
 1 

SVM based Approach for Complexity Control of 

HEVC Intra Coding 
Farhad Pakdamana,b, Li Yuc, Mahmoud Reza Hashemib,*, Mohammad Ghanbarib,d, and Moncef Gabbouja 

a Department of Computing Sciences, Tampere University, Tampere, Finland, P.O. Box 553 
b School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran, P.O. Box: 14395-

515 
c Nanjing University of Information Science and Technology, Nanjing, China 
d School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK, CO4 3SQ 

 

 
1Abstract—The High Efficiency Video Coding (HEVC) is adopted 

by various video applications in recent years. Because of its high 

computational demand, controlling the complexity of HEVC is of 

paramount importance to appeal to the varying requirements in 

many applications, including power-constrained video coding, 

video streaming, and cloud gaming. Most of the existing 

complexity control methods are only capable of considering a 

subset of the decision space, which leads to low coding efficiency. 

While the efficiency of machine learning methods such as Support 

Vector Machines (SVM) can be employed for higher precision 

decision making, the current SVM-based techniques for HEVC 

provide a fixed decision boundary which results in different coding 

complexities for different video content. Although this might be 

suitable for complexity reduction, it is not acceptable for 

complexity control. This paper proposes an adjustable 

classification approach for Coding Unit (CU) partitioning, which 

addresses the mentioned problems of complexity control. Firstly, 

a novel set of features for fast CU partitioning is designed using 

image processing techniques. Then, a flexible classification method 

based on SVM is proposed to model the CU partitioning problem. 

This approach allows adjusting the performance-complexity 

trade-off, even after the training phase. Using this model, and a 

novel adaptive thresholding technique, an algorithm is presented 

to deliver video encoding within the target coding complexity, 

while maximizing the coding efficiency. Experimental results 

justify the superiority of this method over the state-of-the-art 

methods, with target complexities ranging from 20% to 100%. 

 
Keywords—HEVC, complexity control, intra coding, SVM, 

machine learning, video compression.  

 

1. Introduction 

 

The increasing demand for higher quality video content 

creates a continuous challenge for video networking and 

storage. The bitrate of higher quality video tends to increase 

faster than the speed of network technology evolving. 

Consequently, more efficient video compression standards 

have been introduced to enable video transmission for High 

Definition (HD) content. The current High Efficiency Video 

Coding (HEVC) standard [1] provides almost twice the coding 

efficiency  of the previous standard, H.264/AVC [2]. However, 

its baseline coding algorithms are much more complex, which 

makes it challenging for many real time applications [3][4]. 
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Complexity control is necessary for several video 

applications, such as power-constraint video coding, video 

streaming, or cloud-gaming. Not only are these applications 

sensitive to the coding delay/complexity, but also their 

tolerance to delay/complexity changes dynamically according 

to the available processing power [5], network conditions [6], 

or gaming schemes [6][7]. While complexity reduction 

methods aim to keep the coding efficiency close to its 

maximum when reducing the complexity, complexity control 

aims to deliver the encoding at the exact target complexity, 

while trying to perform the best compression within that 

processing quota [8][9]. 

The existing complexity control methods for HEVC either 

consider early termination of CU partitioning [8], or consider a 

set of predefined decisions [4][10] to regulate the complexity. 

These approaches cannot fully exploit the processing power for 

coding efficiency. Using the capabilities of machine learning 

techniques to decide the partitioning at each coding depth is an 

effective way of benefiting from the wide decision space. 

Recently, the potentials of Support Vector Machines (SVM) 

have been used for complexity reduction in HEVC encoding 

[3][11]. However, as the existing SVM-based approaches aim 

to minimize the loss of quality while reducing complexity, they 

offer different complexity reductions depending on video 

content. Moreover, due to their fixed decision boundary, they 

cannot be used to adjust the complexity at the encoding time, 

i.e. controlling the complexity.  

As the complexity of intra coding has specifically increased 

in HEVC, extra efforts have been dedicated to reducing [3][11], 

and controlling [4][12] its complexity. All-intra coding is useful 

for video surveillance in wireless sensor networks [13], video 

archiving [14], screen content coding [15], and video 

communication in complex networking environment [16].  

This paper proposes a method for the complexity control of 

HEVC intra coding. To exploit the available processing power 

for the best coding efficiency, an SVM-based approach is 

employed to decide the CU partitioning at each coding depth. 

First, a set of features are designed to measure the texture 

characteristics for CU partitioning. The application of texture 

analysis via complex wavelet transform and planar filter for fast 
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intra direction estimation has recently been introduced in [17] 

and [18]. To be able to solve the more challenging problem of 

CU partitioning and complexity control, this concept is greatly 

extended in this paper to measure different aspects of texture 

complexity. Second, to solve the problem of fixed decision 

boundary in existing SVM-based methods, an adjustable 

classification approach is developed that performs the 

classification based on the probability of each class. This 

approach provides the ability to adjust the complexity-

efficiency trade off on the fly. Finally, the coding complexity 

and loss of coding efficiency are modeled based on the 

distribution of classification probabilities, and the best 

partitioning decision that satisfies the target complexity is 

derived through solving an optimization problem. The main 

contributions of the paper are summarized as follows: 

1) A new hand-crafted feature set for CU partitioning is 

proposed through analyzing sub-bands of a complex 

wavelet transform [19]. The features (which are 

essentially different from the ones used in [17]) are 

shown to be more effective than traditional features used 

in the state-of-the-art methods. 

2) CU partitioning is modeled through an offline trained 

SVM-based approach and online distribution modeling. 

Then, an adaptive thresholding method is proposed to 

decide the CU partitioning at each coding depth. 

Compared to the conventional methods which use a fixed 

binary classification, this approach provides flexibility 

and adjustable encoding complexity. 

3) The relationship between the coding complexity and the 

partitioning decision is investigated at each coding 

depth. Accordingly, the encoding complexity 

(equivalent to encoding time throughout this paper) is 

modeled, based on the CU partitioning decision. This 

provides a more accurate model of encoding complexity 

compared to alternative approaches, which simplifies the 

CU partitioning problem into a depth estimation 

problem. 

4) The complexity control problem is modeled and solved 

as a constrained optimization problem. This optimization 

guarantees the target complexity, while maximizing the 

coding efficiency, through a content-adaptive process. 

The rest of the paper is organized as follows. Section 2 

reviews the related works. In section 3, some observations from 

the HEVC intra coding are presented. The proposed method is 

presented in section 4. Section 5 presents the experimental 

results and comparisons with the state-of-the-art methods. 

Finally, section 6, concludes the paper. 

 

2. Related Works 

 

Several research papers have addressed the high complexity 

issue of HEVC intra coding. These works can be classified into 

three major categories. 

2.1 Fast mode decision 

HEVC offers 35 intra modes for each CU size. To speed-up 

the intra prediction process, [20][21][22] use information from 

the encoded neighboring blocks. Intra mode decision in these 

papers is formulated through the RD cost of the coded blocks, 

and exploiting the spatial correlations among the blocks. 

Texture analysis for fast intra prediction is another major 

approach which was investigated in [17][18][23][24]. In these 

papers, signal processing tools such as Sobel and Prewitt 

operators are adopted to estimate the best intra direction. In our 

previous works, we have designed features using sub-bands of 

a Dual-Tree Complex Wavelet Transform (DT-CWT) [19][17], 

and the Planar filter [18], for fast intra direction prediction. 

However, these features are designed to estimate the edge 

directions for fast intra mode selection, not CU partitioning; 

hence, they are not directly related to this paper. Section 4.1 

explains how this paper uses DT-CWT to measure texture 

complexity, edge complexity, and homogeneity, for CU 

partitioning. 

2.2 Fast CU partitioning 

While fast mode decision algorithms try to reduce the number 

of intra modes checked in each CU size, fast CU partitioning 

schemes reduce the complexity by minimizing the number of 

candidate CU sizes that are checked. Usman et al. [25] and Min 

et al. [26] exploit the correlation between texture complexity 

and partitioning decision. To this end, the texture complexity is 

measured through the pixels’ variance in [25], the energy of 

dominant edges of the block in [3], or by comparing the global 

and local energy as in [26]. After estimating the texture energy, 

thresholding techniques are applied to either skip a certain CU 

size, or to terminate the splitting process. 

Another approach to decide the best partitioning, is to exploit 

the information from neighboring coded blocks [27][28][29]. 

