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Abstract

This paper determines whether monoid rings with the two-generator property

have the strong two-generator property. Dedekind domains have both the two-generator

and strong two-generator properties. How common is this? Two cases are considered

here: the zero-dimensional case and the one-dimensional case for monoid rings. Each

case is looked at to determine if monoid rings that are not PIRs but are two-generated

have the strong two-generator property. Full results are given in the zero-dimensional

case, however only partial results have been found for the one-dimensional case.
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Chapter 1

Introduction

Dedekind Domains are important to commutative algebra, but came about in

algebraic number theory. Commonly, Dedekind domains are defined as integral domains

with the special property that every nonzero proper ideal factors into a product of prime

ideals. Another common definition of a Dedekind domain is an integrally closed Noethe-

rian domain where every nonzero prime ideal is a maximal ideal. However, other equiv-

alent definitions of Dedekind domains are given as Theorems 37.1 and 37.8 in [Gil72].

Since Dedekind domains are Noetherian, their ideals are finitely generated. In fact, there

is a bound on the number of generators an ideal can have. By Theorem 8.5.1 in [AW04],

the maximum number of generators is two. By studying the proof, one sees that the

method used is taking a nonzero element, say α ∈ I, where I is an ideal, and finding the

second generator, β, also in I. Thus I = 〈α, β〉. However, this is the very definition of

the strong two-generator property. If ∀ α 6= 0 ∈ I, ∃ β ∈ I 3 I = 〈α, β〉, then an ideal has

the strong two-generator property. Now, if every ideal in a ring has this property, then

the ring is said to have the strong two-generator property. Since this is true of every ideal

in Dedekind domains, then Dedekind domains are said to have the strong two-generator

property.

Much work has been done on domains with the strong two-generator property,

but not much has been done on rings with zero-divisors with the strong two-generator

property. We look at monoid rings to see which rings have the strong two-generator

property. Monoid rings are semigroups with the identity property. We consider three

sets: S1, S1.5, and S2, where S1 is the set of all monoid rings that have the one-generator
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property, or are principal ideal rings (PIR), S1.5 is the set of all monoid rings that are

strongly two-generated, and S2 is the set of all monoid rings that are two-generated. We

know S1 ⊆ S1.5 ⊆ S2. What we want to know is if there are any monoid rings that are

two-generated and not PIR’s, but are strongly two-generated. In symbols, are there any

monoid rings that are in both S2 \ S1 and S1.5.

It is known that rings with the two-generator property have Krull dimension at

most 1. In order to look at monoid rings with the strong two-generator property, one

needs to have a characterization of monoid rings with the two-generator property. These

characterizations can be found in [OV92] as Theorem 4.1, and in [ORV92] as Theorems

2.6, 2.7, and 3.1 for the zero-dimensional and one-dimensional cases. They are also stated

here as Theorem 3.1 in Chapter 3 and Theorem 4.9, 4.1, and 4.11 in Chapter 4, respec-

tively, for convenience.

Chapter 2 gives definitions and preliminary theorems that are needed in order

to understand the theorems and proofs used throughout. Chapter 3 gives the result that

there are no monoid rings that are in both S2 \ S1 and S1.5 for the zero-dimensional case.

This is stated in Theorem 3.9. Chapter 4 gives the result that for the monoid rings with

the two-generator property as described in Theorem 2.7 in [ORV92], the only ones with

the strong two-generator property are those that are also PIRs. This is summarized in

Theorem 4.8. For the monoid rings described in Theorems 2.6 and 3.1 in [ORV92], only

partial results are given, and they are given as Theorems 4.10 and 4.12. Lastly, Chapter

5 is a discussion of the remaining cases, what is known about them and the problems

they portray, and other problems left to be looked at.

All rings will be assumed to be commutative with identity, all groups will be

abelian, and all monoids are cancellative and abelian. Lastly, Q denotes the set of all ra-

tional numbers, Z denotes the set of all integers, and Z+ denotes the set of all nonnegative

integers.
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Chapter 2

Preliminaries

A few definitions are presented to understand the terms. Also, a few preliminary

theorems that are used throughout chapters 3 and 4 are stated here. The first definition

is the main focus of this paper.

Definition 2.1 (Monoid Ring). Let S be a monoid and R be a commutative ring with

identity. Then R[S] is a monoid ring. Elements of R[S] will be written as r1x
s1 + . . .+

rnx
sn, where r1, . . . , rn ∈ R and s1, . . . , sn ∈ S. If S is a group, then R[S] is a group

ring.

Monoid rings are similar to polynomial rings, where the coefficients come from

the ring R, and the exponents come from the monoid S. Consider the group ring Z[Z/5Z]

for example. An example of an element from this ring would be a = 3+2x−5x2+0x3+x4.

The coefficients, 3, 2, -5, 0, and 4 come from the set of integers, Z, and the exponents 0,

1, 2, 3, and 4 come from the group Z/5Z. Also, addition and multiplication of elements of

R[S] are performed just as one would for polynomials. For example, take a, b ∈ Z[Z/2Z],

where a = 3 + x and b = 4 − 3x. Then a + b = (3 + x) + (4 − 3x) = 7 − 2x, and

a · b = (3 + x)(4− 3x) = 12− 9x+ 4x− 3 = 9− 5x. In the example of a · b, the x2 term

becomes x0 since the exponents come from the group Z/2Z = {0, 1}.
The next definition is a basic term used throughout the chapters as well.

Definition 2.2 (Noetherian Ring). A ring R where every ascending chain of ideals ter-

minates is called a Noetherian ring.

Another equivalent definition seen often states that a ring R where every ideal
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is finitely generated is a Noetherian ring. A few well-known examples of Noetherian rings

include the monoid rings Z[X] and F [X,Y ], where F is a field.

The next two definitions are related to Noetherian rings in a unique way.

Definition 2.3 (Krull Dimension). The Krull dimension of a commutative ring R is

the maximum length of all chains of prime ideals in R.

For example, both Z and F [X], where F is a field, have Krull dimension 1,

meaning the maximum length of all chains of prime ideals in these rings is 1. For Z,

every prime number is a generator of a prime ideal. Thus, there are infinitely many

prime ideals, however the longest chain is one. So, look at 〈2〉. It is a prime ideal. 〈0〉,
which is also a prime ideal, sits below 〈2〉. Then, the length of this chain is 1. The same

is true of every nonzero prime ideal. The chain includes the nonzero prime ideal and 〈0〉.
So Z has Krull dimension 1. The same is true of K[X].

An example of a ring with Krull dimension 0 is Z/6Z. This ring has only two

prime ideals, 〈2〉 and 〈3〉. They have no other prime ideals in their chain, so they each

have length 0. In this case, the zero ideal is not prime, since 2 · 3 = 0.

An example of a ring with Krull dimension 2 is K[X,Y ], where K is a field.

An example of a chain of prime ideals of maximum length is 〈0〉 ⊂ 〈X〉 ⊂ 〈X,Y 〉. An

example of a ring with Krull dimension 3 is K[X,Y, Z] where K is a field. An example

of a chain of prime ideals of maximum length is 〈0〉 ⊂ 〈X〉 ⊂ 〈X,Y 〉 ⊂ 〈X,Y, Z〉. It is

now easy to see how to find examples of rings with arbitrarily large Krull dimension.

Another similar ring is called an Artinian ring. These rings deal with descending

chains of ideals, instead of ascending chains of ideals.

Definition 2.4 (Artinian Ring). A ring R where every descending chain of ideals termi-

nates is called an Artinian ring.

Z/6Z is an example of an Artinian ring as well as a Noetherian ring. Its two

prime ideals, 〈2〉 and 〈3〉, are also maximal ideals. A special property of Artinian rings is

that they are Noetherian rings with Krull dimension 0, as seen in this ring.

