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ABSTRACT 

 
Financial articles can move stock prices. The terms used in an article can be a predictor of both 
price direction and the magnitude of movement. By investigating the usage of terms in financial 
news articles and coupling them with a discrete machine-learning algorithm, we can build a 
model of short-term price movement. From our research, we investigated the terms creating the 
largest price movements amongst five part of speech textual representations; bag of words, noun 
phrases, named entities, proper nouns and verbs. 
 

INTRODUCTION 
 

Term selection in a document is important. Not only for the author’s ability to convey 
information precisely to an audience, but term selection can also be used to carry an emotional 
sentiment. This sentiment could reveal a bias in the author’s treatment of a subject or uncover 
word choice tendencies. When applied to financial text documents, biases and word choice 
tendencies can have a real impact on stock price movement. 
 
The ability to predict stock market behavior has always had a certain appeal to researchers. 
While numerous attempts to accurately predict price have been made, the difficulty has been 
incomplete models of human trading behavior, which at the core rely on rational decision-
making. These human behavioral patterns are difficult to define and are constantly changing; 
thus making accurate predictions quite difficult. To further add to the uncertainty, there are two 
entirely opposed philosophies of stock market research; fundamental and technical analysis 
techniques (Technical Analysis, 2005). Fundamentalists seek to leverage a security’s relative 
data, ratios and earnings, while technicians analyze charts and modeling techniques based on 
historical trading volume and pricing. The entire problem thus becomes, does price history 
matter? 
 
As the roles of computers in electronic stock trading have grown, along with the ease of 
gathering information, it has been possible to not only test both the fundamental and technical 
trading models, but also to create electronic trading mechanisms without the problem of human 
bias. Many of these systems have simply followed the trend of automating existing fundamental 
and/or technical strategies. Their goal is to achieve better returns than human traders by 
removing the elements of emotion and bias from trading (Jelveh, 2006). The downside is that 
these systems lack intuition and will continue to buy even after unfavorable news events, such as 
losing a costly court battle. In order to work effectively, these systems require that news events 
be translated into numeric data before appropriate decisions can be made. This information-
translation problem introduces serious lag-time into decisions and in some cases human analysts 
must override trades. 
The motivation of this paper is to build and test a financial news article system that investigates 
those terms that create the most price movement in textual financial news articles. By identifying 
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those terms, researchers and traders alike can further refine existing quantitative models and 
further the science of price prediction in the stock market. 
 
This paper is arranged as follows. Section 2 provides an overview of literature concerning Stock 
Market prediction and textual representation techniques. Sections 3 and 4 describe our proposed 
approaches and the AZFinText system respectively. Section 5 provides an overview of our 
experimental design. Section 6 details our experimental findings and discusses their impact on 
price prediction. Section 7 delivers our conclusions. 
 

LITERATURE REVIEW 
 

There are two major market prediction theories; Efficient Market Hypothesis (EMH) and 
Random Walk Theory. In EMH, the price of a security is a reflection of complete market 
information and when new information is added, the market instantly adjusts the price of the 
security (Fama, 1964). EMH can vary the amount of information sharing throughout the market 
in three distinct levels; the weak form, the semi-strong and the strong form. In weak EMH, only 
historical data is embedded within the current price. Semi-Strong EMH incorporates both 
historical and current public information into its prices. Strong EMH includes all pertinent 
information such as history, current public information and private information, such as insider 
trading. From EMH theory, it is the belief that markets behave efficiently and instantaneous price 
corrections make any prediction model useless. 
 
Random Walk Theory is similar to Semi-Strong EMH where all information is contained within 
the current price and cannot be used in future prediction. This theory slightly differs from EMH 
by maintaining that short-term price movements are indistinguishable from random noise 
(Malkiel, 1973). Under Random Walk Theory, this short-term random movement produces 
unpredictable prices and makes it impossible to consistently outperform the market.  
 
