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Abstract

In this thesis we have presented original homomorphic images of permutations and

monomial progenitors. In some cases we have used the double coset enumeration tech-

nique to construct the images and for all of the homomorphic images that we have

discovered, the isomorphism type of each group is given. The homomorphic images

discovered include Linear groups, Alternating groups, and two sporadic simple groups

J1 and J2× 2 where J1 is the smallest Janko group and J2 is the second Janko sporadic

group.
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Chapter 1

Background Information

The following terminology and theorems will be used throughout this thesis:

1.1 Groups

Definition 1.1 [Rot95] A group is a nonempty set, G, equipped with an associative

operation, ∗, such that:

(i) e ∗ a = a = a ∗ e for all a ∈ G.

(ii) for every a ∈ G, there is an element b ∈ G with a ∗ b = e = b ∗ a.

To avoid any confussion, we will write G instead of (G, ∗) and we’ll keep in mind

that ∗ continues to exist.

Definition 1.2 [Rot95] Let G and H be groups. A function f : G 7→ H is a homo-

morphism if, for all a, b ∈ G,

f(ab) = f(a)f(b)

An isomorphism is a homomorphism that is also a bijection. We say that G is

isomorphic to H, denoted by G ∼= H, if there exist an isomorphism f : G 7→ H.

1.2 Group Action

A group action is a way to describe elements of a group acting on elements of

a set in certain ways. Its a very useful abstraction, and is used in many fields, such as
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geometry and algebra itself. The following definitions and theorems are used:

Definition 2.1 [Rot95] If χ is a set and G is a group, then χ is a G-set if there is a

function α : G×χ 7→ χ (called an action), denoted by α : (g, x) 7→ gx, such that:

(i) 1a = a for all a ∈ χ; and
(ii) g(ha) = (gh)a for all g, h ∈ G and a ∈ χ.

One also says that G acts on χ. And |χ| = n, the order of χ, then n is called the

degree of the G-set χ.

Definition 2.2 [Rot95] The set of all permutations of n letters is called the symmetric

group on n letters, and is denoted by Sn.

Definition 2.3 [Rot95] If χ is a G-set and x ∈ χ, then the G-orbit of x is

ϑ(x) = {gx : g ∈ G} ⊂ χ.

Throughout this thesis we will be refering to the G-orbit as orbit.

Definition 2.4 [Rot95] If χ is a G-set and x ∈ χ, then the stabiliser of x, denoted by

Gx, is the subgroup

Gx = {g ∈ G : gx = x} ≤ G.

1.3 Normal Series

Definition 3.1 [Rot95] Anormal series G = H0 ≥ H1 ≥ ... ≥ Hm = 1 is a refinement

of a normal series G = G0 ≥ G1 ≥ ... ≥ Gn = 1 if G0, G1, ..., Gn is a subsequence

of H0, H1, ...,Hm.

Definition 3.2 [Rot95] If G has a composition series, then the factor groups of this

series are called the composition factors of G.
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Chapter 2

Presentation of 25 : A5

We will show that 2∗5 : A5, where x ∼ (01234) and y ∼ (421), by performing

a double coset enumeration of G over A5. A symmetric presentation of G is give by:

G =< x, y, t|x5, y3, (x ∗ y)2, t2, (t, y), (t, x2 ∗ y ∗ x−1), (t ∗ tx)2 > .

2.1 Relations

As mentioned above, we have the progenitor 2∗5 : A5 being factored by the

relation t0t1t0t1 = 1. We will utilize this relation to determine the equal cosets with

words composed of t1, t2, t3, and t4. Simplifying our relation:

t0t1t0t1 = 1

t0t1t0 = t1

t0t1 = t1t0

Hence, our relation in simplest terms is t0t1 = t1t0. We will use this relation

to help us determine the equal cosets within words of length two. That is, we will

conjugate Nt0t1 = Nt1t0 with every element contained in our control group A5 to

obtain the following:

t0t2 ∼ t2t0
t0t3 ∼ t3t0
t0t4 ∼ t4t0

t1t2 ∼ t2t1
t1t3 ∼ t3t1
t1t4 ∼ t4t1

t2t3 ∼ t3t2
t2t4 ∼ t4t2
t3t4 ∼ t4t3
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To obtain the relations for the words of length three we will use the relations

found for words of length two and right multiply each relation to obtain longer relations.

We’ll look in detail as to how we can obtain a relation of length three using the relation

t0t1 ∼ t1t0, right multiply both sides by t2 and use the above relations:

t0t1t2 = t1t0t2

= t1t2t0 (∵ t0t2 ∼ t2t0)

= t2t1t0 (∵ t1t2 ∼ t2t1)

= t2t0t1 (∵ t1t0 ∼ t0t1)

= t0t2t1 (∵ t2t0 ∼ t0t2)

Applying this process we can figure out all the relations that will be useful for

the words of length three. We will use the following notation for the relations found:

012 ∼ 102 ∼ 120 ∼ 210 ∼ 201 ∼ 021

031 ∼ 301 ∼ 310 ∼ 130 ∼ 103 ∼ 013

041 ∼ 401 ∼ 410 ∼ 140 ∼ 104 ∼ 014

241 ∼ 421 ∼ 412 ∼ 142 ∼ 124 ∼ 214

231 ∼ 321 ∼ 312 ∼ 132 ∼ 123 ∼ 213

341 ∼ 431 ∼ 413 ∼ 143 ∼ 134 ∼ 314

Similarly we can find the relations in regards to the words of length four and

length five.
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2.2 Double Coset Enumeration

NeN

We begin with NeN , the first double coset, which contains all the words of

lenght zero. We have that NeN = {N} and it will be denoted [∗]. Also,

N =< x, y >∼= A5 and is of order 60. The number of elements in [∗] is
|N |
|N | = 60

60 = 1. Hence [∗] consists of the single coset, N . This single coset contains the

single orbit {0, 1, 2, 3, 4}. We then take an element from the orbit and right multiply it

with the representative coset Ne to obtain Nt0N . We now have a new double coset,

Nt0N , denoted as [0].

Nt0N

In this double coset we have the words of length one and the representative

is Nt0. We first find the coset stabilizer, N (0), which consists of all the permutations

in N that fix the element 0 and permute 1, 2, 3, 4. Hence, N (0) =< (142), (234) >, is

the coset stabilizer in N which contains 12 elements. Also, the number of single cosets

in the double coset [0] are found by |N |
|N(0)| = 60

12 = 5. Now, we find the orbits of N (0)

on {0, 1, 2, 3, 4} by taking the representative from the double coset [0], and conjugating

it by the coset stabilizer. Since the element 0 is the only fixed, then N (0) has {0} and

{1, 2, 3, 4} as its orbits. Next, we will take a representative from [0] and conjugate it with

a representative from each orbit to determine if the elements will extend or collapse:

Nt0 · t0 = N(t0)
2 ∈ NeN

Since the orbit of 0 is of length one, then 1 element will collapse from [0] to [∗].

Nt0 · t1 = Nt0t1 ∈ Nt0t1N

Since the orbit of 1 is of length four, then 4 elements will extend to the double coset

Nt0t1N denoted as [01].

Nt0t1N

We begin by finding the point stabilizer of 0 and 1, N01. To find the point

stabilizer we need to find elements that belong to N which fix 0 and 1 and permute

2, 3, 4. Hence N01 = {(142), (132), e}. Also, since we now have words of length two,
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our relations will increase the stabiliser, N (01). Now to find the set stabiliser, N (01), we

must find a relation in N such that when Nt0t1 is conjugated by such relation, Nt0t1

goes back to itself. Say that such relation is (10), then we have the following:

Nt0t1 = Nt1t0 ⇒ Nt0t
(10)
1 = Nt1t0 = Nt0t1

Hence, we have (10) ∈ N (01). So, N (01) ≥< N01, (10) > and contains 6

elements. Also, we have that the number of single cosets in Nt0t1N is |N |
|N(01) = 60

6 = 10.

Now, to find the orbits of N (01) on {0, 1, 2, 3, 4} we’ll conjugate Nt0t1, a representative

from the double coset [01] and conjugating it by the point stabilizer to obtain the

following:

0N
(01)

= {1}, 1N
(01)

= {0}, and 2N
(01)

= {2, 3, 4}.
Hence the orbits of N (01) are {0}, {1}, {2, 3, 4}. Next, we will take the represen-

tative Nt0t1 of [01] and conjugate it with a representative from each orbit to determine

if the elements will extend or collapse:

Nt0t1 · t0 = Nt0t1t0 = Nt1t0t0 = Nt1 ∈ Nt0N

Since the orbit of 0 is of length one, then 1 element will collapse from [01] to [0].

Nt0t1 · t1 = Nt0t1t1 = Nt0 ∈ Nt0N

Since the orbit of 1 is of length one, then 1 element will collapse from [01] to [0].

Nt0t1 · t2 = Nt0t1t2 ∈ Nt0t1t2N

Since the orbit of 2 is of length three, then 3 elements will expand from [01] to [012].

Now Nt0t1t2N is a new double coset which will be represented as [012].

Nt0t1t2N

We begin by finding the point stabilizer of 0,1 and 2, N012. To find the point

stabilizer we need to find elements that belong to N which fix 0,1, and 2 and permute

3, 4. Hence N012 = {e}. Also, since we now have words of length three, our relations

will increase the stabiliser, N (012). Now to find the set stabiliser, N (012),we must find a

realiton in N such that when Nt0t1t2 is conjugated by such relation Nt0t1t2 goes back

to itself. Say that such relation is (012), then we have the following:

Nt0t1t2 = Nt1t0t2 ⇒ Nt0t1t
(012)
2 = Nt1t2t0 = Nt0t1t2
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So, we have (012) ∈ N (012). We also know that |N (012)| = 6 and the number

of single cosets in [012] is |N |
|N(012) = 60

6 = 10.

Now, we find the orbits of N (012) on {0, 1, 2, 3, 4} by taking the representative

Nt0t1t2 from the double coset [012] and conjugating it by the point stabilizer to obtain

the following:

0N
(012)

= {0, 1, 2}, 3N
(012)

= {3, 4}. Hence the orbits of N (01) are {0, 1, 2} and

{3, 4}. Next, we will take the representative Nt0t1t2 and conjugate it with a represen-

tative from each orbit to determine if the elements will extend or collapse:

Nt0t1t2 · t2 = Nt0t1t2t2 = Nt0t1 = Nt1 ∈ Nt0t1N

Since the orbit of 2 is of length three, then 3 elements will collapse from [012] to [01].

Nt0t1t2 · t3 = Nt0t1t2t3 ∈ Nt0t1t2t3N

Since the orbit of 3 is of length two, then 2 elements will extend from [012] to [0123].

Now Nt0t1t2t3N is a new double coset which will be represented by [0123].

Nt0t1t2t3N

We begin by finding the point stabilizer of 0,1,2, and 3, N0123. To find the

point stabilizer we need to find elements that belong to N = S5 which fix 0,1,2,3 and

permute 4. Hence N0123 = {e}. Also, since we now have words of length four, our

relations will increase the stabiliser, N (0123). Now to find the set stabiliser, N (0123),

we must find a realiton in N such that when Nt0t1t2t3 is conjugated by such relation

Nt0t1t2t3 goes back to itself. Say that such relation is (012), then we have the following:

Nt0t1t2t3 = Nt1t0t2t3 ⇒ Nt0t1t2t
(012)
3 = Nt1t2t0t3 = Nt1t0t2t3 = Nt0t1t2t3

So, we have (012) ∈ N (0123). Also, notice that if we conjugate Nt0t1t2t3 by

(13)(02) we obtain the following:

Nt0t1t2t
(13)(02)
3 = Nt2t3t0t1 = Nt2t0t3t1 = Nt0t2t3t1 = Nt0t2t1t3 = Nt0t1t2t3

We can conclude that (13)(02) ∈ N (0123). We also know that |N (0123)| = 12

and the number of single cosets in [0123] is |N |
|N(0123)| = 60

12 = 5.
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Now, we find the orbits of N (0123) on {0, 1, 2, 3, 4} by taking the representative

Nt0t1t2t3 from the double coset [0123] and conjugating it by the point stabilizer to

obtain the following:

0N
(0123)

= {0, 1, 2, 3}, 4N
(0123)

= {4}

Hence the orbits of N (0123) are {0, 1, 2, 3}, {4}. Next, we will take the repre-

sentative Nt0t1t2t3 and conjugate it with a representative from each orbit to determine

if the elements will extend or collapse:

Nt0t1t2t3 · t3 = Nt0t1t2t3t3 = Nt0t1t2 ∈ Nt0t1t2N

Since the orbit of 3 is of length four, then 4 elements will collapse from [0123] to [012].

Nt0t1t2t3 · t4 = Nt0t1t2t3t4 ∈ Nt0t1t2t3t4N

Since the orbit of 4 is of length one, then 1 element will expand from [0123] to [01234].

Now Nt0t1t2t3t4N is a new double coset which will be represented as [01234].

Nt0t1t2t3t4N

We begin by finding the point stabilizer of 0,1,2,3, and 4, N01234. To find the

point stabilizer we need to find elements that belong to N = S5 which fix 0,1,2,3,4.

Hence N01234 = {e}. Also, since we now have words of length five, our relations will

increase the stabiliser, N (01234). Now to find the stabiliser, N (01234), we must find a

realiton in N such that when Nt0t1t2t3t4 is conjugated by such relation, Nt0t1t2t3t4

goes back to itself. Say that such relation is (0123), then we have the following:

Nt0t1t2t3t
(0123)
4 = Nt1t2t3t0t4 = Nt1t2t0t3t4 = Nt1t0t2t3t4 = Nt0t1t2t3t4

Hence we have (0123) ∈ N (01234). Also, notice that if we conjugate Nt0t1t2t3t4

by (12)(34) we obtain the following:

Nt0t1t2t
(12)(34)
3 = Nt0t2t1t4t3 = Nt0t1t2t4t3 = Nt0t1t2t3t4

We also know that |N (01234)| = 60 and the number of single cosets in [01234]

is |N |
|N(01234)| = 60

60 = 1.
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Now, we find the orbits of N (01234) on {0, 1, 2, 3, 4} by taking the representative

Nt0t1t2t3t4 from the double coset [01234] and conjugating it by the point stabilizer to

obtain the following:

Nt0t1t2t3t
N(01234)

4 = {0, 1, 2, 3, 4}

Hence the single orbit of N (01234) is {0, 1, 2, 3, 4}. Next, we will take the representative

Nt0t1t2t3t4 from [01234] and conjugate it with a representative from the orbit found to

determine if it’ll extend or collapse.