The next two definitions are special properties of some of the rings looked at in

Chapter 4.

Definition 2.5 (Nilpotent). An element r of a ring R is called nilpotent if there exists

some positive integer n such that rn = 0.
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Definition 2.6 (Nilradical). The nilradical N of a commutative ring R is the ideal that

consists of all nilpotent elements of R.

Next, we define principal ideal rings.

Definition 2.7 (PIR). A ring R is a principal ideal ring, (PIR), if every ideal is gener-

ated by a single element from the ideal.

An example of a PIR is the ring of integers, Z. Every nonzero ideal can be

generated by the smallest positive integer in the ideal. However, the polynomial ring

Z[X] is not a PIR because the ideal 〈 2, X〉 cannot be generated by just a single element.

Note that the polynomial ring Z[X] is the monoid ring Z[Z+]. Another example that is

a PIR is K[X], where K is a field. The ideals in this polynomial ring are generated by

the elements of least degree in that ideal. However, K[X,Y ], where K is a field, is not a

PIR, since the ideal 〈X,Y 〉 cannot be generated by just a single element.

The main reason we are looking at monoid rings and the strong two-generator

property is because of Dedekind domains. A few definitions were given in Chapter 1, but

a more formal definition is now given.

Definition 2.8 (Dedekind Domain). An integrally closed integral domain D that is

Noetherian, where each nonzero prime ideal of D is a maximal ideal, is called a

Dedekind domain.

Dedekind domains first came about in algebraic number theory, as mentioned

before. A Dedekind domain is a ring of integers from an algebriac number field. An

algebraic number field is a finite field extension of Q. A specific example of a Dedekind

domain can be found in [AW04] as Theorem 5.4.2. OK is a Dedekind domain where

K = Q(
√
m), for m a unique squarefree integer, and K is a quadratic extension of Q.

Elements of OK satisfy monic polynomials with coefficients from Z. Then OK is the ring

of integers of K, and OK = Z + Z
√
m, if m 6≡ 1(mod 4), and OK = Z + Z(1+

√
m

2 ) if

m ≡ 1(mod 4).

Some properties of Dedekind domains are included below.

Definition 2.9 (Two-Generated). An ideal I that is generated by two elements is called

a two-generated ideal. A ring R in which every ideal of R is two-generated is said to have

the two-generator property.
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All PIRs are two-generated rings. However, the converse is not true. An example

of a two-generated ring that is not a PIR is K[X2, Xn], where K is a field, and n is a

positive odd integer. This is not a PIR because it contains the ideal
〈
X2, Xn

〉
, which

cannot be generated by a single element. This ring is an example of a monoid ring R[S]

with the two-generator property where S = 〈2, n〉.

Definition 2.10 (Strongly Two-Generated). Let α 6= 0. α is a strong two-generator if

∀α where α ∈ I, ∃ β ∈ I 3 I = 〈 α, β 〉 . An ideal I is said to be strongly two-generated

if every nonzero element of I is a strong two-generator. A ring R in which every ideal of

R is strongly two-generated is said to have the strong two-generator property.

For more information on rings with the strong two-generator property, see

[LM88].

Dedekind domains have the two-generator and strong two-generator properties,

which is why we chose to study the strong two-generator property in greater depth.

The next definition is used in a few proofs in chapters 3 and 4.

Definition 2.11 (Augmentation Map and Ideal). If R is a commutative ring and S is a

monoid or semigroup, then the augmentation map is a ring homomorphism φ : R[S]→ R

defined by mapping φ(
∑
riX

si) =
∑
ri. The augmentation ideal I of a monoid ring R[G]

is the kernel of the augmentation map φ.

Thus, the augmentation ideal is everything that gets mapped to zero under the

augmentation map. Gilmer takes a look at R[X,S] and points out that the augmentation

ideal is generated by
{
rXa − rXb|r ∈ R and a, b ∈ S

}
. See page 75 of [Gil84].

Now, something worth mentioning is when S is a cancellative monoid, there

does exist a smallest group, up to an isomorphism, that contains it, which is called the

quotient group, and is denoted by G(S). It is constructed in the same manner as one

constructs Z from Z+. See page 6 of [Gil84] for further details.

The next lemma and theorems are needed for most of the proofs in Chapters 3

and 4. Their proofs are provided here, in order to shorten the lengths of the proofs in

chapters 3 and 4.

Lemma 2.12. If f : R→ S is a ring homomorphism and J is an ideal of S, then f−1(J)

is an ideal of R.
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Proof. First, f−1(J) ⊆ R. Now let r1, r2 ∈ f−1(J)⇒ f(r1) ∈ J and f(r2) ∈ J by defini-

tion. Then, f(r1)+f(r2) ∈ J since J is an ideal. So, f(r1 +r2) ∈ J by definition of a ring

homomorphism. This says r1 + r2 ∈ f−1(J). Next, let r ∈ R, r1 ∈ f−1(J). By definition,

f(r1) ∈ J . Look at f(r1r) = f(r1)f(r) ∈ J by definition of a ring homomorphism. This

says that r1r ∈ f−1(J). Thus, f−1(J) is an ideal in R.

The next two theorems show that an onto ring homomorphism preserves certain

properties. One shows that the one-generator property is preserved; in other words,

an onto ring homomorphism maps a PIR to a PIR. The other theorem shows that the

two-generator property is preserved. They are proven in similar fashions.

Theorem 2.13. Let f : R → S be an onto ring homomorphism. If R is a PIR, then S

is a PIR.

Proof. To show S is a PIR, start with J ⊆ S, where J is an ideal. Then f−1(J) is

also an ideal in R by Lemma 2.12. Since R is a PIR, then f−1(J) is principal. So, ∃
r ∈ R 3 〈r〉 = f−1(J). Now, we will show 〈f(r)〉 = J . We know f(r) ∈ J ⇒ 〈f(r)〉 ⊆ J .

Take s ∈ J . Then ∃ r1 ∈ R 3 f(r1) = s by definition of onto. This implies r1 ∈ f−1(J)⇒
r1 ∈ 〈r〉 ⇒ r1 = ar for some a ∈ R. Now s = f(r1) = f(ar) = f(a)f(r) ⇒ s ∈ 〈f(r)〉 ⇒
〈f(r)〉 = J ⇒ S is a PIR.

Theorem 2.14. Let f : R → S be an onto ring homomorphism. If R has the two-

generator property, then S has the two-generator property.

Proof. Let J ⊆ S, where J is an ideal. f−1(J) ⊆ R is an ideal in R. Since R has the two-

generator property, then ∃ c, d ∈ R 3 f−1(J) = 〈c, d〉. If j ∈ J , then ∃ r1 ∈ R 3 f(r1) = j

by definition of onto. This implies r1 ∈ f−1(J) ⇒ r1 = pc + qd for some p, q ∈ R. Now

j = f(r1) = f(pc + qd) = f(pc) + f(qd) = f(p)f(c) + f(q)f(d) ⇒ j ∈ 〈f(c, d)〉 ⇒
〈f(c, d)〉 = J ⇒ S has the two-generator property.

The next theorem shows that an onto ring homomorphism also preserves the

strong two-generator property, as seen below.

Theorem 2.15. Let f : R → S be an onto ring homomorphism. If R has the strong

two-generator property, then S has the strong two-generator property.
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Proof. Let J ⊆ S, where J is an ideal. Since f−1(J) is an ideal in R that has the

strong two-generator property, then ∀ a ∈ f−1(J), a 6= 0, ∃ b ∈ R 3 f−1(J) = 〈a, b〉.
Take an arbitrary s 6= 0 ∈ J . Then ∃ a 6= 0 ∈ f−1(J) 3 f(a) = s. Then ∃ b ∈
R 3 f−1(J) = 〈a, b〉 since R has the strong two-generator property. Since f is onto,

J = f(f−1(J)) = 〈f(a), f(b)〉 = 〈s, f(b)〉, which says that for an arbitrary nonzero s ∈ J ,

∃ t ∈ S (where f(b) = t) 3 J = 〈s, t〉. Hence, S has the strong two-generator property.

