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ABSTRACT 

 

User authentication and data access are becoming two of the most common areas for web attacks.  Most 
security vulnerabilities occur in areas of coding where Web security has lapsed. This paper describes the 
design and development of a Secure Authentication and Access Control System (SCAAS) implemented 
as a reusable library that provides data driven and encryption based authentication and access control for 
the use with ASP.NET applications.   
 

INTRODUCTION 

Web sites today face many threats to the confidentiality and integrity of the data used and the functionality provided 
by the application. This problem is compounded by the fact that Web developers are simply lack of either adequate 
knowledge and skills in writing secure Web application codes (Huang et al., 2005) or sufficient testing 
methodologies for the audit and control of Web development (Mansouir and Houri, 2006).  Works in the design and 
implementation of security measures for Web applications are greatly in need. 
 
User authentication and data access are becoming two of the most common areas for web attacks when procedures 
such as single sign-on and authentication delegation have become practically indispensable for e-business 
environment (Paulus, 2001).  These two types of on-line vulnerability can be counterattacked by securing user 
account database that opens the gate of the application and by encrypting SQL connection that leads to the data 
store. 
 
This paper describes the design and development of a Secure Authentication and Access Control System, herein 
referred to as SCAAS, implemented as a reusable library that provides data- driven and encryption-based 
authentication and access control for the use with ASP.NET applications.  SCAAS employs Microsoft SQL Server 
to persist the security definitions that the SCAAS run-time system utilizes.  The SCAAS database will be herein 
referred to as the SCAAS User Registry. The system also provides an ASP.NET based administration application 
that is used to maintain the data in the SCAAS User Registry.  
 

SCAAS COMPONENTS 
 
SCAAS consists of four major components. Their definition and functionalities are described as follows: 
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SCAAS Framework  
 
This is the core of the SCAAS run-time application and a .NET library written in C#.  Included in the namespace are 
four classes that make up the SCAAS Framework:  SCAASManager, SCAASManagerHelper, SCAASDataProtector, 
and SCAASException. These classes will be further discussed in Section 3. 
 
SCAAS User Registry  
 
This is a Microsoft SQL database named UserAccounts that provides the basis for the SCAAS User Registry.  The 
SCAAS Framework works closely with the UserAccounts database.  Any connectivity between the SCAAS 
framework and the UserAccounts database is done securely with .NET enabled encryption and decryption 
procedures.  The SCAAS User Registry can be updated through the SCAASAdmin ASP.net application included in 
the system. 
 
SCAAS Admin ASP.NET Application  
 
This is the ASP.NET application developed to update the SCAAS User Registry.  This application utilizes the 
FormsAuthentication mode of the SCAAS Framework.  Because of this, the application also serves as a good 
example of an implementation of the FormsAuthentication mode of the SCAAS framework.   
 
DPAPIClientWeb ASP.NET Application  
 
This is the utility application that is vital to get the SCAAS run-time to operate correctly.  This ASP.NET 
application is used to generate encrypted connection strings used by both the SCAAS run-time as well as client 
applications that wish to use the SCAAS secure database connection management SCAAS API. 
 

THE SCASS FRAMEWORK 
 
The SCAAS framework is the core component of the SCAAS system and is based on Microsoft’s Forms 
Authentication model for authentication and authorization of ASP.NET applications.  Microsoft’s Forms 
Authentication model is not a complete security solution but rather the bits and pieces required to be built upon.  A 
key component of the model is the System.Web.Security namespace included in the .NET framework.  This 
namespace includes several classes, enumerations, and delegates that can be used to develop secure ASP.NET 
applications (Curphey, 2003).  However, implementing this model requires a lot of customization in ASP.NET 
applications.  For example, when using the authentication aspects of the model, a Web developer must create a user 
defined User Registry.  Furthermore, if more than one application were to be using the same custom security 
implementation, it would be prudent to abstract that functionality to an independent library to gain the leverage of 
reusability.  This is exactly what the SCAAS Framework was built to achieve: a security model implemented in a 
reusable library.   
 