Nt0t1t2t3t4 · t4 = Nt0t1t2t3t4t4 = Nt0t1t2t3 ∈ Nt0t1t2t3N

Since the orbit of 4 is of length five, then 5 elements will collapse from [01234] to [0123].

Since the set of right cosets is closed under right coset multiplication, the double coset

enumeration is now complete. Thus, we have summarize all of our work in the Cayley

graph.

Figure 2.1: Cayley Graph of 25 : A5 over A5
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Chapter 3

L2(49) as a Homomorphic Image

of 7∗8 :m L2(7)

We’ll begin with the group L2(7), generated by x ∼ (3, 6, 7)(4, 5, 8) and y ∼
(1, 6, 2)(3, 8, 7). We want to induce a linear character from a subgroup H up to L2(7).

We will induce a linear character of H to get an irreducible character of L2(7) of degree

3. To do so, we find the largest index from the character table of L2(7). We will induce

from a subgroup of index 8. To make the notation easier, let L2(7) = G. Now we must

find the character tables for G and H, using MAGMA we have the following:

Now, using Magma, the character table of H is as follows and Z1 = −1+i
√
7

2 :

Table 3.1: Character Table of H

Conjugacy Classes C1 C2 C3 C4 C5 C6

Order 1 2 3 4 7 7

χ1 1 1 1 1 1 1

χ2 3 −1 0 1 Z1 Z1#3

χ3 3 −1 0 1 Z1#3 Z1

χ4 6 2 0 0 −1 −1

χ5 7 −1 1 −1 0 0

χ6 8 0 −1 0 1 1

Also using Magma, the character table of G is as follows, with Z1 = −1+i
√
7

2
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and J is a root of unity 3:

Table 3.2: Character Table of L2(7)

Conjugacy Classes C1 C2 C3 C4 C5

Order 1 3 3 7 7

χ1 1 1 1 1 1

χ2 1 J −1− J 1 1

χ3 1 −1− J J 1 1

χ4 3 0 0 Z1 Z1#3

χ5 3 0 0 Z1#3 Z1

Now, we will induce the second character of H up to G. To do so, we first need

to find the right transversals of G. The transversals of H in G are: {e, (3, 6, 7)(4, 5, 8),

(3, 7, 6)(4, 8, 5), (1, 6, 3, 2)(4, 5, 7, 8), (1, 2, 6, 8, 4, 5, 3), (1, 2, 7, 3)(4, 8, 5, 6),

(1, 4, 5, 2, 7, 8, 3), (1, 6, 4, 3, 2, 8, 5)}. Then we will label the transversals as t1, t2,...,t8

respectively. Each transversal will represent a ti, since there are eight transversals, we

will have an 8× 8 matrix representation. and we have:

G = Ht1 ∪Ht2 ∪Ht3 ∪Ht4 ∪Ht5 ∪Ht6 ∪Ht7 ∪Ht8.
Then the matrices A(xx) and A(yy) are a representation of G induced from

the representative of H. Hence the general form for the matrices A(xx) and A(yy) are

as follows:

A(x) =



B(t1 x t
−1
1 ) B(t1 x t

−1
2 ) B(t1 x t

−1
3 ) ... ... B(t1 x t

−1
7 ) B(t1 x t

−1
8 )

B(t2 x t
−1
1 ) B(t2 x t

−1
2 ) B(t2 x t

−1
3 ) ... ... B(t2 x t

−1
7 ) B(t2 x t

−1
8 )

B(t3 x t
−1
1 ) B(t3 x t

−1
2 ) B(t3 x t

−1
3 ) ... ... B(t3 x t

−1
7 ) B(t3 x t

−1
8 )

B(t4 x t
−1
1 ) B(t4 x t

−1
2 ) B(t4 x t

−1
3 ) ... ... B(t4 x t

−1
7 ) B(t4 x t

−1
8 )

B(t5 x t
−1
1 ) B(t5 x t

−1
2 ) B(t5 x t

−1
3 ) ... ... B(t5 x t

−1
7 ) B(t5 x t

−1
8 )

B(t6 x t
−1
1 ) B(t6 x t

−1
2 ) B(t6 x t

−1
3 ) ... ... B(t6 x t

−1
7 ) B(t6 x t

−1
8 )

B(t7 x t
−1
1 ) B(t7 x t

−1
2 ) B(t7 x t

−1
3 ) ... ... B(t7 x t

−1
7 ) B(t7 x t

−1
8 )

B(t8 x t
−1
1 ) B(t8 x t

−1
2 ) B(t8 x t

−1
3 ) ... ... B(t8 x t

−1
7 ) B(t8 x t

−1
8 )


We begin to compute the first entry, B(t1 x t

−1
1 ) by substituting in the val-

ues t1 = e and x ∼ (3, 6, 7)(4, 5, 8). Substituting the corresponding values we obtain:

B(e (3, 6, 7)(4, 5, 8) e) = B((3, 6, 7)(4, 5, 8)), now we look for the element (3, 6, 7)(4, 5, 8)



12

in the characer table of H along the second row; since (3, 6, 7)(4, 5, 8) is not in it

B((3, 6, 7)(4, 5, 8)) = 0. Let’s look at the next entry on the matrix: B(t1 x t
−1
2 ) =

B(e (3, 6, 7)(4, 5, 8) ((3, 6, 7)(4, 5, 8))−1) = B(e) since (e) is in H under the column cor-

responding to 1 then B(e) = 1. Continuing with the above process we obtain the

matrix:

A(xx) =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 2


We do a similar process to obtain the matrix A(yy):

A(yy) =



2 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 2

0 0 0 0 0 2 0 0


Now A(xx) and A(yy) are a faithful representation of L2(7), since |x| =

|A(xx)| = 3 , |y| = |A(yy)| = 3 and |xx ∗ yy| = |A(xx) · A(yy)| = 4. Now, we can

use the matrices to find permutation representations to use for the progenitor along

with the following rule: If aij = 1 then ti → tj and if aij = −1 then ti → t−1j .
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To find the permutation representation for A(xx) and A(yy), we will label the

ti’s as follows:

Table 3.3: Labeling ti’s

1. t1 7. t2 13. t3 19. t4 25. t5 31. t6 37. t7 43. t8

2. t21 8. t22 14. t23 20. t24 26. t25 32. t26 38. t27 44. t28

3. t31 9. t32 15. t33 21. t34 27. t35 33. t36 39. t37 45. t38

4. t41 10. t42 16. t43 22. t44 28. t45 34. t46 40. t47 46. t48

5. t51 11. t52 17. t53 23. t54 29. t55 35. t56 41. t57 47. t58

6. t61 12. t62 18. t63 24. t64 30. t65 36. t66 42. t67 48. t68

Let’s begin with matrix A(xx). Say we begin with entry a12 = 1 using the

relation as mentioned, it implies that t1 → t2 using the labeling we have 1→ 7. Having

found this relation it implies that all the powers of t1 go to the corresponding powers

of t2. The relations for the remaining powers of t1 and t2 using the labeling are: 2→ 8,

3 → 9, 4 → 10, 5 → 11 and 6 → 12. Similarly, for entry a24 = 1 implies that t2 → t4,

with the labeling we obtain 7 → 19. Having found this relation we know that all the

powers of t2 go to the powers of t4. Continuing with the process for the remaining

powers we have the remaining relations: 8→ 20, 9→ 21, 10→ 22, 11→ 23 , 12→ 24.

Continuing with the pattern, the results are summarized on the following table:
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Table 3.4: Permutation of the ti’s using A(xx)

t1 t21 t31 t41 t51 t61 t2 t22 t32 t42 t52 t62 t3 t23 t33 t43 t53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
7 8 9 10 11 12 19 20 21 22 23 24 25 26 27 28 29

t63 t4 t24 t34 t44 t54 t64 t5 t25 t35 t45 t55 t65 t6 t26 t36 t46

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
30 1 2 3 4 5 6 31 32 33 34 35 36 13 14 15 16

t56 t66 t7 t27 t37 t47 t57 t67 t8 t28 t38 t48 t58 t68

35 36 37 38 39 40 41 42 43 44 45 46 47 48

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
17 18 40 37 41 38 42 39 44 46 48 47 45 47

Hence, the permutation representation for A(xx) is: x ∼ (1, 7, 19)(2, 8, 20)

(3, 9, 21)(4, 10, 22)(5, 11, 23)(6, 12, 24)(13, 25, 31)(14, 26, 32)(15, 27, 33)(16, 28, 34)

(17, 29, 35)(18, 30, 36)(37, 40, 38)(39, 41, 42)(43, 44, 46)(45, 48, 47).

Now, for matrix A(yy), we’ll be using the same labeling of the ti’s used for

A(xx). Along with the conditions, if aij = 1 then ti → tj and if aij = −1 then ti → t−1j .

We’ll begin with the entry a13 = 1 which implies that t1 → t3, using the

labeling we have 1 → 13. Continuing with the same process, with all 48 ti’s, the

following table summarizes our findings:
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Table 3.5: Permutation of the ti’s using A(yy)

t1 t21 t31 t41 t51 t61 t2 t22 t32 t42 t52 t62 t3 t23 t33 t43 t53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
13 14 15 16 17 18 7 10 11 8 12 9 25 26 27 28 29

t63 t4 t24 t34 t44 t54 t64 t5 t25 t35 t45 t55 t65 t6 t26 t36 t46

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
30 20 22 3 4 5 6 31 32 33 34 35 36 13 14 15 16

t56 t66 t7 t27 t37 t47 t57 t67 t8 t28 t38 t48 t58 t68

35 36 37 38 39 40 41 42 43 44 45 46 47 48

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
17 18 40 37 41 38 42 39 44 46 48 47 45 47

The permutation representation for A(yy) is:y ∼ (1, 13, 25)(2, 14, 26)(3, 15, 27)

(4, 16, 28)(5, 17, 29)(6, 18, 30)(7, 10, 8)(9, 11, 12)(19, 20, 22)(21, 24, 23)(31, 37, 43)

(32, 38, 44)(33, 39, 45)(34, 40, 46)(35, 41, 47)(36, 42, 48).

Now the progenitor for our group G is as follows:

Group < x, y, t|x3, y3, (x ∗ y)4, (x, y)3, (x2 ∗ y)7, t7, < t >N=< t >>

where < t >N=< t > is the normaliser of < t > in N . The normalizer of the subgroup

< t1 > in N is {g ∈ N | < t1 > n = n < t1 >}. The normaliser of < t1 > is the

stabiliser of all powers of t1 in N . The permutations that fix all powers of t1 are:

(1, 2, 4)(3, 6, 5)(7, 10, 8)(9, 11, 12)(13, 31, 19)(14, 32, 20)(15, 33, 21)(16, 34, 22)(17, 35, 23)

(18, 36, 24)(25, 46, 38)(26, 43, 40)(27, 47, 42)(28, 44, 37)(29, 48, 39)(30, 45, 41) and

(7, 26, 44, 34, 38, 14, 19)(8, 28, 46, 31, 40, 16, 20)(9, 30, 48, 35, 42, 18, 21)

(10, 25, 43, 32, 37, 13, 22)(11, 27, 45, 36, 39, 15, 23)(12, 29, 47, 33, 41, 17, 24).

To be able to use the above permutations in our progenitor we need to represent

them in terms of x and y. Using the Schreier System we are able to find out what each

of the above look like: xy−1x−1 and y−1x−1y−1. Hence, we have that < t1 >=<

xy−1x−1, y−1x−1y−1 >. So far we have 7∗8 :m L2(7), where 7∗8 denotes the order of the

matrices, 7, and the number of our ti’s, being 8. Also, to complete the representation of
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our progenitor we find relations for which t conjugates with. Since we’re dealing with

a monomial representation, from 7∗8, we are working with eight symmetric generators,

denoted by {t1, t2, t3, t4, t5. t6, t7, t8}. The elements x and y act on the generators by

conjugation, so a presentation for the progenitor is:

7∗8 :m L2(7)=< x3, y3, (x ∗ y)4, (x, y)3, (x2 ∗ y)7, t7, t(x∗y
−1∗x−1) = t2, (t, y−1 ∗ x−1 ∗ y−1),

(x2 ∗ y ∗ t ∗ tx)2 > .

Having completed this monomial progenitor, we can now look at its composi-

tion factors. MAGMA prints the composition factors of this progenitor as:

A(1, 49) = L(2, 49)

which is a computer-based proof that we will verify by constructing the following group.

3.1 Presentation of L2(49)

We will be showing that L2(49) ∼= 7∗8:mL2(7)
t2t24t

4
4=t2t1

, where x ∼ (1, 7, 19)(2, 8, 20)

(3, 9, 21)(4, 10, 22)(5, 11, 23)(6, 12, 24)(13, 25, 31)(14, 26, 32)(15, 27, 33)(16, 28, 34)

(17, 29, 35)(18, 30, 36)(37, 40, 38)(39, 41, 42)(43, 44, 46)(45, 48, 47) and y ∼ (1, 13, 25)

(2, 14, 26)(3, 15, 27)(4, 16, 28)(5, 17, 29)(6, 18, 30)(7, 10, 8)(9, 11, 12)(19, 20, 22)(21, 24, 23)

(31, 37, 43)(32, 38, 44)(33, 39, 45)(34, 40, 46)(35, 41, 47)(36, 42, 48), by performing a dou-

ble coset enumeration of L2(49) over L2(7). Hence the progenitor is:

L2(49)=< x3, y3, (x ∗ y)4, (x, y)3, (x2 ∗ y)7, t7, t(x∗y
−1∗x−1) = t2, (t, y−1 ∗ x−1 ∗ y−1),

(x2 ∗ y ∗ t ∗ tx)2 > .

As mentioned above, we have the progenitor 7∗8 :m L2(7) being factored

by the relation [x2yt1t
x
1 ]2 = e. Simplifly the relation by conjugating t1 by x we

have t1 → t2. Our relation now becomes: [x2yt1t2]
2 = e. Let x2y = π then π =

(1, 20, 7, 13, 37, 44, 31)(2, 22, 8, 14, 38, 46, 32)(3, 24, 9, 15, 39, 48, 33)(4, 19, 10, 16, 40, 43, 34)
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(5, 21, 11, 17, 41, 45, 35)(6, 23, 12, 18, 42, 47, 36). The relation (πt1t2)
2 = e yields:

πt1t2πt1t2 =e

πππ−1t1t2πt1t2 =e

π2(t1t2)
πt1t2 =e

π2t24t
4
4t1t2 =e

t2t
2
4t

4
4t1t2 =e,

if we use the operation of right hand multiplication , we can simplify this relation to

t2t
2
4t

4
4 = t2t1.