The ability to scrutinize human trading decisions and uncover the effects of trading behavior 
throughout a market exchange is an extremely difficult problem. To lessen this complexity and 
simultaneously test the impact of fundamental and technical trading strategies, LeBaron created 
an artificial stock market with simulated traders whose trading decisions can be dissected 
(LeBaron, Arthur, & Palmer, 1999). LeBaron, Arthur, and Palmer accomplished this by 
introducing new pieces of information into the market and then adjusting the amount of time 
between when an individual trader would receive information and act upon it. He discovered that 
traders with longer waiting times formed fundamental trading strategies (e.g., relying more 
heavily on company-specific performance data) while those with shorter waiting times 
developed technical strategies (e.g., timing a market trade). This study led to a discovery 
between the lag time that information is introduced and the time when the market returns to 
equilibrium. This delay in market behavior helped to dismiss the instantaneous correction tenets 
of EMH and lent support to the idea that within these informational lag-times, markets can be 
forecast following the introduction of new information. Further research into the limits of this 
lag-time length led to the discovery of a twenty minute window of opportunity before and after a 
financial news article is released (Gidofalvi, 2001). Within this window, weak prediction of the 
direction of a stock price is possible. 

FINANCIAL NEWS ARTICLES 
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Information is introduced into the stock market all the time. This information can take the form 
of rumors, eavesdropping and scandals and all can have a visible impact on stock market prices. 
Textual financial news articles are considered to be a more stable and trustworthy source. This 
stability has caused some to declare that news can be considered another form of commodity 
(Mowshowitz, 1992) that can have differing values (Raban & Rafaeli, 2006). However, the exact 
relationship between financial news articles and stock price movement is complex. Even when 
the information contained in financial news articles can have a visible impact on a security’s 
price (Gidofalvi, 2001; Lavrenko et al., 2000; Mittermayer, 2004; Wuthrich et al., 1998), textual 
financial articles are not the sole determinant of price movement. Sudden price movements can 
still occur from other sources, such as large unexpected trades (Camerer & Weigelt, 1991). 
 
The first challenge of a textual financial prediction system is to manage the large amounts of 
textual information that exist for market securities. This material can include required reports 
such as periodic SEC filings, press releases and financial news articles reporting both unexpected 
events and routine news alike. These textual documents can then be parsed using Natural 
Language Processing (NLP) techniques to identify specific article terms or phrases most likely to 
cause dramatic share price changes, such as “factory exploded” would probably indicate a price 
plunge in the near future. By automating this process, machines can take advantage of arbitrage 
opportunities faster than human counterparts by repeatedly forecasting price fluctuations and 
executing immediate trades. 
 
Obtaining timely financial documents from reputable Web sources is a critical step and there are 
many financial news aggregation sites to provide this service. One of these sites is Comtex, 
which offers real-time financial news in a subscription format. Another source is PRNewsWire, 
which offers free real-time and subscription-based services. Yahoo! Finance is a third such 
source and is a compilation of 45 different news sources including the Associated Press, 
Financial Times and PRNewsWire among others. This source provides a variety of perspectives 
and timely news stories regarding financial markets. 
 

TEXTUAL REPRESENTATION 
 

Once financial news articles have been gathered, we need a way to represent their important 
features in machine-friendly form. One technique is a Bag of Words approach which has been 
extensively used in textual financial research (Gidofalvi, 2001; Lavrenko et al., 2000). This 
process involves removing semantically meaningless stopwords such as conjunctions and 
declaratives from the text and using what remains as the textual representation. While the Bag of 
Words method has been popular in linguistic research, it suffers from noise issues associated 
with seldom-used terms and problems of scalability, where immense computational power is 
required for large datasets. An improved representational system is Noun Phrases. This 
representation retains only the nouns and noun phrases from a document and can adequately 
represent the important article concepts (Tolle & Chen, 2000). As a result, this technique uses far 
fewer terms and can handle article scaling better than Bag of Words. A third representational 
technique is Named Entities, which is an extension of Noun Phrases. This technique selects the 
proper nouns of an article that fall within the purview of several well-defined categories. This 
process uses a semantic lexical hierarchy (Sekine & Nobata, 2004) as well as a 
syntactic/semantic tagging process (McDonald, Chen, & Schumaker, 2005) to assign candidate 
terms to categories. The exact categorical definitions are described in the Message 
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Understanding Conference (MUC-7) Information Retrieval task and encompass the entities of 
date, location, money, organization, percentage, person and time. The Named Entities 
representation allows for better generalization of previously unseen terms and does not possess 
the scalability problems associated with a semantics-only approach. A fourth representational 
technique is Proper Nouns. This method functions as an intermediary between Noun Phrases and 
Named Entities where it exists as a subset of Noun Phrases by selecting specific nouns, while at 
the same time is a superset of Named Entities without the constraint of pre-defined categories. 
This representation removes the ambiguity associated with proper nouns that can either be 
represented by more than one named entity category or fall outside one of the seven pre-defined 
categories. In a comparison study using these four representational techniques, it was found that 
the Proper Noun representation was much more effective in representing textual financial news 
articles (Schumaker & Chen, 2006). Another representational technique is to use only the verbs 
of the article. It is thought that the choice of verbs in an article can convey more information to 
the reader. In a study of using verbs in textual financial research, it was found that verbs can 
adequately convey the meaning of the article and are conducive to textual financial prediction 
(Schumaker & Chen, 2009). 
 