A special property of rings with the strong two-generator property is given in

the next theorem. This property is used to show rings are not strongly two-generated

if the ring R/ 〈a〉, ∀ a ∈ R, a 6= 0, is not a PIR. This result is important because it is

sometimes easier to show that ∃ a 6= 0 ∈ R 3 R/ 〈a〉 is not a PIR, than to show directly

that it is not strongly two-generated.

Theorem 2.16. R is strongly two-generated if and only if R/ 〈a〉 is a PIR ∀ a ∈ R, a 6= 0.

Proof. (⇒) Let a ∈ R, a 6= 0. We will show R/ 〈a〉 is a PIR. Let f : R → R/ 〈a〉
be the natural homomorphism (which is onto). Choose J ⊆ R/ 〈a〉, where J is an

ideal. f−1(J) ⊆ R is also an ideal. R is strongly two-generated, so ∃ b ∈ R such

that f−1(J) = 〈a, b〉. Claim: J = 〈f(b)〉. Clearly, 〈f(b)〉 ⊆ J . Take f(c) ∈ J . Then

c ∈ f−1(J) implies c = ap+ bq for some p, q ∈ R. Apply f to obtain f(c) = f(ap+ bq) =

f(ap) + f(bq) = f(a)f(p) + f(b)f(q). In this mapping, a maps to 0, so this becomes

f(c) = f(b)f(q) so that f(c) ∈ 〈f(b)〉. Thus, J = 〈f(b)〉, implying that R/ 〈a〉 is a PIR.

(⇐) Let I be a nonzero proper ideal of R and let a 6= 0 ∈ I. We will find b ∈ R such that

I = 〈a, b〉. Consider f(I). f(I) is an ideal in R/ 〈a〉 since f is onto. So ∃ b ∈ R/ 〈a〉 such

that f(I) =
〈
b
〉
. For this part of the proof, it makes more sense to use the bar notation

as opposed to the f -notation. Claim: I = 〈a, b〉. Clearly, a ∈ I (given) and b maps to

b ∈ f(I) so b ∈ I. Now take c 6= 0 ∈ I. Consider f(c) or c. c ∈ f(I) =
〈
b
〉
. So c = bt

for some t ∈ R/ 〈a〉. So c− bt = 0 ⇒ c − bt ∈ 〈a〉 ⇒ c − bt = as for some s ∈ R. Then

c = bt + as ⇒ c ∈ 〈a, b〉. Thus, I = 〈a, b〉. Therefore, R has the strong two-generator

property.

Now, we take a look at what happens in the zero-dimensional case and the one-

dimensional case. In the zero-dimensional case, we focus on Theorem 4.1 from [OV92].

In this Theorem, R = R1 ⊕ . . . ⊕ Rs. What we did to show that these cases that are

two-generated are not strongly two-generated, is we mapped R to a homomorphic image
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of R that is just one piece of R, say Ri, from the direct sum. Then, by Theorem 2.15,

if Ri[S] is not strongly two-generated, then R[S] cannot be strongly two-generated. To

make things simple, R is used in place of Ri.

For the one-dimensional case, we first focus on Theorem 2.7 from [ORV92].

Again, R is written as a product of Ri’s, and again, we look at a homomorphic image of

R that focuses on a single piece of R. It is also referred to as just R, and not Ri. The

same idea used for the zero-dimensional case is used here, where if Ri[G] is not strongly

two-generated, then R[G] cannot be strongly two-generated by Theorem 2.15. The same

method is used on the cancellative monoid S. In [ORV92], Theorem 2.7 gives S as a

direct sum. This time, we map R[S] by an onto homomorphism to R[Si], where Si is

one of the summands of S, and we look at R[Si] to help determine if R[S] has the strong

two-generator property or not. Finally, we also consider cases of Theorems 2.6 and 3.1 of

[ORV92]. In addition to the techniques mentioned above, we also use Theorem 2.16 from

this chapter.
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Chapter 3

Zero-Dimensional Case

As mentioned, the focus of this chapter will be on Theorem 4.1 from [OV92],

which is listed below as Theorem 3.1 for convenience.

Theorem 3.1. Let R be an artinian ring and G a finite abelian group. R[G] has the

two-generator property if and only if R = R1 ⊕ . . . ⊕ Rs where for each i, (Ri,Mi) is a

local artinian ring which has the two-generator property subject to:

(i) Assume (Ri,Mi) is a principal ideal ring (maybe a field), p a prime integer which

divides the order of G and p ∈Mi.

(a) If p is odd, then Gp is cyclic; furthermore, if M2
i 6= 0, then Gp

∼= Z/pZ and

pRi = Mi.

(b) If p = 2, then Gp
∼= Z/pjZ ⊕ Z/2kZ where

(1) j ≤ 1 if Mi = 0

(2) j = 0 and k = 1 if M2
i 6= 0

(3) j = 0 otherwise.

(ii) The order of G is a unit in any Ri which is not a principal ideal ring.

Now, each case must be looked at to determine whether these monoid rings are

strongly two-generated. First, a result that is heavily relied on in the following theorems

is Corollary 5.3 from [Nag75]. This corollary, when translated to ring theory, states that

an ideal I that has three generators, say I = 〈a, b, c〉, in a two-generated local ring must

be two-generated, and the two generators can be chosen from a, b, and c.
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Theorem 3.2. Let R be a local Artinian PIR where the maximal ideal of R contains p,

where p is an odd prime integer. Assume the square of the maximal ideal of R is zero.

Let G = Z/piZ. Then R[G] is a local ring with the two-generator property but not the

strong two-generator property.

Proof. We know R[G] is local by Corollary 19.2 in [Gil84], and has the two-generator

property by Theorem 3.1. Let M ⊆ R[G] be the maximal ideal of R[G]. Then M =

〈r, 1− xg〉, where rR is the maximal ideal of R, and 〈1− xg〉 is the maximal ideal of G.

Then M2 =
〈
r(1− xg), (1− xg)2

〉
. Take r − rxg ∈ M2 ⊆ M . If M is strongly two-

generated, then ∃ t ∈ R[G] 3 M = 〈r − rxg, t〉. By Corollary 5.3 of [Nag75], one of the

generators must be either r or 1− xg, so there are two cases.

Case 1: M = 〈r, r − rxg〉. We will show that this case fails. Since 1 − xg ∈ M, ∃ a0 +

a1x+ . . .+ anx
n, b0 + b1x+ . . .+ bmx

m ∈ R[G] with

1− xg = r(a0 + a1x+ . . .+ anx
n) + (r − rxg)(b0 + b1x+ . . .+ bmx

m).

Thus 1 = rc, where c is the sum of the constant terms when r is factored out. This

implies r is a unit in R, which is a contradiction. Thus, M 6= 〈r, r − rxg〉. Now, we will

show that Case 2 fails also.

Case 2: M = 〈1− xg, r − rxg〉. Since r ∈M,∃ f, h ∈ R[G] with

r = (1− xg)f + (r − rxg)h

= (1− xg)f + (r(1− xg))h

= (1− xg)(f + rh).

Now apply the Augmentation Map and observe that r = 0(a), where a ∈ R. Hence,

we get a contradiction. Thus, M 6= 〈1− xg, r − rxg〉. Therefore, M is not strongly

two-generated, meaning R[G] is not strongly two-generated.