3.2 Double Coset Enumeration

We will consider the following labeling for our ti’s to facilitate the double coset

enumeration notation:

1 = t1, 12 = t21, 13 = t31, 14 = t41, 15 = t51, 16 = t61,

2 = t2, 22 = t22, 23 = t32, 24 = t42, 25 = t52, 26 = t62,

3 = t3, 32 = t23, 33 = t33, 34 = t43, 35 = t53, 36 = t63,

4 = t4, 42 = t24, 43 = t34, 44 = t44, 45 = t54, 46 = t64,

5 = t5, 52 = t25, 53 = t35, 54 = t45, 55 = t55, 56 = t65,

6 = t6, 62 = t26, 63 = t36, 64 = t46, 65 = t56, 66 = t66,

7 = t7, 72 = t27, 73 = t37, 74 = t47, 75 = t57, 76 = t67,

8 = t8, 82 = t28, 83 = t38, 84 = t48, 85 = t58, 86 = t68,

NeN

We begin with NeN , the first double coset, which contains all the words of

lenght zero. We have that NeN = {N} and it will be denoted [∗]. Also,

N =< x, y >∼= L2(7) and is of order 168. The number of elements in [∗] is |N ||N | =

168
168 = 1, hence [∗] consists of the single coset, N . The single coset contains two orbits:

{1, 12, 14, 2, 22, 24, 3, 32, 34, 4, 42, 44, 5, 52, 54, 6, 62, 64, 7, 72, 74, 8, 82, 84} and {13, 15, 16,
23, 25, 26, 33, 35, 36, 43, 45, 46, 53, 55, 56, 63, 65, 66, 73, 75, 76, 83, 85, 86}. Now take a repre-

sentative element from each orbit, say t1 and t31 and right multiply each with the repre-

sentative coset Ne:
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Ne · t1 = Nt1 ∈ [1]

Ne · t31 = Nt31 ∈ [13]

Nt1N

The double coset Nt1N denoted by [1]. To find the elements in [1], we find the

point stabiliser of 1, denoted as N1. The point stabiliser is made up of the permutations

in N = L2(7) that fix 1 and permutes the rest of the ti’s. Thus, we have that |N1| = 7.

We also have that the set stabiliser is the same as the set point stabiliser, N (1) = N1.

Hence |N (1)| = 7.

The orbits of N (1) are {1}, {12}, {13}, {14}, {15} ,{16}, {2, 32, 4, 52, 64, 72, 82},
{22, 34, 42, 54, 6, 74, 84}, {23, 36, 43, 56, 65, 76, 86}, {24, 3, 44, 5, 62, 7, 8},
{25, 33, 45, 53, 66, 73, 83}, and {26, 35, 46, 55, 63, 75, 85}. The number of single cosets in

the double coset [1] is |N |
|N(1)| = 168

7 = 24.

Next we must take a representative from each orbit and right multiply it with

the representative Nt1, to determine if the ti’s will expand or collapse:

Nt1 · t1 = Nt21 ∈ [1]

Nt1 · t21 = Nt31 ∈ [13]

Nt1 · t31 = Nt41 ∈ [1]

Nt1 · t41 = Nt51 ∈ [13]

Nt1 · t51 = Nt61 ∈ [13]

Nt1 · t61 = Nt71 = Ne ∈ [∗]
Nt1 · t2 = Nt1 t2 ∈ [1, 2]

Nt1 · t22 = Nt1 t
2
2 ∈ [1, 22]

Nt1 · t32 = Nt1 t
3
2 ∈ [1, 23]

Nt1 · t42 = Nt1 t
4
2 ∈ [1, 24]

Nt1 · t52 = Nt1 t
5
2 ∈ [1, 25]

Nt1 · t62 = Nt1 t
6
2 ∈ [1, 26]

Nt31N

The double coset Nt31N denoted by [13]. To find the elements in [13], we

find the point stabiliser of 13, denoted as N13 . The point stabiliser is made up of the

permutations in N = L2(7) that fix 13 and permutes the rest of the t′is. Thus, we

have that |N13 | = 7. We also have that the set stabiliser is the same as the set point

stabiliser, N (13) = N13 . Hence |N (13)| = 7.

The orbits of N (13) are {1}, {12}, {13}, {14}, {15} ,{16}, {2, 32, 4, 52, 64, 72, 82},
{22, 34, 42, 54, 6, 74, 84}, {23, 36, 43, 56, 65, 76, 86}, {24, 3, 44, 5, 62, 7, 8}, {25, 33, 45, 53, 66,
73, 83}, and {26, 35, 46, 55, 63, 75, 85}. The number of single cosets in the double coset

[13] is obtained by the quotient |N |
|N(13)|

= 168
7 = 24.
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To obtain the elements in this double coset, we must first find the right cosets,

also known as transversals, of N (13) in N . Then, we conjugate Nt31, a representative

of the coset, with the transversals to obtain the 24 single cosets in [13]. Next, take a

representative from each orbit of N (13) and right multiply each with Nt31, to determine

if the elements will expand or collapse:

Nt31 · t1 = Nt31 t1 = Nt41 ∈ [1]

Nt31 · t21 = Nt31 t
2
1 = Nt51 ∈ [13]

Nt31 · t31 = Nt31 t
3
1 = Nt61 ∈ [13]

Nt31 · t41 = Nt31 t
4
1 = Nt71 = Ne ∈ [∗]

Nt31 · t51 = Nt31 t
5
1 = Nt1 ∈ [1]

Nt31 · t61 = Nt31 t
6
1 = Nt21 ∈ [1]

Nt31 · t2 = Nt31 t2 ∈ [1, 23]

Nt31 · t22 = Nt31 t
2
2 ∈ [1, 26]

Nt31 · t32 = Nt31 t
3
2 ∈ [1, 22]

Nt31 · t42 = Nt31 t
4
2 ∈ [13, 24]

Nt31 · t52 = Nt31 t
5
2 ∈ [1, 2]

Nt31 · t62 = Nt31 t
6
2 ∈ [1, 24]

Nt1t2N

The double coset Nt1 t2N denoted by [1, 2]. To find the elements in [1, 2], we

find the point stabiliser of {1, 2}, denoted as N12. The point stabiliser is made up of the

permutations inN = S48 that fix 1 and 2 and permutes the rest of the ti’s. Thus, we have

that |N12| = 3. We also have that the set stabiliser, N (12) has 3 elements.The number

of single cosets in the double coset [1, 2] is obtained by the quotient |N |
|N(1,2)| = 168

3 = 56.

The orbits ofN (12) are {1, 22, 34}, {12, 24, 3}, {13, 26, 35}, {14, 2, 32}, {15, 23, 36},
{16, 25, 33}, {4, 6, 84}, {42, 62, 8}, {43, 63, 85}, {44, 64, 82}, {45, 65, 86}, {46, 66, 83},
{5, 52, 54},{53, 55, 56},{7, 72, 74}, and {73, 75, 76}.

To obtain the elements in this double coset, we must first find the right cosets,

also known as transversals, of N (12) in N . Then we conjugate Nt1 t2 , a representative

of the coset, with the transversals to obtain the single cosets in [1, 2] which total to 56.

Next we take a representative from each orbit of N (12) and right multiply each with

Nt1 t2, to determine if the elements will expand or collapse:

Nt1 t2 · t1 = Nt1 t2 t1 ∈ [1, 23]

Nt1 t2 · t21 = Nt1 t2 t
2
1 ∈ [1, 25]

Nt1 t2 · t31 = Nt1 t2 t
3
1 ∈ [1]

Nt1 t2 · t41 = Nt1 t2 t
4
1 ∈ [1, 22]

Nt1 t2 · t51 = Nt1 t2 t
5
1 ∈ [1, 24]

Nt1 t2 · t61 = Nt1 t2 t
6
1 ∈ [1, 26]

Nt1 t2 · t4 = Nt1 t2 t4 ∈ [13]

Nt1 t2 · t24 = Nt1 t2 t
2
4 ∈ [1, 26]

Nt1 t2 · t34 = Nt1 t2 t
3
4 ∈ [13, 24]

Nt1 t2 · t44 = Nt1 t2 t
4
4 ∈ [1, 24]
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Nt1 t2 · t54 = Nt1 t2 t
5
4 ∈ [1, 23]

Nt1 t2 · t64 = Nt1 t2 t
6
4 ∈ [1, 22]

Nt1 t2 · t5 = Nt1 t2 t5 ∈ [1, 2]

Nt1 t2 · t35 = Nt1 t2 t
3
5 ∈ [1, 2]

Nt1 t2 · t7 = Nt1 t2 t7 ∈ [1, 2]

Nt1 t2 · t37 = Nt1 t2 t
3
7 ∈ [1, 2]

Nt1t22N

The double coset Nt1 t
2
2N denoted by [1, 22]. To find the elements in [1, 22],

we find the point stabiliser of {1, 22}, denoted as N122 . The point stabiliser is made up

of the permutations in N = L2(7) that fix 1 and 22 and permutes with the remaining

ti’s. Thus, we have that |N122 | = 4. We also have that the set stabiliser is N (122) also

contains 4 elements. The number of single cosets in the double coset [1, 22] is obtained

by the quotient |N |
|N(1,22)|

= 168
4 = 42.

The orbits of N (122) are {1, 4, 74, 82}, {12, 42, 7, 84}, {13, 43, 75, 86},
{14, 44, 72, 8}, {15, 45, 76, 83} ,{16, 46, 73, 85}, {2, 3, 52, 62}, {22, 32, 54, 64}, {23, 33, 56, 66},
{24, 34, 5, 6}, {25, 35, 53, 63}, and {26, 36, 55, 65}. Next we must take a representative

from each orbit of N (122) and conjugate each with Nt1t
2
2, a representative of the coset,

to determine if the elements will expand or collapse:

Nt1 t
2
2 · t1 = Nt1 t

2
2 t1 ∈ [1, 2]

Nt1 t
2
2 · t21 = Nt1 t

2
2 t

2
1 ∈ [13]

Nt1 t
2
2 · t31 = Nt1 t

2
2 t

3
1 ∈ [1, 26]

Nt1 t
2
2 · t41 = Nt1 t

2
2 t

4
1 ∈ [13, 24]

Nt1 t
2
2 · t51 = Nt1 t

2
2 t

5
1 ∈ [1, 24]

Nt1 t
2
2 · t61 = Nt1 t

2
2 t

6
1 ∈ [1, 23]

Nt1 t
2
2 · t2 = Nt1 t

2
2 t2 ∈ [1, 23]

Nt1 t
2
2 · t22 = Nt1 t

2
2 t

2
2 ∈ [1, 24]

Nt1 t
2
2 · t32 = Nt1 t

2
2 t

3
2 ∈ [1, 25]

Nt1 t
2
2 · t42 = Nt1 t

2
2 t

4
2 ∈ [1, 26]

Nt1 t
2
2 · t52 = Nt1 t

2
2 t

5
2 ∈ [1]

Nt1 t
2
2 · t62 = Nt1 t

2
2 t

6
2 ∈ [1, 2]

Nt1t32N

The double coset Nt1 t
3
2N denoted by [1, 23]. To find the elements in [1, 23], we

find the point stabiliser of {1, 23}, denoted as N123 . The point stabiliser is made up of

the permutations in N = L2(7) that fix 1 and 23 and permutes the rest of the ti’s. Thus,

we have that |N123 | = 4. We also have that the set stabiliser is N (123) =. The number

of single cosets in the double coset [1, 23] is obtained by the quotient |N |
|N(123)|

= 168
4 = 42.

The orbits of N (123) are {1, 64, 7, 8}, {12, 6, 72, 82}, {13, 65, 73, 83},
{14, 62, 74, 84}, {15, 66, 75, 85} ,{16, 63, 76, 86}, {2, 34, 4, 54}, {22, 3, 42, 5}, {23, 35, 43, 55},
{24, 32, 44, 52}, {25, 36, 45, 56}, and {26, 33, 46, 53}. Next, we take a representative from
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each orbit of N (123) and conjugate each with Nt1t
3
2, a representative of the coset, to

determine if the elements will expand or collapse:

Nt1 t
3
2 · t1 = Nt1 t

3
2 t1 ∈ [1, 2]

Nt1 t
3
2 · t21 = Nt1 t

3
2 t

2
1 ∈ [1, 26]

Nt1 t
3
2 · t31 = Nt1 t

3
2 t

3
1 ∈ [1, 24]

Nt1 t
3
2 · t41 = Nt1 t

3
2 t

4
1 ∈ [1, 22]

Nt1 t
3
2 · t51 = Nt1 t

3
2 t

5
1 ∈ [13]

Nt1 t
3
2 · t61 = Nt1 t

3
2 t

6
1 ∈ [13, 24]

Nt1 t
3
2 · t2 = Nt1 t

3
2 t2 ∈ [1, 24]

Nt1 t
3
2 · t22 = Nt1 t

3
2 t

2
2 ∈ [1, 25]

Nt1 t
3
2 · t32 = Nt1 t

3
2 t

3
2 ∈ [1, 26]

Nt1 t
3
2 · t42 = Nt1 t

3
2 t

4
2 ∈ [1]

Nt1 t
3
2 · t52 = Nt1 t

3
2 t

5
2 ∈ [1, 2]

Nt1 t
3
2 · t62 = Nt1 t

3
2 t

6
2 ∈ [1, 22]

Nt1t42N

The double coset Nt1 t
4
2N denoted by [1, 24]. To find the elements in [1, 24],

we find the point stabiliser of {1, 24}, denoted as N124 . The point stabiliser is made

up of the permutations in N = L2(7) that fix 1 and 24 and permutes the rest of the

ti’s. Thus, we have that |N124 | = 3. We also have that the order of the set stabiliser is

|N (124)| = 3. The number of single cosets in the double coset [1, 24] is obtained by the

quotient |N |
|N(124)|

= 168
3 = 56. The orbits of N (124) are {1, 44, 62}, {12, 4, 64}, {13, 45, 66},

{14, 42, 6}, {15, 46, 63}, {16, 43, 65}, {2, 5, 82}, {22, 52, 84}, {23, 53, 86}, {24, 54, 8},
{25, 55, 83}, {26, 56, 85}, {3, 32, 34}, {33, 35, 36}, {7, 72, 74}, and {73, 75, 76}. Next, we

take a representative from each orbit of N (124) and conjugate each with Nt1t
4
2, a repre-

sentative of the coset, to determine if the elements will expand or collapse:

Nt1 t
4
2 · t1 = Nt1 t

4
2 t1 ∈ [1, 23]

Nt1 t
4
2 · t21 = Nt1 t

4
2 t

2
1 ∈ [1, 22]

Nt1 t
4
2 · t31 = Nt1 t

4
2 t

3
1 ∈ [1, 2]