Cho et al. [27] and Lim et al. [28] analyze the distribution of 

the RD cost through the scene. Then a Bayesian decision 

process is performed to find the best partitioning. A similar 

method in [30] proposes early termination decision based on a 

Bayesian model. Kim et al. [31] present a two-step approach, 

where the misprediction penalty is learned through an offline 

learning process first. Then the Bayesian rule is used to jointly 

consider the splitting/skipping probabilities, and misprediction 

costs, to decide the best partitioning. Moreover, Shen et al. 

measure the texture complexity based on the mean absolute 

deviation of the luma values [32]. If the CU is considered 

complex, the most similar neighboring blocks are used to 

decide the most suitable coding depth. 

While deep neural network-based methods have been 

investigated in [33] and [34], other machine learning 

approaches are more popular in improving the decision 

accuracy. Lee et al. [35] use Fisher’s linear discriminant 

analysis to project features to a more separable space. Then the 

K-nearest neighbors (K-NN) is used to decide the partitioning. 

Zhu et al. [36] and Grellert et al. [37] adopt SVM with a set of 

encoder-level features, such as prediction modes, depth 

information and coding bits. [37] sets the SVM’s decision 

threshold to favor CU splitting. However, this is done statically 

and does not correspond to an adaptive decision making. Zhang 

et al. [11] propose features based on similarity between the 

neighboring blocks, and train SVMs to decide the CU splitting 

or CU termination. Liu et al. [3] however, present a set of 

features based on spatial domain image processing techniques. 

Then, they present a dual-SVM technique that enables a trade-
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off between classification accuracy and time saving. However, 

this trade-off can only be adjusted during the (offline) training 

time, thus it cannot be used to regulate the complexity during 

the encoding time. In section 4.2, we present our novel SVM 

approach that provides this flexibility during the encoding time.  

2.3 Controlling the complexity 

The performance of fast CU partitioning schemes strongly 

depends on the video content. As a result, they provide different 

time savings for different video scenes. However, in many 

video applications, e.g. power constrained video coding and 

video networking, the encoder should be able to deliver video 

compression at a specified target complexity (time or power). 

To accurately control the complexity, Correa et al. constrain 

the maximum coding depth for a portion of frames  [5][38]. The 

number of constrained frames and the maximum depths are set 

according to the target complexity and the outcome of 

previously unconstrained coded frames, respectively. Another 

method in [8] considers early termination conditions for 

complexity control. Offline trained controller schemes are 

proposed in [10][39], where the best configurations for each 

complexity level is learned through exhaustive Pareto-frontier 

analysis. At the encoding time, the next configuration is 

derived, through a predefined table, based on the current 

measured complexity and the target complexity. 

Deng et al. [9] also control the complexity through maximum 

coding depth, while emphasizing visual quality. First, the 

encoding complexity and the visual distortion are modeled 

based on the maximum depth. Then, the coding complexity is 

distributed among the Coding Tree Units (CTU), based on a 

visual attention model, to ensure the best visual quality. An 

objective map has been employed to extend this work in [40].  

Zhang et al. propose a complexity control scheme for intra 

coding [4]. The coding complexity of each CTU is estimated 

using the prediction performance. Then the complexity budget 

is distributed among CTUs, based on the estimated complexity 

and predicting the dominant block size. The complexity 

allocation is performed through finding a subset of candidate 

CU sizes for each CTU. A similar approach has also been used 

for inter prediction [41]. Because of single metric for modeling 

the complexity, and predefined subsets of decision space, this 

approach leads to sub-optimum decision making. Finally, a 

time and energy estimation model for intra coding is presented 

in [12] that can be used for complexity control. 

While methods presented in 2.1 and 2.2 can reduce the coding 

complexity of HEVC encoding, they provide content-

dependent solutions and their coding complexity depends on 

the video sequence. Hence, these methods are not suitable for 

applications where complexity needs to be adjusted 

dynamically, i.e. complexity control. Methods in 2.3 aim to 

control the complexity; however, they mainly provide sub-

optimum solutions due to 1) single-feature, or inadequate 

texture complexity criteria, 2) simplifying the CU partitioning 

decision into a CTU-level depth estimation, which limits the 

decision space, or 3) oversimplification due to providing fixed 

offline solutions. The proposed method in section 4 tackles 

these issues by designing a feature set that models different 

aspects of CU partitioning, and a complexity controller, that 

considers the CU partitioning at each CU depth, leading to the 

maximum decision space and hence better coding efficiency. 

 

3. HEVC Intra Coding Process 

 

HEVC introduces a new Coding Tree Unit (CTU) as the main 

coding structure.  A CTU can be as large as 64×64 pixels and 

can be split into smaller Coding Units (CU) and Prediction 

Units (PU) through a quadtree structure.  

Fig. 1 shows an example of this structure. It can be observed 

that a CTU can include CUs from 64×64 pixels down to 8×8 

pixels. For intra coding, HEVC adopts 35 intra modes, which 

provide an accurate texture modeling. Many algorithms used 

for HEVC encoding, such as the ones used in HEVC test model 

(HM) [42], find the best CTU partitioning through 

hierarchically processing all possible CU depths (D0 to D3 in 

Fig. 1) and choosing the best one via rate-distortion 

optimization. This process is extremely heavy in terms of 

computations as it includes the predictions for all possible sub-

blocks. Since this process forms the major part of the encoding 

complexity, fast CU partitioning is considered to be the most 

effective way to reduce or control the coding complexity [31]. 

 
Fig. 1 CTU structure and possible intra PUs 

 
Fig. 2 CU size distribution for FourPeople, Kimono1 and Johnny 

To investigate this complexity, the CU size distribution in 

several video sequences has been analyzed in this research. Fig. 

2 summarizes this investigation for three video sequences with 

four Quantization Parameters (QPs). For Kimono1 which 

includes mainly homogenous low energy texture, larger CU 

sizes have a considerable contribution. FourPeople on the other 

hand includes a rather detailed scene and sharp texture and is 

mainly coded with smaller CUs. It can be observed that the 

distribution of CU size varies very much based on the video 

content. In short, it is observed that blocks with sharp edges, 

high energy textures, and non-homogeneous content, are more 
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probable to be coded with smaller CUs. 

It can also be observed that the contribution of larger CUs 

increases with the increase of QP. This is expected, since higher 

precision is employed with lower QP values and thus small 

details can lead to a further CU split. 

To reduce the complexity in a CU partitioning process, two 

main decisions can be made, CU Skipping (CUS)  [3], and CU 

partitioning Termination (CUT) [8]. In CUS, the current depth 

is found to be unsuitable and thus the current CU size is skipped 

(not processed), while the algorithm continues processing the 

sub-CUs. On the contrary, in CUT, the current CU is found to 

be the smallest CU size that might be suitable, and thus the 

process will be terminated with no further splitting.  

To measure the potentials of CUS and CUT for complexity 

reduction, these techniques have been performed on different 

CU depths of the same three video sequences of Fig. 2, and the 

results are summarized in Table 1, where b0
d and b1

d denote 

time saving (equivalent to complexity reduction throughout this 

paper) of CUT and CUS in depth d, respectively. It is observed 

that the best complexity reduction can be achieved through the 

termination (CUT) in lower CU depths. Specifically, CUT at 

depth 0 (D0) leads to 85.23% and at D1 to 73.58% complexity 

reduction on average. This is expected, as termination in the 

current depth means that the process of all smaller CUs is 

avoided. For Skipping (CUS), an additional gain can be 

achieved for higher depths, due to the larger number of CUs. 

CUS leads to a smaller complexity reduction (specifically 10% 

and 13% for D1 and D2), since it only avoids the process of the 

current CU size. Furthermore, as the table suggests, the 

complexity reduction of these two techniques is almost the 

same for different video sequences. 

 
Table 1  

Time saving (%) obtained via CUT and CUS at different depths 

Sequence 

CUT 

at D0 

CUS 

at D0 

CUT 

at D1 

CUS 

at D1 

CUT 

at D2 

CUS 

at D2 

b0
0 b1

0 b0
1 b1

1 b0
2 b1

2 

FourPeople -86.5 -8.19 -74.41 -10.56 -61.17 -12.99 

Johnny -84.46 -10.03 -72.52 -10.87 -58.86 -13.22 

Kimono1 -84.74 -9.38 -73.8 -11.45 -61.06 -13.92 

AVG -85.23 -9.2 -73.58 -10.96 -60.36 -13.38 

 

Some important conclusions can be drawn from the 

observations in Fig. 2 and Table 1: 1) The encoding complexity 

can be effectively reduced through CUT and CUS. 2) HEVC 

encoders (including HM) usually repeat similar coding 

operations for all CTUs. Hence, the coding complexity 

reduction due to CUT and CUS does not significantly depend 

on the video content, and the target coding complexity can be 

modeled based on a combination of these two decisions. 3) In 

contrast to the coding complexity, the optimum CU size highly 

depends on texture characteristics and compression ratio, e.g. 

edge complexity, texture energy, texture homogeneity, and QP. 