Since R[G] is local, it has a unique maximal ideal M . Then, since we know

M is two-generated and we have the two generators, we needed to determine if M was

strongly two-generated. We squared M , and took an element in M2 not in M to try as

a generator. If M was strongly two-generated, then the generators of M would be one of

the original generators of M together with the new element chosen from M2. Both of the

original generators of M were tried as generators with the new element from M2. Since
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neither one worked, then M is not strongly two-generated. Now, this same method will

be used to yield the same result in Theorem 3.3.

Theorem 3.2 takes care of the first part of part (i)(a) of Theorem 3.1. Next, we

take a look at the second part of part (i)(a) of Theorem 3.1: the case where the square

of the maximal ideal is nonzero.

Theorem 3.3. Let p be an odd prime. Assume R is a local Artinian PIR with maximal

ideal pR where p2 6= 0. Let G = Z/pZ. Then R[G] is a local ring with the two-generator

property but not the strong two-generator property.

Proof. We know R[G] is local by Corollary 19.2 in [Gil84], and has the two-generator

property by Theorem 3.1. Let M ⊆ R[G] be the maximal ideal of R[G]. Then M =

〈p, 1− x〉, where 〈1− x〉 is the maximal ideal of G. Take p − px ∈ M2 ⊆ M . If M is

strongly two-generated, then ∃ t ∈ R[G] 3 M = 〈p− px, t〉. By Corollay 5.3 of [Nag75],

one of the generators must be either p or 1− x, so there are two cases.

Case 1: M = 〈p, p− px〉. We will show that this cannot be. Since 1−x ∈M,∃ a0 +a1x+

. . .+ anx
n, b0 + b1x+ . . .+ bmx

m ∈ R[G] with

1− x = p(a0 + a1x+ . . .+ anx
n) + (p− px)(b0 + b1x+ . . .+ bmx

m).

Thus, 1 = pc, where c is the sum of all the constant terms when p is factored out. This

implies p is a unit in R, which is a contradiction. Thus, M 6= 〈p, p− px〉. Now, we will

show that Case 2 fails also.

Case 2: M = 〈1− x, p− px〉. Since p ∈M, ∃ f, g ∈ R[G] with

p = (1− x)f + (p− px)g

= (1− x)f + (p(1− x))g

= (1− x)(f + pg).

Now, apply the Augmentation Map and observe that p = 0(a), where a ∈ R. Hence,

we get a contradiction. Thus M 6= 〈1− x, p− px〉. Therefore, M is not strongly two-

generated, meaning R[G] is not strongly two-generated.

Now we take a look at the case where R is a field. This is part (i)(b)(1) of

Theorem 3.1.
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Theorem 3.4. Let F be a field of characteristic 2 and G = Z/2Z ⊕ Z/2kZ. Then F [G]

is a local group ring with the two-generator property but not the strong two-generator

property.

Proof. First, look at F [Z/2Z][Z/2kZ], where F is local. Then, by Corollary 19.2 in

[Gil84], F [Z/2Z] is also local. Since F [Z/2Z] is local, then again by Corollary 19.2,

F [Z/2Z][Z/2kZ] is local [Gil84]. Well, F [Z/2Z][Z/2kZ] = F [Z/2Z ⊕ Z/2kZ] = F [G].

Hence, F [G] is local. Also, F [G] has the two-generator property by Theorem 3.1. Now, we

know the maximal ideal of F [G] is M =
〈
1− x(1,0), 1− x(0,1)

〉
. We will show M cannot be

strongly two-generated, therefore showing F [Z/2Z⊕Z/2kZ] is not strongly two-generated.

Now consider M2 =
〈
1− x(1,0) − x(0,1) + x(1,1), 1 + x(0,2)

〉
. Take 1−x(1,0)−x(0,1)+x(1,1) ∈

M2 ⊆M . By Corollary 5.3 of [Nag75], 1− x(1,0) − x(0,1) + x(1,1) is one of the generators

of M if M is strongly two-generated. Then the other generator must be either 1− x(0,1)

or 1− x(1,0). So we consider both cases.

Case 1: M =
〈
1− x(0,1), 1− x(1,0) − x(0,1) + x(1,1)

〉
. Since 1− x(1,0) ∈M ,

1− x(1,0) = (1− x(0,1))a+ (1− x(1,0) − x(0,1) + x(1,1))b, (3.1)

with a, b ∈ F [Z/2Z ⊕ Z/2kZ], where a = a00 + a10x
(1,0) + a11x

(1,1) + a12x
(1,2) + . . . +

a12k−1x
(1,2k−1) + a01x

(0,1) + a02x
(0,2) + . . . + a02k−1x

(0,2k−1) and b = b00 + b10x
(1,0) +

b11x
(1,1) + b12x

(1,2) + . . . + b12k−1x
(1,2k−1) + b01x

(0,1) + b02x
(0,2) + . . . + b02k−1x

(0,2k−1).

Multiplying the right hand side out in equation (3.1) above yields:

b00 + b10x
(1,0) + b01x

(0,1) + b11x
(1,1) + b02x

(0,2) + b12x
(1,2) + . . .+

b02k−1x
(0,2k−1) + b12k−1x

(1,2k−1)+

b10 + b00x
(1,0) + b11x

(0,1) + b01x
(1,1) + b12x

(0,2) + b02x
(1,2) + . . .+

b12k−1x
(0,2k−1) + b02k−1x

(1,2k−1)+

b02k−1 + b12k−1x
(1,0) + b00x

(0,1) + b10x
(1,1) + b01x

(0,2) + b11x
(1,2) + . . .+

b02k−2x
(0,2k−1) + b12k−2x

(1,2k−1)+

b12k−1 + b02k−1x
(1,0) + b10x

(0,1) + b00x
(1,1) + b11x

(0,2) + b01x
(1,2) + . . .+

b12k−2x
(0,2k−1) + b02k−2x

(1,2k−1)+
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a00 + a10x
(1,0) + a01x

(0,1) + a11x
(1,1) + a02x

(0,2) + a12x
(1,2) + . . .+

a02k−1x
(0,2k−1) + a12k−1x

(1,2k−1)+

a02k−1 + a12k−1x
(1,0) + a00x

(0,1) + a10x
(1,1) + a01x

(0,2) + a11x
(1,2) + . . .+

a02k−2x
(0,2k−1) + a12k−2x

(1,2k−1)

Now the constant terms must equal 1 and the coefficients in front of x(1,0) must also equal

1, where the rest of the coefficients must be zero. We get the following 2k+1 equations:

b00 + b10 + b02k−1 + b12k−1 + a00 + a02k−1 = 1,

b10 + b00 + b12k−1 + b02k−1 + a10 + a12k−1 = 1,

b01 + b11 + b00 + b10 + a01 + a00 = 0,

b11 + b01 + b10 + b00 + a11 + a10 = 0,

...

b02k−1 + b12k−1 + b02k−2 + b12k−2 + a02k−1 + a02k−2 = 0,

b12k−1 + b02k−1 + b12k−2 + b02k−2 + a12k−1 + a02k−2 = 0.

(Note: There will always be 2k+1 equations depending on what k is. This is true because

there are 2k elements in Z/2kZ. Since the first coordinate in the pair (a, b), or a, comes

from Z/2Z, there are only two options for a : 0 or 1. Thus, there is an equation for x(0,ci)

for every ci ∈ Z/2kZ. There are exactly 2k elements in there, now add x(1,ci), which

doubles the number of equations from 2k to 2 · 2k = 2k+1.)

Now multiply all the odd equations by 1 and the even equations by 0, then add to obtain:

2b00 + 2b10 + 2b02k−1 + 2b12k−1 + 2b01 + 2b11 + . . .+ 2a00 + 2a01 + . . .+ 2a02k−1

= 1 + 0 + 0 + . . .+ 0

which implies 0 = 1, a contradiction. So, M 6=
〈
1− x(0,1), 1− x(1,0) − x(0,1) + x(1,1)

〉
.