There are two operational modes that SCASS offers: the FormsAuthentication mode and the PassiveAuthentication 
mode. The FormsAuthentication mode accommodates the traditional need to secure all pages of an ASP.NET 
application.  It is the mode to be used in an “all or none” fashion, where only one page can be offered for everybody 
to view without being authenticated.  Typically, this would be the “Logon.aspx” page.  While this is certainly a 
secure scenario, it can sometimes be inefficient in building recurring Web applications.  In other words, some 
applications require that a particular page can be viewed in a “generalized” manner while running in a “specialized” 
manner once a user is authenticated.  Think of the “specialized” state as being one of an elevated privilege level 
depending on who is running the application and whether or not they have been authenticated.  For example, 
consider an application that displays product prices to a retail user.  If the user has logged on as a member of a 
certain role such as the “WholesaleUser” role, the page will display prices with a 20% discount.  The SCAAS 
Framework can accommodate this sort of requirement by using the PassiveAuthentication mode. This mode is to be 
used when the need arises to selectively elevate the privilege level for a web application user to offer a “specialized” 
view or functionality of the application.    
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The SCAAS Framework is housed in the SCAAS .NET namespace which contains four classes.  Figure 1 shows a 
conceptual model of the four classes with the SCAAS components and databases. The functionalities of these four 
classes are discussed as follows: 

 
SCAAS.SCAASManager  
 
This is the core class of the SCAAS Framework functionalities.  Most of the authentication, authorization, role 
setting, credential management, exception generation, database connection management, and other core functions 
are found in this class.  The two core methods in the SCAASManager for secure database connection management 
are GetSqlConnection for Microsoft SQL Server and GetOleDbConnection for other generic databases such as 
Oracle, Microsoft Access, and so on.  A Web developer can use this class for secure database connection by hiding 
plain text connection strings behind encryption.  The two methods work in concert with the encrypted strings 
generated by the DPAPIClientWeb ASP.NET application. 
 
SCAAS.SCAASHelper 
 
This is the developer’s helper class that groups functionalities of the SCAASManager class and simplifies the 
integration of the SCAAS Framework into an ASP.NET application.  The SCAASManagerHelper class has some 
key methods such as Logon, Logout, Authentication Processing, Error Handling, and SCAAS Application Initiation.  
Also, the class constructor is where the determination of whether the FormsAuthentication mode or 
PassiveAuthentication mode is implemented.  
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Figure 1:   SCAAS conceptual diagram. 

 
 

 SCAAS.SCAASException  

Many different exceptions can be generated in the SCAASManager class and subsequently handled by the 
SCAASManagerHelper class. SCAAS attempts to reframe as many exceptions as possible by initiating some variant 
of a SCAASException class.  The key to the SCAASException class is the internalized SCAASExceptionType 
enumeration and the declaration of private variable of this type.  When an exception is generated in the 
SCAASManager class, this enumeration is always set in the SCAASException class for error processing to occur at a 
higher level from the thrown exception.  Again, much of this is automatically handled by the SCAASManagerHelper 
class, but a developer working directly with the SCAASManager class will need to be aware of this custom 
exception generation mechanism. 
 
SCAAS.SCAASDataProtector 
 
This class is generally used for the secure database connection mechanism for SCAAS.  In particular, the 
DPAPIClientWeb ASP.NET application uses this class to generate encrypted connect strings for the web.config file, 
and the SCAASManager database connection methods also use this class to provide secure database connections by 
reading the same encrypted strings created with the DPAPIClientWeb ASP.NET application. This class leverages 
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the Windows DPAPI (Crypto32.dll) security framework and contains two primary methods: the CryptProtectData 
method and the CryptUnprotectData method for the data encryption and decryption procedures. 
 

IMPLEMENTING SCAAS FRAMEWORK 
 
Implementing the SCAAS framework requires the SCAAS User Registry, the SCAASAdmin ASP.NET application, 
and the DPAPIClientWeb ASP.NET application to be properly installed and configured.   
 