Thus, the complexity control scheme should take all these 

features into account in order to achieve the best coding 

efficiency. 

With these observations and motivations, a novel complexity 

control scheme is proposed in the next section, where a machine 

learning method is employed to exploit the texture 

characteristics in order to deliver the best coding efficiency 

within each target complexity. 

 

4. Proposed Method 

 

The complexity control in this paper is done through an 

adjustable CU partitioning process. The overall framework of 

this method is depicted in Fig. 3. First, a feature set is designed 

to measure various aspects of the texture complexity. These 

features are used to train SVMs to find the probability of 

splitting or terminating CUs at each depth level. Next, the 

distributions of these probabilities are modeled to ascertain the 

relationship between the coding complexity and coding 

efficiency. The encoding complexity is also modeled based on 

the percentages of skipped or terminated CUs in each depth. 

Finally, the complexity control is modeled as a constrained 

optimization problem, where the loss of coding efficiency is 

minimized, according to the obtained distribution, while 

constraining the complexity to meet the target complexity. 

Throughout the paper the term “computational complexity”, 

or simply “complexity”, is equivalent to and sometime for the 

ease of reading is exchanged with the “encoding time”. 

Whereas, the term “texture complexity” refers to the level of 

details in the picture and should not be confused with the 

computational complexity. The following sub-sections detail 

the proposed method. 

Table 2 summarizes the important notations used throughout 

the paper. Scalars are denoted in plain fonts, while bold 

lowercases show vectors, and bold uppercases show sets of 

scalars. 

4.1 Feature design for texture complexity 

Appropriate features are required to perform classification 

for the CU partitioning process. As a complicated context-

 
Fig. 3 Overall framework of the proposed method 
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dependent phenomenon, CU partitioning can hardly be 

modeled by a single feature. However, according to the 

observations in section 3, CUs with high edge complexity, high 

texture energy, non-homogenous content, and low compression 

ratio, are more probable to split into sub-CUs. Hence, these 

criteria were used to design a feature set, which measures 

different aspects leading into CU partitioning.  

The feature set is designed based on filters of a Dual-Tree 

Complex Wavelet Transform (DT-CWT). In our previous work 

[17], we demonstrated the effectiveness of DT-CWT analysis 

for intra mode decision and showed that it results from its 

directional selectivity, near shift invariance, and less oscillation 

around singularities [19]. Here, DT-CWT is used to design new 

features for a different task than [17], which is fast CU 

partitioning. 

Assuming 𝜓ℎ(𝑥) and 𝜓𝑔(𝑥) to be two real wavelets, with, 

h(n) and g(n) as a pair of biorthogonal filter sets, the DT-CWT 

is defined as (1): 

 

𝜓(𝑥)  =  𝜓ℎ(𝑥)  +  𝑗 𝜓𝑔(𝑥)           (1) 

 

Four directional sub-bands through (2) and (3) are defined, 

where ϕ(.) is a low pass filter, 𝜓(. )  represents the complex 

conjugate of 𝜓  (.), and |.| denotes the magnitude. A low 

frequency band is also defined in (4). DT-CWT applies a 

subsampling (decimation) similar to most real discrete wavelet 

transforms. Hence, (2)-(4) define sub-bands with half samples 

in each dimension, compared to the input signal. 

 

𝜓1(𝑥, 𝑦) = |𝜙(𝑥)𝜓(𝑦)|, 𝜓2(𝑥, 𝑦) = |𝜙(𝑥)𝜓(𝑦)|     (2) 

𝜓3(𝑥, 𝑦) = |𝜓(𝑥)𝜙(𝑦)|, 𝜓4(𝑥, 𝑦) = |𝜓(𝑥)𝜙(𝑦)|    (3) 

𝜓0(𝑥, 𝑦)  = 𝜙(𝑥)𝜙(𝑦)              (4) 

 

Due to high-pass filtering in the vertical direction, 𝜓1 and 𝜓2 

represent two different nearly vertical frequency bands 

(equivalently horizontal bands in the pixel domain), and the 

opposite is for 𝜓3 and 𝜓4. More in-depth information on DT-

CWT can be found in [19] and [17]. 

Assuming 𝜓𝑠(i,j) represents the element in row i and column 

j of sub-band s, which is derived for a block of luma, X, the set 

of features E={E1, E2, E3, E4, E5} is defined for CU partitioning. 

Features E1 and E2 in the following paragraphs measure the 

energy-related complexity, E3 and E4 measure the 

homogeneity-related metrics, and E5 measures the quantization 

which affects the compression ratio. 

1) E1: Edge complexity 

E1 is defined as the sum of edge energy in four directional 

sub-bands, as in (5). DVARV and DVARH are the directional 

variances in vertical and horizontal directions, as defined in (6). 

𝜓
𝑐𝑜𝑙 𝑗

 (𝜓
𝑟𝑜𝑤 𝑗

) represents the mean of the values in column 

(row) j of 𝜓 (a sub-band of X after DT-CWT), and n and m are 

the number of elements of 𝜓 in each dimension. 

 

𝐸1(𝑋) = 𝐷𝑉𝐴𝑅𝑉(𝜓1) + 𝐷𝑉𝐴𝑅𝑉(𝜓2) + 𝐷𝑉𝐴𝑅𝐻(𝜓3) +
𝐷𝑉𝐴𝑅𝐻(𝜓4)             (5) 

 

𝐷𝑉𝐴𝑅𝑉(𝜓) = 
1

𝑚𝑛
∑ ∑ (𝜓(𝑖, 𝑗) − 𝜓

𝑐𝑜𝑙 𝑗
)

2
𝑚−1
𝑗=0

𝑛−1
𝑖=0    (6) 

𝐷𝑉𝐴𝑅𝐻(𝜓) = 
1

𝑚𝑛
∑ ∑ (𝜓(𝑖, 𝑗) − 𝜓

𝑟𝑜𝑤 𝑖
)

2
𝑚−1
𝑗=0  𝑛−1

𝑖=0  

 

The intuition behind this is that, ideally, if a CU contains pure 

vertical edges, it would be reflected in the vertical bands 

(equivalent to horizontal frequency bands) as large elements 

and thus a common variance will show a large energy. 

However, the HEVC encoder is able to model such texture with 

a vertical intra prediction, which ideally leads to a perfect 

prediction and thus no splitting is required. Hence, E1 suggests 

that in order to follow the HEVC behavior, for vertical bands 

only the variance in the vertical direction should be considered 

and similarly, for horizontal bands only the variance in 

horizontal direction should be considered. 

2) E2: Texture complexity 

To measure the texture complexity, the effect of sharp edges 

is excluded through the analysis of the low frequency band 

(𝜓0), as (7). Variance of 𝜓0 represents the global energy of CU. 

 

𝐸2(𝑋) = 𝑉𝐴𝑅(𝜓0)               (7) 

 

3) E3: Texture homogeneity 

Non-uniform texture in a CU can lead to a splitting decision. 

Thus, the range of texture energy in sub-blocks of the parent 

Table 2 

Summary of notations used in the paper 

Notation Definition 

𝜓(. ) Dual-tree complex wavelet transform (DT-CWT) 

ϕ(.) Low-pass filter 

𝜓𝑠 Sub-band s of X, derived from applying DT-CWT to X 

𝜓𝑠(i,j) Element (i,j) of sub-band s 

X A block of luma samples 

𝑋𝑏 bth sub-block of X 

𝜓
𝑐𝑜𝑙 𝑗

 Mean of elements in column j of 𝜓 

E Set of five features, Ei 

𝒘 Vector of weights for SVM 

𝜉 Slack variable for SVM 

𝒙𝑖 ith features vector 

𝑦𝑖 ith sample label 

b Bias for SVM 

𝒘̂, 𝑏̂  Trained SVM weights and bias 

R Set of six resolution dependent factors, Rc
d, for different 

classes and depths 

𝑠𝑐,𝑖
𝑑 Classification score of class c and depth d, for sample i 

𝑆𝑐
𝑑 Threshold of classification for class c and depth d 

S Set of six thresholds, 𝑆𝑐
𝑑, for different 

classes and depths 

t Number of training frames 

r-t Number of non-training frames after t training frames 

φ(.) Gaussian function 

Fcd(S) CDF of classification scores for class c and depth d, 

using threshold S 

bcd Average complexity reduction for class c in depth d 

(as given in Table 1) 

𝐶𝑅(S) Encoding complexity ratio using set of thresholds S 

𝐶𝑅𝑅(S) Encoding complexity reduction ratio using set of thresholds S 

𝐶𝑅f Measured encoding complexity ratio for frame f 

𝐶𝑅T Target complexity ratio 

𝐶𝑅bias Bias value to adjust the target complexity, to compensate the 

complexity control error  

CRa Predefined tolerable complexity control error 
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block is measured through (8), where Xb denotes the bth sub-

block of X.  