Assigning a representational mechanism is not sufficient to address scalability issues associated 
with large datasets. A common solution is to introduce a term frequency threshold that uses a 
term frequency cut-off to represent article terms that appear more frequently (Joachims, 1998). 
This technique not only eliminates noise from lesser-used terms, but also reduces the number of 
features to represent. Once scalability issues are addressed, the data needs to be prepared in a 
more machine-friendly manner. Machine learning algorithms are unable to process raw article 
terms and require an additional layer of representation. One popular method is to represent 
article terms in binary where the term is either present or not in a given article (Joachims, 1998). 
This solution leads to large but sparse matrices where the number of represented terms 
throughout the dataset will greatly outnumber the terms used in an individual article. 
 
Once financial news articles are represented in machine form, learning algorithms can then begin 
to identify patterns of predictable behavior. One accepted method, Support Vector Regression 
(SVR), is a regression equivalent of Support Vector Machines (SVM) but without the aspect of 
classification (Vapnik, 1995). Like SVM, SVR attempts to minimize its fitting error while 
maximizing its goal function by fitting a regression estimate through a multi-dimensional 
hyperplane. This method is also well-suited to handling textual input as binary representations 
and has been used in similar financial news studies (Schumaker & Chen, 2006; Tay & Cao, 
2001). 
 

RESEARCH QUESTIONS 
 

From this look at textual representation schemes for financial news articles, we have formulated 
several research questions. The first of which is: 

• What terms create the most movement in a price prediction model? 
 

Certain terms are expected to move stock prices more than others. However, these terms are 
expected to differ based upon the textual representation method used. Further, since some of the 
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textual representation schemes are closely related (e.g., Noun Phrases & Named Entities may 
share similar terms), we further ask: 

• What influential terms appear across similar textual representations? 
 

The answer to this question will reveal those terms that exhibit the most influence in price 
prediction. 
 

SYSTEM DESIGN 
 

In order to evaluate our research questions, we designed the AZFinText system. Figure 1 
illustrates the AZFinText system design. 

 
Figure 1. The AZFinText System. 

 
From the AZFinText system design in Figure 1, there are several major components to describe 
in detail. The first component is Numerical Data that gathers stock price data in one-minute 
increments from a commercially available stock price database. The second component is 
Textual Analysis. This component gathers financial news articles from Yahoo! Finance and 
represents them using the five textual representations; bag of words, noun phrases, named 
entities, proper nouns and verbs. This module further limits extracted features to three or more 
occurrences in any document, which cuts down the noise from rarely used terms (Joachims, 
1998). 
 
Once the data is gathered, AZFinText builds the appropriate textual models and trains the SVR 
algorithm on the price of the stock at the time the article was released as well as the terms used in 
the particular article, based on the representation scheme. 
 