The SCAAS User Registry is implemented as a Microsoft SQL Server based database named UserAccounts.  Note 
that the SCAASAdmin ASP.NET application and the SCAAS User Registry don’t have to be installed on the same 
machine running the SCAAS compliant ASP.NET applications.  However, it is a must that the DPAPIClientWeb 
ASP.NET application should be on the same machine as the SCAAS compliant ASP.NET applications, because this 
is a system requirement of the underlying Microsoft DPAPI technology as the encryption/decryption algorithm 
using the DPAPI is machine specific.   
 
Installing the SCAAS User Registry first requires the UserAccounts.mdf and UserAccounts_log.mdf of the SCAAS 
system to be attached to the local machine running a Microsoft SQL Server.  Using the SQL Server Manager, a Web 
developer will create an instance level user named “SCAASAllPrivs,” add this user to the UserAccounts database, 
and create a Role to the UserAccounts database named “SCAASAllPrivs_Role”.  Once the role is available, the Web 
developer will grant the SCAASAllPrivs user to the SCAASAllPrivs_Role role and all privileges for the 
UserAccounts database to the SCAASAllPrivs_Role.   
 
The DPAPIClientWeb ASP.NET Application also needs to be installed on every machine running SCAAS 
compliant ASP.NET applications because of the requirements for DPAPI encryption/decryption procedures.  Folder 
that houses the application needs to be registered with the Internet Information Services server.   
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Figure 2: DPAPIClientWeb string encoder. 

 
 
 

Finally, the SCAASAdmin ASP.NET Application needs to be installed to maintain the SCAAS User Registry.  
There is one unique configuration step to this application and all SCAAS compliant applications to be developed 
using the SCASS system.  Because the SCAASAdmin ASP.net application is itself a SCAAS compliant application 
(using the FormsAuthentication mode), one encrypted string must be created for secure database connections by 
running the string encoder page of the DPAPIClientWeb ASP.NET application.  As shown in figure 2, after correct 
parameters for the SQL database name, SQL database server name, database user name (SCAASAllPrivs), and 
password are entered and an appropriate database type is chosen, the system produces an encrypted connection 
script that is unique for every machine. The string then needs to be saved for the web.config file of the 
SCAASAdmin application.  Here is an example of the <appSettings> section of the Web.config file for the 
SCAASAdmin application: 
 

<!—Custom settings for SCAASAdmin Application--> 
<appSettings> 
   <add key=”SHOW_ALL_ERRORS” value=”true”/> 
   <add key=”SCAAS_SESSION_TIMEOUT” value=”30”/> 
   <add key=”SCAASAllPrivs_UserAccounts” value=”AQAAANCMnd8fDerOW…”> 
</appSettings> 

 
Take notice of the key located in the <appSettings> section in the entry of <add 
key="SCAASAllPrivs_UserAccounts value=">.  What it dictates is that the value in the <appSettings> section of 
the entry <add key="SCAASAllPrivs_UserAccounts value="> is the encrypted connection string that the SCAAS 
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Framework uses to create a SQL Server connection for the SCAASAllPrivs user for the UserAccounts SqlServer 
database.  This is a key concept not only for the SCAASAdmin ASP.NET application but also for all applications that 
are using encrypted connection strings. 
 
Once the above three system components are installed and configured for the SCAAS framework, the Web 
developer needs to determine which mode the application is to be implemented between the FormsAuthentication 
mode and the PassiveAuthentication mode.  The key to using a particular mode lies in the SCAASManagerHelper 
constructor which is implemented in the Global.asax file as part of any ASP.NET application.  In fact, outside of the 
actual programming logic involved to secure the application, making the application SCAAS compliant is merely a 
matter of implementing the correct structure of the Global.asax file and the Web.config file and adding the 
application’s users/roles using the SCAASAdmin ASP.net application.   
 