 

𝐸3(𝑋) = max 
𝑏=1:4

(𝐸1 (𝑋𝑏)) − 𝑚𝑖𝑛
𝑏=1:4

(𝐸1 (𝑋𝑏))  (8) 

 

4) E4: CU size efficiency 

To measure the efficiency of the parent CU compared to the 

sub-CUs, (9) subtracts the sum of the energies in the four sub-

CUs from the energy of the parent CU. In case of a uniform 

texture, the energy of the parent CU is almost equal to the sum 

of the sub-CU energies. Whereas in complex textures, these two 

energies tend to be different.  

 

𝐸4(𝑋) = 𝐸2(𝑋) − ∑ 𝐸2(𝑋𝑏)4
𝑏=1           (9) 

 

5) E5: Compression ratio 

As explained earlier through Fig. 1, the compression ratio has 

an important effect on CU partitioning. To cover this aspect, the 

quantizer step size as the main parameter for adjusting the 

compression ratio is used, as suggested by [3]: 

 

𝐸5 = 𝑄𝑠𝑡𝑒𝑝 =  2
𝑄𝑃−4

6              (10) 

 

 
Fig. 4 Average Fisher-score for the training data set, in CU depth 0, 1 and 2 

To ensure the feasibility of these features for SVM 

classification, the Fisher score is used which has been reported 

to be an efficient measure for SVM classification [37][43]. The 

Fisher score measures the discrimination of a data set over 

binary classification, using a feature. Fig. 4 compares the 

proposed feature set with the ones used in some of the recent 

CU partitioning schemes [3][37]. In this figure, NMSE, DCom 

and SCCD are the features representing texture complexity 

used in [3]. PredMode, DepthRQT, AvgDepthCTX, and SplitFlag 

are encoder level information, from the current and neighboring 

blocks, used in [37]. It can be observed that the proposed 

features achieve the highest Fisher scores, meaning they are 

more discriminative. This indicates that they can be effectively 

used for SVM classification, for CU partitioning. 

4.2 Adjustable CU classification using SVM  

In this paper, SVM classifier is adopted to model CU 

partitioning. For a CU at depth d, the ideal case is to be 

classified into one of the two classes: class0 for cases that need 

to be treated as a whole block (non-split), and class1for blocks 

that should be split into sub-CUs. However, like many other 

real-world applications, CU partitioning data is not ideally 

separable [3][37]. This means that no decision boundary can be 

found to classify all data instances into their correct classes. For 

this reason, two main SVM approaches have been adopted by 

researchers. The first approach, depicted in Fig. 5 (a), is to 

classify data with a single SVM line. A variation of this 

approach is used in [37] that shifts the decision line towards one 

class, to favor CU splitting. The second approach, depicted in 

Fig. 5 (b), is to use class specific optimization to separate the 

noisy data region [3]. Doing so, the data is classified into three 

classes: class0 for non-split (CUT), class1 for split (CUS), and 

class2 for undecided. While the encoding of the first two classes 

is accelerated, the baseline coding is adopted for the undecided 

class. Moving the two hyperplanes through parameter setting, 

various trade-offs can be achieved between complexity 

reduction and coding efficiency. Although the latter approach 

can provide flexible decision boundaries, this decision is made 

at the time of training, and hence cannot provide flexibility at 

the time of encoding, which is required for controlling the 

complexity. 

To provide this flexibility during the encoding, a third 

approach is proposed here, as depicted in Fig. 5 (c). In this 

approach, a single SVM is trained for the best possible 

classification, similar to the first approach. Then, during 

encoding, instead of a simple binary classification, the distance 

of each sample from the hyperplane is measured, and an 

adaptive thresholding is applied on it for classification. The 

dashed lines in Fig. 5 (c) represent two hypothetical thresholds 

for class0 and class1. This way a CU is classified into three 

classes of split, non-split, and undecided. A large distance 

between a sample and the hyperplane, indicates that the sample 

can be classified into that class with high confidence. Based on 

this, threshold lines farther from the hyperplane provide more 

accuracy, and also less complexity reduction, since more 

samples will fall into the undecided class. The important 

advantage of this approach is that the thresholds for 

classification can be adjusted during encoding, according to the 

available processing power and the video content, which is 

useful for complexity control. 

 

   
(a) (b) (c) 

Fig. 5 SVM classification approaches for CU partitioning a) single SVM b) 

dual-SVM c) proposed adjustable SVM classification 

To train the SVM, first, the training data was collected by 

calculating the feature set E, for four different video sequences. 

Then the training data was labeled with partitioning decisions 

(ground truth) collected through encoding of these sequences, 

using the HM encoder, with QP values of 22, 27, 32, and 37. 

Before feeding these data into the SVM, Log10 is applied to all 

features as suggested in [3], which normalizes the data for linear 

classification, and then all features are scaled into the same 

range of [-1,1].  

To find the best SVM hyperplane, defined with weights, w, 

and bias, b, for each depth level the following optimization 

problem in (11) is solved. In this equation, xi ∈ℝ5, i=1,…,l, are 
training vectors and y∈ℝl, are sample labels. ξi are slack 
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variables for penalizing misclassifications, and C controls the 

weights of the two terms of the optimization. 

Solving this optimization, which is explained in details in 

[44], obtains the best hyperplane which is denoted with the 

weights, 𝒘̂  and bias, 𝑏̂ . Furthermore, to ensure learning 

generalization, a 5-fold cross validation is performed. 

 

{
𝑚𝑖𝑛 {

1

2
𝒘𝑇𝒘 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1 }

𝑠. 𝑡.  𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 ,   𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑙
     (11) 

 

After the training phase, for evaluating each testing instance 

with a feature set of xi, first the distance to the hyperplane is 

measured using (12). Then this score is used to find the 

posterior probability for each class, c, using (13) [45]. A and B 

in (13) represent the slope and the intercept respectively, see 

[45] for more details. As choosing smaller or larger CU sizes 

lead to different losses of coding efficiency in different 

resolutions, R = {R0
0, R1

0, R0
1, R1

1, R0
2, R1

2} is used as a 

resolution dependent factor to balance the probabilities towards 

the CU sizes that are more suitable for each resolution, for class 

c at depth d. The following sets of values have been found 

experimentally for each resolution class: Class A: {1, 0.8, 1, 

0.9, 1, 0.5}, class B, C and E: {1, 1, 1, 1, 1, 1}, and class D {0.1, 

1, 0.3, 1, 0.7, 1}. Furthermore, due to the binary classification, 

it is obvious that the probability of class0 and class1 are 

complementary. Values near 1 for sc,i indicate that sample i is 

far from the hyperplane and thus can be safely classified into 

class c, and in the opposite class for values near zero. Whereas, 

values in between (e.g. 0.5) indicate that the sample is near the 

decision boundary and a classification can still be performed, 

but with a lower confidence level. 

 

𝑦̂𝑖 = 𝒘̂𝑇𝒙𝒊 + 𝑏̂                (12) 

 

𝑠𝑐,𝑖 = 𝑅𝑐
𝑑 × 𝑃(𝑦̂𝑖 = 𝑐|𝑥𝑖) = 𝑅𝑐

𝑑 ×
1

1+exp (𝐴𝑦̂𝑖+𝐵)
 , 𝑐 = {0,1},

𝑠0,𝑖 + 𝑠1,𝑖 = 1                   (13) 

 

Finally, for each CU depth d, CU partitioning is decided 

through (14). If the probability of a sample i for class0, s0,i
d, is 

greater than a threshold, S0
d, CU is classified into class0 

(associated with CUT). If this probability for class1, s1,i
d, is 

greater than a threshold, S1
d, it is classified into class1 

(associated with CUS); otherwise, it is  put in class2 (meaning 

undecided, leading to baseline encoding process). By properly 

setting the values of S0
d and S1

d, one can reach the desired 

balance between classification accuracy and complexity 

reduction.  