For the machine learning algorithm we chose to implement the SVR Sequential Minimal 
Optimization (Platt, 1999) function through Weka (Witten & Eibe, 2005). This function allows 
discrete numeric prediction instead of classification. We selected a linear kernel and ten-fold 
cross-validation. A similar prediction method was employed in the forecasting of futures 
contracts (Tay & Cao, 2001). 
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AZFinText is then trained on the data and issues price predictions for each financial news article 
encountered. Evaluations are then made regarding the effect of stock returns in terms of the 
models generated. 
 

EXPERIMENTAL DESIGN 
 

For the experiment, we selected a consecutive five week period of time to serve as our 
experimental baseline. This period of research was from Oct. 26, 2005 to Nov. 28, 2005 and 
incorporates twenty-three trading days. The five-week period of study was selected because it 
gathered a comparable number of articles in comparison to prior studies: 6,602 for Mittermayer 
(2004) and 5,500 for Gidofalvi (Gidofalvi, 2001). We also observe that the five-week period 
chosen did not have unusual market conditions and was a good testbed for our evaluation. In 
order to identify the companies with the most likelihood of having quality financial news, we 
limited our scope of activity to only those companies listed in the S&P 500 as of Oct. 3, 2005. 
Articles gathered during this period were restricted to occur between the hours of 10:30am and 
3:40pm. Even though trading starts at 9:30am, we felt it important to reduce the impact of 
overnight news on stock prices and selected a period of one-hour to allow these prices to adjust. 
The 3:40pm cut-off was selected to disallow any +20 minute stock predictions to occur after 
market hours. A further constraint to reduce the effects of confounding variables was introduced 
where two articles on the same company cannot exist within twenty minutes of each other or 
both will be discarded. The above processes filtered the 9,211 candidate news articles gathered 
during this period to 2,802, where the majority of discarded articles occurred outside of market 
hours. Similarly, 10,259,042 per-minute stock quotations were gathered during this period. This 
large testbed of time-tagged articles and fine-grain stock quotations allow us to perform a 
systematic evaluation. 
 
The first task is to extract financial news articles. The entire corpus of financial news articles is 
represented by each of the five textual representations in binary. If a particular feature is present 
in the article, that feature is given a 1, else a 0 and then stored in the database. Similarly, stock 
quotations gathered on a per minute basis and stored. To build a model, we first pair together the 
financial article’s representation and stock price at the time the article was released, for each 
financial news article. Then, depending upon the particular model that is tested, data is 
aggregated and passed to the machine-learning component for training and testing. Stock price 
predictions are then made for each financial news article and each term’s role in the prediction 
model is analyzed. 

EXPERIMENTAL RESULTS 
 

To answer our first research question of what terms create the most movement in a price 
prediction model, we tested the five textual representation models and extracted those terms that 
are creating the most price movement. The statistics from these five representations are presented 
in Table 1. 
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Bag of Words Noun Phrases Named Entities Proper Nouns Verbs
# Supp. Vect. 1,847                      2,302                      927                         1,435                      197                         
# Positive 821                         1,026                      418                         699                         90                            
# Zeros 159                         119                         40                            72                            8                              
# Negatives 867                         1,157                      469                         664                         99                            

StkZero 0.9994 0.9985 0.9997 0.9993 1.0001
Constant 0.0004 0.0008 0.0000 0.0001 0.0002
Term Weight 0.0002 0.0007 0.0003 0.0006 -0.0003  

Table 1. Representation Statistics. 
 
The first variable, number of support vectors, is critical in understanding the SVM algorithm. 
While hundreds or thousands of terms may comprise a particular financial news article, the SVR 
algorithm is tasked with trying to maximally divide the multi-dimensional data by creating a 
mathematical regression through the hyperplane. As a result of this division, certain terms close 
to the divide are used in that mathematical regression and are hence referred to as support 
vectors. They are further broken down into positive, negative and zeros components. Positive 
support vectors are those article terms that exhibit a positive influence on the price of the stock. 
Negative support vectors are as the name implies, those terms that create a negative impact on 
stock price. There are also support vectors that have neither a positive nor negative influence on 
the stock price. While these support vectors are not useful for our study of terms and price 
influence, they are important to the SVR regression calculation and are presented here as a 
courtesy to the reader. As shown in Table 1, Bag of Words used the most support vectors and the 
impact of terms on price was generally more negative than positive. 
 