Nt1 t
4
2 · t41 = Nt1 t

4
2 t

4
1 ∈ [13]

Nt1 t
4
2 · t51 = Nt1 t

4
2 t

5
1 ∈ [1, 26]

Nt1 t
4
2 · t61 = Nt1 t

4
2 t

6
1 ∈ [13, 24]

Nt1 t
4
2 · t2 = Nt1 t

4
2 t2 ∈ [1, 25]

Nt1 t
4
2 · t22 = Nt1 t

4
2 t

2
2 ∈ [1, 26]

Nt1 t
4
2 · t32 = Nt1 t

4
2 t

3
2 ∈ [1]

Nt1 t
4
2 · t42 = Nt1 t

4
2 t

4
2 ∈ [1, 2]

Nt1 t
4
2 · t52 = Nt1 t

4
2 t

5
2 ∈ [1, 22]

Nt1 t
4
2 · t62 = Nt1 t

4
2 t

6
2 ∈ [1, 23]

Nt1 t
4
2 · t3 = Nt1 t

4
2 t3 ∈ [1, 24]

Nt1 t
4
2 · t33 = Nt1 t

4
2 t

3
3 ∈ [1, 24]

Nt1 t
4
2 · t7 = Nt1 t

4
2 t7 ∈ [1, 24]

Nt1 t
4
2 · t37 = Nt1 t

4
2 t

3
7 ∈ [1, 24]

Nt1t52N

The double coset Nt1 t
5
2N denoted by [1, 25]. To find the elements in [1, 25], we

find the point stabiliser of {1, 25}, denoted as N125 . The point stabiliser is made up of
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the permutations in N = L2(7) that fix 1 and 25 and permutes the rest of the ti’s. Thus,

we have that |N125 | = 1. We also have that the set stabiliser is |N (125)| = 7. The number

of single cosets in the double coset [1, 25] is obtained by the quotient |N |
|N(125)|

= 168
7 =

24. The orbits of N (125) are {8}, {82}, {83}, {84}, {85} ,{86}, {1, 22, 3, 44, 52, 64, 74},
{12, 24, 32, 4, 54, 6, 7}, {13, 26, 33, 45, 56, 65, 75}, {14, 2, 34, 42, 5, 62, 72},
{15, 23, 35, 46, 53, 66, 76}, and {16, 25, 36, 43, 55, 63, 73}. Next, we take a representative

from each orbit of N (125) and conjugate each with Nt1t
5
2, to determine if the elements

will expand or collapse:

Nt1 t
5
2 · t1 = Nt1 t

4
2 t1 ∈ [1]

Nt1 t
5
2 · t21 = Nt1 t

4
2 t

2
1 ∈ [1, 22]

Nt1 t
5
2 · t31 = Nt1 t

4
2 t

3
1 ∈ [1, 24]

Nt1 t
5
2 · t41 = Nt1 t

4
2 t

4
1 ∈ [1, 26]

Nt1 t
5
2 · t51 = Nt1 t

4
2 t

5
1 ∈ [1, 2]

Nt1 t
5
2 · t61 = Nt1 t

4
2 t

6
1 ∈ [1, 23]

Nt1 t
5
2 · t8 = Nt1 t

4
2 t8 ∈ [13, 24]

Nt1 t
5
2 · t28 = Nt1 t

4
2 t

2
8 ∈ [1, 25]

Nt1 t
5
2 · t38 = Nt1 t

4
2 t

3
8 ∈ [1, 25]

Nt1 t
5
2 · t48 = Nt1 t

5
2 t

4
8 ∈ [1, 25, 84]

Nt1 t
5
2 · t58 = Nt1 t

4
2 t

5
8 ∈ [13, 24]

Nt1 t
5
2 · t68 = Nt1 t

4
2 t

6
8 ∈ [13, 24]

Nt1t62N

The double coset Nt1 t
6
2N denoted by [1, 26]. To find the elements in [1, 26], we

find the point stabiliser of {1, 26}, denoted as N126 . The point stabiliser is made up of

the permutations in N = L2(7) that fix 1 and 26 and permutes the remaining ti’s. Thus,

we have that |N126 | = 1. We also have that the set stabiliser is |N (126)| = 3. The number

of single cosets in the double coset [1, 26] is obtained by the quotient |N |
|N(126)|

= 168
3 =

56. The orbits of N (126) are {1, 12, 14}, {13, 15, 16}, {2, 3, 54}, {22, 32, 5}, {23, 33, 55}
,{24, 34, 52}, {25, 35, 56}, {26, 36, 53}, {4, 62, 74}, {42, 64, 7}, {43, 66, 75}, {44, 6, 72},
{45, 63, 76}, {46, 65, 73},{8, 82, 84} and {83, 85, 86}. Next, we take a representative from

each orbit of N (126) and conjugate each with Nt1t
6
2, to determine if the elements will

expand or collapse:

Nt1 t
6
2 · t1 = Nt1 t

6
2 t1 ∈ [1, 26]

Nt1 t
6
2 · t31 = Nt1 t

6
2 t

3
1 ∈ [1, 26]

Nt1 t
6
2 · t2 = Nt1 t

6
2 t2 ∈ [1]

Nt1 t
6
2 · t22 = Nt1 t

6
2 t

2
2 ∈ [1, 2]

Nt1 t
6
2 · t32 = Nt1 t

6
2 t

3
2 ∈ [1, 22]

Nt1 t
6
2 · t42 = Nt1 t

6
2 t

4
2 ∈ [1, 23]

Nt1 t
6
2 · t52 = Nt1 t

6
2 t

5
2 ∈ [1, 24]

Nt1 t
6
2 · t62 = Nt1 t

6
2 t

6
2 ∈ [1, 25]

Nt1 t
6
2 · t4 = Nt1 t

6
2 t4 ∈ [1, 24]

Nt1 t
6
2 · t24 = Nt1 t

6
2 t

2
4 ∈ [1, 22]
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Nt1 t
6
2 · t34 = Nt1 t

6
2 t

3
4 ∈ [13]

Nt1 t
6
2 · t44 = Nt1 t

6
2 t

4
4 ∈ [13, 24]

Nt1 t
6
2 · t54 = Nt1 t

6
2 t

5
4 ∈ [1, 23]

Nt1 t
6
2 · t64 = Nt1 t

6
2 t

6
4 ∈ [1, 2]

Nt1 t
6
2 · t8 = Nt1 t

6
2 t8 ∈ [1, 26]

Nt1 t
6
2 · t38 = Nt1 t

6
2 t

3
8 ∈ [1, 26]

Nt31t42N

The double coset Nt31 t
4
2N denoted by [13, 24]. To find the elements in [13, 24],

we find the point stabiliser of {13, 24}, denoted as N1324 . The point stabiliser is made

up of the permutations in N = L2(7) that fix 13 and 24 and permutes the remain-

ing ti’s. Thus, we have that |N1324 | = 1. We also have that the set stabiliser is

|N (1324)| = 7. The number of single cosets in the double coset [13, 24] is obtained by the

quotient |N |
|N(1324)|

= 168
7 = 24. The orbits of N (1324) are {4}, {42}, {43}, {44},{45},{46},

{1, 2, 32, 54, 62, 74, 8}, {12, 22, 34, 5, 64, 7, 82}, {13, 23, 36, 55, 66, 75, 83},
{14, 24, 3, 52, 6, 72, 84}, {15, 25, 33, 56, 63, 76, 85}, and {16, 26, 35, 53, 65, 73, 86}. Next, we

take a representative from each orbit of N (1324) and conjugate each with Nt31t
4
2, a rep-

resentative of the coset, to determine if the elements will expand or collapse:

Nt31 t
4
2 · t4 = Nt1 t

4
2 t4 ∈ [1, 25]

Nt31 t
4
2 · t24 = Nt1 t

4
2 t

2
4 ∈ [1, 25]

Nt31 t
4
2 · t34 = Nt1 t

4
2 t

3
4 ∈ [1, 25, 84]

Nt31 t
4
2 · t44 = Nt1 t

4
2 t

4
4 ∈ [13, 24]

Nt31 t
4
2 · t54 = Nt1 t

4
2 t

5
4 ∈ [13, 24]

Nt31 t
4
2 · t64 = Nt1 t

4
2 t

6
4 ∈ [1, 25]

Nt31 t
4
2 · t1 = Nt1 t

4
2 t1 ∈ [1, 2]

Nt31 t
4
2 · t21 = Nt1 t

4
2 t

2
1 ∈ [1, 24]

Nt31 t
4
2 · t31 = Nt1 t

4
2 t

3
1 ∈ [13]

Nt31 t
4
2 · t41 = Nt1 t

4
2 t

4
1 ∈ [1, 23]

Nt31 t
4
2 · t51 = Nt1 t

4
2 t

5
1 ∈ [1, 26]

Nt31 t
4
2 · t61 = Nt1 t

4
2 t

6
1 ∈ [1, 22]
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Nt1t52t48N

The double coset Nt1 t
5
2 t

4
8N denoted by [1, 25, 84]. To find the elements in

[1, 25, 84], we find the point stabiliser of {1, 25, 84}, denoted as N12584 . The point

stabiliser is made up of the permutations in N = L2(7) that fix 1,25, and 84 and

permutes with the remaining ti’s. Thus, we have that |N12584 | = 1. We also have

that the set stabiliser is |N (12584)| = 168. The number of single cosets in the dou-

ble coset [1, 25, 84] is obtained by the quotient |N |
|N(12584)|

= 168
168 = 1. The orbits of

N (12584) are {1, 12, 14, 2, 22, 24, 3, 32, 34, 4, 42, 44, 5, 52, 54, 6, 62, 64, 7, 72, 74, 8, 82, 84} and

{13, 15, 16, 23, 25, 26, 33, 35, 36, 43, 45, 46, 53, 55, 56, 63, 65, 66, 73, 75, 76, 83, 85, 86}. Next, we

take a representative from each orbit of N (12584) and conjugate each with Nt1t
5
2t

4
8, to

determine if the elements will expand or collapse:

Nt1 t
5
2 t

4
8 · t1 = Nt1 t

6
2 t

4
8 t1 ∈ [13, 24]

Nt1 t
5
2 t

4
8 · t31 = Nt1 t

6
2 t

4
8 t

3
1 ∈ [1, 25]

Hence, we summarize all of our work on the following Cayley graph:
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Figure 3.1: Cayley Graph of L2(49) over L2(7)
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Chapter 4

Composition Factors

4.1 Direct Products

We will be performing a composition series on a given group with the aid of

MAGMA, a computer software that aids with the work on group theory. The progenitors

that we investigated are:

< x, y, t|x15, y2, (x ∗ y)2, t2, (t, y) >∼= 2∗15 : D15,

where x ∼ (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) and y ∼ (1, 12)(2, 11)(3, 10)(4, 9)

(5, 8)(6, 7)(13, 15).

< x, y, t|x3, y3, (x ∗ y)4, (x, y)3, (x2 ∗ y)7, t7 >∼= L2(7),

where x ∼ (1, 7, 19)(2, 8, 20)(3, 9, 21)(4, 10, 22)(5, 11, 23)(6, 12, 24)(13, 25, 31)(14, 26, 32)

(15, 27, 33)(16, 28, 34)(17, 29, 35)(18, 30, 36)(37, 40, 38)(39, 41, 42)(43, 44, 46)(45, 48, 47)

and y ∼ (1, 13, 25)(2, 14, 26)(3, 15, 27)(4, 16, 28)(5, 17, 29)(6, 18, 30)(7, 10, 8)(9, 11, 12)

(19, 20, 22)(21, 24, 23)(31, 37, 43)(32, 38, 44)(33, 39, 45)(34, 40, 46)(35, 41, 47)(36, 42, 48).

< x, y, t|x3, y2, (xy)2, t2, (t, y) >∼= S3,

where x ∼ (1, 2, 3) and y ∼ (1, 2).
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We will begin with small simple groups and work our way up to more complex

groups. Let’s begin with the group presentation:

G < x, y, t >:= Group < x, y, t|x11, y2, (x ∗ y)2, t2, (t, y), (x ∗ y ∗ tx)3, (x2 ∗ y ∗ t ∗ tx)4 >

We have the composition factors of our group as well as its normal lattice.

Both are used as a map/guide to find the structure of the composition series of our

group:

G

| A(1, 23) = L(2, 23)

G1 *

| Cyclic(2)

1

Hence we begin to list the extensions from the composition factors: G1/1 ∼= C2

which implies that G1
∼= C2, where C2 is normal. Moving up the composition factors, we

have G/G1
∼= PSL2(23) which implies G ∼= G1 ?PSL2(23). Now, to solve the extension

problem we need to figure out whether we have a direct product, or a semi-direct

product.

We for a direct product first, that is, do we have G ∼= C2X PSL2(23) . Now,

looking at the two minimal normal subgroups of G, one of order 2 and the other of

order 6072, we can conlcude that we have C2X PSL2(23) with order 12144. Looking

at the subgroup lattice, note that NL[4] has order 12144 as well. We can verify that

C2X PSL2(23) is indeed isomorphic to NL[4]. The progenitor for our group is:

G :< A,B,C,D|A2, B23, C11, D2, BC ∗B−2, (C ∗D)2, (B ∗D)3, (A,B), (A,C), (A,D) >

4.1.1 Example

By applying a similar process, the following can be shown:

1. Given:

G < x, y, t >:= Group < x, y, t|x15, y2, (x ∗ y)2, t2, (t, y), (xy
2 ∗ ty)3, (x2 ∗ y ∗ ttx)2 >
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we can show that is isomorphic to the progenitor:

G :< A,B,C|A2, B2, C3, (B ∗ C)5 >

and is of the form: G ∼= (C2X Alt(5)).

4.2 Semi-Direct Products

Our approach will begin the same way as we did on Section 4. Consider the

following group presentation:

G < x, y, t > : = Group < x, y, t|x15, y2, (x ∗ y)2, t2, (t, y), (xy
2 ∗ ty)5, (xy∗t ∗ tx2)3,

(yt ∗ ty∗x)8 > .

We have the composition factors of our group as well as its normal lattice.