Case 2: M =
〈
1− x(1,0), 1− x(1,0) − x(0,1) + x(1,1)

〉
. We will show that this case fails also.

Since 1− x(0,1) ∈M , again we get our equation

1− x(0,1) = (1− x(1,0)a+ (1− x(1,0) − x(0,1) + x(1,1))b,

where a, b are defined as above. This time, when we get the 2k+1 equations, the pattern

will have to be adjusted to get our contradiction. Before, the order of the exponents went
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as follows:

(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3), (1, 3), etc. For this case, we arrange the ex-

ponents: (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (0, 3), (1, 2), (1, 3), etc. The new order yields the

following 2k+1 equations:

b00 + b10 + b02k−1 + b12k−1 + a00 + a10 = 1,

b01 + b11 + b00 + b10 + a01 + a11 = 1,

b10 + b00 + b12k−1 + b02k−1 + a10 + a00 = 0,

b11 + b01 + b10 + b00 + a11 + a01 = 0,

...

b02k−2 + b12k−2 + b02k−3 + b12k−3 + a02k−2 + a12k−2 = 0,

b02k−1 + b12k−1 + b02k−2 + b12k−2 + a02k−1 + a12k−1 = 0,

b12k−2 + b02k−2 + b12k−3 + b02k−3 + a12k−2 + a02k−2 = 0,

b12k−1 + b02k−1 + b12k−2 + b02k−2 + a12k−1 + a02k−1 = 0.

Now multiply all the odd equations by 1 and the even equations by 0, then add to obtain:

2b00 + 2b10 + 2b02k−1 + 2b12k−1 + . . .+ 2b02k−2 + 2b12k−2 + 2b02k−3 + 2b12k−3+

2a00 + 2a10 + . . .+ 2a02k−2 + 2a12k−2

= 1 + 0 + 0 + . . .+ 0,

which implies 0 = 1, a contradiction. Thus, M 6=
〈
1− x(1,0), 1− x(1,0) − x(0,1) + x(1,1)

〉
.

So, M is not strongly two-generated, therefore F [G] is not strongly two-generated.

This theorem is proven slightly differently from the first two. Again, we square

the maximal ideal to find a generator and try each of the generators of M along with the

previously chosen one. Again, we look at both cases. However, whereas before for one

case we could look at the augmentation map, this time the augmentation map will not

help. For both cases, we look at what the coefficients must be in the given equations.

This one is a little more involved, but we eventually come to the same conclusion as

before: that R[G] is not strongly two-generated.

For the next theorem, we are now proving the case of part (i)(b)(2) of Theorem

3.1.



16

Theorem 3.5. Let R be a local Artinian PIR where 2 is in the maximal ideal of R and

the square of the maximal ideal of R is not zero. Let G = Z/2Z. Then R[G] is a local

ring with the two-generator property but not the strong two-generator property.

Proof. Again, by Corollary 19.2, R[G] is local [Gil84]. It also has the two-generator

property by Theorem 3.1. Let M ⊆ R[G] be the maximal ideal of R[G]. Then M =

〈r, 1− x〉, where rR is the maximal ideal out of R, and 〈1− x〉 is the maximal ideal out

of G. Then M2 =
〈
r2, r(1− x)

〉
. Take r(1 − x) ∈ M2 ⊆ M . If M is strongly two-

generated, then ∃ t ∈ R[G] 3 M = 〈r(1− x), t〉. By Corollary 5.3 of [Nag75], one of the

generators must be either r or 1− x, so there are two cases.

Case 1: M = 〈r, r(1− x)〉. We will show that this case fails. Since 1 − x ∈ M, ∃ ao +

a1x, b0 + b1x ∈ R[G] with

1− x = r(1− x)(a0 + a1x) + r(b0 + b1x).

Thus, 1 = r(a0 − a1 + b0). This implies r is a unit in R, which is a contradiction. Thus,

M 6= 〈r, r(1− x)〉. Now we will show that Case 2 fails also.

Case 2: M = 〈1− x, r(1− x)〉. Since r ∈M, ∃ f, g ∈ R[G] with

r = (1− x)f + (r(1− x))g

= (1− x)(f + rg)

Now apply the Augmentation Map and observe that r = 0(a), where a ∈ R. Hence,

we get a contradiction. Thus, M 6= 〈1− x, r(1− x)〉. Therefore, M is not strongly

two-generated, meaning R[G] is not strongly two-generated.

The proof of Theorem 3.5 should be no surprise, as it is similar to the previous

proofs already given. The same is true of the following proof of Theorem 3.6.

Theorem 3.6. Let R be a local Artinian PIR where 2 belongs to the maximal ideal of R

and the square of the maximal ideal of R is zero. Let G = Z/2kZ. Then R[G] is a local

ring with the two-generator property but not the strong two-generator property.

Proof. R[G] is local by Corollary 19.2, and it has the two-generator property by The-

orem 3.1 [Gil84]. Let rR be the maximal ideal out of R, where r2 = 0. Then M =

〈r, 1− x〉, is the maximal ideal out of R[G] because R[G]/M is a field. Then M2 =
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〈
r(1− x), 1− 2x+ x2

〉
. Take r(1− x) ∈M2 ⊆M . If M is strongly two-generated, then

∃ t ∈ R[G] 3 M = 〈r(1− x), t〉. By Corollary 5.3 of [Nag75], one of the generators must

be either r or 1− x, so there are two cases.

Case 1: M = 〈r, r(1− x)〉. We will show that this case fails. Since 1 − x ∈ M,∃
ao + a1x+ a2x

2 + . . .+ a2k−1x
2k−1, b0 + b1x+ b2x

2 + . . .+ b2k−1x
2k−1 ∈ R[G] with

1− x = r(1− x)(ao + a1x+ a2x
2 + . . .+ a2k−1x

2k−1)+

r(b0 + b1x+ b2x
2 + . . .+ b2k−1x

2k−1).

Thus, 1 = r(a0 − b2k−1 + b0). This implies r is a unit in R, which is a contradiction.

Thus, M 6= 〈r, r(1− x)〉. Now we will show that Case 2 fails also.

Case 2: M = 〈1− x, r(1− x)〉. Since r ∈M, ∃ f, g ∈ R[G] with

r = (1− x)f + (r(1− x))g

= (1− x)(f + rg)

Now apply the Augmentation Map and observe that r = 0(a), where a ∈ R. Hence,

we get a contradiction. Thus, M 6= 〈1− x, r(1− x)〉. Therefore, M is not strongly

two-generated, meaning R[G] is not strongly two-generated.

The last part of Theorem 3.1, part (ii), requires the following Lemma in order

to prove it.

Lemma 3.7. Let R be a commutative ring with identity, and let G be a finite cyclic group

of order m+ 1 with generator g. Let I =
〈
1− xg, 1− x2g, 1− x3f , . . . , 1− xng

〉
. Then I

is the Augmentation Ideal (AI) and AI = 〈1− xg〉.

Proof. Clearly, I ⊆ AI. Let f ∈ AI, where f = a0 + a1x
g + a2x

2g + . . .+ anx
ng, meaning

a0 + a1 + a2 + . . .+ an = 0. Well,

0− f = −f = (a0 + a1 + a2 + . . .+ an)− (a0 + a1x
g + a2x

2g + . . .+ anx
ng)

= a1(1− xg) + a2(1− x2g) + . . .+ an(1− xng).

Thus, f ∈ I, where AI =
〈
1− xg, 1− x2g, 1− x3g, . . . , 1− xng

〉
. Now, since all the entries

in AI are multiples of 1− xg, for example 1− x2g can be expressed as (1− xg)(1 + xg),

and 1 − x3g can be expressed as (1 − xg)(1 + xg + x2g), etc., then AI can be written as

〈1− xg〉.
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Lastly, Theorem 3.8 takes care of the final piece of Theorem 3.1, or part (ii).