 

{

𝐶𝑙𝑎𝑠𝑠0: 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 (𝐶𝑈𝑇),                    𝑖𝑓 𝑠0,𝑖
𝑑 ≥ 𝑆0

𝑑

𝐶𝑙𝑎𝑠𝑠1: 𝑆𝑝𝑙𝑖𝑡 (𝐶𝑈𝑆),                                𝑖𝑓 𝑠1,𝑖
𝑑 ≥ 𝑆1

𝑑  

𝐶𝑙𝑎𝑠𝑠2: 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑜𝑑𝑖𝑛𝑔), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (14) 

 

Fig. 6 shows the classification performance and complexity 

reduction, for two video sequences, using different values of S0
d 

and S1
d. Each plot shows the performance for different 

thresholds on a specific depth and class, while other depths and 

other classes are processed with the baseline coding method. As 

expected, increasing the thresholds improves the accuracy and 

reduces the complexity reduction. However, this effect depends 

on the video content. For instance, it is observed that for class0 

in almost all depths, the performance of ParkScene drops faster 

than that of Kimono1, whereas, the reverse is true for class1. 

This is explained by the rather detailed texture of ParkScene 

compared to the plain texture of Kimono1. For plain textures, 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 6 Classification accuracy and time saving of Kimono1 and ParkScene, for different threshold values of (a) depth0 class0 (b) depth0 class1 (c) depth1 class0 

(d) depth1 class1 (e) depth2 class0 (f) depth2 class1 
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such as Kimono1, larger CUs are more suitable, thus CUT 

associated with class0 has a better performance. A similar 

argument holds for CUS (class1) and detailed textures. 

Choosing the right threshold value depends on the desired target 

complexity as well as the video content. In the next section, a 

method is presented to choose the suitable threshold values 

adaptively, based on the video texture content. 

4.3 Complexity control through adaptive thresholding 

Based on the proposed adjustable classification method in 

section 4.2, the encoding complexity (time) can be controlled, 

by finding the right threshold values. While different 

combinations of these values can lead to the same target 

complexity, as suggested by Fig. 6, these values can differently 

affect the coding quality of different video content. To maintain 

quality while controlling the complexity, the distribution of the 

classification score (probability), i.e. distribution of sc
d, for t 

training frames (t=1 in our experiments) is modeled, and used 

to adaptively find the best thresholds for the next r-t frames 

(r=100 in experiments). 

The bars in Fig. 7 show the distribution of classification 

scores s0
d (class0) for the first frame of ParkScene, Kimono1, 

and PartyScene. As expected, this distribution is different for 

different depths and video contents. For instance, for 

PartyScene, at all three depths, most instances have 

probabilities near zero, which suggests that their processes 

should not be terminated, but the current CU depth can be 

skipped. This indicates a very detailed scene which should 

mainly be coded with the smallest CU sizes. For Kimono1 on 

the other hand, parts of depth0 and 1, and the majority of depth2 

have probabilities near 1 and can thus be terminated. 

Due to the varying type of these distributions for different 

videos and different coding depths, a single distribution cannot 

be used to effectively model all contents. Hence, a Gaussian 

kernel (φ(.)) distribution, which is a non-parametric 

distribution, is used to model them, as formulated in (15) [46]. 

Here, f is the Probability Density Function (PDF), n is the 

number of data samples, σ is a bandwidth that sets the width of 

each Gaussian component, which is obtained based on the data 

range, and sc,i
d is the ith probability sample collected for class c 

in depth d. Consequently, the Cumulative Distribution Function 

(CDF) associated with this PDF can be obtained by (16). 

 

𝑓(𝑠𝑐
𝑑) =

1

𝑛𝜎
∑ 𝜑 (

𝑠𝑐
𝑑− 𝑠𝑐,𝑖

𝑑

𝜎
) , 𝜎 = (

𝑚𝑎𝑥𝑖=1
𝑛 (𝑠𝑐,𝑖

𝑑) − 𝑚𝑖𝑛𝑖=1
𝑛 (𝑠𝑐,𝑖

𝑑)

𝑛
)𝑛

𝑖=1  

(15) 

 

𝐹𝑐
𝑑(𝑆) =  𝑃(𝑠𝑐

𝑑 ≤ 𝑆) = ∫ 𝑓(𝑠𝑐
𝑑)𝑑𝑠𝑐

𝑑𝑆

−∞
         (16) 

 

Having Fc
d as the CDF of class c at depth d, and also having 

bc
d as the contribution of class c to the complexity reduction, as 

given in Table 1, the encoding complexity ratio for a given set 

of thresholds, S ={S0
0, S1

0, S0
1, S1

1, S0
2, S1

2}, can be formulated 

as (17) and (18). Here, 𝐶𝑅(𝑺) is the encoding complexity ratio 

using S as the set of thresholds. Considering that at each CU 

depth, complexity reduction is equal to the percentage of blocks 

being split or terminated multiplied by their associated 

complexity reduction, the total complexity reduction ratio, 

CRR(S), is the sum of the complexity reductions from CUT and 

CUS obtained from different CU depths.  

 

𝐶𝑅(𝑺) =
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐸𝑛𝑐 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

𝑈𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
= 1 − 𝐶𝑅𝑅(𝑺)   (17) 

 

𝐶𝑅𝑅(𝑺) = 𝑏0
0(1 − 𝐹0

0(𝑆0
0)) + 𝑏1

0(1 − 𝐹1
0(𝑆1

0)) +

𝐹0
0(𝑆0

0) (𝑏0
1(1 − 𝐹0

1(𝑆0
1)) + 𝑏1

1(1 − 𝐹1
1(𝑆1

1))) +

𝐹0
0(𝑆0

0) 𝐹0
1(𝑆0

1) (𝑏0
2(1 − 𝐹0

2(𝑆0
2)) + 𝑏1

2(1 − 𝐹1
2(𝑆1

2)))   (18) 

 

To provide the best (possible) RD performance, the 

thresholds need to be ideally close to one. In other words, 

ideally CUT or CUS should be performed when the SVM 

classification predicts the highest probability for them. To this 

end, (19) defines Err(S) as the sum of the squared differences 

of the threshold values from 1. 

 

𝐸𝑟𝑟(𝑺) =  ∑ ∑ (1 − 𝑆𝑐
𝑑)22

𝑑=0
1
𝑐=0            (19) 

 

To obtain the best set of thresholds, S, the following 

optimization problem in (20) is solved, where Err(S) is 

minimized, while the encoding complexity ratio, CR(S), is 

constrained to be equal to the target complexity ratio, CRT. 

Since values of Sc
d represent thresholds on a probability, they 

are bound to be in the range of [0,1]. Moreover, S0
d and S1

d are 

thresholds for the PDFs of two complementary probability 

distributions (class 0 and 1). Thus, their sum should not be less 

than 1, to ensure that the samples of the two classes do not 

overlap (not to be confused with the sum of probabilities for 

two classes, which is less than or equal to 1). 

 

{
𝑚𝑖𝑛{𝐸𝑟𝑟(𝑺)}

s. t.   𝐶𝑅(𝑺) = 𝐶𝑅𝑇 ,   0 ≤ 𝑆𝑐
𝑑 ≤ 1,   𝑆0

𝑑 + 𝑆1
𝑑 ≥ 1, ∀𝑑

  (20) 

 

This optimization is solved with the fast Sequential Quadratic 

Programming (SQP) algorithm. The details of this algorithm 

   
(a) (b) (c) 

Fig. 7 Distribution of SVM score for class0, in (a) ParkScene, (b) Kimono1, and (c) PartyScene 
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can be found in [47]. Solving this optimization, the set of 

thresholds, S, is obtained and used for encoding of the next 

frames. 

4.4 Frame level complexity control 

Even though the proposed method provides an efficient and 

accurate complexity decision, due to imperfections in PDF 

modeling, complexity modeling, optimization approximations, 

and also real time variations, such as slight texture difference 

between consecutive frames, and variations in the processing 

power, the final encoding complexity might be slightly different 

from the target complexity. This difference was measured to be 

up to 3% and 4% for Kimono1 and PartyScene, respectively. 

To compensate for this, a complexity control at the frame level 

is often employed [8]. Section 5.3 and Fig. 10 discuss how the 

frame-level complexity control strategy proposed here, reduces 

the above-mentioned errors to less than 1%. 

The following frame level complexity control strategy is 

proposed in this paper. The achieved encoding complexity ratio 

for frame f, CRf, is measured for each frame, and its distance 

from the target complexity ratio is calculated as CRerr, through 

(21). To narrow this distance in the next frame, a bias 

complexity, CRbias, is defined and added to the target ratio. To 

do so, CRerr and its corresponding CRbias from the past few 

frames are stored in a table. This way CRbias for the current 

frame can be interpolated from the two nearest CRerr values 

from previous frames. 