Both are used as a map/guide to find the structure of the composition series of our

group:

G

| Cyclic(2)

G1 *

| Alternating(6)

1

Hence we begin to list the extensions from the composition factors: G1/1 ∼=
A(6) which implies that G1

∼= A(6), and A(6) is normal. Moving up the composition

factors, we have G/G1
∼= C2 which implies that G ∼= G1 ?C2, hence G ∼= A(6) ?C2. To

solve the extension problem we will check for a direct product first, that is, do we have

G ∼= A(6)X C2. Looking at the minimal normal subgroup of G of order 360 we check

the order of the group A(6) and see that it is also 360. Looking at the subgroup lattice,

note that NL[2] has order 360 as well. So far this is our progenitor for G1:

G1 :< A,B|A2, B4, (A ∗B)5, (A ∗B2)5 >
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Back to our extension problem, in order to check if we have G ∼= A(6)X C2

we look at the normal lattice. Since we are at NL[2], moving up the normal lattice,

we can only move to NL[3], since NL[2] is the only maximal subgroup contained in

NL[3]. Note that NL[3] is isomorphic to G. Since the order of NL[3] is twice the

order of NL[2] we look at the normal lattice of G to find a normal subgroup of order

2. Since there’s no such normal subgroup then we know that we don’t have a direct

extension. Now we need to check if we have a semi-direct product. To do so, we will

find an element C, in NL[3] but not in NL[2] of order 2. Hence, we have a semi-direct

extension: G ∼= A(6) : C2. Since we are extending our group by the element C, once

we determine how C affects A and B we can complete our progenitor:

G : < A,B,C|A2, B4, (A ∗B)5, (A ∗B2)5, C2, AC = A ∗B−1 ∗A ∗B ∗A,

BC = A ∗B−1 ∗A ∗B−1 ∗A ∗B ∗A >

Our progenitor is of order 720 and is isomorphic to our group G.

4.2.1 Example

By applying a similar process, the following can be shown:

1. Given:

G < x, y, t >:= Group < x, y, t|x11, y2, (x∗y)2, t2, (t, y), (x2 ∗y ∗ t∗ tx)4, (x∗ tx)3 >

we can show that is isomorphic to the progenitor:

G : < A,B,C|A2 = B3 = (A ∗B)11 = (A,B ∗A ∗B ∗A ∗B)2 = 1, C2,

AC = A ∗B ∗A ∗B−1 ∗A ∗B−1 ∗A ∗B−1 ∗A ∗B−1 ∗A ∗B ∗A ∗B−1∗

A ∗B−1, BC = A ∗B−1 ∗A ∗B ∗A ∗B ∗A ∗B−1 ∗A ∗B−1 ∗A ∗B−1 >

and is of the form: G ∼= (PSL(2, 11) : C2).

2. Given:

G < x, y, t > : = Group < x, y, t|x3, y3, (x ∗ y)4, (x, y)3, (x2 ∗ y)7, t7,

tx∗y
−1∗x−1

= t2, (t, y−1 ∗ x−1 ∗ y−1), (yx ∗ t ∗ ty∗x)2 >
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we can show that is isomorphic to the progenitor:

G : < A,B,C,D,E|A7, B7, C7, (A,B), (A,C), (B,C), D2 = E3 = (D ∗ E)7 =

(D,E)4 = 1, AD = B2 ∗A−2 ∗ C−3, AE = C3 ∗A−2 ∗B−3,

BD = B ∗A−1 ∗ C−3, BE = A3 ∗ C ∗B−1, CD = A−2 ∗B−3,

CE = A ∗ C3 ∗B−1 >

and is of the form: G ∼= (73 : PSL(2, 7)).

3. Given:

G < x, y, t > : = Group < x, y, t|x15, y2, (x ∗ y)2, t2, (t, y), (xy
2 ∗ ty)4,

(xy∗t ∗ tx2)2, (x2 ∗ y ∗ ttx)2 >

we can show that is isomorphic to the progenitor:

G : < A,B,C,D,E|A2, B2, C2, (A,B), (A,C), (B,C), D3, AD = A ∗ C,

BD = B ∗ C,CD = B,E2, AE = A ∗ C,BE = B ∗ C,CE = C,

DE = D−1 ∗B >

and is of the form: G ∼= ((23 : C3) : C2).

4. Given:

G < x, y, t > : = Group < x, y, t|x15, y2, (x ∗ y)2, t2, (t, y), (xy
2 ∗ ty)4,

(xy∗t ∗ tx2)2, (x2 ∗ y ∗ ttx)5 >

we can show that is isomorphic to the progenitor:

G : < A,B,C,D,E, F,K,L|A5, B5, C5, D5, (A,B), (A,C), (A,D), (B,C),

(B,D), (C,D), E2, AE = A ∗B2 ∗D2, BE = B−1, CE = C ∗B−2,

DE = D−1, F 2, AF = E ∗A ∗ C2 ∗ E,BF = B,CF = B2 ∗ C−1, DF = D−1,

EF = E,K3, AK = E ∗A ∗ E,BK = C ∗B−1, CK = C ∗B−1 ∗D−1,

DK = B−1, EK = C2 ∗ E ∗ F, FK = B2 ∗ E ∗D,L2, AL = E ∗A−1 ∗ E,

BL = D,CL = B ∗D ∗ C−1, DL = B,EL = D ∗ E ∗B,FL = E ∗ C ∗ F,

KL = A ∗K ∗A−1 ∗K >

and is of the form: G ∼= ((((54 : C2) : C2) : C3) : C2).
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4.3 Semi-Direct and Direct Products

Given the following presentation:

G < x, y, t >:= Group < x, y, t|x3, y2, (x ∗ y)2, t2, (t, y), (y ∗ t ∗ tx2)2 >

Listing the composition factors for which the group is composed of:

G

| Cyclic(2)

G1 *

| Cyclic(2)

G2 *

| Cyclic(3)

G3 *

| Cyclic(3)

1

The extensions from the composition factors: G3/1 ∼= C3 imply that G3
∼= C3,

and C3 is normal. Moving up the composition factors, we have G2/G3
∼= C3 which

implies that G2/C3
∼= C3, hence G2

∼= C3 ?C3. To solve the extension problem we will

check for a direct product first, that is, do we have G2
∼= C3X C3 . Now, we begin by

looking at the two minimal normal subgroups of G, each of order 3. Hence we have

C3X C3 of order 9. Looking at the subgroup lattice, note that NL[6] has order 9 as

well. Note that C3X C3 is Abelian and is isomorphic to NL[6]. Therefore we have

G2
∼= C3X C3 and G2

∼= NL[6]. The progenitor so far is:

G2 :< A,B|A3, B3, (A,B) >

Continuing up the ladder of the composition factors, we have G1/G2
∼= C2

which implies that G1/C3X C3
∼= C2 , so G1

∼= (C3X C3) ?C2. Now, to solve the

extension problem let’s check for a direct product first. Now, in reference to the normal

lattice, we are located at NL[6], to continue moving up the lattice we can either move

to NL[7] or NL[9] since NL[6] is contained in both NL[7] and NL[9]. Say we choose

to go up to NL[9], since the order of NL[9] is twice the order of NL[6], we need to find
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a normal subgroup within NL[9] of order 2. In order to look at the normal subgroups

within NL[9] we can generate the normal lattice of NL[9].

Since there’s no normal subgroup of order 2, then G1 is not a direct product .

So, we check for a semi-direct product. To do so, we find an element, C, in NL[9] but

not in NL[6] of order 2. C = (1, 2)(3, 6)(4, 5) is the required element. Hence, we have a

semi-direct extension: G1
∼= (C3X C3) : C2. Since we are extending our group by the

element C, we will determine how C affects A and B to elaborate on our progenitor:

G1 :< A,B,C|A3, B3, (A,B), C2, AC = A2 ∗B2, BC = A3 ∗B >

The above progenitor is of order 18 and is isomorphic to NL[9]. Continuing

with the composition factors we are now at G/G1
∼= C2 which implies G/((C3X C3) :

C2) ∼= C2. Our last extension problem is G ∼= ((C3X C3) : C2) ?C2. To solve it, we

will repeat the process as we’ve been doing so far. Notice that on the normal lattice

of G we are in NL[9] , from here the only place left to move up is to get to NL[10]

which represents our entire group, G. To be able to get there we need to find a normal

subgroup of order 2 in NL[10]. Since NL[10] = G then we refer back to the normal

lattice belonging to G. Since there’s no normal subgroup of order 2, then we don’t have

a direct product. So, we check for a semi-direct product. We need an element, D of

order 2 in NL[10] but not in NL[9]. The required element D is found and we conclude

that G ∼= ((C3X C3) : C2) : C2 . We then check how D affects A, B, and C to be able

to complete our progenitor. Hence the progenitor has order 36 and is isomorphic to G:

G : < A,B,C,D|A3, B3, (A,B), C2, AC = A2 ∗B2, BC = A3 ∗B,D2,

AD = A ∗B ∗ C2, BD = B2 ∗ C2, CD = C >

4.3.1 Examples

By applying a similar process, the following can be shown:

1. Given:

G < x, y, t >:= Group < x, y, t|x15, y2, (x ∗ y)2, t2, (t, y), (x2 ∗ y ∗ ttx) >

we can show that is isomorphic to the progenitor:

G : < A,B,C|A2, B2, (A,B), C3, AC = A ∗B,BC = A,D2, AD = A ∗B,

BD = B,CD = C−1 ∗A >
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and is of the form: G ∼= (((C2X C2) : C3) : C2).

2. Given:

G < x, y, t >:= Group < x, y, t|x3, y2, (x ∗ y)2, t2, (t, y), (y ∗ t ∗ tx2)2 >

we can show that is isomorphic to the progenitor:

G : < A,B,C,D|A3, B3, (A,B), C2, AC = A2 ∗B2, BC = A3 ∗B,D2,

AD = A ∗B ∗ C2, BD = B2 ∗ C2, CD = C >

and is of the form: G ∼= (((C3X C3) : C2) : C2).

3. Given:

G < x, y, t >:= Group < x, y, t|x11, y2, (x ∗ y)2, t2, (t, y), (x2 ∗ y ∗ t ∗ tx)2 >

we can show that is isomorphic to the progenitor:

G : < A,B,C|A11, B11, (A,B), C2, AC = A10 ∗B2, BC = B,D2, AD = A ∗B 9∗

C2, BD = A11 ∗B10 ∗ C2, CD = C >

and is of the form: G ∼= ((C11X C11) : C2) : C2.

4. Given:

G < x, y, t > : = Group < x, y, t|x15, y2, (x ∗ y)2, t2, (t, y), (xy
2 ∗ ty)4,

(xy∗t ∗ tx2)2, (x2 ∗ y ∗ ttx)5 >

we can show that is isomorphic to the progenitor:

G : < A,B,C,D,E, F,K,L|A5, B5, C5, D5, (A,B), (A,C), (A,D), (B,C),

(B,D), (C,D), E2, AE = A ∗B2 ∗D2, BE = B−1, CE = C ∗B−2,

DE = D−1, F 2, AF = E ∗A ∗ C2 ∗ E,BF = B,CF = B2 ∗ C−1, DF = D−1,

EF = E,K3, AK = E ∗A ∗ E,BK = C ∗B−1, CK = C ∗B−1 ∗D−1,

DK = B−1, EK = C2 ∗ E ∗ F, FK = B2 ∗ E ∗D,L2, AL = E ∗A−1 ∗ E,

BL = D,CL = B ∗D ∗ C−1, DL = B,EL = D ∗ E ∗B,FL = E ∗ C ∗ F,

KL = A ∗K ∗A−1 ∗K >

and is of the form: G ∼= ((((54 : C2) : C2) : C3) : C2).
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5. Given:

G < x, y, t > : = Group < x, y, t|x15, y2, (x ∗ y)2, t2, (t, y), (xy
2 ∗ ty)4,

(yt ∗ ty∗x)3 >

we can show that is isomorphic to the progenitor:

G : < A,B,C,D,E, F, J |A5, B5, C5, (A,B), (A,C), (B,C), D2, AD = A−1,

BD = B ∗A−2, CD = B2 ∗A−2 ∗ C−1, E2, AE = A,BE = A2 ∗B−1,

CE = A2 ∗ C−1, DE = B ∗ C−1 ∗D,F 3, AF = A ∗B−1, BF = A ∗ C ∗B−2,

CF = C ∗B−2, DF = B ∗D ∗ E ∗ C2, EF = A2 ∗D,J2, AJ = B ∗A−1,

BJ = B,CJ = B2 ∗ C−1, DJ = F ∗D ∗ F−1, EJ = B ∗ F−1 ∗D ∗ F ∗ E,

F J = F−1 >

and is of the form: ((((53 : C2) : C2) : C3) : C2).

6. Given:

Group=< x, y, t|x15, y2, (x ∗ y)2, t2, (t, y), (xy
2 ∗ ty)4, (yt ∗ ty∗x)6, (x2 ∗ y ∗ ttx)2 >

we can show that is isomorphic to the progenitor:

G : < A,B,C,D,E, F, J,K|A5, B5, C5, (A,B), (A,C), (B,C), D2, AD = A−1,

BD = B−1, CD = C−1, E2, AE = C−1, BE = C2 ∗A−2 ∗B−1, CE = A−1,

DE = B ∗ C2 ∗D ∗A,F 2, AF = A ∗ E ∗B ∗ E,BF = B−1, CF = C ∗B−1,

DF = D ∗ E ∗B ∗ E,EF = B ∗ E ∗B−1, J3, AJ = B ∗ C−1, BJ = A−1 ∗ C−1,

CJ = A−1, DJ = D ∗A ∗ C,EJ = C ∗ F ∗ E ∗B,F J = E ∗B2 ∗ C,K2,

AK = C ∗B−1, BK = A−1 ∗ C−1, CK = C−1, DK = A ∗B ∗ C ∗D,

EK = J ∗ E ∗ J−1, FK = B ∗ E ∗B−1, JK = J−1 >

and is of the form: ((((C5X C5X C5) : C2) : C2) : C3) : C2).
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4.4 Central Extensions

The following examples are of a different type of extensions. The approach

is very similar as we’ve done so far, but now we’ll be dealing with central extensions,

direct, and semi-direct products. We will begin with a small group and work our way

up to a more complex group. Say we begin with the group presentation:

G < x, y, t >:= Group < x, y, t|x11, y2, (x ∗ y)2, t2, (t, y), (x ∗ y ∗ tx)3, (x2 ∗ y ∗ t ∗ tx)4 >

Listing the normal lattice and the composition factors:

G

| A(1, 7) = L(2, 7)

G1 *

| A(1, 7) = L(2, 7)

G2 *

| Cyclic(2)

1

We begin to list the extensions from the composition factors: G2/1 ∼= C2 which

implies that G2
∼= C2, and C2 is normal. Moving up the composition factors, we have

G1/G2
∼= PSL27 which implies that G1

∼= G2 ?PSL27, hence G1
∼= C2 ?PSL27. To

solve the extension problem we check for a direct product first, that is, do we have

G1
∼= C2X PSL27. Now, looking at the minimal normal subgroup of G of order 2 we

can’t conlcude that we have C2X PSL223. Looking at the subgroup lattice, note that

NL[2] has order 2 just like C2 has order 2. We refer to the normal lattice instead. Our

choices are NL[3] and NL[4] since NL[2] is the only maximal subgroup contained in

each. Say we choose to move up to NL[3]. We need to look within NL[3] for a normal

subgroup of order 168, since the order of NL[3] is 168 times the order of NL[2]. Looking

within the normal lattice of NL[3] we’ll notice that there’s no subgroup of order 168.

