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ABSTRACT

In this thesis we have presented original homomorphic images of permutations and
monomial progenitors. In some cases we have used the double coset enumeration tech-
nique to construct the images and for all of the homomorphic images that we have
discovered, the isomorphism type of each group is given. The homomorphic images
discovered include Linear groups, Alternating groups, and two sporadic simple groups
Ji and Jo x 2 where Jj is the smallest Janko group and J3 is the second Janko sporadic

group.
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Chapter 1

Background Information

The following terminology and theorems will be used throughout this thesis:

1.1 Groups

Definition 1.1 [Rot95] A group is a nonempty set, G, equipped with an associative

operation, *, such that:

(i)exa=a=axe foralacG.

(i1) for every a € G, there is an element b € G with axb=e =bxa.

To avoid any confussion, we will write G instead of (G, *) and we’ll keep in mind

that * continues to exist.

Definition 1.2 [Rot95] Let G and H be groups. A function f : G — H is a homo-
morphism if, for all a,b € G,

flab) = f(a)f(b)

An isomorphism is a homomorphism that is also a bijection. We say that G is

isomorphic to H, denoted by G = H, if there exist an isomorphism f: G — H.

1.2 Group Action

A group action is a way to describe elements of a group acting on elements of

a set in certain ways. Its a very useful abstraction, and is used in many fields, such as



geometry and algebra itself. The following definitions and theorems are used:

Definition 2.1 [Rot95] If x is a set and G is a group, then x is a G-set if there is a
function a: G x x — x (called an action), denoted by « : (g,x) — gz, such that:

(i) la = a for all a € x; and
(ii) g(ha) = (gh)a for all g,h € G and a € x.

One also says that G acts on x. And |x| = n, the order of x, then n is called the
degree of the G-set x.

Definition 2.2 [Rot95] The set of all permutations of n letters is called the symmetric

group on n letters, and is denoted by .S,.

Definition 2.3 [Rot95] If x is a G-set and = € x, then the G-orbit of x is

V(z)={gx:9€ G} Cx.
Throughout this thesis we will be refering to the G-orbit as orbit.

Definition 2.4 [Rot95] If x is a G-set and x € X, then the stabiliser of x, denoted by
G, is the subgroup
G,={9€G:gx =12} <G.

1.3 Normal Series

Definition 3.1 [Rot95] Anormal series G = Hy > Hy > ... > Hy, = 1 is a refinement
of a normal series G = Gy > G1 > ... > G, =1 if Gy, G4, ..., Gy, is a subsequence
Of H(),Hl, ...,Hm.

Definition 3.2 [Rot95] If G has a composition series, then the factor groups of this

series are called the composition factors of G.



Chapter 2

Presentation of 2° : A:

We will show that 2*5 : A5, where x ~ (01234) and y ~ (421), by performing

a double coset enumeration of G over As. A symmetric presentation of G is give by:

G =< z,y,t]2°, v, (x xy)% 2, (ty), (,a® xyx 27 1), (Ex7)% >

2.1 Relations

As mentioned above, we have the progenitor 2*° : As being factored by the
relation tgt1tgt; = 1. We will utilize this relation to determine the equal cosets with

words composed of t1, ta, t3, and t4. Simplifying our relation:

totitot; = 1
tot1to = 1
tot1 = tito

Hence, our relation in simplest terms is tot; = t1tg. We will use this relation
to help us determine the equal cosets within words of length two. That is, we will
conjugate Ntot; = Ntitg with every element contained in our control group As to

obtain the following:

toto ~ tato t1to ~ totq tots3 ~ t3to
tots ~ t3to t1ts ~ t3tq toty ~ tyts

tots ~ tato tity ~ tat taty ~ tats



To obtain the relations for the words of length three we will use the relations
found for words of length two and right multiply each relation to obtain longer relations.
We’ll look in detail as to how we can obtain a relation of length three using the relation

toty ~ t1tg, right multiply both sides by to and use the above relations:

totita = titote

= titatg (. tota ~ tato

= tatoty

(

= totitg (. tite ~ taty
(. titg ~ tots
(

)
)
)
)

= totgtl tQtO ~ totg

Applying this process we can figure out all the relations that will be useful for

the words of length three. We will use the following notation for the relations found:

012 ~ 102 ~ 120 ~ 210 ~ 201 ~ 021
031 ~ 301 ~ 310 ~ 130 ~ 103 ~ 013
041 ~ 401 ~ 410 ~ 140 ~ 104 ~ 014
241 ~ 421 ~ 412 ~ 142 ~ 124 ~ 214
231 ~ 321 ~ 312 ~ 132 ~ 123 ~ 213
341 ~ 431 ~ 413 ~ 143 ~ 134 ~ 314

Similarly we can find the relations in regards to the words of length four and

length five.



2.2 Double Coset Enumeration

NelN
We begin with NeN, the first double coset, which contains all the words of
lenght zero. We have that NeN = { N} and it will be denoted [*]. Also,

N =< x,y >= A5 and is of order 60. The number of elements in [] is

INT _ 60
IN| — 60

single orbit {0, 1,2,3,4}. We then take an element from the orbit and right multiply it

= 1. Hence [#] consists of the single coset, N. This single coset contains the

with the representative coset Ne to obtain Ntp/N. We now have a new double coset,
NtyN, denoted as [0].
NtoN

In this double coset we have the words of length one and the representative
is Nto. We first find the coset stabilizer, N, which consists of all the permutations
in N that fix the element 0 and permute 1,2, 3,4. Hence, N(© =< (142),(234) >, is
the coset stabilizer in N which contains 12 elements. Also, the number of single cosets

in the double coset [0] are found by \ ]l[]y()‘” = % = 5. Now, we find the orbits of N(©)

on {0,1,2,3,4} by taking the representative from the double coset [0], and conjugating
it by the coset stabilizer. Since the element 0 is the only fixed, then N(®) has {0} and
{1,2,3,4} as its orbits. Next, we will take a representative from [0] and conjugate it with

a representative from each orbit to determine if the elements will extend or collapse:
Nto-tg = N(tg)? € NeN

Since the orbit of 0 is of length one, then 1 element will collapse from [0] to [*].

Nty -ty = Ntgt1 € Ntgt1: N

Since the orbit of 1 is of length four, then 4 elements will extend to the double coset

Ntoti N denoted as [01].

Ntot1IN
We begin by finding the point stabilizer of 0 and 1, N%'. To find the point
stabilizer we need to find elements that belong to N which fix 0 and 1 and permute

2,3,4. Hence N°' = {(142),(132),e}. Also, since we now have words of length two,



our relations will increase the stabiliser, N, Now to find the set stabiliser, N(OU we
must find a relation in N such that when Ntgt; is conjugated by such relation, Ntgty
goes back to itself. Say that such relation is (10), then we have the following:

Ntot1 = Ntitg = Ntotglo) = Ntitg = Ntgtq

Hence, we have (10) € NOY. So, NOU >< NO(10) > and contains 6
elements. Also, we have that the number of single cosets in Ntgt1 N is U\lf% = % = 10.
Now, to find the orbits of NOY on {0,1,2,3,4} we'll conjugate Ntot1, a representative
from the double coset [01] and conjugating it by the point stabilizer to obtain the
following:

oV = {1}, 1N = {0}, and 2V = {2,3,4}.

Hence the orbits of N0V are {0}, {1}, {2, 3,4}. Next, we will take the represen-
tative Ntotq of [01] and conjugate it with a representative from each orbit to determine

if the elements will extend or collapse:
Ntoty - to = Ntotito = Ntitoto = Nt; € NtgN
Since the orbit of 0 is of length one, then 1 element will collapse from [01] to [0].
Ntoty - t; = Ntot1t; = Ntg € NtgN
Since the orbit of 1 is of length one, then 1 element will collapse from [01] to [0].
Ntoty -t = Ntotits € NtotitaN

Since the orbit of 2 is of length three, then 3 elements will expand from [01] to [012].
Now Ntoti1taN is a new double coset which will be represented as [012].

Ntot1toIN

We begin by finding the point stabilizer of 0,1 and 2, N°'2. To find the point
stabilizer we need to find elements that belong to N which fix 0,1, and 2 and permute
3,4. Hence N2 = {e}. Also, since we now have words of length three, our relations
will increase the stabiliser, N(912), Now to find the set stabiliser, N (12 we must find a
realiton in IV such that when Ntytqts is conjugated by such relation Ntgtite goes back
to itself. Say that such relation is (012), then we have the following:

Ntgtits = Ntytots = Ntotyth"2) = Ntitoto = Ntotyts



So, we have (012) € N2 We also know that [N(°'?)| = 6 and the number

INl  _ 60 _
|N(012) - 6 10.

Now, we find the orbits of N(©12) on {0,1,2,3,4} by taking the representative

of single cosets in [012] is

Ntotyty from the double coset [012] and conjugating it by the point stabilizer to obtain
the following:

oV {0,1,2}, 3N {3,4}. Hence the orbits of NV are {0,1,2} and
{3,4}. Next, we will take the representative Ntgtit2 and conjugate it with a represen-

tative from each orbit to determine if the elements will extend or collapse:

Ntotits - to = Nigtitato = Ntgty = Nty € Ntgt1 N

Since the orbit of 2 is of length three, then 3 elements will collapse from [012] to [01].
Ntgtits - t3 = Nitgtitats € Nitgtitats N

Since the orbit of 3 is of length two, then 2 elements will extend from [012] to [0123].
Now NtptitatsN is a new double coset which will be represented by [0123].

Ntot1tatsN

We begin by finding the point stabilizer of 0,1,2, and 3, N°123. To find the
point stabilizer we need to find elements that belong to N = S5 which fix 0,1,2,3 and
permute 4. Hence N2 = {e}. Also, since we now have words of length four, our
relations will increase the stabiliser, N(©123) Now to find the set stabiliser, N(0123)
we must find a realiton in N such that when Ntgtitats is conjugated by such relation

Ntotytats goes back to itself. Say that such relation is (012), then we have the following:

Ntgtitats = Ntytotots = Ntgtitat"?) = Ntytatots = Ntytotats = Ntotitots
So, we have (012) € N(©123)  Also, notice that if we conjugate Ntotitats by
(13)(02) we obtain the following:

Nitgt1tatS DO = Nitgtstot) = Ntototst; = Ntotatst; = Ntotatits = Ntotitats

We can conclude that (13)(02) € N(©123) We also know that |[N(©123)] = 12

N
IN| 60 _ 5

and the number of single cosets in [0123] is o= = 12



Now, we find the orbits of N(0123) op {0,1,2,3,4} by taking the representative
Ntotytots from the double coset [0123] and conjugating it by the point stabilizer to

obtain the following:
N = f0.1,2,3), 4V = ()

Hence the orbits of N(©123) are {0,1,2,3}, {4}. Next, we will take the repre-
sentative Nigt1tats and conjugate it with a representative from each orbit to determine

if the elements will extend or collapse:
Ntotitots - ts = Ntotitotsts = Ntotits € NtotitoN

Since the orbit of 3 is of length four, then 4 elements will collapse from [0123] to [012].

Nitotitats - ta = Nitotitatsts € NtotitatstaN

Since the orbit of 4 is of length one, then 1 element will expand from [0123] to [01234].
Now NtotitatstyN is a new double coset which will be represented as [01234].

Ntot1tatsztsN

We begin by finding the point stabilizer of 0,1,2,3, and 4, N°'234. To find the
point stabilizer we need to find elements that belong to N = S5 which fix 0,1,2,3,4.
Hence NY234 = f{e}. Also, since we now have words of length five, our relations will
increase the stabiliser, N(©1234)  Now to find the stabiliser, N(01230) e must find a
realiton in N such that when Ntgtitatsty is conjugated by such relation, Ntotitotsts
goes back to itself. Say that such relation is (0123), then we have the following:

Ntgtitatst ) = Ntytatstots = Ntitototsts = Ntytotatsty = Ntottatsts
Hence we have (0123) € N(01234) Also, notice that if we conjugate Ntgtitatsty
by (12)(34) we obtain the following:

Nt totd DY = Nitgtotytsts = Ntotitotsts = Ntotitatsty

We also know that |[N(©1234)| = 60 and the number of single cosets in [01234]

; N _ 60 _
18 \N(01234)| - 60 — 1.



Now, we find the orbits of N(01234) on {0,1,2,3,4} by taking the representative
Ntotytotsty from the double coset [01234] and conjugating it by the point stabilizer to
obtain the following:

N(01234)

Ntotitotsth ={0,1,2,3,4}

Hence the single orbit of N(01234) jg {0,1,2,3,4}. Next, we will take the representative
Ntotitatsty from [01234] and conjugate it with a representative from the orbit found to

determine if it’ll extend or collapse.
Ntotitotsty -ty = Ntotitotststy = Ntotitots € Ntotitots N

Since the orbit of 4 is of length five, then 5 elements will collapse from [01234] to [0123].
Since the set of right cosets is closed under right coset multiplication, the double coset
enumeration is now complete. Thus, we have summarize all of our work in the Cayley

graph.

5 1/\4 2/\3 3/\2 4/‘\1 5
O—C6C—w—w0w—6—@
[*] [0] [01] [012] [0123] [01234]

Figure 2.1: Cayley Graph of 2° : A5 over As
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Chapter 3

L9(49) as a Homomorphic Image

of 7% ., Lo(7)

We'll begin with the group Lo(7), generated by x ~ (3,6,7)(4,5,8) and y ~
(1,6,2)(3,8,7). We want to induce a linear character from a subgroup H up to Lo(7).
We will induce a linear character of H to get an irreducible character of La(7) of degree
3. To do so, we find the largest index from the character table of Lo(7). We will induce
from a subgroup of index 8. To make the notation easier, let L2(7) = G. Now we must
find the character tables for G and H, using MAGMA we have the following:

Now, using Magma, the character table of H is as follows and Z; = A%ﬁ

Table 3.1: Character Table of H

Conjugacy Classes C; Co C3 Oy Cs Cs

Order 1 2 3 4 7 7
X1 1 1 1 1 1 1
X2 3 -1 0 1 VARNAE S
X3 3 -1 0 1 Zq#3 YA
X4 6 2 0 0 -1 -1
X5 7T -1 1 -1 0 0
X6 8 0 —1 0 1 1

Also using Magma, the character table of G is as follows, with Z; = %ﬁ
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and J is a root of unity 3:

Table 3.2: Character Table of Ly(7)

Conjugacy Classes Cy Cy Cs Cy Cs
Order 1 3 3 7 7

X1 1 1 1 1 1

Yo 1 J —1-1J 1 1

Y3 1 —1-J J 1 1

X4 3 0 0 7y 7173

X5 3 0 0 Z1#3 YA

Now, we will induce the second character of H up to G. To do so, we first need
to find the right transversals of G. The transversals of H in G are: {e, (3,6,7)(4,5,8),
(3,7,6)(4,8,5),(1,6,3,2)(4,5,7,8),(1,2,6,8,4,5,3),(1,2,7,3)(4,8,5,6),
(1,4,5,2,7,8,3),(1,6,4,3,2,8,5)}. Then we will label the transversals as ti, ta,...,ts
respectively. Each transversal will represent a t;, since there are eight transversals, we
will have an 8 x 8 matrix representation. and we have:

G = Hti UHty U Hts U Hty U Hts U Htg U Ht7 U Hts.
Then the matrices A(zz) and A(yy) are a representation of G induced from

the representative of H. Hence the general form for the matrices A(zz) and A(yy) are

as follows:
(B(tizt7Y) B(tizty!) B(tizty!) B(tizt7) B(tixtg!) ]
B(taxt;') B(tazty') Bltawty®) B(taxt;') B(tazty!)
B(tsxzt;') B(tzzty') Bltzwty?) B(tszt;') B(tzztg!)