To provide a practical control mechanism, we allow 

complexity variations up to a predefined tolerable error, CRa, 

and ignore them (CRa =1% in our experiments). As depicted in 

(22), only if CRerr is larger than CRa, a bias complexity, CRbias, 

is calculated and added to the target complexity ratio when 

finding S for the next frame (via (20)). For the first frame, where 

no previous history is available, CRerr is used as CRbias. For the 

following frames, first the two closest entries to the current 

CRerr value are located in the table. Then the value of CRbias is 

calculated from CRbias values associated with these two entries, 

via linear interpolation. 

 

𝐶𝑅𝑒𝑟𝑟 = 𝐶𝑅𝑇 − 𝐶𝑅𝑓              (21) 

 

𝐶𝑅𝑏𝑖𝑎𝑠 = {

0,                                             𝑖𝑓 𝐶𝑅𝑒𝑟𝑟 < 𝐶𝑅𝑎

 𝐶𝑅𝑒𝑟𝑟  ,                   𝑖𝑓 𝑛𝑜 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 (𝐶𝑅𝑒𝑟𝑟1, 𝐶𝑅𝑒𝑟𝑟2), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (22) 

4.5 Overall algorithm 

The Algorithm in Fig. 8 sums up the proposed method of 

complexity control for the HEVC intra coding. At the start of 

encoding a video sequence, the first frame is passed through all 

CU levels, and the classification scores (sc,i
d) are collected for 

the whole frame. Based on these samples, the PDF (and thus 

CDF) models for different classes and all CU depths are 

updated. Then the threshold values are calculated for the next 

frames, via (20). This process is repeated every r frames (r=100 

in experiments), and at scene changes [31]. 

For non-training frames, the proposed method repeats 

through the hierarchical structure of HEVC. For each CTU, at 

each CU depth, the features are extracted using (5)-(10) and the 

classification probabilities are obtained via (13). These 

probabilities are compared with the threshold values to classify 

the CU into termination, splitting, or undecided, using (14). If 

terminated, the process of the current CTU ends and the best 

partitioning is decided from the processed CU sizes. In case of 

a skip, the current CU size is not processed, and the algorithm 

continues with the next depth. If undecided, both the current CU 

size and the next depth level are processed, as in the baseline 

encoding algorithm. 

After encoding each frame, the encoding complexity ratio is 

compared to the target complexity ratio, and if needed, the 

target complexity ratio is updated through addition with CRbias 

via (22). If the target complexity ratio was updated, the 

thresholds are updated using (20); otherwise they remain 

unchanged for the next frame. 

 

5. Experimental Results 

To evaluate the performance of the proposed method, it was 

implemented on top of HM test model 16.9 [42]. Video 

sequences of the common test conditions [48] have been 

encoded with the proposed method, and the results were 

compared with those of  state-of-the-art methods [4][9]. For the 

subjective-driven complexity control  (TCSVT_SDCC) method 

[9], their implementation has been modified to support intra 

coding, and was tested for the all-intra configuration. For the 

complexity control of intra coding for industrial applications 

method (TII_CCII) in [4], the reported results of the paper are 

obtained using exactly the same testing conditions and version 

of HM as ours, thus the reported results from the paper are used 

here. Through all experiments, the all-intra configuration has 

been adopted. Sub-bands of level 2 DT-CWT decomposition 

have been used for feature extraction, as described in section 

4.1, and a value of 1% has been used for CRa, as in practical 

applications. In the training phase, four video sequences with 

various resolutions and texture characteristics, including 

ParkScene, Johnny, FourPeople, and BQMall, have been used. 

A separate training set including Kimono1, FourPeople, and 

 
Fig. 8 The final algorithm for complexity control 

    Training frame or   

scene change?

Next frame

Find E1-E5 for all 

CUs of depth 0-2, 

using (5)-(10)

Y

Collect sc
d for 

d=0,1,2 and c=0,1 

via (13)

Update the PDFs 

and CDFs using 

(15)-(16)

N

Find thresholds 

via (20)

Measure CRf, update 

CRbias via (22)

Update thresholds 

via (20)

Obtain features 

using (5)-(10)

Find sc
d
 via (13)

Compare sc
d

to threshold 

values and decide the 

partitioning using (14)

Next depth?

Y

N
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BQMall has been used to evaluate the coding performance of 

ParkScene and Johnny. Also, ParkScene, Johnny, and Kimono1 

were used for training a model to evaluate FourPeople and 

BQMall, meaning the sequences included in the training set 

were not evaluated with the same trained model. In the 

following sections, different aspects of the proposed method are 

evaluated. 

5.1 Encoder performance at constant quality 

To evaluate the performance of the proposed method, video 

sequences were encoded with four target complexities of 80%, 

60%, 40% and 20%, and compared to the 100% complexity, i.e. 

the best HEVC encoding. All experiments were repeated for QP 

values of 22, 27, 32, and 37, and the Bjotengaard Delta (BD)-

Rate and BD-PSNR [49] were measured.   

Tables 3 to 6 summarize the coding performance and the 

measured complexity ratios (CR) for each target complexity. To 

compare our method with the state-of-the-art methods, these 

tables also include the results of TII_CCII and TCSVT_SDCC, 

and provide separate average performance of the proposed 

method for the sequences reported for each competing method. 

It can be observed that with smaller target complexities, 

naturally the BD-Rate increases, since more operations are 

pruned to meet the target complexity. For the proposed method, 

Table 3  

Experimental results with target complexity of 80% 

Sequence Resolution class 
TCSVT_SDCC [9] TII_CCII [4] Proposed 

BD-Rate (%) CR (%) BD-Rate (%) CR (%) BD-Rate (%) CR (%) 

PeopleOnStreet A - - 0.32 79.6 0.14 79.25 

Traffic A - - - - 0.09 80.06 

NebutaFestival A - - - - 0.33 80.86 

SteamLocomotiveTrain A - - - - 0.22 80.18 

Kimono1 B 0.05 79.42 0.03 80.21 0.04 79.67 

ParkScene B 1.14 81.5 0.29 79.47 0.08 80.11 

Cactus B 2.45 80.95 0.26 79.62 0.05 79.34 

BasketballDrive B 0.48 81.34 0.29 79 -0.07 79.99 

BQTerrace B 1.19 81.05 - - 0.07 80.05 

BasketballDrill C 2.2 80.34 0.68 79.58 -0.07 80.29 

PartyScene C 4.84 80.64 0.06 80.16 -0.02 80.74 

BQMall C 4.68 78.99 - - -0.01 80.32 

RaceHorses C 2.45 78.56 - - 0.06 80.27 

BQSquare D - - 0.43 79.91 0.16 79.23 

RaceHorses D - - 0.6 80.42 0.12 79.43 

BlowingBubbles D - - - - 0.29 80.14 

Johnny E 0.6 80.48 0.53 80.24 0.01 79.86 

KristenAndSara E 1.86 78.55 0.48 79.76 -0.01 79.52 

Vidyo1 E 1.61 80.3 - - -0.04 80.34 

FourPeople E 2.68 81.01 - - 0.09 80.3 

AVG  2.02 80.24 0.36 79.82 0.08 80 

AVG_TCSVT  2.02 80.24 - - 0.01 80.06 

AVG_TII  - - 0.36 79.82 0.04 79.77 

 

Table 4  

Experimental results with target complexity of 60% 

Sequence Resolution class 
TCSVT_SDCC [9] TII_CCII [4] Proposed 

BD-Rate (%) CR (%) BD-Rate (%) CR (%) BD-Rate (%) CR (%) 

PeopleOnStreet A - - 2.35 60.44 1.1 60.25 

Traffic A - - - - 0.66 60.37 

NebutaFestival A - - - - 0.43 59.64 

SteamLocomotiveTrain A - - - - 0.2 60.45 

Kimono1 B 0.48 59.52 0.29 60.84 0.16 60.31 

ParkScene B 2.66 60.73 1.35 60.52 0.95 59.68 

Cactus B 5.24 59.64 2 60.21 0.75 60 

BasketballDrive B 3.21 60.57 1.38 59.34 0.24 60.69 

BQTerrace B 5.79 58.65 - - 0.2 60.95 

BasketballDrill C 7.51 61.61 2.44 60.24 0.85 59.79 

PartyScene C 8.32 58.8 1.83 61.31 0.58 60.22 

BQMall C 10.58 59.28 - - 0.34 60.75 

RaceHorses C 6.17 57.75 - - 0.74 61 

BQSquare D - - 4.63 60.15 0.9 60.46 

RaceHorses D - - 3.4 61.19 3.36 59.76 

BlowingBubbles D - - - - 2.69 59.23 

Johnny E 3.12 61.22 3.04 61.04 0.25 59.68 

KristenAndSara E 3.53 60.27 3.51 60.62 0.04 59.92 

Vidyo1 E 6.75 60.76 - - 0.08 60.71 

FourPeople E 7.61 57.12 - - 0.38 60.64 

AVG  5.46 59.69 2.38 60.54 0.74 60.23 

AVG_TCSVT  5.46 59.69 - - 0.45 60.28 

AVG_TII  - - 2.38 60.54 0.83 60.07 
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average BD-Rates for target complexities of 80%, 60% 40% 

and 20% are 0.08%, 0.74%, 3.22%, and 11.71%, respectively. 