Within this regression price estimate, we also included the StkZero variable. This is the price of 
the stock at the time the financial news article was released. The value presented, 0.9994 in the 
case of Bag of Words, refers to the weight assigned to this variable. Within the regression 
equation, there is also a constant and the weights of each support vector. As an abbreviated 
example using the Bag of Words representation, an SVR regression price estimate would be as 
follows: 
 

0.9994StkZero + 0.0004 + 0.0062dedicated + 0.0048refining + 

0.0038schlumberger + 0.0037front + 0.0035planted – 0.0024regions – 

0.0025aetna – 0.0025mid – 0.0032aep – 0.0041simmons. 

In this example, if the term dedicated exists within the news article, it is assigned a one, 
otherwise a zero, and so on for each financial news article. Consistent with Joachims, we used a 
binary representation, independent of the number of times the term appears within the article. 
The term weight variable in Table 1 refers to the aggregate weight that the article terms have on 
the price of the stock. In the Bag of Words representation, all article terms have a 0.0002 
combined weight as it relates to predicted price. While this weight may appear insignificant, it 
was found that this weight is important in fine-tuning the price prediction system and readers are 
referred to (Schumaker & Chen, 2006) for further information. 
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From this regression equation, prices can be predicted for each stock. However, the scope of this 
paper is more interested in the terms that have the greatest influence on price. Tables 2 and 3 
present the top 5 positive and negative article terms and their weights, respectively. 
 
Bag of Words Noun Phrases Named Entities Proper Nouns Verbs

0.0062 dedicated 0.0053 deductions 0.0061 deepwater 0.0055 all iance 0.0043 planted

0.0048 refining 0.0045 schlumberger 0.0044 monsanto 0.0043 deepwater 0.0022 announcing

0.0038 schlumberger 0.0040 monsanto 0.0032 senate 0.0039 senate 0.0021 smaller

0.0037 front 0.0038 EOG Resources Inc 0.0032 XL Capital Ltd 0.0037 monsanto 0.0020 switched

0.0035 planted 0.0038 refining capacity 0.0031 medicare 0.0036 schlumberger 0.0016 earned  
Table 2. Positive article term weights. 

 
Bag of Words Noun Phrases Named Entities Proper Nouns Verbs

-0.0041 simmons -0.0047 Simmons Company -0.0057 anadarko -0.0032 chiron -0.0022 hereto

-0.0032 aep -0.0034 chiron -0.0051 Simmons Company -0.0032 800 mill ion -0.0016 reinvested

-0.0025 mid -0.0032 medco -0.0034 a year earlier -0.0031 a year earlier -0.0015 insures

-0.0025 aetna -0.0032 brightpoint -0.0034 800 mill ion -0.0028 phase -0.0015 approx

-0.0024 regions -0.0029 profit -0.0029 chalmette -0.0028 io -0.0014 due

 
Table 3. Negative article term weights. 

 
These tables neatly segway into our second research question: what influential terms appear 
across representations? First, recall that the bag of words representation is simply a collection of 
terms minus the meaningless stopwords. So terms appearing in the more restrictive textual 
representations, also have a chance to appear in the bag of words representation if enough weight 
is assigned to them. From this, we note that schlumberger and planted appear prominently across 
textual representations as does simmons for the negative weights. This means that articles within 
our corpora containing the terms schlumberger and planted will experience a modest price 
increase while articles with the term simmons will experience price decreases. 
 

CONCLUSIONS 
 

From our investigation, we found that certain article terms can lead to positive or negative 
influences on stock price. Some of these terms were strong enough to appear in several different 
representations, implying that articles containing these terms were susceptible to price 
movement. 
 
There are some limitations to this study that merit some discussion. First, the dataset used was 
during a compressed period of time and the results provided are indicative of the patterns 
observed within this dataset. To generalize these findings to other periods of time would provide 
a clearer picture of the term usage and their impact on stock prices. However, for the purposes of 
this paper, the period of time used was found to be sufficient. Second, because the period of time 
used was relatively stable, it would be worthy of future studies to investigate more tumultuous 
market activity to see how the results may differ. 
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