Ale) = B(tazt;') B(tazty') Bltaxty') B(tazt;') Btazty!)
B(tsxt;') B(tszty') Bltsxty?) B(tsxt;') B(tsztg!)
B(tsxt;') B(texty,') Bltewty") B(tgxt;') Btgrtg!)
B(trxt]') B(tzzty') Bltrxty?) B(tyxt;') Btzztg!)
|B(tsxt;') B(tsxzty') Bltszty!) B(tsxt;') B(tsztg!) |

We begin to compute the first entry, B(tlxtl_l) by substituting in the val-
ues t; = e and = ~ (3,6,7)(4,5,8). Substituting the corresponding values we obtain:
B(e(3,6,7)(4,5,8)e) = B((3,6,7)(4,5,8)), now we look for the element (3,6,7)(4, 5, 8)
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in the characer table of H along the second row; since (3,6,7)(4,5,8) is not in it
B((3,6,7)(4,5,8)) = 0. Let’s look at the next entry on the matrix: B(t;zty') =
B(e(3,6,7)(4,5,8)((3,6,7)(4,5,8)) 1) = B(e) since (e) is in H under the column cor-

responding to 1 then B(e) = 1. Continuing with the above process we obtain the

matrix:
01 00 0O0O0TO
001 0O0O0O0TO 0
1 000 0O0O00O0

Alwz) = 000O0OT1O0O0TO0

100 0O0O0O0O0
000 O0O0OT1O0TPO0
000O0O0O0M4TDQO0
000 O0O0O0OTO0 2

We do a similar process to obtain the matrix A(yy):

20000000
00010000
00400000
00001000
Alyy) =
01000000
00000020
0000000 2
00000200

Now A(zz) and A(yy) are a faithful representation of Ls(7), since |z| =
|A(zz)| = 3, |y| = |A(yy)| = 3 and |zz * yy| = |A(xzx) - A(yy)| = 4. Now, we can
use the matrices to find permutation representations to use for the progenitor along

with the following rule: If a;; = 1 then ¢; — ¢; and if a;; = —1 then t; — t;l.
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To find the permutation representation for A(zx) and A(yy), we will label the

t;’s as follows:

Table 3.3: Labeling t;’s

L.t1 Tty 13.t3 19.t4 25.t5 3l.tg 37.t7 43.ts
2.2 8.t3 14.t3 20.t7 26.t2 32,12 38.12 44.42
3.6 9.43 1543 2143 2743 33.t3 39.43 45.43
4.t1 10.¢3 16.t3 22.¢7 28.t3 34.t} 40.t1 46.t4
5.t7 11.t5 17.43 23.t5 29.t2 35.43 41.t3 AT.43

6.t 12.¢5 18.¢5 24.¢§ 30.t% 36.t5 42.18 48.48

Let’s begin with matrix A(xx). Say we begin with entry ajo = 1 using the
relation as mentioned, it implies that t; — t5 using the labeling we have 1 — 7. Having
found this relation it implies that all the powers of #; go to the corresponding powers
of to. The relations for the remaining powers of ¢; and 9 using the labeling are: 2 — 8,
3—9,4— 10,5 — 11 and 6 — 12. Similarly, for entry aoq = 1 implies that to — 4,
with the labeling we obtain 7 — 19. Having found this relation we know that all the
powers of to go to the powers of t4. Continuing with the process for the remaining
powers we have the remaining relations: 8 — 20, 9 — 21, 10 — 22, 11 — 23 , 12 — 24.

Continuing with the pattern, the results are summarized on the following table:



Table 3.4: Permutation of the t;’s using A(zx)

tot28 o 8 ot 8 ot ot 1S oty 2t th
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
N T A T T S A A
7 8 9 10 11 12 19 20 21 22 23 24 25 26 27 28 29
8 ot 13t 7 1 5 s 2 B 2 1 8 ¢ 2 3t

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
N T e e N N T 2 R S A

30 1 2 3 4 5 6 31 32 33 34 35 36 13 14 15 16
38 ot 2 8 2 2 48 g 2 43 td ) 8

35 36 37 38 39 40 41 42 43 44 45 46 47 48
N T e N A/

17 18 40 37 41 38 42 39 44 46 48 47 45 47

Hence, the permutation representation for A(xx) is: = ~ (1,7,19)(2, 8, 20)
(3,9,21)(4, 10,22)(5, 11, 23)(6, 12, 24)(13, 25, 31)(14, 26, 32) (15, 27, 33)(16, 28, 34)
(17,29, 35)(18, 30, 36)(37, 40, 38) (39, 41, 42) (43, 44, 46) (45, 48, 47).

14

Now, for matrix A(yy), we’ll be using the same labeling of the ¢;’s used for

A(zz). Along with the conditions, if a;; = 1 then t; — t; and if a;; = —1 then t; — tj_l.

We’ll begin with the entry a;3 = 1 which implies that t; — t3, using the

labeling we have 1 — 13. Continuing with the same process, with all 48 t;’s, the

following table summarizes our findings:
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Table 3.5: Permutation of the ¢;’s using A(yy)

tot28 o 8 ot 8 ot ot 1S oty 2t th
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N S e N N e S e N
13 14 15 16 17 18 7 10 11 8 12 9 25 26 27 28 29

8 ot 13t 7 1 5 s 2 B 2 1 8 ¢ 2 3t
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

R S S L 2 T e N e N T -
30 20 22 3 4 5 6 31 32 33 34 35 36 13 14 15 16

38 ot 2 8 2 2 48 g 2 43 td ) 8
35 36 37 38 39 40 41 42 43 44 45 46 47 48

N S S R R S S T
17 18 40 37 41 338 42 39 44 46 48 47 45 47

The permutation representation for A(yy) is:y ~ (1, 13,25)(2, 14,26)(3, 15,27)
(4,16,28)(5,17,29)(6, 18, 30)(7, 10, 8)(9, 11, 12)(19, 20, 22)(21, 24, 23)(31, 37, 43)
(32,38,44)(33,39,45)(34,40,46)(35,41,47)(36, 42, 48).

Now the progenitor for our group G is as follows:
Group < x,y, t]a®, y°, (x x y)*, (z,9)°, (2% x )T, 17, < t SN=<t >>

where < t >N=<t > is the normaliser of < ¢ > in N. The normalizer of the subgroup
<t;1 >in Nis {g € N| <t; >n =mn < t; >}. The normaliser of < ¢; > is the
stabiliser of all powers of ¢; in IN. The permutations that fix all powers of ¢; are:
(1,2,4)(3,6,5)(7,10,8)(9, 11,12)(13, 31, 19)(14, 32, 20)(15, 33, 21)(16, 34, 22) (17, 35, 23)
(18,36,24)(25,46, 38)(26,43,40)(27,47,42)(28, 44, 37)(29, 48, 39) (30, 45,41) and
(7,26,44,34,38,14,19)(8, 28, 46, 31, 40, 16, 20)(9, 30, 48, 35, 42, 18, 21)
(10, 25,43,32,37,13,22)(11, 27, 45, 36, 39, 15, 23)(12, 29, 47, 33, 41, 17, 24).

To be able to use the above permutations in our progenitor we need to represent
them in terms of x and y. Using the Schreier System we are able to find out what each

of the above look like: zy'z~! and y~'z~ly~ 1

Hence, we have that < t; >=<
zy tx~l yla~ly=! > So far we have 7*® ., L(7), where 7*® denotes the order of the

matrices, 7, and the number of our ¢;’s, being 8. Also, to complete the representation of
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our progenitor we find relations for which ¢ conjugates with. Since we’re dealing with
a monomial representation, from 7*®, we are working with eight symmetric generators,
denoted by {t1, to, t3, t4, t5.ts, t7, ts}. The elements z and y act on the generators by

conjugation, so a presentation for the progenitor is:

78 o Lo(T)=< 2%, 0%, (x % y)!, (2,9)%, (a2 % )T 47, 600507 = 2 (¢ g~V w g ay™h),
(22 xyxtxt?)? >,

Having completed this monomial progenitor, we can now look at its composi-

tion factors. MAGMA prints the composition factors of this progenitor as:
A(1,49) = L(2,49)

which is a computer-based proof that we will verify by constructing the following group.

3.1 Presentation of L,(49)

We will be showing that Ly (49) = gﬁ%ﬁg, where x ~ (1,7,19)(2,8,20)
3,9,21)(4,10,22)(5, 11, 23)(6, 12, 24)(13, 25, 31) (14, 26, 32) (15, 27, 33)(16, 28, 34)
17,29, 35)(18, 30, 36)(37, 40, 38) (39, 41, 42) (43, 44, 46)(45, 48, 47) and y ~ (1,13, 25)
2,14, 26)(3, 15, 27)(4, 16, 28) (5, 17, 29)(6, 18, 30)(7, 10, 8)(9, 11, 12)(19, 20, 22)(21, 24, 23)

31,37,43)(32, 38, 44)(33, 39, 45)(34, 40, 46) (35, 41, 47)(36, 42, 48), by performing a dou-

N

ble coset enumeration of Ly(49) over Lo(7). Hence the progenitor is:

Lo(49)=< 2%, ¢, (x x y)*, (2, 9)%, (@ % )T 47, 6@ 57D =2 (1 T L ay ™Y,

(22 sy xtxt%)2 > .

As mentioned above, we have the progenitor 7*® :,, Lo(7) being factored

by the relation [22yt1t¥]> = e. Simplifly the relation by conjugating t; by = we

have #; — t3. Our relation now becomes: [z2ytit2]? = e. Let 2%y = 7 then © =

(1,20,7,13,37,44,31)(2, 22,8, 14, 38,46, 32)(3, 24,9, 15, 39, 48, 33) (4, 19, 10, 16, 40, 43, 34)
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(5,21,11,17,41,45,35)(6, 23,12, 18,42,47,36). The relation (7tit3)? = e yields:
nt1tomtita =e
mrm—1t1tomtits =€
T (titg) ity =e
w23ttty =e
totatitits  =e,
if we use the operation of right hand multiplication , we can simplify this relation to

totts = tot;.

3.2 Double Coset Enumeration

We will consider the following labeling for our ¢;’s to facilitate the double coset

enumeration notation:

l=t;, =83, 3=, *=t}, ° =13, 16 =15,
2=1ty,22 =13 23 =13 24 =13 25 =13, 26 =45,
3=1t3,32=13,33=13,3=13,3° =13, 36 = 1§,
4=ty 4% =12, 43 =13, 4% =13, 45 =13, 45 = 1§,
b=t5 b2 =t 53 =t3 5t =1t} 55=12 56 =19
6 =tg, 62 =12, 65 =13, 61 =13, 6° =13, 65 =18,
T=t;, =t =83 T=t3 =12 76 =145
8=tg, 82 =12, 8 =13 8t =t 85 =13, 86 =18,

NeN

We begin with NeN, the first double coset, which contains all the words of
lenght zero. We have that NeN = {N} and it will be denoted [*]. Also,
N =< z,y >= Ly(7) and is of order 168. The number of elements in [«] is % =
% = 1, hence [x] consists of the single coset, N. The single coset contains two orbits:
{1,12,14,2,22,243,32,34, 4,42 4* 5,52 5% 6,6%,6%,7,7%,7%,8,82,8%} and {13,1°,16,
23252633 35 36 43 45 45 53 55 55 63,6565, 73,7°,75,83,8° 80}, Now take a repre-
sentative element from each orbit, say ¢; and 3 and right multiply each with the repre-

sentative coset Ne:
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Ne-t; = Nty € [1]
Ne-t3 = Nt3 € [13]

Nt;N

The double coset Nt; N denoted by [1]. To find the elements in [1], we find the
point stabiliser of 1, denoted as N'. The point stabiliser is made up of the permutations
in N = Ly(7) that fix 1 and permutes the rest of the ¢;’s. Thus, we have that |[N!| = 7.
We also have that the set stabiliser is the same as the set point stabiliser, N(V) = N1,
Hence |[NW| = 7.

The orbits of N are {1}, {12}, {13}, {14}, {1°} ,{16}, {2,32%,4,52,6%, 72 8%},
{22,3% 42 5% 6,74, 84}, {23,3%,43,55,6°, 76,86}, {24,3,4% 5,62,7,8},
{25,334 53 6% 73,83}, and {2637 4% 5% 63,7°,8%}. The number of single cosets in
the double coset [1] is Ulf]ylkl =108 = 24.

Next we must take a representative from each orbit and right multiply it with

the representative Nt1, to determine if the t;’s will expand or collapse:

Nty -t; = N3 € [1] Nty -t = Nt§ € [13] Nty -3 = Nt1 t3 € [1, 23]

Nty -2 = Nt} € [17] Nty -t = Nt] = Ne€ [¥]  Nty-t4 = Nt1th € [1,24]

Nty -t} = Nt} € [1] Nty -ty = Nty ts € [1,2] Nty -t = Nty t5 € [1,2°]

Nty -t} = Nt € [19] Nty -3 = Nty t3 € [1,2% Nty - t§ = Nt1 t§ € [1,2°]
Nt3N

The double coset N3N denoted by [1%]. To find the elements in [13], we
find the point stabiliser of 13, denoted as N ¥ The point stabiliser is made up of the
permutations in N = Ly(7) that fix 13 and permutes the rest of the tis. Thus, we
have that |N 13] = 7. We also have that the set stabiliser is the same as the set point
stabiliser, N*) = N'°_ Hence [N = 7.