Compared to previous works, our method gains a considerable 

improvement, especially in high and middle ranges of power 

quota. For instance, in 60% target complexity, the proposed 

method gains 1.55% BD-Rate over TII_CCII and 5.01% over 

TCSVT_SDCC. This superiority is mainly due to the multi-

feature representation of complexity and finer grained 

complexity modeling of the proposed method. 

Compared to TII_CCII which uses the prediction accuracy as 

the only estimation of texture complexity, the proposed method 

uses five different features that capture different aspects of 

complexity. Consequently, the proposed method leads into a 

fairer complexity allocation in different scenes. More 

specifically, in scenes with both detailed and plain regions, the 

single feature of TII_CCII causes over-allocation to the detailed 

regions, which in turn leads to more degradation in other 

regions. Such results can be observed in the tables for 

BasketballDrive, Cactus, and Johnny, where the difference of 

the two methods is higher than the average of sequences. 

Moreover, the proposed method decides the CU partitioning at 

all CU depths, which compared to the CTU level decision of 

Table 5  

Experimental results with target complexity of 40% 

Sequence Resolution class 
TCSVT_SDCC [9] TII_CCII [4] Proposed 

BD-Rate (%) CR (%) BD-Rate (%) CR (%) BD-Rate (%) CR (%) 

PeopleOnStreet A - - 3.62 39.67 3.41 40.38 

Traffic A - - - - 3.03 39.73 

NebutaFestival A - - - - 1.41 39.71 

SteamLocomotiveTrain A - - - - 0.65 39.89 

Kimono1 B 1.56 40.84 0.99 40.8 1.01 40.45 

ParkScene B 4.69 41.22 2.76 40.12 2.05 40.64 

Cactus B 9.24 41.07 4.17 39.91 2.54 39.64 

BasketballDrive B 7.33 40.8 4.17 39.91 2.24 39.39 

BQTerrace B 10.48 41.64 - - 2.36 39.5 

BasketballDrill C 16.69 38.46 6.38 39.61 5.83 40.86 

PartyScene C 11.97 40.93 5.67 41.19 5.33 39.69 

BQMall C 16.24 42.29 - - 3.59 40.69 

RaceHorses C 10.29 41.31 - - 2.21 39.36 

BQSquare D - - 13.6 40.93 8.98 39.47 

RaceHorses D - - 10.18 41.9 5.86 40.15 

BlowingBubbles D - - - - 5.53 40.56 

Johnny E 12.68 39.5 6.57 40.86 2.34 40.76 

KristenAndSara E 14.96 41.27 7.09 40.81 2.35 39.65 

Vidyo1 E 13.71 41.12 - - 2.09 40.52 

FourPeople E 13.14 39.32 - - 1.66 40.25 

AVG  11 40.75 5.93 40.52 3.22 40.06 

AVG_TCSVT  11 40.75 - - 2.77 40.16 

AVG_TII  - - 5.93 40.52 3.81 40.1 

 

Table 6 

Experimental results with target complexity of 20% 

Sequence Resolution class 
TCSVT_SDCC [9] TII_CCII [4] Proposed 

BD-Rate (%) CR (%) BD-Rate (%) CR (%) BD-Rate (%) CR (%) 

PeopleOnStreet A - - 9.67 19.41 13.44 19.94 

Traffic A - - - - 8.71 19.65 

NebutaFestival A - - - - 3.61 20.42 

SteamLocomotiveTrain A - - - - 1.32 20.19 

Kimono1 B 2.63 19.55 3.3 19.27 1.93 19.24 

ParkScene B 7.89 19.49 6.9 19.83 6.27 20.4 

Cactus B 13.87 18.4 13.89 19.96 13.6 20.77 

BasketballDrive B 16.01 19.06 13.84 19.56 11.6 19.68 

BQTerrace B 15.82 21.03 - - 13.69 19.79 

BasketballDrill C 29.22 19.87 26.29 22.18 21.38 19.04 

PartyScene C 19.92 20.53 18.26 22.18 12.9 20.01 

BQMall C 22.4 18.81 - - 20.46 19.38 

RaceHorses C 14.09 18.22 - - 13.05 19.96 

BQSquare D - - - - 12.95 20.63 

RaceHorses D - - - - 9.23 20.83 

BlowingBubbles D - - - - 7.41 20.51 

Johnny E 23.89 19.71 16.78 19.56 14.85 19.39 

KristenAndSara E 21.29 20.13 16.35 19.41 21.55 20.13 

Vidyo1 E 17.54 19.43 - - 17.22 19.64 

FourPeople E 16.74 19.17 - - 9.11 19.27 

AVG  17.02 19.49 13.92 20.15 11.71 19.94 

AVG_TCSVT  17.02 19.49 - - 13.66 19.74 

AVG_TII  - - 13.92 20.15 12.7 20.01 
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TII_CCII (from a predefined set of decisions), provides a wider 

decision space and hence more accurate decision making. 

Similar argument can be made for TCSVT_SDCC, which sets 

a maximum coding depth based on the visual attention. 

Consequently, the quality of the salient parts of the frames is 

preserved; however, the quality of other regions drops and the 

total bitrate also increases. 

While the proposed method yields better results than the two 

mentioned works in most cases, the difference is smaller for 

smaller target complexities. Ultimately for 20% complexity, the 

proposed method gains a 1.22% BD-Rate over TII_CCII and 

3.36% over TCSVT_SDCC, which compared to the two-digit 

BD-Rates in 20% complexity, is relatively small. The reason 

for this is that when only 20% of the processing power is 

available, most of the baseline operations are pruned, and all 

three methods need to sacrifice the coding efficiency to 

guarantee the target complexity; hence, coding options are 

limited. Moreover, in the case of 80% complexity, small 

negative BD-Rates are observed for few sequences which might 

be due to the slight change of entropy or estimation error of BD-

Rate calculation and is insignificant to make any conclusions. 

The tables also report the achieved complexity ratios for all 

methods. It can be observed that the proposed method 

successfully delivers the target complexity ratio, with a very 

negligible complexity variation. The average control error for 

the proposed method is 0.00%, 0.23%, 0.06% and 0.06% for 

target complexities of 80%, 60%, 40% and 20% respectively, 

which is always below 1%, constrained by the value for CRa 

(the tolerable complexity control error, CRa=1%). The achieved 

complexity ratio is also the closest to the target complexity 

among the three competing methods.  

5.2 Encoder performance at constant bitrate 

To further evaluate the performance of the proposed method 

for video networking environments, several video sequences 

were encoded within a target bitrate, under specified target 

complexity ratios. Table 7 compares the performance of our 

method, with HM encoder at 100% complexity ratio.  It can be 

observed that the proposed method delivers the target bitrate for 

all target complexities, while maintaining the target complexity, 

which justifies the effectiveness of this method. However, to 

deliver the same bitrate within the limited complexity, the 

proposed method slightly loses in terms of PSNR. This 

degradation depends on the complexity level, texture 

complexity and the target bitrate. Generally, the lower is the 

target complexity and the higher is the target bitrate, the higher 

will be the degradation. Also, in detailed scenes, the 

degradation is higher. For instance, for Kimono1 with a plain 

texture, the degradation is negligible and in the worst case 0.1 

dB (for 20% complexity). For KristenAndSara and 

BasketballDrill, this degradation is also negligible till 60% 

complexity. However, in 20% complexity level, the 

degradation can exceed 1 dB. 