Theorem 3.8. Let p be an odd prime integer. For R a local Artinian ring with the

two-generator property but not a PIR, let G = Z/pkZ be a finite Abelian group with the

order of G a unit in R. Then R[G] has the two-generator property but not the strong

two-generator property.

Proof. First, we know that R[G] has the two-generator property by Theorem 3.1. Now,

we also know that AI = 〈1− xg〉 by Lemma 3.8. Also, AI is the kernel of the Aug-

mentation Map. Look at R[G] and mod out by the kernel to obtain R[G]/ 〈1− xg〉.
Since the Augmentation Map is onto, then by the First Isomorphism Theorem, [Gal10],

R[G]/ 〈1− xg〉 ∼= R. But R is not a PIR, and by Theorem 2.16, R[G] is not strongly

two-generated.

Theorems 3.2-3.6, and 3.8 leave us with Theorem 3.9, which summarizes what

has been done in this chapter.

Theorem 3.9. The monoid rings from Theorem 3.1, which are not PIRs, do not have

the strong two-generator property.

Theorem 3.9 has already been proven in the proofs of Theorems 3.2-3.6, and

3.8. The proofs of these theorems are all similar, in that we take an element out of

the square of the maximal ideal, and try to find another generator. Each time, we get

a contradiction. Using the terminology from Chapter 1, Theorem 3.9 can be stated as

S2 \ S1 ∩ S1.5 = φ. Now, we need to see if the same is true of the one-dimensional case.
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Chapter 4

One-Dimensional Case

Our main focus of the one-dimensional case is Theorem 2.7 from [ORV92], which

is listed below as Theorem 4.1. We show that the monoid rings of this theorem which

are not PIRs do not have the strong two-generator property. We also look at Theorems

2.6 and 3.1 from [ORV92]. These will be listed later in the chapter as Theorems 4.9 and

4.11. However, only partial results have been obtained for these two theorems, as these

cases are more difficult than the ones from Theorem 4.1. Our results are summarized in

Theorems 4.8, 4.10, and 4.12.

Theorem 4.1. Let R be a commutative ring with nilradical N and let S be a cancellative

monoid whose quotient group G(S) has torsion-free rank one, say G(S) = Z ⊕H, where

H is a finite group of order m = 2km1 with m1 odd. If H ⊆ S then R[S] has the

two-generator property if and only if the following two statements hold,

(i) R is an Artinian principal ideal ring, N2 = 0, m1 is a unit in R, and if k ≥ 1 then

each local summand of R having characteristic 2j with j > 0 is a field.

(ii) One of the following holds:

(a) S ∼= Z ⊕H, and if 2 divides the characteristic of R then k ≤ 1;

(b) S ∼= Z+ ⊕H, and if 2 divides the characteristic of R then k ≤ 1;

(c) S ∼= T ⊕H, where T is a submonoid of Z+ \ {1} containing 2, R is a product

of fields, and if one of these fields has characteristic 2 then k = 0.

Again, there are many cases to consider, and each case is broken down into its

own theorem. Whereas before, the same method was used to prove each theorem in the
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zero-dimensional case, the one-dimensional case uses many different techniques, and relies

more heavily on previous results. The first theorem uses the First Isomorphism Theorem

from [Gal10] to look at a simpler monoid ring. Once mapped to the simpler case, we use

previous results to end up with the end result that this monoid ring cannot be strongly

two-generated. Since Theorem 4.1 requires both (i) and (ii) to be satisfied, part (i) is

given in the statement of each theorem to satisfy that case. Then, we look at the different

cases of (ii). Now Theorem 4.2 proves part (ii)(a).

Theorem 4.2. Let R be an Artinian local ring, not a field or a finite direct sum of fields,

with nilradical N where N2 = 0. Let S ∼= Z ⊕H be a cancellative monoid, where H is a

finite group of order m = 2km1, for m1 odd and m is a unit of R. If k ≥ 1, then each

local summand of R having characteristic 2j with j > 0 is a field, and if 2 divides the

characteristic of R, then k ≤ 1. R[S] has the two-generator property but not the strong

two-generator property.

Proof. First, we know that R[S] is two-generated by Theorem 4.1. Also, H is abelian by

assumption, thus by Theorem 11.1 in [Gal10], let H = G1⊕G2⊕ . . .⊕Gi, where each Gj

is a cyclic group. Look at any summand of this decomposition of H, say G. By passing

to a homomorphic image, we look at R[Z ⊕G] = R[Z][G]. Since G is cyclic, let G = 〈g〉.
Then take the ideal 〈1− xg〉 ∈ R[Z][G]. This is the augmentaion ideal by Lemma 3.7.

Hence, it is the kernel of the augmentation map. Then, R[Z][G]/ 〈1− xg〉 ∼= R[Z] by the

First Isomorphism Theorem. By Theorem 2.16, R[Z] must be a PIR. By Theorem 18.10

in [Gil84], R must be a finite direct sum of fields, which is a contradiction. So, R[S]

cannot be strongly two-generated.

Again, multiple results were needed in order to complete this proof. Since parts

(a) and (b) of Theorem 4.1 above are so similar, their proofs are very similar as well.

Hence, Theorem 4.3 is proven the same way as Theorem 4.2.

Theorem 4.3. Let R be an Artinian local ring, not a field or a finite direct sum of fields,

with nilradical N where N2 = 0. Let S ∼= Z+ ⊕H be a cancellative monoid, where H is

a finite group of order m = 2km1, for m1 odd and m is a unit of R. If k ≥ 1, then each

local summand of R having characteristic 2j with j > 0 is a field, and if 2 divides the

characteristic of R, then k ≤ 1. R[S] has the two-generator property but not the strong

two-generator property.
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Proof. Again, we know R[S] is two-generated by Theorem 4.1, and H is abelian by

assumption. Thus by Theorem 11.1 of [Gal10], let H = G1 ⊕G2 ⊕ . . . ⊕Gi, where each

Gj is a cyclic group. Look at any summand of this decomposition of H as before, say G

again. By passing to a homomorphic image, we look at R[Z+ ⊕ G] = R[Z+][G]. Since

G is cyclic, let G = 〈g〉. Then take the ideal generated by 〈1− xg〉 ∈ R[Z+][G]. This is

the augmentaion ideal by Lemma 3.7. Hence, it is the kernel of the augmentation map.

Then, R[Z+][G]/ 〈1− xg〉 ∼= R[Z+] by the First Isomorphism Theorem. By Theorem

2.16, R[Z+] must be a PIR. By Theorem 18.10 in [Gil84], R must be a finite direct sum

of fields, which is a contradiction. So, R[S] cannot be strongly two-generated.

The last piece of Theorem 4.1, part (ii)(c), is listed below. This proof again

maps the monoid ring to a simpler ring under an onto ring homomorphism to determine

whether or not it is strongly two-generated. This time, only one previous result is needed.

Theorem 4.4. Let R be a finite direct sum of fields. Let S ∼= T ⊕ H, where T is a

submonoid of Z+ \ {1} containing 2, H is a finite group of order m = 2km1, for m1 odd,

m1 is a unit of R, and if one of these fields has characteristic 2, then k = 0. Then R[G]

has the two-generator property but not the strong two-generator property.

Proof. First, we know R[S] is two-generated by Theorem 4.1. Now let R = F1 ⊕ F2 ⊕
. . . ⊕ Fr, where each Fi is a field. So R[S] = (F1 ⊕ F2 ⊕ . . . ⊕ Fr)[S]. Consider the

homomorphic image F [S] of (F1 ⊕ F2 ⊕ . . . ⊕ Fr)[S], where F = Fj for some j. Now

F [S] = F [T ⊕ H] = F [T ][H], and pass to the homomorphic image F [T ]. By Theorem

14 of [Pet94], this cannot be strongly two-generated. So, R[S] cannot be strongly two-

generated.