The orbits of N are {1}, {12}, {13}, {14}, {15} {16}, {2,32,4,52, 6%, 72,82},
{22,3%,42 54 6,74, 84}, {23,36,43 56 6°, 76,85}, {24,3,4% 5,62, 7,8}, {2°,33,45 53 6%,
73,83}, and {2637 46 5% 63,7°,8%}. The number of single cosets in the double coset
IN]_ _ 168 _ 94

[13] is obtained by the quotient NGO = T
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To obtain the elements in this double coset, we must first find the right cosets,
also known as transversals, of N (1% in N. Then, we conjugate Nt3, a representative
of the coset, with the transversals to obtain the 24 single cosets in [13]. Next, take a
representative from each orbit of N (1%) and right multiply each with N#3, to determine

if the elements will expand or collapse:

Nt} -t; = Nt3t; = Nt} € [1] Nt} -ty = Nt3 to € [1,2°]
Nt3 -2 = Nt 13 = Nt§ € [19] Nt -t3 = Nt§13 € [1,29]
Nt3 -3 = Nt3 13 = Ntb € [19)] Nt -3 = Nt3t3 € [1,2?]
Nt3 -t} = Nt3t} = Nt{ = Ne € [4] Nt -3 = Nt t5 € [13,24]
Nt3 45 = Nt§13 = Nty € [1] Nt -5 = Nt t3 € [1,2]
Nt3 -9 = Nt31§ = N2 € [1] Nt -5 = Nt3¢§ € [1,24)
Nt;toN

The double coset Nt; to N denoted by [1,2]. To find the elements in [1,2], we
find the point stabiliser of {1,2}, denoted as N'2. The point stabiliser is made up of the
permutations in N = Syg that fix 1 and 2 and permutes the rest of the ¢;’s. Thus, we have
that |[N'2| = 3. We also have that the set stabiliser, N('? has 3 elements.The number
of single cosets in the double coset [1,2] is obtained by the quotient % = % = 56.

The orbits of N(12) are {1,22,3%}, {12, 24,3}, {13,26, 3%}, {1%, 2,32}, {1°, 23,36},
16,2533}, {4,6,8%}, {42,62,8}, {43,63,8%}, {44,64, 8%}, {4°,65,85}, {4%,65, 8%},
{5,52,5%},{53,5°,5%} {7, 72,74}, and {73,7°,76}.

To obtain the elements in this double coset, we must first find the right cosets,
also known as transversals, of N2 in N. Then we conjugate Nt te , a representative
of the coset, with the transversals to obtain the single cosets in [1, 2] which total to 56.

Next we take a representative from each orbit of N(12) and right multiply each with

Ntj tg, to determine if the elements will expand or collapse:

Ntyty -ty = Ntytaty € [1,23] Nty ty - t§ = Nty tat8 € [1,29]

Nty ty - 12 = Nty tat? € [1,25] Ntity -ty = Nty taty € [1°]
Ntyty - t3 = Nty tat3 € [1] Ntyty - 13 = Nty tat] € [1,29]

Nty ty -t} = Nty tat] € [1,22] Nty ty -t = Nty tots € [13,24]

Nty ty - 13 = Nty tat3 € [1,24] Nty ty -t = Nty tat] € [1,24]
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Nty tg-t3 = Nty tat] € [1,2°] Ntyty-t3 = Nty tatd € [1,2]

Nty tg-t$ = Nty tot§ € [1,22] Ntity -ty = Nty taty € [1,2]

Ntity-t5 = Ntytats € [1,2] Ntity -2 = Nty tot2 € [1,2]
2

The double coset Nt;t3N denoted by [1,2%]. To find the elements in [1,22],
we find the point stabiliser of {1,22}, denoted as N 122 The point stabiliser is made up
of the permutations in N = Ly(7) that fix 1 and 2% and permutes with the remaining
t:’s. Thus, we have that |[N'2*| = 4. We also have that the set stabiliser is N(12*) also

contains 4 elements. The number of single cosets in the double coset [1,2?] is obtained

by the quotient ‘Nl(l 2‘2” = % =42,

The orbits of N(12%) are {1,4, 74,82}, {12,42, 7,84}, {13,43,75 861,
{1444, 72,8}, {15,45, 76,83} {16,465 73 8}, {2,3,52,62}, {22,32,5%, 6}, {23,33,5%,65},
{24,3%5,6}, {2°,3°,53,63}, and {26,35 55 6°}. Next we must take a representative
from each orbit of N(12*) and conjugate each with Nt1t2, a representative of the coset,

to determine if the elements will expand or collapse:

Nt t3-t1 = Nty 13t € [1,2] Nt 13-ty = Nty t3to € [1,23]
Nty t3-t2 = Nty 132 € [19] Nty t3-t2 = Nty 33 € [1,24]
Nty 1213 = Nty 243 € [1,29] Nty 1213 = Nty 1243 € [1,2°]
Nty t3-t] = Nty t3t] € [13,24] Nty 13-t = Nty 3¢5 € [1,29]
Nty t3-t) = Nty 3¢5 € [1,24] Nty t3-t5 = Nt 135 € [1]
Nt t2 -9 = Nt 31§ € [1,23] Nt 21§ = Nty 31§ € [1,2]
Nt1t3N

The double coset Nt1 t3N denoted by [1,23]. To find the elements in [1,23], we
find the point stabiliser of {1,23}, denoted as N 12° The point stabiliser is made up of
the permutations in N = Ly(7) that fix 1 and 2% and permutes the rest of the ¢;’s. Thus,

we have that |N'2°| = 4. We also have that the set stabiliser is N(12°) =, The number

IN| 168 _
e 42.

The orbits of N(2*) are {1,6%,7,8}, {12,6,72,82}, {13,6°,73, 83},
{14,62,74,84}, {15,66,75,85} ,{16,63,76,86}, {2,34,4, 54}, {22,3,42,5}, {23,35,43,55},
{2%,32,4% 52}, {25,36,4% 56}, and {29,33,45, 53}. Next, we take a representative from

of single cosets in the double coset [1,2?] is obtained by the quotient
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each orbit of N12°) and conjugate each with Nt1t3, a representative of the coset, to

determine if the elements will expand or collapse:

Nty t3-t; = Nty t3t; € [1,2] Nt t3-to = Nty t3to € [1,24]
Nty t3 -3 = Nty 312 € [1,29] Nt t3 13 = Nty t313 € [1,2°]
Nty t3 -3 = Nty 33 € [1,24] Nt t5-t5 = Nty 3¢5 € [1,2°]
Nty t3 -t} = Nty 3t} € [1,22] Nt t3-t3 = Nty 3¢5 € [1]
Nty t3 17 = Nty 385 € [17] Nty t3-t5 = Nty  t3t5 € [1, 2]
Nty t3 -1 = Nty 315 € [13,24] Nty t3 -5 = Nty 3¢5 € [1,22]
Nt t3N

The double coset Nt;t3N denoted by [1,2%]. To find the elements in [1,2%],
we find the point stabiliser of {1,2%}, denoted as N 12 The point stabiliser is made
up of the permutations in N = Ly(7) that fix 1 and 2% and permutes the rest of the
t;’s. Thus, we have that |N 124| = 3. We also have that the order of the set stabiliser is
|N (124)\ = 3. The number of single cosets in the double coset [1,2%] is obtained by the
quotient |N|(]1VQ|4)| = 168 — 56. The orbits of N(12") are {1,4%,6%}, {12,4,6}, {13,45,6°},
{14,426}, {1°,45,63}, {16,43,6°}, {2,5,8%}, {22, 52,84}, {23,53,80}, {24, 5,8},

{25 5% 83}, {26 56 85} {3 32 3%}, {33,3°,3%}, {7,7%, 7%}, and {73,7°,70}. Next, we
(12%)

take a representative from each orbit of NV and conjugate each with Nt,t3, a repre-

sentative of the coset, to determine if the elements will expand or collapse:

Nty th-t; = Nty tity € [1,2°] Nty ts-t3 = Nty tat3 € [1]
Nty t5-t2 = Nty t5¢2 € [1,22] Nty t3-t5 = Ntit5ts € [1,2]
Nty th -3 = Nty t5¢3 € [1,2] Nty t3-t5 = Nty t5t5 € [1,22]

Nty t5 -1 = Nty t5tf € [17] Nty t5 1§ = Nty 515 € [1,2°]
Nty t5-t) = Nty t5¢9 € [1,29] Nt t5-t3 = Nty tats € [1,2]
Nty th -5 = Nty 515 € [13,24] Nty t3-t5 = Nty t3t3 € [1,24]
Nty ty -ty = Nty t5ty € [1,25] Nty t5-t; = Nty t5t7 € [1,24]
Nty t3-t2 = Nty t5t2 € [1,29] Nt t5 -3 = Nty tat3 € [1,24]

Nt1t3N

The double coset Nt1 3N denoted by [1,25]. To find the elements in [1,25], we
find the point stabiliser of {1,2%}, denoted as N 127 The point stabiliser is made up of
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the permutations in N = Ly(7) that fix 1 and 2° and permutes the rest of the ¢;’s. Thus,

5 5
we have that |[N12"| = 1. We also have that the set stabiliser is [N(12")| = 7. The number
_ 168 _

of single cosets in the double coset [1,25] is obtained by the quotient |N|<]1V2|5)| = =
24. The orbits of N(12) are {8}, {82}, {83}, {84}, {8%} {86}, {1,22,3,4% 52 6% 74},
{12,2%,32 4,54, 6,7}, {13,26,33,45, 55 65, 75}, {14,2,3% 425,62, 7%},

{1°,23,3%,46 53 6% 76}, and {16,2° 35 43 5° 63, 73}. Next, we take a representative
from each orbit of N(12”) and conjugate each with Nt1t3, to determine if the elements

will expand or collapse:

Nty t5-t; = Nty t5ty € [1] Nty t5 -ty = Nty t5tg € [13,24]
Nt t5-t3 = Nty t5t3 € [1,22] Nt t5 - t2 = Nty t3t2 € [1,2°]
Nty t5-t3 = Nty t53 € [1,24] Nt 85 -t3 = Nty t5td € [1,2°]
Nty t5 -t = Nty t5tF € [1,29] Nt t5 - tg = Nty t3t4 € [1,25,8%]
Nty t5 -3 = Nty t5t5 € [1, 2] Nty 85 -t3 = Nty t5¢3 € [13, 2]
Nty t5 -9 = Nty 545 € [1,2°] Nt 85 -8 = Nty 545 € [13,24]
Nt t§N

The double coset Nt1 tSN denoted by [1,2%]. To find the elements in [1,2%], we
find the point stabiliser of {1,2%}, denoted as N 12° The point stabiliser is made up of
the permutations in N = Ly(7) that fix 1 and 2° and permutes the remaining ¢;’s. Thus,

we have that \N126| = 1. We also have that the set stabiliser is |N(126)\ = 3. The number

INl 168 _
|N(126)| 3

56. The orbits of N(12") are {1,12,1%}, {13,1%,16}, {2,3,5%}, {22,325}, {23, 33 5%}
7{24734752}7 {25735756}7 {26736753}7 {47 62774}7 {4276477}7 {43766775}7 {4476772}7
{45,63, 75}, {45,6°,73},{8,82,8%} and {8%,8% 85}. Next, we take a representative from

of single cosets in the double coset [1,2%] is obtained by the quotient

each orbit of N(12°) and conjugate each with Nt1t5, to determine if the elements will

expand or collapse:

Nty t§-t; = Nty t5ty € [1,2°] Nt 1§ - t5 = Nty t§ ¢4 € [1,23]
Nt  t§ -3 = Nty 543 € [1,29] Nt t§ -5 = Nt t§¢5 € [1,24]
Nt t§ -ty = Nty 5t € [1] Nty t§ - 1§ = Nt 55 € [1,2°]
Nty t§ -2 = Nty 152 € [1,2] Nt t§ -ty = Nt1 t§t4 € [1,24]
[1,27]

Nt t§ -3 = Nty t5¢3 € [1,22] Nt t§ -2 = Nty t5¢2 € [1,22
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Nt t§ -3 = Nty 53 € [19] Nty t§-t§ = Nty t5¢§ € [1, 2]

Nt  t§ -t = Nty 5t € [13,24] Nt  t§ - tg = Nty t§ts € [1,29]

Nty t§ -t = Nty 55 € [1,23] Nty t§ -3 = Nt, 543 € [1,29]
Nt3t3N

The double coset Nt3 t3N denoted by [13,2%]. To find the elements in [13,24],
we find the point stabiliser of {13,2%}, denoted as N 2 The point stabiliser is made
up of the permutations in N = Lo(7) that fix 1* and 2% and permutes the remain-
ing t;’s. Thus, we have that [N'"2'| = 1. We also have that the set stabiliser is
|N (1324)] = 7. The number of single cosets in the double coset [13,2%] is obtained by the
quotient IN('fX‘z4)| = 188 = 24. The orbits of N2Y are {4}, {42}, {43}, {44} {45} {45},
{1,2,32%,5%, 62, 74,8}, {12,22,34, 5,64, 7,82}, {13,23,36 5% 66, 7%, 8%},
{14,24,3,52 6,72, 84}, {15,2%,33,55,63, 76,85}, and {16,265 3% 53,65 73,80}, Next, we

take a representative from each orbit of N (1°2%) and conjugate each with N ti’t%, a rep-

resentative of the coset, to determine if the elements will expand or collapse:

Nt3t5 -ty = Nty t5ty € [1,25] Nt3t5 -ty = Nty t5t € [1,2]
Nt3td 13 = Nty 513 € [1,25] Nt3t5 -3 = Nty 512 € [1,24]
Nt3t5 -3 = Nty it € [1,2°,8%) N3 t5 -3 = Nty t53 € [19)
Nt3t5 -t = Nty t5t] € [13,24] Nt3t5 -1 = Nty 511 € [1,23]
Nt3t3 -3 = Nty t3t] € [13,24] Nt3t3 -3 = Nty tatd € [1,2°]

N33 -8 = Nty 545 € [1,2°] Nt3t3 -9 = Nty 3¢9 € [1,22]
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Nt1t3taN

The double coset Nt;t5tgN denoted by [1,2° 8%. To find the elements in
[1,2°,8%], we find the point stabiliser of {1,2° 8%}, denoted as N12°8' " The point
stabiliser is made up of the permutations in N = Lo(7) that fix 1,2°, and 8* and

permutes with the remaining ¢;’s. Thus, we have that |V 12584] = 1. We also have
that the set stabiliser is |V (12584)| = 168. The number of single cosets in the dou-
ble coset [1,2°,8% is obtained by the quotient ‘N(lu% = 18 — 1. The orbits of

NOZ8Y are {1,12,1%,2,22,24,3,32, 3% 4,4%,4,5,52,5%,6,62,64, 7,72, 7%, 8,82, 8} and
{13,1°,16,23 25 26 33 35 36 43 45 45 53 55 55 63,65 65, 73,75, 76,83 8% 80}. Next, we

1258%)

take a representative from each orbit of N and conjugate each with N tlt‘;’tél, to

determine if the elements will expand or collapse:

Ntityts-t; = Nt t5tgt; € [13,27]
Nty t5tg - 13 = Nty tStgtd € [1,2°]

Hence, we summarize all of our work on the following Cayley graph:
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Figure 3.1: Cayley Graph of Ly(49) over Lo(7)
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Chapter 4

Composition Factors

4.1 Direct Products

We will be performing a composition series on a given group with the aid of
MAGMA, a computer software that aids with the work on group theory. The progenitors

that we investigated are:
<,y 1z’ % (2 y)? 82, (ty) > 21 Dy,

where x ~ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) and y ~ (1,12)(2,11)(3,10)(4,9)
(5,8)(6,7)(13,15).