 
Table 7  

Performance of proposed method with constant bitrate, compared to HM 

encoder with 100% complexity 

Sequence 

Target 

BR 

(Kbps) 

Target 

Complexity 

(%) 

Actual BR 

(Kbps) 

PSNR-Y 

(dB) 

Actual 

complexity 

(%) 

ΔPSNR 

(dB) 

Kimono1 

10000 

100 9999.84 38.43 100 0 

80 10000.2 38.42 80.26 0 

60 10000.24 38.42 60.83 0 

40 9999.36 38.41 40.83 -0.02 

20 10000.36 38.3 20.54 -0.13 

50000 

100 50007.32 43.53 100 0 

80 50009 43.52 80 -0.01 

60 50008.8 43.51 60.92 -0.02 

40 50010.8 43.42 39.71 -0.11 

20 50010.48 43.48 20.52 -0.05 

Cactus 

10000 

100 10006.28 31.1 100 0 

80 10005.84 31.1 80 0 

60 10004.16 31.08 59.63 -0.02 

40 10005.76 31.02 39.11 -0.07 

20 10006.92 30.51 19.18 -0.58 

50000 

100 50005.84 37.64 100 0 

80 50002.12 37.64 79.02 0 

60 50001.4 37.6 59.16 -0.04 

40 50003.92 37.51 39.72 -0.13 

20 50010.76 37.04 20.36 -0.6 

Krist&Sara 1000 

100 1000.92 29.21 100 0 

80 1000.92 29.21 80.12 0 

60 1000.92 29.21 60.7 0 

40 1000.4 29.16 39.5 -0.04 

20 1001.2 28.02 20.44 -1.19 

   

   
(a) (b) (c) 

Fig. 9 Decoded quality and visualized partitioning decision for parts of BasketballDrive (a) 100% (original HM) (b) 60% and (c) 20% target complexities 
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5000 

100 5004.28 37.84 100 0 

80 5003.2 37.83 79.03 -0.01 

60 5003.24 37.76 59.24 -0.09 

40 5003.68 37.69 40.42 -0.15 

20 5006.4 35.67 20.95 -2.17 

BasketDrill 

1000 

100 998.2 28.12 100 0 

80 1000.96 28.14 79.77 0.02 

60 1001.4 28.14 59.87 0.01 

40 999.52 28.06 40.44 -0.06 

20 1000.56 27.3 20.3 -0.82 

5000 

100 5008.04 34.79 100 0 

80 4989.92 34.77 79.84 -0.02 

60 5008.84 34.74 59.3 -0.05 

40 5004.04 34.26 40.82 -0.53 

20 5005.6 33.62 19.69 -1.17 

 

This loss of quality is expected, since with a limited 

processing power, some coding options are pruned, and since 

the bitrate is targeted to remain intact, the loss is steered to the 

PSNR. However, even at 20% complexity, this loss can still be 

reasonably tolerated. Fig. 9 shows parts of the decoded 

BasketballDrive sequence and the final partitioning decision, 

when it is encoded at 100%, 60% and 20% complexity ratios. It 

is observed that even though some degradations can be located 

for the 20%, through comparison (e.g. degradations around the 

shoes), the quality is still quite acceptable. 

As for the partitioning decision, it is observed through Fig. 9 

that the quality at 60% complexity is very similar to that in 

100%; however, in smooth areas, some blocks of 64×64 pixels 

have been skipped to achieve the target complexity. For the 

20% though, most of the frames are encoded with blocks of 

32×32 and 64×64 pixels. This is because, to save 80% of 

complexity (nearly the maximum complexity reduction through 

CU partitioning), most CTUs need to be terminated at depth 0 

or 1. 

5.3 Frame-level complexity analysis 

In this section, the performance of the proposed method is 

measured through the frames. Fig. 10 shows the encoding 

complexity ratio for the first 140 frames of two videos. The first 

20 frames were coded at 100% complexity, and then every 30 

frames at 80%, 60%, 40% and 20% thereafter. The first frame 

is always used as the training to find the threshold values for the 

rest of the frames. For this reason, it is always coded with 100% 

complexity. It is important to note that for the rest of the training 

frames (e.g. the 100th frame, at scene change, or when the target 

complexity changes), they do not need to be coded with 100% 

complexity. While the features and probabilities should be 

calculated for all sub-blocks, the actual intra prediction process 

can use the thresholds from previous frames and thus encoding 

can be done (roughly) with the same timing.  

Fig. 10 shows that in all complexity levels, the encoding 

complexity quickly approaches the target complexity. At the 

beginning of encoding, or after changing the target complexity 

ratio, the achieved complexity can be slightly far from the 

target. This error is less than 3% and 4% for Kimono1 and 

PartyScene, respectively. However, the frame-level controller 

compensates this control error through the first few frames after 

changing the target complexity. Specifically, it is observed that 

after 2-3 frames, the complexity error falls below 1% (< CRa), 

and thus the frame-level controller generally does not change 

the thresholds and biases through the rest of the sequence.  

Fig. 10 also compares the quality of constrained coding 

scenario with HM encoding (100% complexity). A rather 

uniform distribution of Y-PSNR is observed through the 

decoded frames, which is important for the perceived quality. 

For Kimono1 the PSNR remains almost the same throughout all 

complexity levels. For Kimono1, at 20% complexity, the 

proposed method loses only 0.02 dB PSNR compared to HM 

encoding. For the more detailed PartyScene though, a small 

drop of PSNR is observable when going from 60% to 40% or 

from 40% to 20% complexity levels (0.22 dB and 0.61 dB 

respectively). As the figure indicates, PSNR of the complexity 

control method follows the same trend as HM encoding which 

shows that the gradual change of PSNR in these figures is 

related to the gradual change of the video content. 

 

 

Fig. 10 Performance for first 140 frames of top Kimono1 and bottom 

PartyScene. Both cases with QP =32 

 

 
Fig. 11 Performance in presence of scene change 

 

Scene 
Change

Variation due to scene change
Resolved within 2-3 frames



 14 

Finally, Fig. 11 shows the coding performance when scene 

changes occur. Since there are no scene changes in the video 

sequences suggested by the common test conditions [48], video 

sequences have been concatenated to create two longer 

sequence, with a scene change in each. As the figure suggests, 

the target complexity is met throughout the whole sequence. At 

the start of each new scene, the controller collects the PDFs for 

the first frame of the new scene, while this frame is encoded 

with the thresholds associated with the previous scene. As a 

result, the target complexity is approximately met, even for this 

frame. Similar to previous tests, the fluctuations at the 

beginning of the new scene, becomes stable within 2-3 frames. 

5.4 Comparison with complexity reduction methods 

As explained in sections 1 and 2, the proposed method cannot 

directly be compared to complexity reduction methods. 

However, here complexity reduction of a classic SVM method 

[11], our previous work [17], and a CNN-based method [34] are 

compared briefly. These methods can gain 25%-58%, 31%-

38%, and 57%-66% complexity reductions respectively, while 

none of them can adjust the complexity during encoding. The 

proposed method on the other hand adjusts the complexity 

anywhere between 100% and 20%. 

5.5 Analyzing computational overhead 

Although the computational overhead of the proposed method 

has already been included in experimental results, it is 

measured and discussed separately here, to provide a realistic 

idea for hardware/software implementation of this method. 

Similar to all fast decision methods, the proposed method 

imposes some computational overhead. However, as the HEVC 

encoding is very computationally demanding, and the proposed 

feature extraction method is rather simple, the overhead is 

tolerable. The overhead of the proposed feature extraction 

method on single thread is ~2% of the overall running time of 

HM encoding. However, as Wavelet operations can use 

separable horizontal and vertical filters, they include several 

parallel 1-D filtering operations which not only have moderate 

complexity overhead, but they also have a great potential for 

parallel processing. Using the OpenMP [50] library to 

parallelize this process on only four processing cores, this 

overhead is reduced to ~0.5% of the HM encoder on average. 

Even considering the case of optimized encoding, e.g. 60% and 

20% processing power, this overhead would be 0.89%, and 

2.67% respectively, which are tolerable. It is important to note 

that as HEVC encoding can benefit from hardware or software 

optimizations in commercial products, similar techniques can 

be applied to the proposed feature extraction unit.  

 

6. Conclusion 

 

In this paper, a novel SVM-based approach is presented to 

flexibly control the complexity of HEVC intra coding. This 

approach uses DT-CWT decomposition to design features for 

CU partitioning. Then an SVM-based approach is proposed to 

learn the probability of CU partitioning at each CU depth. 

Finally, an adaptive thresholding technique is used to maximize 

the coding efficiency within the target complexity. Extensive 

experimental results confirm the performance of the proposed 

method within target complexity ratios of 80% to 20%. The 

achieved encoding complexity in each target complexity was 

measured to be less than 1% away from the target. Also, 

through fine-grain decision making at each CU depth, and high-

quality features that measure different aspects of texture 

complexity, the proposed method gains better coding efficiency 

compared to competing state-of-the-art methods, at all 

complexity levels.  
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