiang, C. -Y. (2012). Enabling successful Collaboration 2.0: A REST-based web

service and Web 2.0 technology oriented information platform for collaborative product

development. Computers in Industry, 63, 948-959.

Defense Against REST-based Web Service Attacks for Enterprise Systems Lee & Mehta

Communications of the IIMA ©2013 68 2013 Volume 13 Issue 1

Valli, C. (2006). SQL Injection: Threats to medical systems; Issues and countermeasures. Paper

presented at The 2006 World Congress in Computer Science, Computer Engineering, and

Applied Computing. Las Vegas, Nevada, USA.

Wasson, M. (2012). Working with SSL in Web API. Retrieved from http://www.asp.net/web-

api/overview/security/working-with-ssl-in-web-api

Werts, J. D., Mikhailova, E. A., Post, C. J., & Sharp, J. L. (2012). An Integrated WebGIS

framework for volunteered geographic information and social media in soil and water

conservation. Environmental Management, 49, 816–832.

Ying, M., & Miller, J. (2013). Refactoring legacy AJAX applications to improve the efficiency

of the data exchange component. Journal of Systems and Software, 86(1), 72-88. doi:

10.1016/j.jss.2012.07.019

	Communications of the IIMA
	2013

	Defense Against REST-based Web Service Attacks for Enterprise Systems
	Hsun-Ming Lee
	Mayur R. Mehta
	Recommended Citation

	tmp.1403201948.pdf.FfGJF