For FormsAuthentication mode, the Global.asax with C# code file will look like this: 

 
Protected void Application_Start(Object sender, 
   EventArgs e) 
{ 
  // Initialize all SCAAS specific 
     HttpApplicationState level items  
  SCAASManagerHelper.ApplicationStartWrapper 
     (this.Context.Application); 
} 
Protected void Session_Start(Object sender, EventArgs e) 
{ 
  // Initialize all SCAAS specific 
     HttpApplicationState level items 
  SCAASManagerHelper.SessionStartWrapper  
  (this.Session); 
} 
Protected void AuthenticateRequest(Object sender, EventArgs e) 
{ 
  // Implement the FormAuthentication SCAAS 
     security mode 
  SCAASManagerHelper scassManagerHelper = New 
  SCAASManagerHelper(SCAASManagerHelper. 
  FormsOrPassive. FormsAuthentications); 
} 
 

The web.config section concerned with authentication and authorization will look like this: 
 

<!—Authentication Setting - FormsAuthentication--> 
<authentication mode=”Forms”> 
   <forms loginURL=”Logon.aspx” name= 
   ”SCAASAdminAuthCooki” Timeout=”30” path=”/” /> 
</authentication> 
<!—Authentication Setting - FormsAuthentication--> 
<authorization> 
   <deny user=”?” /> 
   <allow user=”*” /> 
</authorization> 
 

Note that the setting “Logon.aspx,” under FormsAuthentication mode, is the only page that will be able to be viewed 
by the users until a successful authentication is transacted.  In addition to handling logon sequences, this page will 
also host all the error handling, logout messaging, and other SCAASException driven events. 
 
Lastly, the web.config section concerned with application specific settings will look something like this:   
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<!—Custom settings for FormAuthentication--> 
<appSettings> 
   <add key=”SHOW_ALL_ERRORS” Value=”true” /> 
   <add key=”SCAAS_SESSION_TIMEOUT” value=”30” /> 
   <add key=”SCAASAllPrivs_UserAccounts” 
 value=”AQAAANCMnd8fDerOW…” /> 
   <add key=”MyAppAllPrivs_MyDatabase” value=”AQAAANCMnd8fDerOW…” /> 
</appSettings> 

 
Note that because the application is a SCAAS compliant application, it will always need the SCAASAllPrivs_User 
Accounts encrypted string. The SHOW_ALL_ERRORS settings will enable more detailed error reporting on 
exceptions.  The Web developer would want its value to be “true” for development but likely set it to “false” for a 
production implementation. 
 
For PassiveAuthentication mode, the Global.asax file with Visual Basic code will look like this: 
 

Sub Application_Start(ByVal sender As Object, e As EventArgs) 
   // Initialize all SCAAS specific 
      HttpApplicationState level items 
   SCAASManagerHelper.ApplicationStartWrapper 
   (Application) 
End Sub 
Sub Session_Start(ByVal sender As Object, e As EventArgs) 
   // Initialize all SCAAS specific 
      HttpApplicationState level items 
   SCAASManagerHelper.SessionStartWrapper(Session) 
End Sub 
Sub Application_AuthenticateRequest(ByVal sender As Object, e As EventArgs) 
   // Implement the FormAuthentication SCAAS 
      security mode 
   Dim scassManagerHelper As SCAASManagerHelper = 
      New SCAASManagerHelper(SCAASManagerHelper. 
      FormsOrPassive.FormsAuthentications) 
   scassManagerHelper.Application_ 
      AuthenticateWrapper(Context)  
End Sub 

 
The web.config section concerned with authentication and authorization will look like this: 

 
<!— Setting for PassiveAuthentication--> 
<authentication mode=”None”> 
<!— Setting for PassiveAuthentication--> 
<authorization> 
   <allow user=”*” /> <!—Allow all users --> 
</authorization> 

 
Obviously, the Global.asax and the section in the Web.config are significantly different from those for a 
FormsAuthentication application.  In short, any page can be viewed regardless of whether a user is authenticated or 
not in the PassiveAuthentication model. 