<z, y,tlz?, g, (xxy)t (2,y)3, (@2 y)T, 17 > Ly(7),

where z ~ (1,7,19)(2,8,20)(3,9,21)(4, 10,22)(5, 11, 23)(6, 12, 24)(13, 25, 31)(14, 26, 32)
(15,27,33)(16,28, 34)(17, 29, 35)(18, 30, 36) (37, 40, 38)(39, 41, 42)(43, 44, 46 (45, 48, 47)
and y ~ (1,13,25)(2,14,26)(3, 15, 27)(4, 16, 28) (5, 17, 29)(6, 18, 30)(7, 10, 8)(9, 11, 12)

(19,20, 22)(21, 24, 23)(31, 37, 43)(32, 38, 44) (33, 39, 45)(34, 40, 46) (35, 41, 47)(36, 42, 48).

<z, t|$3, y2a (my)2, t2v (tvy) >= S3a

where z ~ (1,2,3) and y ~ (1,2).
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We will begin with small simple groups and work our way up to more complex
groups. Let’s begin with the group presentation:

G < x,y,t >:=Group < z,y, tla",y%, (xxy)* 2, (L,y), (xxy «t7)°, (2 x y * t % ")

We have the composition factors of our group as well as its normal lattice.
Both are used as a map/guide to find the structure of the composition series of our

group:

G
| A(1, 23) = L(2, 23) 4] Order 12144
Gl *
| Cyclic(2)
1
Order 2 [2 3] Order 6072
(1] Order1

Hence we begin to list the extensions from the composition factors: G1/1 = Cy
which implies that G1 & Cy, where Cs is normal. Moving up the composition factors, we
have G/G; = PSLy(23) which implies G = G1 7 PSLy(23). Now, to solve the extension
problem we need to figure out whether we have a direct product, or a semi-direct

product.
We for a direct product first, that is, do we have G = Cy X PSL9(23) . Now,

looking at the two minimal normal subgroups of GG, one of order 2 and the other of
order 6072, we can conlcude that we have Cy X PSLy(23) with order 12144. Looking
at the subgroup lattice, note that N L[4] has order 12144 as well. We can verify that
Cy X PSL5(23) is indeed isomorphic to NL[4]. The progenitor for our group is:

G :< A, B,C,D|A? B®,C", D* B¢ « B~%,(C x D)*,(B* D)*, (4, B), (4,C),(A, D) >
4.1.1 Example

By applying a similar process, the following can be shown:

1. Given:

G < x,y,t >= Group < z,y,t|a'®, 12, (zxy)%, %, (t,y), (@¥ *1¥)%, (2% xy )% >
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we can show that is isomorphic to the progenitor:
G :< A,B,C|A%,B?,C3,(B*C)® >

and is of the form: G = (Cy X Alt(5)).

4.2 Semi-Direct Products

Our approach will begin the same way as we did on Section 4. Consider the

following group presentation:

G <x,y,t >:=Group < x,yjt]a:m, y2, (x * y)2, 2, (t,y), (:Ey2 * ty)5, (a:y*t * tzg)?’,

(yt * ty*:z:)B > .

We have the composition factors of our group as well as its normal lattice.
Both are used as a map/guide to find the structure of the composition series of our

group:

Cyclic(2) (4] Order720

Alternating(6)

(]
=
= — %X — Q

(3] Order 360

(1] Order1

Hence we begin to list the extensions from the composition factors: Gi/1 =
A(6) which implies that G; = A(6), and A(6) is normal. Moving up the composition
factors, we have G/G1 = Cy which implies that G = G 7 Cq, hence G = A(6) ? Cy. To
solve the extension problem we will check for a direct product first, that is, do we have
G = A(6) X Cy. Looking at the minimal normal subgroup of G of order 360 we check
the order of the group A(6) and see that it is also 360. Looking at the subgroup lattice,
note that NL[2] has order 360 as well. So far this is our progenitor for G;:

G1:< A,B|A?, B, (A% B)>,(Ax B*) >
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Back to our extension problem, in order to check if we have G = A(6) X C
we look at the normal lattice. Since we are at N L[2], moving up the normal lattice,
we can only move to NL[3], since NL[2] is the only maximal subgroup contained in
NL[3]. Note that NL[3] is isomorphic to G. Since the order of NL[3] is twice the
order of NL[2] we look at the normal lattice of G to find a normal subgroup of order
2. Since there’s no such normal subgroup then we know that we don’t have a direct
extension. Now we need to check if we have a semi-direct product. To do so, we will
find an element C, in NL[3] but not in NL[2] of order 2. Hence, we have a semi-direct
extension: G = A(6) : Cy. Since we are extending our group by the element C', once

we determine how C' affects A and B we can complete our progenitor:

G:<AB,ClA2,B* (A« B)® (A« B%»% C* A = A«xB 1« A« Bx A,
BC = A+xB '+« AxB ' AxBxA>

Our progenitor is of order 720 and is isomorphic to our group G.

4.2.1 Example

By applying a similar process, the following can be shown:
1. Given:
G < x,y,t >= Group < x,y,t\:ﬁn, y2, (:U*y)Q,tQ, (t,y), (x2 *y*t*tx)4, (x*tz)?’ >
we can show that is isomorphic to the progenitor:

G:<AB,ClA2=B>=(A*B)"' = (4,Bx A« BxAxB)>=1,C?,
A =AxBxAxB '« A«B '« A« B 'xAxB '« AxBx Ax B 'x
AxB ' B =AxB '« AxBxAxBxAxB '« AxB '« AxB" >

and is of the form: G = (PSL(2,11) : Cs).
2. Given:

G < z,y,t >: = Group < z,y,t]z°, y>, (x x y)*, (v,9)%, (a? x )", 1",

tx*yfl*ac’l — t2’ (t,y_l % :L'_l " y—l), (yx . ty*ac)? >
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we can show that is isomorphic to the progenitor:
G:< A,B,C,D,E|A",B",C7,(A,B),(A,C),(B,C),D>*=E*= (D« E)" =
(D,E)* =1,AP = B2« A2 C 3, AP = 3« A7%2« B3,
BP =Bx A 'xC 3, B =A3«C+«B',0P =A%« B3,
CE=AxC*+«B7 !>
and is of the form: G = (73 : PSL(2,7)).
. Given:
G < x,y,t >:= Group < z,y,t|z¥, 12 (z xy)*, 12, (t,y), (a:y2 s t¥)%,
(@ 547 )2 (22w y #47)2 >
we can show that is isomorphic to the progenitor:
G:< A,B,C,D,E|A% B% C? (A,B),(A,C),(B,C),D3 AP = Ax C,
BP =BxC,cP =B,E?>, AF = AxC,B¥ =BxC,CF =C,
D¥ =D '«B>
and is of the form: G = ((23 : C3) : Cy).
. Given:

G <x,y,t >:=Group < :L’,y,t|x15,y2, (x * y)z,tz, (t,y), (3392 * ty)4,
(my*t * tx2)2, (x2 * 1Y * ttz)f’ >
we can show that is isomorphic to the progenitor:
G:<AB,C,D,E,F K,L|A°, B>,C°, D (A,B),(A,C),(A,D),(B,C),
(B,D),(C,D),E* AP = A« B*«D?> BF = B!, C¥ =« B2,
DY =D VF?2 AP —ExA«xC?>+«E,B" =B,cF =B*>«Cc~',DF =D,
EF =B K3 AX =E«A«E,BX =C«B ', CK =C«B'«D™1,
DE =B 1VEK =C?«xExFFE=B*>«FEx«D, L[>, A" =Ex A"« E,
Bl =D,c*=B«D«xC '\, D' =B, E¥=DxExB,FF =E«Cx«F,
Kl=AxK+«xA 'K >

and is of the form: G = ((((5% : C3) : C3) : C3) : Cy).
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4.3 Semi-Direct and Direct Products
Given the following presentation:
G < @,y,t >:= Group < m,y, tz°, 42, (% y)%, 62, (t,y), (y % £ 5 *°)?

Listing the composition factors for which the group is composed of:

G [10] Order 36

|  Cyclic(2)
o /!\

| CYC]-iC (2) [7] Order18 8] Order18 [9] Order18
G2 *

|  Cyclic(3)
G3 % 5] Order 6 ] Order9 4] Order6

| Cyclic(3) \\\\\ /////\\\\\ /////

1

{de\ﬂ / 3] Order3
] Order1

The extensions from the composition factors: G3/1 = C5 imply that Gs = Cs,
and Cj5 is normal. Moving up the composition factors, we have G2/G3 = C3 which
implies that G2/C3 = C3, hence Go = C57 C3. To solve the extension problem we will
check for a direct product first, that is, do we have Go = C3 X C3 . Now, we begin by
looking at the two minimal normal subgroups of G, each of order 3. Hence we have
C3 X C3 of order 9. Looking at the subgroup lattice, note that NL[6] has order 9 as
well. Note that C3 X C5 is Abelian and is isomorphic to NL[6]. Therefore we have
Gy = C3 X C3 and Gy = NL[6]. The progenitor so far is:

Gy :< A,B|A3, B3, (A, B) >

Continuing up the ladder of the composition factors, we have G1/G2 = Co
which implies that G1/C3 X C3 = Cy , so G1 = (C3 X C3)?7Cy. Now, to solve the
extension problem let’s check for a direct product first. Now, in reference to the normal
lattice, we are located at N L[6], to continue moving up the lattice we can either move
to NL[7] or NL[9] since NLI[6] is contained in both NL[7] and NL[9]. Say we choose
to go up to NL[9], since the order of NL[9] is twice the order of N L[6], we need to find
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a normal subgroup within NL[9] of order 2. In order to look at the normal subgroups
within NL[9] we can generate the normal lattice of NL[9].

Since there’s no normal subgroup of order 2, then G is not a direct product .
So, we check for a semi-direct product. To do so, we find an element, C, in NL[9] but
not in NL[6] of order 2. C' = (1,2)(3,6)(4,5) is the required element. Hence, we have a
semi-direct extension: G; = (C35 X C3) : Cy. Since we are extending our group by the

element C, we will determine how C affects A and B to elaborate on our progenitor:
G1:< A,B,C|A3 B3, (A, B),C% A = A2« B2 B® = A3« B >

The above progenitor is of order 18 and is isomorphic to NL[9]. Continuing
with the composition factors we are now at G/G1 = Cy which implies G/((C3 X Cs) :
Cy) = C. Our last extension problem is G = ((C3 X C3) : C3)?Cs. To solve it, we
will repeat the process as we've been doing so far. Notice that on the normal lattice
of G we are in NL[9] , from here the only place left to move up is to get to NL[10]
which represents our entire group, G. To be able to get there we need to find a normal
subgroup of order 2 in NL[10]. Since NL[10] = G then we refer back to the normal
lattice belonging to G. Since there’s no normal subgroup of order 2, then we don’t have
a direct product. So, we check for a semi-direct product. We need an element, D of
order 2 in NL[10] but not in NL[9]. The required element D is found and we conclude
that G = ((C3 X C3) : C9) : Co . We then check how D affects A, B, and C to be able
to complete our progenitor. Hence the progenitor has order 36 and is isomorphic to G:

G:< A, B,C,D|A3 B3 (A,B),C? A = A%« B2, B = A3« B, D?,

AP = A« B« C?* BP =B?*xC? CcP =C >

4.3.1 Examples
By applying a similar process, the following can be shown:
1. Given:
G < z,y,t >= Group < x,y,t|x'5 %, (x x )%, 12, (t,y), (@® xy x t') >
we can show that is isomorphic to the progenitor:
G:< A, B,C|A%,B? (A, B),C3% A° = A« B,BY = A,D* AP = A« B,
BP =B,cP=Cc"'+4>
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and is of the form: G = (((C2 X Cy) : C3) : Ca).
. Given:
G < x,y,t >:= Group < z,y, t|z3, 4%, (x xy)%, 12, (t,y), (y  t t$2)2 >
we can show that is isomorphic to the progenitor:
G:< A B,C,D|A* B* (A, B),C? A° = A* « B B¢ = A*x B, D?,
AP =A«B«C* BP =B*«C%* CP =C >
and is of the form: G = (((C3 X C3) : C3) : Ca).
. Given:
G < x,y,t >= Group < z,y, t|z*t, 12, (z x )%, 2, (t,y), (@2 x y x t x t%)? >
we can show that is isomorphic to the progenitor:
G:< A, B,C|A"Y, B (A,B),C? A° = A0« B2 B® = B,D? AP = A« B %«
C?,BP = A"« B« C? 0P =0 >
and is of the form: G = ((C11 X C11) : Cq) : Co.
. Given:
G < z,y,t >:= Group < z,y, t|x %, (x x )%, 12, (1), (.T}y2 s t9)4,
(@ 5 t7)2, (22w y 5 47)° >
we can show that is isomorphic to the progenitor:

G:< A B,C,D,E,F K,L|A%, B>,C°, D (A,B),(A,C),(A,D),(B,C),
(B,D),(C,D),E* A¥ = A« B*« D?> BF = B!, C¥ = C« B2,
DY =D VF2 AP —ExAxC?>+«E,B" =B,cF =B*>«Cc~!,DF =D,
EFf=E K} AK =ExA«E,BEK =C«B ', X =C«B '«D™,
DE =B lVEK =C?«xExFFE=B*>«FEx«D, L[>, A" =Ex A" '« E,
Bl =D,c*=B«DxC '\, D' =B, E¥=DxExB,FF =E«Cx«F,
Kl'=AxK+xA 'K >

and is of the form: G' = ((((5* : C3) : C3) : C3) : Cy).
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5. Given:

G < z,y,t>:=Group < z,y,tz", ¢, (z =) 2, (t,y), (a¥ = ¥)",

(yt " ty*:):)S >
we can show that is isomorphic to the progenitor:

G:<A,B,C,D,E,F,J|A%, B®,C%, (A, B),(A,C),(B,C),D* AP = A7,
BP =BxA2CP =B?>« A2« C\ E* AP = A, BY = A2« B!,
CP=A+«C "D =BxC'«D,F3 A" = AxB™', B = A« C % B2,
CFr=CxB 2 D" =B+«DxExC* EF =A?xD,J>, A’ =Bx A",
B’ =B, =B*+«+C ' D) =F«DxF '\ E/=BxF '«DxFxE,