Hence, we can now conclude that G1 is not a direct product.
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So, we now have to check if we have a semi-direct product. To do so, we will

have to find an element, we’ll call it B, in NL[3] but not in NL[2] of order 168. So, we

are unable to find the required element B. Hence, we don’t have a semi-direct product.

Now, we know that we don’t have a direct or a semi-direct product. So, our

next step is to check if we have a central extension. That is, does our group have a

center and if it does we will attempt to factor our group G by the central element.

The center of G is a permutation group of order 2. Now, our task is to find

which element in our lattice is the center of G. Since, the order of NL[2] the center

of G is indeed NL[2]. Now, we can factor G by its center. Doing so will generate a

smaller group that we’ll work with. Q, will be our new group for which we will apply

the composition series approach as we’ve done so far.

So far this is how G looks like, where “•” indicates that we’ve factored by the

center:

G ∼= 2•Q

Now, working with Q we will list the composition factors and the normal lattice

of Q.

Q

| A(1, 7) = L(2, 7)

Q1 *

| A(1, 7) = L(2, 7)

1

Listing the extensions from the composition factors: Q1/1 ∼= PSL27 which im-

plies that Q1
∼= PSL27, hence PSL27 is normal. Moving up the composition factors, we

have Q/Q1
∼= PSL27 which implies that Q ∼= Q1 ?PSL27, hence Q ∼= PSL27 ?PSL27.

Now, to solve the extension problem we check for a direct product first, that is, do we

have Q ∼= PSL27 ?PSL27. Looking at the two minimal normal subgroups of Q each of

order 168 we can conlcude that together they’ll have order (168)2 = 28224. Note that

nl[4] has order 28224 just like the order of the two minimal subgroups. Before we can
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conclude that we have a direct product. We check with MAGMA if nl[2] and nl[3] are

a direct product and isomorphic to nl[4]:

D:=DirectProduct(nl[2],nl[3]);

s:=IsIsomorphic(D,Q);

s;

> true

Also, since nl[4] ∼= Q, we know that Q is a direct product extension:

Q ∼= PSL27X PSL27. Now we can write the progenitor for Q:

Q :< A,B,C,D|A2 = B3 = (A∗B)8 = (A,B)4 = 1, C2 = D3 = (C∗D)8 = (C,D)4 = 1 >

Hence, our complete composition series for G is: G ∼= 2•(PSL27X PSL27).

4.4.1 Examples

By applying a similar process, the following can be shown:

1. Given:

Group =< x, y, t|x15, y2, (x ∗ y)2, t2, (t, y), (xy
2 ∗ ty)4, (xy∗t ∗ tx2)2 >

we will factor by the center and obtain a presentation for the group Q:

Q : < A,B,C,D,E, F, J,K|A5, B5, C5, D5, (A,B), (A,C), (A,D), (B,C), (B,D),

(C,D), E2, AE = A ∗ C2, BE = B ∗D,CE = C−1, DE = D−1, F 2,

AF = E ∗A ∗B2 ∗ E,BF = B−1 ∗D−1, CF = C−1 ∗D−1, DF = D,

EF = C2 ∗D ∗ E, J3, AJ = A ∗ C2, BJ = C−1, CJ = B ∗ C−1, DJ = C2 ∗D,

EJ = C ∗B−1 ∗ F, F J = C ∗ E ∗ F,K2, AK = A−1, BK = B−1 ∗ C−1 ∗D−1,

CK = C−1, DK = C2 ∗D,EK = C2 ∗ E,FK = C ∗ E ∗ F, JK = J−1 ∗ F >,

we can then conclude that our group is of the form 2•((((54 : C2) : C2) : C3) : C2).

We have investigated the progenitor 2∗15 : D15 along with relations added to it,

to be given as < x, y, t|x15, y2, (x ∗ y)2, t2, (t, y), (x ∗ y ∗ tx)a, (x ∗ y ∗ ty)b, (xt)c, (x ∗
yt)d, (xy

2∗ty)e, (xy∗t∗tx2)f , (yt∗ty∗x)g, (x2∗y∗ttx)h > where values for a, b, c, d, e, f,

g, h where found:
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Table 4.1: Homomorphic images of 2∗15 : D15

Parameters

a b c d e f g h Order of G Isomorphic class

0 0 0 0 3 0 0 2 360 2×A5

0 0 0 0 5 3 8 0 2160 A6 : 2

0 0 0 0 4 2 0 2 24 (23 : 3) : 2

0 0 0 0 4 2 0 5 15000 ((((54 : 2) : 2) : 3 :)2)

0 0 0 0 4 0 6 2 6000 ((((53 : 2) : 2) : 3 :)2)

0 0 0 0 0 0 0 1 24 ((22 : 3) : 2)

0 0 0 0 4 0 3 0 3000 (((((53 : 2) : 2) : 2) : 3 :)2)

0 0 0 0 4 2 0 0 30000 2•((((54 : 2) : 2) : 3 :)2)

0 0 0 0 0 3 5 0 7200 PGL(2, 59)

0 0 3 0 10 5 0 5 175560 J1

0 0 3 0 0 9 7 0 178920 PGL(2, 71)

0 0 3 0 7 0 0 5 12180 PGL(2, 29)
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Chapter 5

J1 as a Homomorphic Image of

2∗15 : D15

As mentioned in Chapter 4, the progenitor 2∗15 : D15 has the Janko group, namely

J1, as its homomorphic image. We will investigate our progenitor to verify if it is

a new presentation of J1 In Curtis [Cur07], J1 is given as a homomorphic image

of 2∗3 : S3 along with the relations: [(0, 1, 2)t0]
10, [(0, 1)t0]

19, and [(0, 1)t0t2]
7. We

expand these relations below:

[(0, 1, 2)t0]
10 = 1⇒ (0, 1, 2)10t0t2t1t0t2 = t0t1t2t0t1

[(0, 1, 2)t0]
10 = 1⇒ (0, 1)7t0t2t1t2t0t2t1 = t2t0t2t1t2t0t2

[(0, 1)t0]
19 = 1⇒ (0, 1)19t0t1t0t1t0t1t0t1t0t1t0 = t0t1t0t1t0t1t0t1t0t1

Now, expand one of our relations (xt)3 = x3t2t14 = 1 which implies that t2 ∼ t14.
Having made this discovery, we can obtain the remaining equivalent ti’s:

t1 ∼ t4 ∼ t7 ∼ t10 ∼ t13

t2 ∼ t5 ∼ t8 ∼ t11 ∼ t14

t3 ∼ t6 ∼ t9 ∼ t12 ∼ t15

Having found the above relations we are able to reduce our presentation of 2∗15 :

D15 as a presentation of 2∗3 : S3, and the progenitor now becomes

< x, y, t|x3, y2, (x ∗ y)2, t2, (t, y), (xy
2 ∗ ty)10, (xy∗t ∗ tx2)5, (x2 ∗ y ∗ ttx)5 >
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where x ∼ (1, 2, 0) and y ∼ (1, 2). We will now proceed to expand our remaining

relations (xy
2 ∗ ty)10,(xy∗t ∗ tx2)5, and (x2 ∗ y ∗ ttx)5:

(xy
2 ∗ ty)10 = 1⇒ (1, 2, 0)10t0t2t1t0t2 = t0t1t2t0t1

(xy∗t ∗ tx2)5 = 1⇒ (1, 0, 2)5t1t2t1t2t0t2t0t1 = t2t0t2t1t2t1t0

(x2 ∗ y ∗ ttx)5 = 1⇒ (1, 3)5t1t0t1t0t1t0t1t0 = t1t0t1t0t1t0t1

Comparing our findings to the expanded relations of Curtis, only one of our rela-

tions coincides. Because the other relations don’t match then we will input our

relations into the progenitor:

< x, y, t|x3, y2, (x ∗ y)2, t2, (t, y)

where x ∼ (1, 2, 0) and y ∼ (1, 2):

< x, y, t|x3, y2, (x ∗ y)2, t2, (t, y), (xt)10, (yxytx
2
ttx

2
)5, (x2ytxttx)5) > .

Once we ran it in MAGMA to verify the progenitor, it does give the homomorphic

image of J1. Hence, our relations from the progenitor 2∗15 : D15 imply Curtis’

relations.

The following code may be used to start a double coset enumeration:

S:=Sym(15);

xx:=S!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);

yy:=S!(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)(13, 15);

N:=sub<S|xx,yy>;

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^10,(x^(y*t)*t^(x^2))^5,(x^2*y*t^(t^x))^5>;

Index(G,sub<G|x,y>);

f,G1,k:=CosetAction(G,sub<G|x,y>);

IN:=sub<G1|f(x),f(y)>;

/* creating the t_i s */

ts:=[Id(G1):i in [1..15]];

ts[14]:=f(t);

ts[2]:=f(t^(x^3));

ts[3]:=f(t^(x^4));

ts[4]:=f(t^(x^5));

ts[5]:=f(t^(x^6));
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ts[6]:=f(t^(x^7));

ts[7]:=f(t^(x^8));

ts[8]:=f(t^(x^9));

ts[9]:=f(t^(x^10));

ts[10]:=f(t^(x^11));

ts[11]:=f(t^(x^12));

ts[12]:=f(t^(x^13));

ts[13]:=f(t^(x^14));

ts[1]:=f(t^(x^2));

cst:=[null:i in [1..29260]] where null is [Integers() | ];

prodim:=function(pt,Q,I)

v:=pt;

for i in I do

v:=v^(Q[i]);

end for; return v; end function;

Dbl:=DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

#Dbl;

/* Double coset [14] */

N14:=Stabiliser(N,14);

for g in N14 do g; end for;

S:={[14]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[14] eq g*(ts[(Rep(SSS[i]))[1]])

then print Rep(SSS[i]);

end if; end for; end for;

N14s:=N14;

for g in N do if [14]^g eq [3] then N14s:=sub<N|N14s,g>; end if;end for;

[14]^N14s;

/* List the elements that 14 is equal to */

T14:=Transversal(N,N14);

for i in [1..#T14] do

ss:=[14]^T14[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..29260] do if cst[i] ne [] then m:=m+1; end if; end for; m;

/* List the orbits and the # of single cosets in [14] */

Orbits(N14);

#N/#N14;



42

Chapter 6

Wreath Product of Z5 o S2

Let H and K be permutation groups on X and Y , respectively. Let

Z = X × Y define a permutation group on Z, called the wreath product of H by

K, H oK.

Consider the following:

X = {1, 2, 3, 4, 5}, Y = {6, 7}, H =< (1, 2, 3, 4, 5) >, and K =< (6, 7) >.

Let γ ∈ H and y be a fixed element of Y . Then, we define:

γ(y) =

(x, y) 7−→ ((x)γ, y)

(x, y) 7−→ (x, y1) if y1 6= y

As well as k∗ : (x, y) 7−→ (x, (y)k where k = {6, 7} and k ∈ K. Also,

Z = X × Y = {(1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (1, 7), (2, 7), (3, 7), (4, 7), (5, 7)}.
Now, we also need to find γ(6), γ(7), and γ(6, 7)∗ where γ = (1, 2, 3, 4, 5). The

process is summarized in the following table:



43

Table 6.1: γ Function

γ(6) γ(7) (6, 7)∗

(1, 6) 7−→ (2, 6) (1, 6) 7−→ (1, 6) (1, 6) 7−→ (1, 7)

(2, 6) 7−→ (3, 6) (2, 6) 7−→ (2, 6) (2, 6) 7−→ (2, 7)

(3, 6) 7−→ (4, 6) (3, 6) 7−→ (3, 6) (3, 6) 7−→ (3, 7)

(4, 6) 7−→ (5, 6) (4, 6) 7−→ (4, 6) (4, 6) 7−→ (4, 7)

(5, 6) 7−→ (1, 6) (5, 6) 7−→ (5, 6) (5, 6) 7−→ (5, 7)

(1, 7) 7−→ (1, 7) (1, 7) 7−→ (2, 7) (1, 7) 7−→ (1, 6)

(2, 7) 7−→ (2, 7) (2, 7) 7−→ (3, 7) (2, 7) 7−→ (2, 6)

(3, 7) 7−→ (3, 7) (3, 7) 7−→ (4, 7) (3, 7) 7−→ (3, 6)

(4, 7) 7−→ (4, 7) (4, 7) 7−→ (5, 7) (4, 7) 7−→ (4, 6)

(5, 7) 7−→ (5, 7) (5, 7) 7−→ (1, 7) (5, 7) 7−→ (5, 6)

Hence from the table above we have the relations:

γ(6) : (1, 2, 3, 4, 5) , γ(7) : (6, 7, 8, 9, 10), (6, 7)∗ : (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)

. Since γ(y) and k∗ are permutations of SZ , we have γ(6) × γ(7) : Sym(2). We

verify that our work is correct in MAGMA:

S:=Sym(10);

N:=sub<S|S!(1,2,3,4,5),S!(6,7,8,9,10),S!(1,6)(2,7)(3,8)(4,9)(5,10)>;

#N;

W:=WreathProduct(CyclicGroup(5),Sym(2));

#W;

s:=IsIsomorphic(N,W);

s;

Since the above prints true, we can now write the presentation for Z5 o S2:

G < x, y, z >:= Group < x, y, z|x5, y5, (x, y), z2, xz = y, yz = x >

From here we can expand the progenitor by adding new relations hoping to dis-

cover new groups. After running the code in MAGMA the following group is

obtained:
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G<x,y,z,t>:=Group<x,y,z,t|x^5,y^5,(x,y),z^2,x^z=y,y^z=x,t^2,(t,y),

(x^2*t^y*z)^6, (t*t^z*t^x*y)^3 >;

f1,G1,k1:=CosetAction(G,sub<G|x,y,z>);

CompositionFactors(G1);

G

| J2

*

| Cyclic(2)

1

6.1 J2 × C2 as a Homomorphic Image of Z5 o S2

The following code is used to begin the double coset enumeration of J2×C2.

At the time or writing, the construction is not complete.