Theorems 4.2 and 4.3 take care of the case where R is not a field or a finite

direct sum of fields, and Theorem 4.4 takes care of part (ii)(c) entirely. Theorem 4.5 will

take care of the case where R is a field or a finite direct sum of fields where the order of

H is a unit of R. Its proof treats parts (ii)(a) and (b) and comes directly from Theorem

19.13 in [Gil84].

Theorem 4.5. Let R be a field or a finite direct sum of fields. Let S ∼= S0 ⊕ H be a

cancellative monoid, where S0 = Z or Z+, and H is a finite group of order m = 2km1,

for m1 odd and m a unit of R. Then R[S] is a PIR.
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Proof. Since m is a unit of R, then R[S] = R[S0 ⊕ H] is a PIR by Theorem 19.13

[Gil84].

Since our main focus is to determine which monoid rings are two-generated not

PIRs, but are strongly two-generated, the case of Theorem 4.5 is done once it is proven

to be a PIR. It is no longer part of the monoid rings we care to look at.

Now we consider the case where R is a field or a finite direct sum of fields, and

the order of H is not a unit of R. Our assumption from Theorem 4.1 is that the order

of H is 2km1, where m1 is odd and m1 is a unit of R. This means we are considering

the case where k > 0 and 2 is not a unit of R. This implies that one of the summands

of R, say F , has characteristic 2. But from (ii) (a) and (b) of Theorem 4.1, 2 dividing

the characteristic of R implies k ≤ 1. Thus, k = 1. Hence, Theorems 4.6 and 4.7 treat

these remaining cases for (ii) (a) and (b), respectively. In the following proof, we map

a complicated monoid ring, under a few onto homomorphisms to F [Z/2Z][Z], where F

is a field of characteristic 2. The elements of this ring can be thought of as polynomials

with the addition of negative exponents. For example, a−nY
−n + a−(n−1)Y

−(n−1) + . . .+

a−1Y
−1+a0+a1Y +a2Y

2+. . .+amY
m, where the coefficients are elements from F [Z/2Z].

Theorem 4.6. Let R be a finite direct sum of fields. Let S ∼= Z ⊕ H be a cancellative

monoid, and H be a finite group of order m = 2m1, for m1 odd and 2 not a unit of

R.Then R[S] is not strongly two-generated.

Proof. Since 2 is not a unit of R, and R is a finite direct sum of fields, then the char-

acteristic of at least one summand of R must be 2. Choose F to be a summand of

characteristic 2. Then map R[S] under an onto homomorphism to F [S] = F [Z ⊕ H].

Now write H = Z/2Z⊕H1, where the order of H1 is m1. Again, map F [Z⊕H] under an

onto homomorphism to F [Z⊕Z/2Z⊕H1] = F [Z⊕Z/2Z][H1]. Under another onto homo-

morphism, map F [Z ⊕ Z/2Z][H1] onto F [Z ⊕ Z/2Z] = F [Z/2Z][Z] ∼= F [Z/2Z][Y, Y −1],

with the latter being an overring of the polynomial ring F [Z/2Z][Y ]. Now, define ψ to

be the onto ring homomorphism that maps F [Z/2Z][Y, Y −1] to F [Z/2Z][Z/2Z], where Y

and Y −1 both map to X(0,1). Consider the element 1 + Y 2. ψ(1 + Y 2) = 1 + (X(0,1))2 =

1 +X(0,2) = 1 +X(0,0) = 1 + 1 = 2 = 0. Thus, 1 + Y 2 ∈ ker(ψ). We will now show that〈
1 + Y 2

〉
= ker(ψ). Take f ∈ ker(ψ). Then ∃ n 3 Y nf ∈ F [Z/2Z][Y ], where F [Z/2Z][Y ]

is a polynomial ring. Then ∃ g, h ∈ F [Z/2Z][Y ] 3 Y nf = (1+Y 2)g+h, where deg(h) < 2.
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Then h = a0 +a1Y . So since f ∈ ker(ψ) and (1+Y 2) ∈ ker(ψ), then h must map to 0 to

which implies h = a0+a1X
(0,1) = 0. Thus, a0 = 0 and a1 = 0. Thus, Y nf = (1+Y 2)g ⇒

Y nf ∈
〈
1 + Y 2

〉
. But Y n is a unit in F [Z/2Z][Y, Y −1], so f ∈

〈
1 + Y 2

〉
. Thus, we have

shown
〈
1 + Y 2

〉
= ker(ψ). Now F [Z/2Z][Y, Y −1]/

〈
1 + Y 2

〉 ∼= F [Z/2Z][Z/2Z] by the

First Isomorphism Theorem. Since F [Z/2Z][Z/2Z] = F [Z/2Z ⊕ Z/2Z], F is a field

of characteristic 2, and Z/2Z ⊕ Z/2Z is not a cylcic 2-group, then by Theorem 19.14

in [Gil84], F [Z/2Z][Z/2Z] is not a PIR. Then by Theorem 2.16, F [Z/2Z][Z/2Z] is not

strongly two-generated. Hence, R[S] is not strongly two-generated.

The proof of Theorem 4.7 is very similar to the proof of Theorem 4.6.

Theorem 4.7. Let R be a finite direct sum of fields. Let S ∼= Z+ ⊕H be a cancellative

monoid, and H be a finite group of order m = 2m1, for m1 odd and 2 not a unit of R.

Then R[S] is not strongly two-generated.

Proof. Since 2 is not a unit of R, and R is a finite direct sum of fields, then the characteris-

tic of at least one of the summands of R must be 2. Choose F to be a summand of charac-

teristic 2. Then map R[S] under an onto homomorphism to F [S] = F [Z+⊕H]. Now write

H = Z/2Z⊕H1, where the order of H1 is m1. Then, F [Z+⊕H] = F [Z+⊕Z/2Z⊕H1] =

F [Z+ ⊕ Z/2Z][H1]. Under another onto homomorphism, map F [Z+ ⊕ Z/2Z][H] to

F [Z+ ⊕ Z/2Z] = F [Z/2Z][Z+] ∼= F [Z/2Z][Y ], with the latter being a polynomial ring.

Define ψ to be the onto homomorphism that maps F [Z/2Z][Y ] to F [Z/2Z][Z/2Z], where

Y maps to 1−X(0,1). Then Y 2 maps to 1−2X(0,1)+X(0,2) = 1−0+X(0,0) = 1+1 = 2 = 0.

So
〈
Y 2
〉
⊆ ker(ψ). We will now show that

〈
Y 2
〉

= ker(ψ). Take f ∈ ker(ψ), where

f = r0+r1Y +r2Y
2+. . .+rnY

n. Since
〈
Y 2
〉
⊆ ker(ψ), r2Y

2+. . .+rnY
n maps to 0 under

ψ. This means f maps to r0+r1(1−X(0,1)) = r0+r1−r1X(0,1). Since f maps to 0, then r1

has to be 0, making r0 = 0 as well. Also, r2Y
2+. . .+rnY

n = 0 since
〈
Y 2
〉
⊆ ker(ψ). Thus,

f ∈
〈
Y 2
〉

which implies
〈
Y 2
〉

= ker(ψ). Now, F [Z/2Z][Y ]/
〈
Y 2
〉 ∼= F [Z/2Z][Z/2Z] by

the First Isomorphism Theorem. Since F [Z/2Z][Z/2Z] = F [Z/2Z ⊕ Z/2Z], F is a field

of characteristic 2, and Z/2Z ⊕ Z/2Z is not a cyclic 2-group, then by Theorem 19.14

in [Gil84], F [Z/2Z][Z/2Z] is not a PIR. Then by Theorem 2.16, F [Z/2Z][Z/2Z] is not

strongly two-generated. Hence, R[S] is not strongly two-generated.