F/=rF"1>
and is of the form: ((((53 : Ca) : Ca) : C3) : Ca).
6. Given:
Group=< z,y,t|z'5 4%, (x x )%, 12, (t,y), (ny st (Y« t9 )0 (2w y 1) >
we can show that is isomorphic to the progenitor:

G:<A,B,C,D,E,F,J K|A® B> C% (A,B),(A,C),(B,C),D?* AP = A},
BP =Bl cP=CV E* AP =C '\, BF =C?+«A"2«B7',cF =471,
D =BxC?xDx A F? A¥ =AxExB«E,Bf =B ' cF=CxB™!,
DF =D«E«B«E,Ef =BxExB™',J>, A7 =B«C B/ = A1 «C},
C'=A'D' =D« AxC,E/ =C«F+«E«B,F/ =ExB*>«C,K?,
AR —=Cc«B ' BE =A '« ', ek =Cc ', DK = A« B« C«D,
EX = JxExJ VL FK=B«xExB ' JK=J1>

and is of the form: ((((C5 X C5 X Cs5) : Ca) : C3) : C3) : Co).
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4.4 Central Extensions

The following examples are of a different type of extensions. The approach
is very similar as we’ve done so far, but now we’ll be dealing with central extensions,
direct, and semi-direct products. We will begin with a small group and work our way

up to a more complex group. Say we begin with the group presentation:
G < z,y,t >:=Group < z,y, tla" i, (xxy)* 2, (t,y), (@ y «t7)°, (2 x y * t 5 ")

Listing the normal lattice and the composition factors:

G
| A(L, 7) =L(2, 7) 5] Order 56448
Gl *
G2 Order 336 [3] 4] Order 336
|  Cyclic(2)
1
2] Order2
1] Order1

We begin to list the extensions from the composition factors: Ga/1 = Cy which
implies that G2 = (5, and (5 is normal. Moving up the composition factors, we have
G1/G9 = PSLy7 which implies that G1 = G2 ? PSLo7, hence G; = Cy? PSLy7. To
solve the extension problem we check for a direct product first, that is, do we have
G1 =2 Oy X PSLy7. Now, looking at the minimal normal subgroup of G of order 2 we
can’t conlcude that we have Co X PSL923. Looking at the subgroup lattice, note that
NL[2] has order 2 just like Cy has order 2. We refer to the normal lattice instead. Our
choices are NL[3] and NL[4] since NL[2] is the only maximal subgroup contained in
each. Say we choose to move up to NL[3]. We need to look within NL[3] for a normal
subgroup of order 168, since the order of N L[3] is 168 times the order of N L[2]. Looking
within the normal lattice of NL[3] we’ll notice that there’s no subgroup of order 168.

Hence, we can now conclude that GG1 is not a direct product.
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So, we now have to check if we have a semi-direct product. To do so, we will
have to find an element, we’ll call it B, in NL[3] but not in N L[2] of order 168. So, we
are unable to find the required element B. Hence, we don’t have a semi-direct product.

Now, we know that we don’t have a direct or a semi-direct product. So, our
next step is to check if we have a central extension. That is, does our group have a
center and if it does we will attempt to factor our group GG by the central element.

The center of G is a permutation group of order 2. Now, our task is to find
which element in our lattice is the center of G. Since, the order of NL[2] the center
of G is indeed NL[2]. Now, we can factor G by its center. Doing so will generate a
smaller group that we’ll work with. @, will be our new group for which we will apply
the composition series approach as we’ve done so far.

So far this is how G looks like, where “o” indicates that we’ve factored by the

center:
G =2°Q
Now, working with Q we will list the composition factors and the normal lattice

of Q.

9 4] Order 28224

| AL, 7) = L(2, T7) raer

Q1 *
| A1, 7) = L(2, 7)
1 Order 168 [2 3] Order 168
(1] Order1

Listing the extensions from the composition factors: Q1/1 = PSLy7 which im-
plies that @1 = PSLs7, hence PSLs7 is normal. Moving up the composition factors, we
have Q/Q1 = PSLs7 which implies that @ = Q17 PSLy7, hence Q = PSLy77 PSLoT.
Now, to solve the extension problem we check for a direct product first, that is, do we
have @Q = PSLs77 PSLy7. Looking at the two minimal normal subgroups of @) each of
order 168 we can conlcude that together they’ll have order (168)? = 28224. Note that

nl[4] has order 28224 just like the order of the two minimal subgroups. Before we can
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conclude that we have a direct product. We check with MAGMA if nl[2] and nl[3] are

a direct product and isomorphic to nl[4]:

D:=DirectProduct(nl([2],nl1[3]);
s:=IsIsomorphic(D,Q);

S;

> true

Also, since nl[4] = @, we know that ) is a direct product extension:

Q= PSLy7X PSLy7. Now we can write the progenitor for Q:
Q:< A,B,C,D|A?> = B* = (A«B)® = (A,B)*=1,C?* = D3 = (C+D)* = (C,D)* =1 >

Hence, our complete composition series for G is: G = 2*(PSLy7 X PSLo7).

4.4.1 Examples

By applying a similar process, the following can be shown:

1. Given:
Group =< z,y,tz', 4, (x + )2, 1, (t,y), (@ * )4, (@¥" 5 £7°)% >
we will factor by the center and obtain a presentation for the group @:

Q :<A,B,C,D,E,F,J,K|A%, B®,C°, D% (A,B),(A,C),(A,D),(B,C),(B,D),
(C,D),E?, AP = A« C* B¥ =B«D,cF=Cc', D¥ =D ! F?,
AF =FE+«A«B*+«E.Bf =B '«D ', cF =Cc~'«D™', D = D,
EF=C?*«D«E,J3, A" =A«xC* B’ =Cc ',/ =B«xC~',D/ =C?« D,
E'=C«B '«F,F/ =C+«ExF K>, AKX =A7' BK =B 1« '« D!,
CK=Cc'\, DK =C?+«D,EX =C*«E,FK =C+«ExF,JX = J '« F >,

we can then conclude that our group is of the form 2°((((5% : C3) : Cs) : C3) : Cs).

We have investigated the progenitor 2*1° : Dy5 along with relations added to it,
Y, (29 xt9)e, (a¥ 5t )F | (ytt9*2)9 | (22xyxtt" ) > where values for a, b, ¢, d, e, f,

g, h where found:
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Table 4.1: Homomorphic images of 2*1° : D15
Parameters

a b ¢ d e f g h OrderofG Isomorphic class
0 0 00 3 00 2 360 2 x As
0 0 00 5 3 80 2160 Ag: 2
000 0 4 2 0 2 24 (23:3):2
0 0 00 4 2 0 5 15000 ((((5%*:2):2):3:)2)
0000 4 0 6 2 6000 ((((5%:2):2):3:)2)
00 00 0 001 24 ((22:3):2)
0 0 00 4 0 3 0 3000 (((((5%:2):2):2):3:)2)
000 0 4 2 00 30000 2°((((5%*:2):2):3:)2)
00 00 0 3 5 0 7200 PGL(2,59)
0 0 3 0 10 5 0 5 175560 J1
00 300 9 70 178920 PGL(2,71)
00 3 07 00 5 12180 PGL(2,29)
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Chapter 5

J1 as a Homomorphic Image of

ox15. D5

As mentioned in Chapter 4, the progenitor 2*'® : D15 has the Janko group, namely
J1, as its homomorphic image. We will investigate our progenitor to verify if it is
a new presentation of J; In Curtis [Cur07], J; is given as a homomorphic image
of 2*3 : S3 along with the relations: [(0,1,2)t0]'?, [(0,1)t]*, and [(0, 1)tots]”. We
expand these relations below:
[(0,1,2)t0]*° = 1 = (0,1, 2) % gtot 1 toty = totitatots
[(0,1,2)t0]*° = 1 = (0, 1) totat1tatotats = tatotatitatots
[(0, D)to]'? = 1 = (0,1)¥totatotatotatotrtotito = tot1totitotitot1tots

Now, expand one of our relations (xt)?’ = 23tot14 = 1 which implies that to ~ t14.
Having made this discovery, we can obtain the remaining equivalent ¢;’s:

by ~tg ~ 7 ~tig ~ i3

lg ~ 15 ~tg ~ 111 ~ t1y

t3 ~tg ~ tg ~ t12 ~ 115

Having found the above relations we are able to reduce our presentation of 2*1° :

Di5 as a presentation of 2*3 : S3, and the progenitor now becomes

< :L',y,t|1133, y27 (l' * y)27t27 (tay)7 (:Eyz * ty)107 (l‘y*t * t$2)5a (132 * Y ttw)s) >
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where z ~ (1,2,0) and y ~ (1,2). We will now proceed to expand our remaining

relations (:1792 * V)10 (2t x tx2)5, and (22 xy * t1")5:

(ny * ty)lo =1= (1, 2,0)10t0t2t1t0t2 = tot1tatot
(¥ 5 t7°)5 = 1 = (1,0, 2)% tat1tatotatots = tatotatitatito

(1‘2 * Y * ttz)‘:’ =1= (1, 3)5t1t0t1t0t1t0t1t0 = tltgtltotltotl

Comparing our findings to the expanded relations of Curtis, only one of our rela-
tions coincides. Because the other relations don’t match then we will input our

relations into the progenitor:
<zt g2, (zxy), 12, (¢ y)
where z ~ (1,2,0) and y ~ (1,2):
<z, tlzd, %, (zxy)?, 12, (ty), (xt)Y, (yazytmztth)S, (z2yttt®)°) > .

Once we ran it in MAGMA to verify the progenitor, it does give the homomorphic

2*15

image of J;. Hence, our relations from the progenitor : Dy imply Curtis’

relations.

The following code may be used to start a double coset enumeration:

S:=Sym(15);

xx:=S'(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
yy:=S!(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)(13, 15);
N:=sub<S|xx,yy>;
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2,(t,y), (x"t)"3,
(x"(y~2)*t"y) ~10, (x~ (y*t) *t~ (x72)) "5, (x"2xy*t~ (t"x)) "5>;
Index (G, sub<G|x,y>);

f,Gl,k:=CosetAction(G,sub<Glx,y>);

IN:=sub<G1|f(x),f(y)>;

/* creating the t_i s %/

ts:=[Id(G1):i in [1..15]];

ts[14] :=f(t);

ts[2] :=£(t"(x73));

ts[3]:=£f(t"(x74));

ts[4] :=f(t"(x75));

ts[5]:=f(t"~(x"6));
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ts[6] :=£(t~(x"7));

ts[7]:=£(t"(x78));

ts[8] :=f(t"(x79));

ts[9] :=f (£~ (x"10));

ts[10] :=f(t~(x"11));

ts[11]:=f (£~ (x"12));

ts[12] :=f (£~ (x"13));

ts[13]:=f (£~ (x"14));

ts[1]:=f (£~ (x"2));

cst:=[null:i in [1..29260]] where null is [Integers() | 1;
prodim:=function(pt,Q,I)

v:=pt;

for i in I do

v:=v~(Q[il);

end for; return v; end function;
Dbl:=DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

#DDbl;

/* Double coset [14] */

N14:=Stabiliser(N,14);

for g in N14 do g; end for;

S:={[141};

SS:=S°N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[14] eq gx(ts[(Rep(SSS[i])) [111)
then print Rep(SSS[il);

end if; end for; end for;

N14s:=N14;

for g in N do if [14]"g eq [3] then N14s:=sub<N|Ni4s,g>; end if;end for;
[14] "N14s;

/* List the elements that 14 is equal to */

T14:=Transversal (N,N14) ;

for i in [1..#T14] do

ss:=[14]"T14[i];

cst[prodim(l,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..29260] do if cst[i] ne [] then m:=m+1; end if; end for; m;

/* List the orbits and the # of single cosets in [14] =*/
Orbits(N14) ;
#N/#N14;
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Chapter 6

Wreath Product of Zs? 5

Let H and K be permutation groups on X and Y, respectively. Let
Z = X x Y define a permutation group on Z, called the wreath product of H by
K, H! K.

Consider the following:
X =1{1,2,3,4,5}, Y ={6,7}, H =< (1,2,3,4,5) >, and K =< (6,7) >.
Let v € H and y be a fixed element of Y. Then, we define:

(z,y) — ((@)7,y)
Y(y) =

(z,y) — (z,y)ify1 #y
As well as k* : (z,y) — (z, (y)k where k = {6,7} and k € K. Also,
Z = X xY = {(1,6),(2,6),(3,6),(4,6),(5,6),(1,7),(2,7),(3,7),(4,7),(5,7)}.
Now, we also need to find v(6), v(7), and ~(6,7)* where v = (1,2,3,4,5). The

process is summarized in the following table:
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Table 6.1: v Function

7(6) Y(7) (6,7)"
(1,6) — (2,6) | (1,6) — (1,6) | (1,6) —> (1,7)
(2,6) — (3,6) | (2,6) — (2,6) | (2,6) —> (2,7)
(3,6) — (4,6) | (3,6) — (3,6) | (3,6) — (3,7)
(4,6) — (5,6) | (4,6) — (4,6) | (4,6) —> (4,7)
(5,6) — (1,6) | (5,6) — (5,6) | (5,6) —> (5,7)
1,7) — (L,7) | (L7)— (2,7) | (1,7) — (1,6)
2.7) — (2.7) | (2.7) — (3,7) | (2,7) — (2,6)
(3,7) — (3,7) | (3,7)— (4,7) | (3,7) — (3,6)
4,7) — (4,7) | (47)— (5,7) | (4,7) —> (4,6)
5,7) — (5,7) | (5.7) — (1,7) | (5,7) —> (5,6)

Hence from the table above we have the relations:
~v(6) :(1,2,3,4,5),~(7) : (6,7,8,9,10), (6,7)" : (1,6)(2,7)(3,8)(4,9)(5, 10)

. Since v(y) and k* are permutations of Sz, we have v(6) x v(7) : Sym(2). We
verify that our work is correct in MAGMA:

S:=Sym(10);

N:=sub<s|s!(1,2,3,4,5),s!(6,7,8,9,10),8!(1,6)(2,7)(3,8) (4,9)(5,10)>;
#N;

W:=WreathProduct (CyclicGroup(5),Sym(2));

#W;

s:=IsIsomorphic(N,W);

S;

Since the above prints true, we can now write the presentation for Zs ¢ Ss:
G < x,y,2 >:= Group < z,y, 2|25, y°, (z,y), 22, 2" = y,y° == >

From here we can expand the progenitor by adding new relations hoping to dis-
cover new groups. After running the code in MAGMA the following group is

obtained:
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G<x,y,z,t>:=Group<x,y,z,t|x"5,y°5, (x,y),2"2,x"z=y,y"z=x,t"2, (t,y),
(x"2%xt"y*z) "6, (t*t z*t x*y)~3 >;
f1,G1,k1:=CosetAction(G,sub<Glx,y,z>);
CompositionFactors(G1) ;

G
J2

Cyclic(2)

- — % —

6.1 J; x Cy as a Homomorphic Image of Z5: .5

The following code is used to begin the double coset enumeration of Jo x Cs.