S:=Sym(10);

xx:=S!(1,2,3,4,5);

yy:=S!(6,7,8,9,10);

zz:=S!(1,6)(2,7)(3,8)(4,9)(5,10);

N:=sub<S|x,y,z>;

#N;

G<x,y,z,t>:=Group<x,y,z,t|x^5,y^5,(x,y),z^2,x^z=y,y^z=x,t^2,(t,y),

(x^2*t^y*z)^6,(t*t^z*t^x*y)^3 >;

f,G1,k1:=CosetAction(G,sub<G|x,y,z>);

Index(G,sub<G|x,y,z>);

IN:=sub<G1|f(x),f(y),f(z)>;

/* Creating the t_i s */

ts:=[Id(G1) : i in [1..10]];

ts[1]:=f(t);

ts[2]:=f(t^x);

ts[3]:=f(t^(x^2));

ts[4]:=f(t^(x^3));

ts[5]:=f(t^(x^4));

ts[6]:=f(t^z);

ts[7]:=f((t^x)^z);

ts[8]:=f(t^(x^2)^z);

ts[9]:= f(t^(x^3)^z);

ts[10]:=f(t^(x^4)^z);

cst:=[null:i in [1..24192]] where null is [Integers() | ];

prodim:=function(pt,Q,I)

v:=pt;

for i in I do
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v:=v^(Q[i]);

end for;

return v;

end function;
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Appendix A: Construction of

25 : A5

S:=Sym(5);

xx:=S!(5,1,2,3,4);

yy:=S!(4,2,1);

N:=sub<S|xx,yy>;

#N;

G<x,y,t>:=Group<x,y,t|x^5,y^3,(x*y)^2,t^2,(t,y),(t,x^2*y*x^1),

(t*t^x)^2>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

IN:=sub<G1|f(x),f(y)>;

ts:=[Id(G1): i in [1..5]];

for i in [1..5] do ts[i]:=f(t^(x^i)); end for;

prodim := function(pt, Q, I) v := pt;

for i in I do v := v^(Q[i]); end for; return v; end function;

cst := [null : i in [1 .. 90]] where null is [Integers() | ];

for i := 1 to 5 do

cst[prodim(1, ts, [i])] := [i]; end for;

m:=0;

for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if; end for; m;

\\\\\\\\\\\\\\\ [5] \\\\\\\\\\\\\\\

N5:=Stabiliser(N,5);

Orbits(N5);

N51:=Stabilizer(N5,1); S:={[5,1]};

SS:=S^N;

\\\\\\\\\\\\\\\ [5 1] \\\\\\\\\\\\\\\

N51:=Stabilizer(N5,1);

S:={[5,1]};

SS:=S^N;

#N51;

Orbits(N51);
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tr51 := Transversal(N, N51);

for i := 1 to #tr51 do ss := [5, 1]^tr51[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..#cst] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

\\\\\\\\\\\\\\\ [5 1 2] \\\\\\\\\\\\\\\

N512:=Stabiliser(N51,2); S:={[5,1,2]};

SS:=S^N;

N512s:=N512;

for g in N do if [5,1,2]^g eq [1,5,2] then N512s:=sub<N|N512s,g>;

end if;end for;

[5,1,2]^N512s;

for g in N do if [5,1,2]^g eq [1,2,5] then N512s:=sub<N|N512s,g>;

end if;end for;

[5,1,2]^N512s;

for g in N do if [5,1,2]^g eq [2,1,5] then N512s:=sub<N|N512s,g>;

end if;end for;

[5,1,2]^N512s;

for g in N do if [5,1,2]^g eq [2,5,1] then N512s:=sub<N|N512s,g>;

end if;end for;

[5,1,2]^N512s;

for g in N do if [5,1,2]^g eq [5,2,1] then N512s:=sub<N|N512s,g>;

end if;end for;

[5,1,2]^N512s;

#N512s; #N/#N512s;

Orbits(N512s);

\\\\\\\\\\\\\\\ [5 1 2 3] \\\\\\\\\\\\\\\

N5123:=Stabiliser(N512,3);

S:={[5,1,2,3]};

SS:=S^N;

N5123s:=N5123; \

for g in N do if [5,1,2,3]^g eq [1,5,2,3] then

N5123s:=sub<N|N5123s,g>;

end if;end for;

[5,1,2,3]^N5123s;

#N5123s;

for g in N do if [5,1,2,3]^g eq [1,2,5,3]

then N5123s:=sub<N|N5123s,g>;

end if;end for; [5,1,2,3]^N5123s;

#N5123s;

for g in N do if [5,1,2,3]^g eq [2,3,5,1]

then N5123s:=sub<N|N5123s,g>;

end if;end for; [5,1,2,3]^N5123s;
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#N5123s;

#N/#N5123s;

Orbits(N5123s);

\\\\\\\\\\\\\\\ [5 1 2 3 4] \\\\\\\\\\\\\\\

N51234:=Stabiliser(N5123,4);

S:={[5,1,2,3,4]};

SS:=S^N;

N51234s:=N51234;

for g in N do if [5,1,2,3,4]^g eq [1,5,2,3,4] then

N51234s:=sub<N|N51234s,g>;

end if;end for;

[5,1,2,3,4]^N51234s;

#N51234s;

for g in N do if [5,1,2,3,4]^g eq [1,2,5,3,4] then

N51234s:=sub<N|N51234s,g>;

end if;end for;

[5,1,2,3,4]^N51234s;

#N51234s;

for g in N do if [5,1,2,3,4]^g eq [5,2,1,3,4] then

N51234s:=sub<N|N51234s,g>; end if;end for;

[5,1,2,3,4]^N51234s;

#N51234s;

for g in N do if [5,1,2,3,4]^g eq [5,2,1,4,3] then

N51234s:=sub<N|N51234s,g>; end if;end for;

[5,1,2,3,4]^N51234s;

#N51234s;

for g in N do if [5,1,2,3,4]^g eq [5,2,3,1,4] then

N51234s:=sub<N|N51234s,g>; end if;end for;

[5,1,2,3,4]^N51234s;

#N51234s;

#N/#N51234s;
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Appendix B: Construction of

7∗8 :m L2(7)

SS:=Sym(48);

xx:=SS!(1,7,19)(2,8,20)(3,9,21)(4,10,22)(5,11,23)(6,12,24)

(13,25,31)(14,26,32)(15,27,33)(16,28,34)(17,29,35)(18,30,36)

(37,40,38)(39,41,42)(43,44,46)(45,48,47);

yy:=SS!(1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)

(7,10,8)(9,11,12)(19,20,22)(21,24,23)(31,37,43)(32,38,44)(33,39,45)

(34,40,46)(35,41,47)(36,42,48);

N:=sub<SS|xx,yy>;

#N;

G<x,y,t>:=Group<x,y,t|x^3,y^3,(x*y)^4,(x,y)^3,(x^2*y)^7,t^7,

t^(x * y^-1 * x^-1 )=t^2,(t,y^-1 * x^-1 * y^-1),

(x^2 * y * t * t^x)^2>;

Index(G,sub<G|x,y>);

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

IN:=sub<G1|f(x),f(y)>;

#G;

/* gives the sequences of the double cosets */

DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

prodim := function(pt, Q, I)

v := pt;

for i in I do v:=v^(Q[i]);

end for; return v; end function;

/* Defining the t_i’s */

ts:=[Id(G1): i in [1..48] ];

ts[1]:=f(t);ts[2]:=(ts[1])^2;ts[3]:=(ts[1])^3;ts[4]:=(ts[1])^4;
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ts[5]:=(ts[1])^5;ts[6]:=(ts[1])^6;ts[7]:=f(t^x);ts[8]:=(ts[7])^2;

ts[9]:=(ts[7])^3;ts[10]:=(ts[7])^4;ts[11]:=(ts[7])^5;

ts[12]:=(ts[7])^6;ts[13]:=f(t^y);ts[14]:=(ts[13])^2;

ts[15]:=(ts[13])^3;ts[16]:=(ts[13])^4;

ts[17]:=(ts[13])^5;ts[18]:=(ts[13])^6;ts[19]:=f(t^(x^2));

ts[20]:=(ts[19])^2;ts[21]:=(ts[19])^3;ts[22]:=(ts[19])^4;

ts[23]:=(ts[19])^5;ts[24]:=(ts[19])^6;ts[25]:=f(t^(y^2));

ts[26]:=(ts[25])^2;ts[27]:=(ts[25])^3;ts[28]:=(ts[25])^4;

ts[29]:=(ts[25])^5;ts[30]:=(ts[25])^6;ts[31]:=f(t^(y*x^-1));

ts[32]:=(ts[31])^2;ts[33]:=(ts[31])^3;ts[34]:=(ts[31])^4;

ts[35]:=(ts[31])^5;ts[36]:=(ts[31])^6;ts[37]:=f(t^(y*x^(-1)*y));

ts[38]:=(ts[37])^2;ts[39]:=(ts[37])^3;ts[40]:=(ts[37])^4;

ts[41]:=(ts[37])^5;ts[42]:=(ts[37])^6;ts[43]:=f(t^(y*x^(-1)*y^-1));

ts[44]:=(ts[43])^2;ts[45]:=(ts[43])^3;ts[46]:=(ts[43])^4;

ts[47]:=(ts[43])^5;ts[48]:=(ts[43])^6;

Orbits(N);

cst:= [null : i in [1 .. Index(G,sub<G|x,y>)]] where null is

[Integers() | ]; for i in {1, 2, 4, 7, 8, 10, 13, 14, 16, 19, 20,

22, 25, 26, 28, 31, 32, 34, 37,38, 40, 43, 44, 46 }

do cst[prodim(1,ts,[i])]:=[i]; end for; m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for;

m;

for i in {3, 5, 6, 9, 11, 12, 15, 17, 18, 21, 23, 24, 27, 29, 30,

33, 35, 36, 39, 41, 42, 45, 47, 48 }

do cst[prodim(1,ts,[i])]:=[i]; end for; m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1; end if; end for;

m;

/* Double coset [1] */

N1:=Stabiliser(N,1);

for g in N1 do g;end for;

SSS:={[1]};

SSS:=SSS^N;

N1s:=N1;

SSS:=Setseq(SSS);

for i in [1..#SSS] do

for g in IN do if ts[1] eq g*(ts[(Rep(SSS[i]))[1]])

then print Rep(SSS[i]);

end if; end for; end for;

T1:=Transversal(N,N1);

for i in [1..#T1] do

ss:=[1]^T1[i];
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cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

T1;

Orbits(N1);

#N/#N1s;

/* Double coset [3] */

N3:=Stabiliser(N,3);

for g in N3 do g;end for;

SSS:={[3]};

SSS:=SSS^N;

N3s:=N3;

SSS:=Setseq(SSS);

for i in [1..#SSS] do

for g in IN do if ts[3] eq g*(ts[(Rep(SSS[i]))[1]])

then print Rep(SSS[i]);

end if;

end for; end for;

T3:=Transversal(N,N3);

for i in [1..#T3] do

ss:=[3]^T3[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

T3;

Orbits(N3s);

#N/#N3s;

/* double coset [1,7] */

N17:=Stabiliser(N,[1,7]);

SSS:={[1,7]};

SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do
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for g in IN do if ts[1]*ts[7]

eq g*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if;end for;end for;

N17s:=N17;

for g in N do if 1^g eq 8 and 7^g eq 14 then N17s:=sub<N|N17s,g>;

end if; end for;

#N17s;

[1,7]^N17s;

T17:=Transversal(N,N17);

for i in [1..#T17] do

ss:=[1,7]^T17[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

#N17; Orbits(N17s);

#N/#N17s;

/* double coset [1,8] */

N18:=Stabiliser(N,[1,8]);

SSS:={[1,8]};

SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[8]

eq g*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if;end for;end for;

N18s:=N18;

for g in N do if 1^g eq 19 and 8^g eq 34 then N18s:=sub<N|N18s,g>;

end if; end for;

#N18s;

[1,8]^N18s;
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T18:=Transversal(N,N18);

for i in [1..#T18] do

ss:=[1,8]^T18[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

#N18; Orbits(N18s);

#N/#N18s;

/* double coset [1,9] */

N19:=Stabiliser(N,[1,9]);

SSS:={[1,9]};

SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[9]

eq g*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if;end for;end for;

N19s:=N19;

for g in N do if 1^g eq 37 and 9^g eq 17 then N19s:=sub<N|N19s,g>;

end if; end for;

#N19s;

[1,9]^N19s;

T19:=Transversal(N,N19);

for i in [1..#T19] do

ss:=[1,9]^T19[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

#N19s; Orbits(N19s);
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#N/#N19s;

/* double coset [1,10] */

N110:=Stabiliser(N,[1,10]);

SSS:={[1,10]};

SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[10]

eq g*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if;end for;end for;

N110s:=N110;

for g in N do if 1^g eq 22 and 10^g eq 43 then

N110s:=sub<N|N110s,g>;

end if; end for;

#N110s;

[1,10]^N110s;

T110:=Transversal(N,N110);

for i in [1..#T110] do

ss:=[1,10]^T110[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1; end if;

end for; m;

#N110s; Orbits(N110s);

#N/#N110s;

/* double coset [1,11] */

N111:=Stabiliser(N,[1,11]);

SSS:={[1,11]};

SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;
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for i in [1..#SSS] do

for g in IN do if ts[1]*ts[11]

eq g*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if;end for;end for;

N111s:=N111;

for g in N do if 1^g eq 8 and 11^g eq 29

then N111s:=sub<N|N111s,g>;

end if; end for;

#N111s;

[1,11]^N111s;

T111:=Transversal(N,N111);

for i in [1..#T111] do

ss:=[1,11]^T111[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

#N111s; Orbits(N111s);

#N/#N111s;

/* double coset [1,12] */

N112:=Stabiliser(N,[1,12]);

SSS:={[1,12]};

SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[12]

eq g*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if;end for;end for;

N112s:=N112;

for g in N do if 1^g eq 2 and 12^g eq 18

then N112s:=sub<N|N112s,g>;
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end if; end for;

#N112s;

[1,12]^N112s;

T112:=Transversal(N,N112);

for i in [1..#T112] do

ss:=[1,12]^T112[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

#N112s; Orbits(N112s);

#N/#N112s;

/* double coset [3,10] */

N310:=Stabiliser(N,[3,10]);

SSS:={[3,10]};

SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[3]*ts[10]

eq g*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if;end for;end for;

N310s:=N310;

for g in N do if 3^g eq 9 and 10^g eq 31

then N310s:=sub<N|N310s,g>;

end if; end for;

#N310s;

[3,10]^N310s;

T310:=Transversal(N,N310);

for i in [1..#T310] do

ss:=[3,10]^T310[i];

cst[prodim(1,ts,ss)]:=ss;

end for;
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m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

#N310s; Orbits(N310s);

#N/#N310s;