Theorems 4.2-4.7 take care of all the needed cases to prove Theorem 4.8.
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Theorem 4.8. The monoid rings from Theorem 4.1, which are not PIRs, do not have

the strong two-generator property.

Using the terminology from Chapter 1, Theorem 4.8 can be stated as S2 \ S1 ∩
S1.5 = φ.

Now, we look at Theorem 2.6 from [ORV92], which we state as Theorem 4.9.

Theorem 4.9. Let R be a commutative ring with nilradical N , and let T be a cancellative

torsion-free monoid. Then R[T ] has the two-generator property if and only if R is an

Artinian principal ideal ring with N2 = 0, and T is isomorphic to either Z+, Z, or a

submonoid of Z+ \ {1} containing 2, and in the last case R is a finite direct product of

fields.

We will only prove the last case of Theorem 4.9.

Theorem 4.10. Let R be a finite direct sum of fields with nilradical N , where N2 = 0

and let T be isomorphic to a submonoid of Z+\{1} containing 2 be a cancellative torsion-

free monoid. Then R[T ] has the two-generator property, but not the strong two-generator

property.

Proof. R[T ] has the two-generator property by Theorem 4.9. Again, T = 〈2, n〉, for

n an odd positive integer. Let R = F1 ⊕ F2 ⊕ . . . ⊕ Fs, where each Fi is a field. So

R[T ] = (F1 ⊕ F2 ⊕ . . .⊕ Fs)[〈2, n〉]. Map to F [〈2, n〉] under an onto ring homomorphism,

where F is one of the summands of R. Then, by the proof of Theorem 4.4, F [〈2, n〉] is

not strongly two-generated. Thus, R[T ] is not strongly two-generated.

Theorem 4.10 was proven using Pettersson’s result [Pet94]. The other two cases,

where T is isomorphic to Z+ or Z, are more difficult to prove.

Lastly, we will give partial results of Theorem 3.1 in [ORV92], stated below as

Theorem 4.11.

Theorem 4.11. Let R be a ring and let S ⊆ Z+ ⊕H be a monoid with quotient group

G(S) = Z ⊕H, where H is a finite abelian group not contained in S. Then R[S] has the

two-generator property if and only if the following hold:

(i) R = R1 ⊕ . . .⊕Rs, where each Ri is a field.
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(ii) S = S1 ⊕K, K a finite abelian group of order m and either m = 0 or m is a unit

in each of the Ri.

(iii) S1 is one of the following submonoids of Z+ ⊕ (Z/2jZ) with j ≥ 1:

(a)
〈
(1, 0), (n, 1), (0, 2)

〉
for some n ≥ 1;

(b)
〈
(1, 1), (2n, 1), (0, 2)

〉
for some n ≥ 1;

(c)
〈
(1, 1), (2n+ 1, 0), (0, 2)

〉
for some n ≥ 1.

(iv) If some Ri has characteristic 2, then j = 1, (and so (0, 2) = 0). Thus S1 is one of

the following submonoids of Z ⊕ (Z/2Z):

(a)
〈
(1, 0), (n, 1)

〉
for some n ≥ 1;

(b)
〈
(1, 1), (2n, 1)

〉
for some n ≥ 1;

(c)
〈
(1, 1), (2n+ 1, 0)

〉
for some n ≥ 1.

Again, only a partial result will be given on Theorem 4.11. All cases need to

hold in Theorem 4.11, but we look at part (ii), where K 6= 0, and get the rest of the cases

for (iii) and (iv), and show that R[S] is not strongly two-generated.

Theorem 4.12. Let R be a finite direct sum of fields, and let S = S1⊕K, for K a finite

abelian group of order m 6= 0, m a unit in each of the Ri, G(S) = Z ⊕ H, where H is

a finite abelian group not contained in S, and S1 defined as it is in Theorem 4.13 parts

(iii) and (iv). Then R[S] has the two-generator property but not the strong two-generator

property.

Proof. First, we know R[S] has the two-generator property by Theorem 4.11. Now write

K = H + H1, where H is cyclic. Now map under an onto homomorphism from R[S] =

R[S1 ⊕K] = R[S1 ⊕H ⊕H1] = R[S1 ⊕H][H1] to R[S1 ⊕H]. Let I = 〈1−Xg〉, where

g is the generator of H. Then R[S1][H]/I ∼= R[S1] by the First Isomorphism Theorem.

Hence, by Theorem 2.16, R[S1] is a PIR. Then by Theorem 19.13 in [Gil84], R is a direct

sum of fields and S1 has to be isomorphic to one of two groups. However, S1 is a monoid

not a group, so we get a contradiction. Thus, R[S1] cannot be strongly two-generated,

meaning R[S] cannot be strongly two-generated.
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What still remains is the case where K = 0. Then we get the cases where S1 is

a submonoid of all the different pieces from parts (iii) and (iv).

In conclusion, with Theorems 4.8, 4.10, and 4.12, we have found that monoid

rings in the one-dimensional case that are two-generated not PIRs, are not strongly two-

generated. However, as mentioned above, there remain a few cases from Theorems 4.9

and 4.11 that still need to be checked. It may be that the rest of the unsolved cases are

strongly two-generated, though we doubt it. This is left for the reader to try.
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Chapter 5

Conclusion

It was mentioned that Dedekind domains are two-generated, when in fact, after

looking at the proof found in [AW04] more carefully, it is seen that they are also strongly

two-generated. We wondered how common this property was amongst rings with zero-

divisors, and found out that it is not very common. In fact, in the zero-dimensional case,

it does not occur for any monoid rings that are not already PIRs. The methods used for

proving these cases were all similar, and all dealt with mapping the original monoid ring

to a simpler ring under an onto homomorphic image. If the homomorphic image was not

strongly two-generated, then the original ring cannot be strongly two-generated either by

Theorem 2.15.

The problem lies with the one-dimensional case. It is not clear how common

this property is for these monoid rings. Some cases were proven to not be strongly two-

generated. Others were proven to be PIRs, which we do not care to look at since we

want two-generated monoid rings, not PIRs. However, there remain a few cases that

still need to be checked. It is unclear what the best strategy is to prove the remaining

cases that have not been taken care of. The usual strategy used in the zero-dimensional

case, mapping from the original monoid ring onto a simpler one, does not work for the

one-dimensional case. For example, for the remaining cases of Theorem 4.11 we have a

monoid inside a direct sum, which is harder to work with. That is why only partial results

have been given in the one-dimensional case for two of the three theorems we considered

from [ORV92].

We considered rings with the strong two-generator property. This required that
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all the nonzero elements were strong two-generators. What about changing the focus to

elements of a ring, in particular determining which elements are strong two-generators?

We close with a problem for future consideration.

Problem 5.1. For the monoid rings with the two-generator property that are not PIRs,

what are the elements that are strong two-generators?

Theorem 14 from [Pet94], stated below as Theorem 5.2, provides an answer in

a particular case.

Theorem 5.2. Let B = K[X2, Xn], where K is a field, and m = (X2, Xn), where n is

an odd positive integer greater than 2. Let p be a non-zero polynomial in B. Then p is a

strong two-generator if p /∈ m2.

Even though B from Theorem 5.2 above is a subring of a polynomial ring, it

can also be thought of as K[S], where S = 〈2, n〉, for n an odd positive integer. The

strong two-generators for the case where n = 3 is found in [Cha90]. Now, will there be

a similar result in regards to determining the elements that are strong two-generators

for the monoid rings we have examined in Chapters 3 and 4? Namely, will there be a

maximal ideal M so that the strong two-generators are those elements belonging to M

but not M2?
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