At the time or writing, the construction is not complete.

S:=Sym(10);

xx:=5!(1,2,3,4,5);
yy:=5!(6,7,8,9,10);
zz:=31(1,6)(2,7)(3,8)(4,9)(5,10);
N:=sub<S|x,y,z>;

#N;
G<x,y,z,t>:=Group<x,y,z,t1x"5,y"5, (x,y),2"2,x"z=y,y"z=x,t"2, (t,y),
(x72%t"y*z) "6, (t*xt z*xt"x*y) "3 >;
f,G1,k1:=CosetAction(G,sub<G|x,y,z>);
Index (G, sub<Glx,y,z>);
IN:=sub<G1|f(x),f(y),f(z)>;

/* Creating the t_i s */

ts:=[Id(G1) : i in [1..10]1];
ts[1]:=f(t);

ts[2]:=f(t"x);

ts[3]:=f(t"(x72));

ts[4] :=f(t"(x73));

ts[5]:=f(t~(x74));

ts[6]:=f(t"z);

ts[7]:=£((t"x)"2);
ts[8]:=f(t~(x"2)"z);

ts[9]:= £(t~(x"3)"2);
ts[10] :=f (¢t~ (x"4)"z);

cst:=[null:i in [1..24192]] where null is [Integers() | 1;
prodim:=function(pt,Q,I)

v:=pt;

for i in I do



v:=v~(Q[il);
end for;
return v;
end function;
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Appendix A: Construction of
29 As

S:=Sym(5) ;

xx:=51(5,1,2,3,4);

yy:=S1(4,2,1);

N:=sub<S|xx,yy>;

#N;
G<x,y,t>:=Group<x,y,t1x"5,y"3, (xxy)"2,t72, (t,y), (t,x"2%y*x"1),
(t*t"x) "2>;

f,G1,k:=CosetAction(G,sub<Glx,y>);
IN:=sub<G1|f(x),f(y)>;

ts:=[Id(G1): i in [1..5]];

for i in [1..5] do ts[i]:=f(t"(x~i)); end for;
prodim := function(pt, Q, I) v := pt;

for i in I do v := v"(Q[i]); end for; return v; end function;
cst := [null : i in [1 .. 90]] where null is [Integers() | 1;
for i :=1 to 5 do

cstprodim(1, ts, [i])] := [i]; end for;

m:=0;

for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if; end for; m;
ANUALLLRNANNAAY 057 ANV
N5:=Stabiliser(N,5);

Orbits(N5);

N51:=Stabilizer(N5,1); S:={[5,11};
SS:=S°N;

ANVAMAANNANANNAY 1527 ANV
N51:=Stabilizer(N5,1);

S:={[5,11};

SS:=S°N;

#N51;

Orbits(N51);
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tr51 := Transversal(N, N51);

for i := 1 to #tr51 do ss := [5, 1] tr51[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..#cst] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

AMAAAANNNNNNNANY 15 1 2T ANV
N512:=Stabiliser(N51,2); S:={[5,1,2]%};

SS:=S°N;

N512s:=N512;

for g in N do if [5,1,2]1°g eq [1,5,2] then N512s:=sub<N|N512s,g>;
end if;end for;

[6,1,2] "N512s;

for g in N do if [5,1,2]"g eq [1,2,5] then N512s:=sub<N|N512s,g>;
end if;end for;

[5,1,2] "N512s;

for g in N do if [5,1,2]1"°g eq [2,1,5] then N512s:=sub<N|N512s,g>;
end if;end for;

[5,1,2] "N512s;

for g in N do if [5,1,2]"°g eq [2,5,1] then N512s:=sub<N|N512s,g>;
end if;end for;

[5,1,2]1"N512s;

for g in N do if [5,1,2]1"°g eq [5,2,1] then N512s:=sub<N|N512s,g>;
end if;end for;

[5,1,2] "N512s;

#N512s; #N/#N512s;

Orbits(N512s);

AMMAANMANNNY 15 1 2 37 VNV

N5123:=Stabiliser (N512,3);

S:={[5,1,2,3]};

SS:=S°N;

N5123s:=N5123; \

for g in N do if [5,1,2,3]1"g eq [1,5,2,3] then
N5123s:=sub<N|N5123s,g>;

end if;end for;

[5,1,2,3] "N5123s;

#N5123s;

for g in N do if [5,1,2,3]°g eq [1,2,5,3]

then N5123s:=sub<N|N5123s,g>;

end if;end for; [5,1,2,3] °N5123s;

#N5123s;

for g in N do if [5,1,2,3]1 g eq [2,3,5,1]

then N5123s:=sub<N|N5123s,g>;

end if;end for; [5,1,2,3]"N5123s;



#N5123s;

#N/#N5123s;

Orbits(N5123s);
AN [6 1 2 3 4]
N51234:=Stabiliser (N5123,4);
S:={[5,1,2,3,41};

SS:=S°N;

N51234s:=N51234;

for g in N do if [5,1,2,3,4] g
N51234s:=sub<N|N51234s,g>;

end if;end for;
[5,1,2,3,4]"N51234s;

#N51234s;

for g in N do if [5,1,2,3,4]"¢g
N51234s:=sub<N|N51234s,g>;

end if;end for;
(5,1,2,3,4]"N51234s;

#N51234s;

for g in N do if [5,1,2,3,4] g
N51234s:=sub<N|N51234s,g>; end
[5,1,2,3,4]1"N51234s;

#N51234s;

for g in N do if [5,1,2,3,4] g
N51234s:=sub<N|N51234s,g>; end
[5,1,2,3,4]1"N51234s;

#N51234s;

for g in N do if [5,1,2,3,4] ¢
N51234s:=sub<N|N51234s,g>; end
[5,1,2,3,4] "N51234s;

#N51234s;

#N/#N51234s;

ARRNNNNNNNNNNNNY

eq [1,5,2,3,4]

eq [1,2,5,3,4]

eq [5,2,1,3,4]

if;end for;

eq [5,2,1,4,3]
if;end for;

eq [5,2,3,1,4]
if;end for;

then

then

then

then

then
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Appendix B: Construction of

78 1 La(7)

SS:=Sym(48);

xx:=S51(1,7,19)(2,8,20)(3,9,21) (4,10,22) (5,11,23)(6,12,24)
(13,25,31) (14,26,32) (15,27,33) (16,28,34) (17,29,35) (18,30,36)

(37,40,38) (39,41,42) (43,44,46) (45,48,47) ;

yy:=85!(1,13,25) (2,14,26)(3,15,27) (4,16,28) (5,17,29) (6,18,30)
(7,10,8)(9,11,12)(19,20,22) (21,24,23) (31,37,43) (32,38,44) (33,39,45)

(34,40,46) (35,41,47) (36,42,48) ;
N:=sub<SS|xx,yy>;
#N;

G<x,y,t>:=Group<x,y,t|x"3,y"3, (x*xy) "4, (x,y) "3, (x"2*y) "7,t°7,

t7(x * yo-1 * x7-1 )=t"2,(t,y"-1 * x"-1 * y~-1),
(x72 x y % t * t7x)72>;

Index (G, sub<G|x,y>);
f,G1,k:=CosetAction(G,sub<Glx,y>);
CompositionFactors(Gl);

IN:=sub<G1|f(x),f(y)>;

#G;

/* gives the sequences of the double cosets */
DoubleCosets (G,sub<G|x,y>,sub<G|x,y>);
#DoubleCosets (G, sub<G|x,y>,sub<G|x,y>);

prodim := function(pt, Q, I)

v := pt;

for i in I do v:=v~(Q[il);

end for; return v; end function;

/* Defining the t_i’s */
ts:=[Id(G1): i in [1..48] 1;

ts[1]:=f(t);ts[2] :=(ts[1])"2;ts[3]:=(ts[1])"3;ts[4]

:=(ts[1])"4;
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ts[5]:=(ts[1])"5;ts[6]:=(ts[1])"6;ts[7]:=f(t"x);ts[8]:=(ts[7])"2;
ts[9] :=(ts[7])"3;ts[10]:=(ts[7]) "4;ts[11]:=(ts[7])"5;
ts[12]:=(ts[7]1)"6;ts[13] :=f (t"y);ts[14] :=(£s[13])"2;

ts[15] :=(ts[13])"3;ts[16] :=(ts[13])"4;

ts[17]:=(ts[13])"5;ts[18] :=(ts[13])"6;ts[19] :=f (£t~ (x"2));

ts[20] :=(ts[19])"2;ts[21] :=(ts[19])"3;ts[22] :=(ts[19]) ~4;
ts[23]:=(ts[19])"5;ts[24] :=(ts[19])"6;ts[25] :=f (£~ (y~2));

ts[26] :=(ts[25])"2;ts[27] :=(ts[25]) "3;ts[28] :=(ts[25]) ~4;

ts[29] :=(ts[25])"5;ts[30] :=(ts[25]) "6;ts[31] :=f (t~ (y*x~-1));
ts[32]:=(ts[31])"2;ts[33] :=(ts[31])"3;ts[34] :=(ts[31]) ~4;

ts[35] :=(ts[31])"5;ts[36] :=(ts[31])"6;ts[37] :=f (£t~ (y*x~(-1)*y));
ts[38]:=(ts[37])"2;ts[39] :=(ts[37])"3;ts[40] :=(ts[37]) "4;
ts[41]:=(ts[37])°5;ts[42] :=(ts[37])"6;ts[43] :=f (£~ (y*x~ (-1)*y~-1));
ts[44] :=(ts[43])"2;ts[45] :=(ts[43])"3;ts[46] :=(ts[43])"4;

ts[47] :=(ts[43])°5;ts[48] :=(ts[43])"6;

Orbits(N);

cst:= [null : i in [1 .. Index(G,sub<G|x,y>)]] where null is
[Integers() | 1; for i in {1, 2, 4, 7, 8, 10, 13, 14, 16, 19, 20,

22, 25, 26, 28, 31, 32, 34, 37,38, 40, 43, 44, 46 }

do cstlprodim(1,ts,[i])]:=[i]; end for; m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for;

m;

for i in {3, 5, 6, 9, 11, 12, 15, 17, 18, 21, 23, 24, 27, 29, 30,

33, 35, 36, 39, 41, 42, 45, 47, 48 }

do cstlprodim(1,ts,[i])]:=[i]; end for; m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1; end if; end for;

m;

/* Double coset [1] */
N1:=Stabiliser(N,1);

for g in N1 do g;end for;
SSS:={[1]};

SSS:=SSS”N;

Ni1s:=N1;
SSS:=Setseq(SSS);

for i in [1..#SSS] do
for g in IN do if ts[1] eq g*(ts[(Rep(SSS[il))[111)
then print Rep(SSS[il);
end if; end for; end for;
T1:=Transversal (N,N1);
for i in [1..#T1] do
ss:=[1]"T1[i];
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cst[prodim(1l,ts,ss)]:
end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

T1;

Orbits(N1);

#N/#N1s;

Ss;

/* Double coset [3] */
N3:=Stabiliser(N,3);
for g in N3 do g;end for;
S8SS:={[3]};

S8S:=SSS"N;

N3s:=N3;
SSS:=Setseq(SSS);

for i in [1..#SSS] do
for g in IN do if ts[3] eq g*(ts[(Rep(SSS[il))[1]11)
then print Rep(S8SS[il);
end if;

end for; end for;

T3:=Transversal (N,N3);
for i in [1..#T3] do
ss:=[3]"T3[i];
cst[prodim(1l,ts,ss)]:=ss;
end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

T3;

Orbits(N3s);

#N/#N3s;

/* double coset [1,7] */
N17:=Stabiliser (N, [1,7]);
S88:={[1,71};

SSS:=SSS”N;

SSS;

#(SSS) ;
Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do



for g in IN do if ts[1]*ts[7]

eq g*ts[Rep(Seqqlil) [1]]*ts[Rep(Seqqlil) [2]]
then print Rep(Seqqlil);

end if;end for;end for;

N17s:=N17;

for g in N do if 1°g eq 8 and 7°g eq 14 then N17s:=sub<N|N17s,g>;
end if; end for;

#N17s;

[1,7]1°N17s;

T17:=Transversal (N,N17);

for i in [1..#T17] do

ss:=[1,7]1"T17[i];

cst[prodim(1l,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

#N17; Orbits(N17s);
#N/#N17s;

/* double coset [1,8] */

N18:=Stabiliser (N, [1,8]);
Sss:={[1,81};

SSS:=SSS”N;

SSS;

#(SSS) ;
Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[8]

eq g*ts[Rep(Seqqlil) [1]]1*ts[Rep(Seqqlil) [2]]
then print Rep(Seqqlil);

end if;end for;end for;

N18s:=N18;

for g in N do if 1°g eq 19 and 87g eq 34 then N18s:=sub<N|N18s,g>;
end if; end for;

#N18s;

[1,8]"N18s;
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T18:=Transversal (N,N18);

for i in [1..#T18] do

ss:=[1,8]"T18[i];

cst[prodim(l,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

#N18; Orbits(N18s);
#N/#N18s;

/* double coset [1,9] */
N19:=Stabiliser (N, [1,9]);
SSS:={[1,9]};

SSS:=SSS”°N;

SSS;

#(S8SS);
Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[9]

eq g*ts[Rep(Seqqlil) [1]]1*ts[Rep(Seqqlil) [2]]
then print Rep(Seqqlil);

end if;end for;end for;

N19s:=N19;

for g in N do if 1°g eq 37 and 9°g eq 17 then N19s:=sub<N|N19s,g>;
end if; end for;

#N19s;

[1,9]°N19s;

T19:=Transversal (N,N19);

for i in [1..#T19] do

ss:=[1,9]"T19[1i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

#N19s; Orbits(N19s);

93
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#N/#N19s;

/* double coset [1,10] */
N110:=Stabiliser (N, [1,10]);
SSS:={[1,10]};

SSS:=SSS"N;

SSS;

#(SS3S) ;

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[10]

eq g*ts[Rep(Seqqlil) [1]]1*ts[Rep(Seqqlil) [2]]
then print Rep(Seqqlil);

end if;end for;end for;

N110s:=N110;

for g in N do if 1°g eq 22 and 107g eq 43 then
N110s:=sub<N|N110s,g>;

end if; end for;