Finally, the web.config section concerned with application specific settings will look this: 

<!—Custom settings for PassiveAuthentication--> 
<appSettings> 
   <add key=”SHOW_ALL_ERRORS” value=”true” /> 
   <add key=”SCAAS_SESSION_TIMEOUT” value=”30” /> 
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   <add key=”SCAAS_ERROR_PAGE”  
        value=”ErrorPage.aspx” /> 
   <add key=”SCAASAllPrivs_UserAccounts” 
        value=”AQAAANCMnd8fDerOW…” /> 
   <add key=”OleDbUser_Application” 
  value=”AQAAANCMnd8fDerOW…” /> 
   <add key=”OleDbUser_UserAccouints” value=”AQAAANCMnd8fDerOW…” /> 
</appSettings> 
 

Like the FormsAuthentication example, the SHOW_ALL_ERRORS settings will enable more detailed error 
reporting on exceptions.  The value needs to be set to “true” for development but would likely to be set to “false” for 
a production implementation.  However, unlike the FormsAuthentication mode, the PassiveAuthentication mode can 
name any page needed for the error handling page.  This is because under PassiveAuthentication mode, the Web 
developer will not be bounded by only one page being free to view despite authentication. 
 
The final step in implementing the SCAAS framework is to add users/roles with the SCAASAdmin ASP.net 
Application.  Internal to the SCAASAdmin ASP.net application there are four roles: SCAASAdmin, RoleAdmin, 
UserAdmin, and PasswordAdmin.  Once logged on to the SCAASAdmin ASP.net application, the Web developer 
can add roles, delete roles, add users, delete users, grant roles to users, and revoke roles from users.  
 
For instance, assume the application to have two roles such as WholesaleUser and WholesaleAdmin.  Before the 
application is coded, the Web developer needs to thoroughly understand what these two roles mean in the context of 
the application usability and design.  The WholesaleUser role may mean that the user will get a certain type of 
discount on selected products or quantities.  It may also mean that the user will access pages other than those non-
authenticated users aren’t allowed to see.  The idea that non-authenticated users can see any part of the application 
implies that the application will be using the PassiveAuthentication mode of the SCAAS system.  In addition, the 
Web developer may want one page available for only users that have the WholesaleAdmin role.  This may be used 
for special users that are designated to alter prices on certain products and quantities for other logged on users that 
have the aforementioned WholesaleUser role. 
 
Because the SCAAS Framework is tightly integrated with Microsoft’s Forms Authentication model (not to be 
confused with the SCAAS FormsAuthentication mode), many of the inherited ASP.NET features are needed to work 
with the SCAAS Framework.  The key to making SCAAS Framework a security implementation is found with the 
ASP.NET’s intrinsic object called User.  The intrinsic User object is actually a member of the HttpContext class, 
and the ASP.NET intrinsic object Context is an instance of an HttpContext class that the ASP.NET Framework also 
automatically provides (hence the word “intrinsic”). Examples of the User object methods Include 
User.Identity.IsAuthenticated(), User.Identity.Name(), and User.IsInRole(). 
 
For example, if a user logged on and was granted the WholesaleUser role by the SCAASAdmin ASP.net 
application, then the User.IsInRole(“WholesaleUser”) would return true or false.  It can be easily seen how this can 
be used in the SCAAS compliant applications.  Another example is the utilization of the 
User.Identity.IsAuthenticated()method.  The application can completely control access to a particular page by just 
calling this method in the PageLoad() ASP.NET event handler.  If true, allow access.  If not, redirect to the error 
page with the proper SCAASException.  
As the users/roles have been added and the roles have been assigned to the users with the SCAASAdmin ASP.net 
application, Web developers can now use SCAAS to enhance the security of their Web applications through secured 
authentication and access control. 
 

CONCLUSIONS 
 
Recent computer programming languages have enabled more effective development of secure web applications.  For 
instance, Java technology allows one to construct applications by using a large set of APIs, tools, and 
implementations of commonly used security algorithms, mechanisms, and protocols.  Microsoft’s  recent .NET 
technology also provides a variety of security features commensurate with the breadth of the framework itself.  
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SCAAS presents a security implementation that leverages the .NET intrinsic libraries and makes the implementation 
a reusable component.  
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