/* double coset [1,11,46] */

N11146:=Stabiliser(N,[1,11,46]);

SSS:={[1,11,46]};

SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[11]*ts[46]

eq g*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]

then print Rep(Seqq[i]);

end if;end for;end for;

N11146s:=N11146;

for g in N do if 1^g eq 37 and 11^g eq 27 and 46^g eq 13 then

N11146s:=sub<N|N11146s,g>;end if; end for;

for g in N do if 1^g eq 40 and 11^g eq 9 and 46^g eq 14 then

N11146s:=sub<N|N11146s,g>;end if; end for;

for g in N do if 1^g eq 4 and 11^g eq 9 and 46^g eq 25 then

N11146s:=sub<N|N11146s,g>;end if; end for;

#N11146s;

[1,11,46]^N11146s;

T11146:=Transversal(N,N11146);

for i in [1..#T11146] do

ss:=[1,11,46]^T11146[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0;

for i in [1..350] do if cst[i] ne [] then m:=m+1;

end if; end for; m;

#N11146s; Orbits(N11146s);

#N/#N11146s;
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Appendix C: Images of

2∗15 : D15

We have investigated the progenitor 2∗15 : D15 along with relations added to

it, to be given as < x, y, t|x15, y2, (x∗y)2, t2, (t, y), (x∗y∗tx)a, (x∗y∗ty)b, (xt)c, (x∗
yt)d, (xy

2∗ty)e, (xy∗t∗tx2)f , (yt∗ty∗x)g, (x2∗y∗ttx)h > where values for a, b, c, d, e, f,

g, h where found as well as their composition factors:

/* 0 0 3 0 10 5 0 5 29260 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y^2)*t^y)^10,(x^(y*t)*t^(x^2))^5,(x^2*y*t^(t^x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| J1

1

/* 0 0 3 0 8 8 0 5 322560 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^8,(x^(y*t)*t^(x^2))^8,(x^2*y*t^(t^x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)
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*

| A(2, 4) = L(3, 4)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 3 0 8 10 0 4 50000 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^8,(x^(y*t)*t^(x^2))^10,(x^2*y*t^(t^x))^4>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(5)

*

| Cyclic(5)

*

| Cyclic(5)

*

| Cyclic(5)

1

/* 0 0 5 0 0 4 5 10 262144 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^5,

(x^(y*t)*t^(x^2))^4, (y^t*t^(y*x))^5,(x^2*y*t^(t^x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)
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*

| Cyclic(5)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 3 0 0 3 0 0 480 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^(y*t)*t^(x^2))^3>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);
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G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Alternating(5)

*

| Cyclic(2)

/* 0 0 3 0 0 8 0 2 128*/

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^8,(x^2*y*t^(t^x))^2>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 3 0 10 10 10 0 41600 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^10,(x^(y*t)*t^(x^2))^10, (y^t*t^(y*x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);
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G

| Cyclic(2)

*

| 2A(2, 4) = U(3, 4)

*

| Cyclic(2)

1

/*0 0 3 0 8 6 0 4 3888*/

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^8,(x^(y*t)*t^(x^2))^6,(x^2*y*t^(t^x))^4>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

/*0 0 5 0 0 8 4 6 12288*/

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^5,

(x^(y*t)*t^(x^2))^8, (y^t*t^(y*x))^4,(x^2*y*t^(t^x))^6>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G
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| Cyclic(2)

*

| Alternating(5)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 3 0 0 4 0 6 78336 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^4,(x^2*y*t^(t^x))^6>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| A(1, 17) = L(2, 17)

*

| Cyclic(2)
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*

| Cyclic(2)

1

/* 0 0 3 0 0 4 0 5 48720 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^4,(x^2*y*t^(t^x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| A(1, 29) = L(2, 29)

1

/* 0 0 3 0 0 9 7 0 29820 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^9, (y^t*t^(y*x))^7>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| A(1, 71) = L(2, 71)

1

/* 0 0 3 0 0 10 7 0 4060 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^10, (y^t*t^(y*x))^7>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 29) = L(2, 29)

1

/* 0 0 3 0 7 0 0 5 2030 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^7,(x^2*y*t^(t^x))^5>;
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f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| A(1, 29) = L(2, 29)

1

/* 0 0 3 0 8 5 0 0 4960 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^8,(x^(y*t)*t^(x^2))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 31) = L(2, 31)

1

/* 0 0 3 0 8 8 0 4 8192 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^8,(x^(y*t)*t^(x^2))^8,(x^2*y*t^(t^x))^4>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)
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*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 5 0 0 3 10 0 12960 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^5,

(x^(y*t)*t^(x^2))^3, (y^t*t^(y*x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Alternating(6)

*

| Alternating(5)

*

| Cyclic(3)

1

/* 0 0 5 0 9 9 4 5 35244 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^9,(x^(y*t)*t^(x^2))^9, (y^t*t^(y*x))^4,

(x^2*y*t^(t^x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| A(1, 89) = L(2, 89)

1

/* 0 0 5 0 0 8 4 6 12288 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^5,

(x^(y*t)*t^(x^2))^8, (y^t*t^(y*x))^4,(x^2*y*t^(t^x))^6>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Alternating(5)
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*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 3 0 10 6 0 4 15120 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^10,(x^(y*t)*t^(x^2))^6,(x^2*y*t^(t^x))^4>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Alternating(7)

*

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(3)

1

/* 0 0 3 0 9 10 10 0 1140 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^9,(x^(y*t)*t^(x^2))^10, (y^t*t^(y*x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);
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CompositionFactors(g1);

G

| A(1, 19) = L(2, 19)

*

| Cyclic(2)

1

/* 0 0 3 8 7 0 0 5 2030 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,(x*y^t)^8,

(x^(y^2)*t^y)^7,(x^2*y*t^(t^x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| A(1, 29) = L(2, 29)

1

/* 0 0 3 2 7 8 0 0 3584 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,(x*y^t)^2,

(x^(y^2)*t^y)^7,(x^(y*t)*t^(x^2))^8>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 7) = L(2, 7)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 3 0 9 0 10 0 3420 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^9,(y^t*t^(y*x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);
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G

| A(1, 19) = L(2, 19)

*

| Cyclic(2)

*

| Cyclic(3)

1

/* 0 0 3 0 9 4 0 0 816 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3

,(x^(y^2)*t^y)^9,(x^(y*t)*t^(x^2))^4>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 17) = L(2, 17)

1

/* 0 0 3 0 0 7 8 0 11480 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

x^(y*t)*t^(x^2))^7, (y^t*t^(y*x))^8>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 41)= L(2, 41)

1

/* 0 0 3 0 0 4 0 4 1024 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^4, (y^t*t^(y*x))^0,(x^2*y*t^(t^x))^4>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*
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| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 3 0 0 6 8 0 5376 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^6, (y^t*t^(y*x))^8>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| A(1, 7) = L(2, 7)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 3 0 0 4 10 10 440 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,
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(x^(y*t)*t^(x^2))^4, (y^t*t^(y*x))^10,(x^2*y*t^(t^x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 11) = L(2, 11)

*

| Cyclic(2)

1

/* 0 0 3 0 0 6 7 7 364 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^6, (y^t*t^(y*x))^7,(x^2*y*t^(t^x))^7>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| A(1, 13) = L(2, 13)

*

| Cyclic(2)

1

/* 0 0 3 0 6 0 0 8 288 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y^2)*t^y)^6,,(x^2*y*t^(t^x))^8>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(3)
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*

| Cyclic(2)

1

/* 0 0 3 0 0 5 0 3 570 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^5,(x^2*y*t^(t^x))^3>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| A(1, 19) = L(2, 19)

1

/* 0 0 3 0 8 0 10 0 720 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^8, (y^t*t^(y*x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Alternating(6)

*

| Cyclic(2)

*

| Cyclic(3)

1

/* 0 0 3 0 8 4 0 8 256 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y^2)*t^y)^8,(x^(y*t)*t^(x^2))^4,(x^2*y*t^(t^x))^8>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*
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| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 3 0 6 0 0 10 450 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^6,(x^2*y*t^(t^x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(5)

*

| Cyclic(5)

*

| Cyclic(3)

*

| Cyclic(3)

1

/* 0 0 3 0 6 0 0 6 162 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y^2)*t^y)^6,(x^2*y*t^(t^x))^6>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(3)

*
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| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

/* 0 0 3 0 0 5 10 0 220 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y*t)*t^(x^2))^5, (y^t*t^(y*x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 11)= L(2, 11)

1

/* 0 0 3 0 0 4 8 0 112 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^4, (y^t*t^(y*x))^8>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 7) = L(2, 7)

*

| Cyclic(2)

1

/* 0 0 3 0 0 7 7 0 84 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y*t)*t^(x^2))^7, (y^t*t^(y*x))^7>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| A(1, 8)= L(2, 8)

1

/* 0 0 3 0 8 2 0 8 16 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,
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(x^(y^2)*t^y)^8,(x^(y*t)*t^(x^2))^2,(x^2*y*t^(t^x))^8>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 3 0 6 0 10 0 50 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y^2)*t^y)^6,(y^t*t^(y*x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(5)

*

| Cyclic(5)

1

/* 0 0 3 0 0 6 5 0 20 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y*t)*t^(x^2))^6, (y^t*t^(y*x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Alternating(5)

*

| Cyclic(2)

1



76

/* 0 0 3 0 0 3 0 10 60 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^3,

(x^(y*t)*t^(x^2))^3,(x^2*y*t^(t^x))^10>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Alternating(5)

*

| Cyclic(2)

*

| Cyclic(3)

1

/* 0 0 3 0 0 3 0 5 10 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y*t)*t^(x^2))^3,(x^2*y*t^(t^x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Alternating(5)

1

/* 0 0 3 0 0 4 0 2 32 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y*t)*t^(x^2))^4,(x^2*y*t^(t^x))^2>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1
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/* 0 0 3 0 0 8 7 0 56 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y*t)*t^(x^2))^8, (y^t*t^(y*x))^7>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 7)= L(2, 7)

1

/* 0 0 3 0 6 0 0 2 18 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y^2)*t^y)^6,(x^2*y*t^(t^x))^2>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

/* 0 0 5 0 6 0 6 2 24 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^6, (y^t*t^(y*x))^6,(x^2*y*t^(t^x))^2>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Alternating(5)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 5 0 5 6 5 5 96 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^5,

(x^(y^2)*t^y)^5,(x^(y*t)*t^(x^2))^6, (y^t*t^(y*x))^5,
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(x^2*y*t^(t^x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Alternating(5)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 5 0 0 10 6 2 120 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y*t)*t^(x^2))^10, (y^t*t^(y*x))^6,(x^2*y*t^(t^x))^2>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Alternating(5)

*

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(2)

1

/* 0 0 5 0 6 0 5 3 132 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5

,(x^(y^2)*t^y)^6, (y^t*t^(y*x))^5,(x^2*y*t^(t^x))^3>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| A(1, 11) = L(2, 11)

*

| Cyclic(2)

1

/* 0 0 5 0 4 0 0 8 144 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y), (x^t)^5,

(x^(y^2)*t^y)^4,(x^2*y*t^(t^x))^8>;
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f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Alternating(6)

*

| Cyclic(2)

1

/* 0 0 5 0 5 6 0 5 192 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^5,(x^(y*t)*t^(x^2))^6,(x^2*y*t^(t^x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Alternating(5)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 5 2 0 3 10 8 216 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x*y^t)^2,(x^(y*t)*t^(x^2))^3,(y^t*t^(y*x))^10,(x^2*y*t^(t^x))^8>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Alternating(6)

*

| Cyclic(3)

1

/* 0 0 5 0 0 6 4 0 264 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,



80

(x^(y*t)*t^(x^2))^6, (y^t*t^(y*x))^4>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 11) = L(2, 11)

*

| Cyclic(2)

1

/* 0 0 5 0 0 5 5 0 342 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y*t)*t^(x^2))^5, (y^t*t^(y*x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| A(1, 19) = L(2, 19)

1

/* 0 0 5 0 5 9 0 5 486 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^5,(x^(y*t)*t^(x^2))^9,(x^2*y*t^(t^x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Alternating(5)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

/* 0 0 5 0 6 0 7 3 504 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^6, (y^t*t^(y*x))^7,(x^2*y*t^(t^x))^3>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

CompositionFactors(g1);

G
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| Cyclic(2)

*

| Alternating(7)

1

/* 0 0 5 0 8 4 5 0 512 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^8,(x^(y*t)*t^(x^2))^4, (y^t*t^(y*x))^5>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 5 0 5 0 6 6 660 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^5,(y^t*t^(y*x))^6,(x^2*y*t^(t^x))^6>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| A(1, 11) = L(2, 11)

*



82

| Cyclic(2)

*

| Cyclic(5)

1

/* 0 0 5 0 4 0 0 9 684 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^4,(x^2*y*t^(t^x))^9>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 19) = L(2, 19)

1

/* 0 0 3 0 10 4 0 0 1320 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^3,

(x^(y^2)*t^y)^10,(x^(y*t)*t^(x^2))^4>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 11) = L(2, 11)

*

| Cyclic(2)

*

| Cyclic(3)

1

/* 0 0 5 0 6 6 0 3 1512 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^6,(x^(y*t)*t^(x^2))^6,(x^2*y*t^(t^x))^3>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Alternating(7)

*

| Cyclic(3)

1
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/* 0 0 5 0 0 7 4 0 2436 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y*t)*t^(x^2))^7, (y^t*t^(y*x))^4>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 29)= L(2, 29)

1

/* 0 0 5 0 0 0 4 3 2976 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(y^t*t^(y*x))^4,(x^2*y*t^(t^x))^3>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

CompositionFactors(g1);

G

| A(1, 31) = L(2, 31)

*

| Cyclic(2)

1

/* 0 0 5 0 4 4 0 0 3840 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^4,(x^(y*t)*t^(x^2))^4>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Alternating(5)

*

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(2)

*

| Cyclic(2)

*
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| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

/* 0 0 5 0 5 3 0 0 4320 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^5,(x^(y*t)*t^(x^2))^3>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

CompositionFactors(g1);

G

| Cyclic(2)

*

| Alternating(6)

*

| Alternating(5)

1

/* 0 0 5 0 6 3 0 0 22692 */

G<x,y,t>:=Group<x,y,t|x^15,y^2,(x*y)^2,t^2,(t,y),(x^t)^5,

(x^(y^2)*t^y)^6,(x^(y*t)*t^(x^2))^3>;

f1,g1,k1:=CosetAction(G,sub<G|x,y>);

CompositionFactors(g1);

CompositionFactors(g1);

G

| Cyclic(2)

*

| A(1, 61) = L(2, 61)

1
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