#N110s;

[1,10]°N110s;

T110:=Transversal (N,N110);

for i in [1..#T110] do

ss:=[1,10]"T110[i];

cst[prodim(1l,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1; end if;
end for; m;

#N110s; Orbits(N110s);
#N/#N110s;

/* double coset [1,11] */
N111:=Stabiliser (N, [1,11]);
S88:={[1,111};

SSS:=SSS”N;

SSS;

#(SSS) ;

Seqq:=Setseq(SSS);

Seqq;



for i in [1..#SSS] do

for g in IN do if ts[1]*ts[11]

eq g*ts[Rep(Seqq[il) [1]1]*ts[Rep(Seqqlil) [2]]
then print Rep(Seqqlil);

end if;end for;end for;

N111s:=N111;

for g in N do if 1°g eq 8 and 117g eq 29
then N111s:=sub<N|N1ills,g>;

end if; end for;

#N111s;

[1,11]"Nil1s;

T111:=Transversal(N,N111);

for i in [1..#T111] do

ss:=[1,11]1"T111[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

#N111s; Orbits(Nilils);
#N/#N111s;

/* double coset [1,12] */
N112:=Stabiliser (N, [1,12]);
SSS:={[1,12]};

SSS:=SSS”N;

SSS;

#(SSS) ;

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[12]

eq g*ts[Rep(Seqqlil) [1]]1*ts[Rep(Seqqlil) [2]]
then print Rep(Seqqlil);

end if;end for;end for;

N112s:=N112;
for g in N do if 1°g eq 2 and 127g eq 18
then N112s:=sub<N|N112s,g>;
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end if; end for;
#N112s;
[1,12] "N112s;

T112:=Transversal (N,N112);

for i in [1..#T112] do

ss:=[1,12]"T112[i];

cst[prodim(1l,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

#N112s; Orbits(N112s);
#N/#N112s;

/* double coset [3,10] */
N310:=Stabiliser (N, [3,10]);
S88:={[3,101};

SSS:=SSS™N:

SSS;

#(SSS) ;

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[3]*ts[10]

eq gxts[Rep(Seqql[il) [1]1]*ts[Rep(Seqqlil) [2]]
then print Rep(Seqqlil);

end if;end for;end for;

N310s:=N310;
for g in N do if 37°g eq 9 and 107g eq 31

then N310s:=sub<N|N310s,g>;
end if; end for;

#N310s;

[3,10]"N310s;

T310:=Transversal (N,N310);
for i in [1..#T310] do
ss:=[3,10]"T310[i];
cstprodim(1l,ts,ss)]:=ss;
end for;
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m:=0;
for i in [1..350] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

#N310s; Orbits(N310s);
#N/#N310s;

/* double coset [1,11,46] */
N11146:=Stabiliser (N, [1,11,46]);
SSS:={[1,11,46]1};

SSS:=3SS°N;

SSS;

#(8S8) ;

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[11]*ts[46]

eq g+ts[Rep(Seqqlil) [1]]*ts[Rep(Seqqlil) [2]]*ts[Rep(Seqqlil) [3]]
then print Rep(Seqqlil);

end if;end for;end for;

N11146s:=N11146;
for g in N do if 1°g eq 37 and 117g eq 27 and 46”g eq 13 then
N11146s:=sub<N|N11146s,g>;end if; end for;

for g in N do if 1°g eq 40 and 11°g eq 9 and 46°g eq 14 then
N11146s:=sub<N|N11146s,g>;end if; end for;

for g in N do if 1°g eq 4 and 11°g eq 9 and 46”g eq 25 then
N11146s:=sub<N|N11146s,g>;end if; end for;

#N11146s;

[1,11,46] "N11146s;
T11146:=Transversal (N,N11146);
for i in [1..#T11146] do
ss:=[1,11,46]1"T11146[i];
cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

#N11146s; Orbits(N11146s);
#N/#N11146s;
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Appendix C: Images of
2*1o Dy:

We have investigated the progenitor 2*'° : D15 along with relations added to
it, to be given as < z,y, t[z'%, y?, (wxy)?, 1%, (t,y), (zxy*t*), (wxy*t¥)’, (a')°, (z*
Y (2 xt¥)e, (2t )| (yttv* )9 (a2 xy*tt" )" > where values for a, b, ¢, d, e, f,

g, h where found as well as their composition factors:

/* 0030105 05 29260 *x/
G<x,y,t>:=Group<x,y,t|1x~15,y72, (x*y)"2,t"2, (t,y), (x"t) "3,
(x~(y~2)*t"y) ~10, (x~ (y*t) *t~ (x"2)) "5, (x"2xy*t~ (t"x) ) "5>;
f1,gl1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G

| J1

1

/¥ 00308805 322560 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2,(t,y), (x"t)"3,
(x"(y~2)*t"y) "8, (x~ (yxt)*t~(x72)) "8, (x"2*y*t~ (t"x)) "5>;
f1,gl,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

Cyclic(2)

Cyclic(3)

Cyclic(2)

— ¥ — ¥ — ¥ — Q

Cyclic(2)



A2, 4) =L@, 4
Cyclic(2)

Cyclic(2)

_— % — ¥ — %

/* 00 308 10 0 4 50000 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2, (t,y), (x"t)"3,
(x"(y~2)*t7y) "8, (x~ (y*t) *t~(x72)) ~10, (x"2xy*t~ (t"x) ) "4>;
f1,gl,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G
|  Cyclic(2)
*
| Cyclic(3)
*
|  Cyclic(2)
*
|  Cyclic(2)
*
|  Cyclic(2)
*
|  Cyclic(2)
*
| Cyclic(5)
*
| Cyclic(5)
*
| Cyclic(5)
*
| Cyclic(5)
*
| Cyclic(5)
1

/¥ 0050045 10 262144 x/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2,(t,y), (x"t)~°5,
(x" (yxt)*t~(x72)) 74, (y7t*xt~ (y*x)) "5, (x"2xy*t~ (£7x)) ~10>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
G
|  Cyclic(2)
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e % — % — ¥ — %k — K — Kk — K — K — K — K — K — Kk — K — K — X — Kk — ¥ — ¥ — %

Cyclic(5)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)

Cyclic(2)

60

/* 00 3
G<x,y,t>:
f1,g1,k1:

00300 480 %/
=Group<x,y,t|x~15,y72, (xxy)~2,t"2, (t,y), (x~ (y*t)*t~(x72)) "3>;
=CosetAction(G,sub<G|x,y>);

CompositionFactors(gl);



Cyclic(2)
Cyclic(3)
Cyclic(2)
Cyclic(2)

Alternating(5)

— % — % — ¥ — % — ¥ —

Cyclic(2)

/¥ 0030080 2 128%/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2, (t,y), (x"t)"3,
(%™ (y*t)*t~ (x72)) 78, (x"2xy*t~ (t"x)) ~2>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(gl) ;

G
Cyclic(2)

Cyclic(3)

Cyclic(2)

Cyclic(2)

Cyclic(2)

Cyclic(2)

Cyclic(2)

Cyclic(2)

Cyclic(2)

/* 00 30 10 10 10 0 41600 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2, (t,y), (x"t)"3,
(x"(y~2)*t"y) 10, (x" (y*t)*t~ (x72)) 710, (y t*xt~(y*x))~10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);



Cyclic(2)
2A(2, 4) = U@, 4

Cyclic(2)

B — % — ¥ — Q@

/¥0 0 308 6 0 4 38388*/
G<x,y,t>:=Group<x,y,t|x"15,y"°2, (x*y) "2,t72, (t,y), (x"t)~3,
(x~(y~2)*t"y) "8, (x~ (y*t)*t~(x72)) "6, (x"2*y*t~ (t"x)) "4>;
f1,gl,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G
|  Cyclic(2)
*
|  Cyclic(3)
*
| Cyclic(2)
*
|  Cyclic(2)
*
| Cyclic(2)
*
|  Cyclic(2)
*
| Cyclic(3)
*
|  Cyclic(3)
*
|  Cyclic(3)
*
|  Cyclic(3)
*
|  Cyclic(3)
1

/¥0 05 00 8 4 6 12288%*/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2,(t,y), (x"t)~75,
(x"(yxt)*t~(x72)) 78, (y7t*t~ (y*x)) 4, (x"2xy*t~ (£"x)) "6>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G
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Cyclic(2)
Alternating(5)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)

Cyclic(2)

e % — % — ¥ — %k — ¥ — % — K — K — K — Kk — ¥ —

/¥ 0030040 6 78336 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2,(t,y), (x"t)"3,
(x~ (yxt)*t~ (x72)) "4, (x"2*xy*t~ (£7x) ) "6>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
G
Cyclic(2)

Cyclic(3)

Cyclic(2)

Cyclic(2)

I

*

I

*

I

*

|  Cyclic(2)
*

I

*

| AC1, 17) = L(2, 17)
*

I

Cyclic(2)



64

*
|  Cyclic(2)
1

/¥ 00 300405 48720 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2, (t,y), (x"t)"3,
(x" (yxt)*t~ (x72)) "4, (x"2*%y*t~ (t"x) ) "5>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G
Cyclic(2)

Cyclic(3)
Cyclic(2)
Cyclic(2)

|
*
|
*
|
*
|
*
| A(1, 29) = L(2, 29)
1
/* 0030097 0 29820 *x/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2, (t,y), (x"t)"3,
(x~(y*t)*t~(x72)) 79, (y txt~(y*x))"7>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G

| A(1, 71) = L(2, 71)

1

/* 00300 10 7 0 4060 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2, (t,y), (x"t)"3,
(x" (y*t)*t~(x72)) 710, (y t*xt~(y*x))~7>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
G
Cyclic(2)

I
*
| A1, 29) = L(2, 29)
1
/¥ 00307005 2030 */

G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2, (t,y), (x"t)"3,
(x“(y~2)*t7y) "7, (x"2*y*t~ (t"x) ) "5>;
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f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G

| ACL, 29) = L(2, 29)

1

/* 0030850 0 4960 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2, (t,y), (x"t)"3,
(x~(y~2)*t"y) "8, (x~ (y*t) *t~ (x72)) "5>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)

|
*
| A(1, 31) = L(2, 31)
1
/¥ 00308804 8192 %/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2, (t,y), (x"t)"3,
(x"(y~2)*t7y) "8, (x~ (y*t) ¥t~ (x72)) "8, (x"2xy*t~ (t"x)) "4>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)
Cyclic(3)
Cyclic(2)

Cyclic(2)

Cyclic(2)

|

*

|

*

|

*

|

*

|

*

|  Cyclic(2)
*

|  Cyclic(2)
*

|  Cyclic(2)
*

| Cyclic(2)
*

| Cyclic(2)
*

|

Cyclic(2)
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Cyclic(2)
Cyclic(2)
Cyclic(2)

Cyclic(2)

_—_ % — % — ¥ — %

/¥ 005003 10 0 12960 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2,(t,y), (x"t)~75,
X~ (y*t)*t~(x72)) "3, (y t*t~(y*x))~10>;
f1,gl,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)

Alternating(6)

|

*

|

*

| Alternating(5)
*

|  Cyclic(3)

1

/¥ 00509945 35244 %/
G<x,y,t>:=Group<x,y,t1x~15,y72, (x*y) "2,t"2, (t,y) , (x"t) "5,
" (y~2)*t7y) "9, (x~ (yxt)*t~(x72)) "9, (y t*t~(y*x))"4,
(x"2xy*t~ (t"x)) "5>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G

| A(1, 89) = L(2, 89)

1

/¥ 00500846 12288 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2,(t,y), (x"t)"°5,
(X~ (y*t)*t~(x72)) 78, (y t*t~(y*x)) "4, (x"2*xy*t~(t"x)) "6>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G

| Cyclic(2)

*

| Alternating(b)



Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)

Cyclic(2)

B e X — % — ¥ — %k — ¥ — X — X — Kk — * — ¥

/¥ 0030106 0 4 15120 */
G<x,y,t>:=Group<x,y,t|x"15,y°2, (x*y) "2,t"2, (t,y), (x"t)"3,
(x~(y~2)*t7y) "10, (x~ (y*t) ¥t~ (x72)) "6, (x"2xy*t~ (t"x)) ~4>;
f1,gl,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G
|  Cyclic(2)
*
| Alternating(7)
*
|  Cyclic(2)
*
|  Cyclic(3)
*
|  Cyclic(3)
1

/¥ 00309 10 10 0 1140 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2,(t,y), (x"t)"3,
X" (y~2)*t7y) "9, (x~ (y*t)*t~(x72))~10, (y t*t~(y*x))~10>;
f1,gl1,kl:=CosetAction(G,sub<G|x,y>);

67



68

CompositionFactors(gl);
G
A1, 19) = L(2, 19)

I
*
|  Cyclic(2)
1

/¥ 003870052030 x/
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*¥y) "2,t"2,(t,y), (x"t)"3,(xxy"t)"8,
(x~(y~2)*t"y) "7, (x"2%y*t~ (£7°x)) "5>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G

|  A(1, 29) = L(2, 29)

1

/¥ 00327800 3584 x/
G<x,y,t>:=Group<x,y,t|x"15,y"2, (x*y) "2,t"2, (t,y), (x"t) "3, (xxy~t) "2,
X~ (y~2)*t~y) "7, (x~ (y*t) ¥t~ (x72) ) "8>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)

A(L, 7) = L(2, 7)
Cyclic(2)

Cyclic(2)

Cyclic(2)
Cyclic(2)

|
*
|
*
|
*
|
*
| Cyclic(2)
*
|
*
|
*
|  Cyclic(2)

1

/¥ 003090 10 0 3420 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2, (t,y), (x"t)"3,
(x"(y~2)*t"y) "9, (y~t*t~ (y*x)) ~10>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);



69

AC1, 19) = L(2, 19
Cyclic(2)

Cyclic(3)

= — % — ¥ — Q

/00309400 816 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2,(t,y), (x"t)"3
, (X7 (y™2)*t7y) "9, (x” (y*t)*t~ (x72) ) "4>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
G
Cyclic(2)

I
*
| AC1L, 17) = L(2, 17)
1

/* 00300780 11480 */
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*xy) "2,t"2, (t,y), (x"t) "3,
x" ()t~ (x72)) 77, (yot*t” (y*x)) ~8>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
G
Cyclic(2)

I
*
| A(1, 41)= L(2, 41)
1

/* 00300404 1024 %/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2, (t,y), (x"t)"3,
(x~(yxt)*t~(x72)) "4, (y7t*t~ (y*x)) "0, (x"2xy*t~ (t"x)) "4>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G

Cyclic(2)

Cyclic(3)
Cyclic(2)

|
*
|
*
|
*
|  Cyclic(2)
*



Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)

Cyclic(2)

B — % — X — % — ¥ — % — ¥ — % —

/* 00300680 5376 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2, (t,y), (x"t)"3,
(x~(yxt)*t~(x72)) 76, (y t*xt~ (y*x))~8>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
G
Cyclic(2)

Cyclic(3)
Cyclic(2)

Cyclic(2)

|

*

|

*

|

*

|

*

|  Cyclic(2)
*

| ACL, 7) = L(2, 7)
*

|  Cyclic(2)

*

| Cyclic(2)

1

/* 003004 10 10 440 */
G<X:y,t>:=Group<X,y,t|XA15,yA2,(X*y)AQ,tAQ,(t,y), (X”t)A3,



(x~(y*xt)*t~(x72)) 74, (y t*xt~(y*x))~10, (x"2*y*t~ (t"x)) "10>;
f1,gl1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G
Cyclic(2)

A1, 11) = L(2, 11)

|
*
|
*
| Cyclic(2)
1

/00300677 364 x/
G<x,y,t>:=Group<x,y,t|x"15,y"2, (xxy)"2,t"2, (t,y), (x"t)"3,
(x"(y*t)*t~(x72)) 76, (y txt~ (y*x)) "7, (x"2%y*t~ (£7x)) ~7>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G

| A(1, 13) = L(2, 13)

*

|  Cyclic(2)

1
/* 00306008 288 *x/
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*xy) "2,t"2, (t,y), (x"t) "3,
(x~(y~2)*t"y) "6, , (x"2xy*t~ (t"x)) "8>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G
Cyclic(2)
Cyclic(3)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(3)
Cyclic(2)

I
*
I
*
I
*
I
*
I
*
I
*
I
*
I

Cyclic(3)

71
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*
|  Cyclic(2)
1

/0030050 3570 %/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2, (t,y), (x"t)"3,
(x" (yxt)*t~ (x72)) 75, (x"2*y*t~ (t"x) ) "3>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G

| A(1, 19) = L(2, 19)

1

/¥ 003080 10 0 720 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2, (t,y), (x"t)"3,
(x~(y"2)*t"y) "8, (y t*xt~(y*x))~10>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)

Alternating(6)

I

*

I

*

|  Cyclic(2)
*

| Cyclic(3)
1

/* 00308408 256 *x/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*xy) "2,t"2, (t,y), (x"t) "3,
(x"(y~2)*t7y) "8, (x~ (yxt)*t~ (x72)) "4, (x"2*y*t~ (£7x)) "8>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G
Cyclic(2)

Cyclic(3)
Cyclic(2)
Cyclic(2)

Cyclic(2)

I
*
I
*
I
*
I
*
I
*



Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)

Cyclic(2)

s — % — % — ¥ — % —

/¥ 0030600 10 450 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)~2,t"2, (t,y), (x"t)"3,
X" (y~2)*t"y) "6, (x"2*y*t~ (t"x)) "10>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G
|  Cyclic(2)
*
|  Cyclic(2)
*
|  Cyclic(3)
*
| Cyclic(5)
*
| Cyclic(5)
*
|  Cyclic(3)
*
|  Cyclic(3)
1

/00306006 162 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2, (t,y), (x"t)"3,
(x"(y~2)*t7y) "6, (x"2*y*t~ (t"x)) "6>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G
Cyclic(2)

Cyclic(2)

|
*
|
*
|  Cyclic(3)
*
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Cyclic(3)
Cyclic(3)
Cyclic(3)

Cyclic(3)

B — % — % — % —

/¥ 003005 10 0 220 */
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y)"2,t"2, (t,y), (x"t) "3,
(x~(y*t)*t~(x72)) "5, (y t*t~(y*x))~10>;
f1,gl,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)

|
*
| A(1, 11)= L(2, 11)
1

/00300480 112 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y)"2,t"2,(t,y), (x"t)"3,
(x~(y*t)*t~(x72)) "4, (yt*t~(y*x))~8>;
f1,gl,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G
Cyclic(2)

A1, 7) = L(2, 7)

|
*
|
*
|  Cyclic(2)
1
/0030077084 %/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*xy)~2,t"2, (t,y), (x"t) "3,
(x" (yxt)*t~(x72)) 77, (y7t*xt~ (y*x))"7>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G

| A(1, 8)= L(2, 8)

1

/¥ 00308208 16 %/
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*xy)"2,t"2, (t,y), (x"t) "3,



(x"(y~2)*t"y) "8, (x~ (yxt)*t~(x72)) "2, (x"2*y*t~ (t"x)) "8>;
f1,gl1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)

Cyclic(3)

Cyclic(2)

Cyclic(2)

|
*
|
*
|
*
|  Cyclic(2)
*
|
*
|  Cyclic(2)
1
/¥ 003060 10 0 50 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*xy) "2,t"2, (t,y), (x"t) "3,
(x"(y~2)*t"y) "6, (y t*t~ (y*x)) ~10>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)

Cyclic(2)
Cyclic(3)
Cyclic(5)

|
*
|
*
|
*
|
*
| Cyclic(5)
1
/00300605020 %/
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y) "2,t"2, (t,y), (x"t) "3,
(x~(y*t)*t~(x72)) "6, (y t*t~ (y*x)) 5>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G

Alternating(5)

|
*
|  Cyclic(2)
1
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/* 0030030 10 60 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2,(t,y), (x"t)"3,
(X~ (y*t)*t~(x72)) "3, (x"2xy*t~ (t"x) ) ~10>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G
Alternating(5)

Cyclic(2)

|
*
|
*
|  Cyclic(3)
1
/¥ 0030030510 */
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*xy) "2,t"2, (t,y), (x"t) "3,
(x~ (yxt)*t~ (x72)) "3, (x"2*xy*t~ (t"x)) "5>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G

| Alternating(5)
1

/0030040232 %/
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y) "2,t"2, (t,y), (x"t) "3,
(X~ (y*t)*t~(x72)) "4, (x"2xy*t~ (£7x) ) "2>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G
Cyclic(2)
Cyclic(3)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)

|
*
|
*
|
*
|
*
|
*
|
*
| Cyclic(2)
1



/¥ 0030087056 *x/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*xy)~2,t"2, (t,y), (x"t) "3,
(x" (yxt)*t~(x72)) 78, (y t*xt~ (y*x))"7>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)

I
*
| AL, 7)=L(2, 7)
1

/0030600218 %/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*xy)"2,t"2, (t,y), (x"t) "3,
(x~(y~2)*t"y) "6, (x"2%y*t~ (£7x)) "2>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G
Cyclic(2)

Cyclic(2)
Cyclic(3)
Cyclic(3)

|
*
|
*
|
*
|
*
| Cyclic(3)

1

/0050606224 %/
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y) "2,t"2, (t,y) , (x"t) "5,
(x~(y~2)*t"y) "6, (y t*t~(y*x)) "6, (x"2xy*t~(t"x))"2>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G
| Alternating(b)
*

|  Cyclic(2)

*

| Cyclic(2)

1

/005056050596 %/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2,(t,y), (x"t)~75,
(x"(y~2)*t"y) "5, (x" (yxt)*t~(x72)) "6, (y t*xt~(y*x))"5,



(x"2%y*t”~ (t"x)) "5>;
f1,gl1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G
Alternating(5)

Cyclic(2)
Cyclic(2)
Cyclic(2)

|
*
|
*
|
*
|
*
|  Cyclic(2)

1

/¥ 00500 10 6 2 120 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*xy)"2,t"2, (t,y) , (x"t) "5,
(x" (yxt)*t~(x72)) 710, (yt*xt~(y*x)) "6, (x"2*y*t~ (t7"x)) "2>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G
Alternating(5)

Cyclic(2)

|

*

|

*

| Cyclic(5)
*

| Cyclic(2)
1

/00506053 132 *x/
G<x,y,t>:=Group<x,y,t|x"15,y°2, (xxy)~2,t"2, (t,y),(x"t)"5
, (T (y"2)*t7y) "6, (y txt™ (y*x)) 75, (x"2*y*t~ (t7x)) "3>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
G
AC1, 11) = L(2, 11)

|
*
| Cyclic(2)
1
/0050400 8 144 %/

G<x,y,t>:=Group<x,y,t|x"15,y72, (x*y) "2,t"2,(t,y), (x"t)~75,
(x"(y~2)*t7y) "4, (x"2*y*t~ (t"x) ) "8>;

78



f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G
Cyclic(2)

Alternating(6)

|
*
|
*
| Cyclic(2)
1
/005056005 192 %/
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*xy) "2,t"2, (t,y), (x"t) "5,
(x~(y~2)*t"y) "5, (x~ (y*t) ¥t~ (x72)) "6, (x"2*y*t~ (£"x)) "5>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G

Alternating(5)

Cyclic(2)

Cyclic(2)

Cyclic(2)

|
*
|
*
|
*
|  Cyclic(2)
*
|
*
|  Cyclic(2)
1
/¥ 00520310 8 216 */
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y) "2,t"2, (t,y),(x"t) "5,
(xxy~t) "2, (x" (y*t)*t~ (x72)) "3, (y t*t~ (y*x)) 10, (x"2*y*t~ (t"x)) "8>;
f1,gl1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
|  Cyclic(2)
*
| Alternating(6)
*
|  Cyclic(3)
1

/00500640 264 %/
G<x,y,t>:=Group<x,y,t|x"15,y"2, (x¥y)~2,t72, (t,y), (x"t) "5,

79
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(x"(yxt)*t~(x72)) 76, (y t*xt~ (y*x))"4>;
f1,gl1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G
Cyclic(2)

A1, 11) = L(2, 11)

|
*
|
*
|  Cyclic(2)
1
/005005050 342 %/
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*xy)~2,t"2, (t,y), (x"t) "5,
(x"(y*t)*t~(x72)) 75, (y7t*xt~ (y*x))~5>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G

| A(1, 19) = L(2, 19)
1

/¥ 00505905 486 */
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y)"2,t"2,(t,y),(x"t) "5,
(x~(y~2)*t"y) "5, (x~ (yxt)*t~(x72)) "9, (x"2*y*t~ (t"x)) "5>;
f1,gl,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

G
Alternating(5)

Cyclic(3)
Cyclic(3)
Cyclic(3)

|
*
|
*
|
*
|
*
|  Cyclic(3)

1

/¥ 0050607 3504 */
G<x,y,t>:=Group<x,y,t|1x"15,y72, (x*xy)"2,t"2, (t,y) , (x"t) "5,
(x~(y~2)*t"y) "6, (y t*xt~(y*x)) "7, (x"2xy*t~ (t"x)) "3>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;

CompositionFactors(gl);
G



Cyclic(2)

|
*
| Alternating(7)
1

/¥ 00508450 512 %/
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y) "2,t"2, (t,y), (x"t) "5,
(X" (y~2)*t7y) "8, (x~ (yxt)*t~(x72)) "4, (y t*t~(y*x)) 5>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

CompositionFactors(gl);

G
|  Cyclic(2)
*
| Cyclic(5)
*
|  Cyclic(2)
*
| Cyclic(2)
*
|  Cyclic(2)
*
|  Cyclic(2)
*
|  Cyclic(2)
*
|  Cyclic(2)
*
|  Cyclic(2)
*
|  Cyclic(2)
*
|  Cyclic(2)
1

/00505066 660 */
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y) "2,t"2, (t,y), (x"t) "5,
(x"(y~2)*t"y) "5, (y t*t~ (y*x)) "6, (x"2xy*t~ (t"x)) "6>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);

G

| AC1, 11) = L(2, 11)

*
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Cyclic(2)

|
*
|  Cyclic(5)
1

/005040009 684 x*/
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y) "2,t"2, (t,y), (x"t) "5,
(x~(y~2)*t"y) ~4, (x"2xy*t~ (t"x) ) ~9>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)

I
*
| A(1, 19) = L(2, 19)
1

/¥ 003010400 1320 */
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y) "2,t"2, (t,y), (x"t) "3,
(x"(y~2)*t"y) "10, (x~ (y*t) *t~ (x72) ) "4>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
G
Cyclic(2)

A(1, 11) = L(2, 11)

|

*

|

*

|  Cyclic(2)
*

|  Cyclic(3)
1

/¥ 005066031512 */
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*xy)"2,t"2,(t,y),(x"t) "5,
(x~(y~2)*t"y) "6, (x~ (yxt)*t~(x72)) "6, (x"2*y*t~ (t"x)) "3>;
f1,gl,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
CompositionFactors(gl) ;

G
Cyclic(2)

Alternating(7)

|
*
|
*
|  Cyclic(3)
1



/00500740 2436 */
G<x,y,t>:=Group<x,y,t|x"15,y"°2, (x*y) "2,t"2, (t,y), (x"t) "5,
X~ (yxt)*t~(x72)) 77, (y t*t~ (y*x))"4>;
f1,gl,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
CompositionFactors(gl);

G

Cyclic(2)

I
*
| AC1, 29)= L(2, 29)
1

/¥ 005000 4 3 2976 */
G<x,y,t>:=Group<x,y,t|x"15,y72, (x*xy)"2,t"2, (t,y), (x"t) "5,
(yot*t~ (y*x)) "4, (x"2xy*t~ (t7x)) "3>;
f1,g1,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
CompositionFactors(gl);

G

A(1, 31) = L(2, 31)

|
*
|  Cyclic(2)
1

/* 00504400 3840 =/
G<x,y,t>:=Group<x,y,t|x"15,y"°2, (x*y) "2,t"2, (t,y), (x"t) "5,
(¥ 2)*t7y) "4, (x~ (yxt)*t~(x72)) "4>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
CompositionFactors(gl);

G

Cyclic(2)

Alternating(b)

Cyclic(2)

Cyclic(2)

|

*

|

*

|

*

| Cyclic(5)
*

|

*

|  Cyclic(2)
*



Cyclic(2)
Cyclic(2)

Cyclic(2)

/¥ 00505300 4320 */
G<x,y,t>:=Group<x,y,t1x"15,y72, (x*y) "2,t"2, (t,y),(x"t) "5,
(x~(y~2)*t"y) "5, (x~ (y*t) *t~ (x72)) "3>;
f1,g1,kl:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl);
CompositionFactors(gl);

G
Cyclic(2)

Alternating(6)

|
*
|
*
| Alternating(5)
1
/00506300 22692 =*/
G<x,y,t>:=Group<x,y,t|x"15,y"°2, (x*y)"2,t"2, (t,y), (x"t) "5,
X~ (y~2)*t"y) "6, (x~ (y*t)*t~(x72)) "3>;
f1,gl,k1:=CosetAction(G,sub<G|x,y>);
CompositionFactors(gl) ;
CompositionFactors(gl);

G

Cyclic(2)

I
*
| A(1, 61) = L(2, 61)
1
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