
 1

SVM based Approach for Complexity Control of

HEVC Intra Coding
Farhad Pakdamana,b, Li Yuc, Mahmoud Reza Hashemib,*, Mohammad Ghanbarib,d, and Moncef Gabbouja

a Department of Computing Sciences, Tampere University, Tampere, Finland, P.O. Box 553
b School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran, P.O. Box: 14395-

515
c Nanjing University of Information Science and Technology, Nanjing, China
d School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK, CO4 3SQ

1Abstract—The High Efficiency Video Coding (HEVC) is adopted

by various video applications in recent years. Because of its high

computational demand, controlling the complexity of HEVC is of

paramount importance to appeal to the varying requirements in

many applications, including power-constrained video coding,

video streaming, and cloud gaming. Most of the existing

complexity control methods are only capable of considering a

subset of the decision space, which leads to low coding efficiency.

While the efficiency of machine learning methods such as Support

Vector Machines (SVM) can be employed for higher precision

decision making, the current SVM-based techniques for HEVC

provide a fixed decision boundary which results in different coding

complexities for different video content. Although this might be

suitable for complexity reduction, it is not acceptable for

complexity control. This paper proposes an adjustable

classification approach for Coding Unit (CU) partitioning, which

addresses the mentioned problems of complexity control. Firstly,

a novel set of features for fast CU partitioning is designed using

image processing techniques. Then, a flexible classification method

based on SVM is proposed to model the CU partitioning problem.

This approach allows adjusting the performance-complexity

trade-off, even after the training phase. Using this model, and a

novel adaptive thresholding technique, an algorithm is presented

to deliver video encoding within the target coding complexity,

while maximizing the coding efficiency. Experimental results

justify the superiority of this method over the state-of-the-art

methods, with target complexities ranging from 20% to 100%.

Keywords—HEVC, complexity control, intra coding, SVM,

machine learning, video compression.

1. Introduction

The increasing demand for higher quality video content

creates a continuous challenge for video networking and

storage. The bitrate of higher quality video tends to increase

faster than the speed of network technology evolving.

Consequently, more efficient video compression standards

have been introduced to enable video transmission for High

Definition (HD) content. The current High Efficiency Video

Coding (HEVC) standard [1] provides almost twice the coding

efficiency of the previous standard, H.264/AVC [2]. However,

its baseline coding algorithms are much more complex, which

makes it challenging for many real time applications [3][4].

* Corresponding author.

Email Address: rhashemi@ut.ac.ir (Mahmoud Reza Hashemi)

Complexity control is necessary for several video

applications, such as power-constraint video coding, video

streaming, or cloud-gaming. Not only are these applications

sensitive to the coding delay/complexity, but also their

tolerance to delay/complexity changes dynamically according

to the available processing power [5], network conditions [6],

or gaming schemes [6][7]. While complexity reduction

methods aim to keep the coding efficiency close to its

maximum when reducing the complexity, complexity control

aims to deliver the encoding at the exact target complexity,

while trying to perform the best compression within that

processing quota [8][9].

The existing complexity control methods for HEVC either

consider early termination of CU partitioning [8], or consider a

set of predefined decisions [4][10] to regulate the complexity.

These approaches cannot fully exploit the processing power for

coding efficiency. Using the capabilities of machine learning

techniques to decide the partitioning at each coding depth is an

effective way of benefiting from the wide decision space.

Recently, the potentials of Support Vector Machines (SVM)

have been used for complexity reduction in HEVC encoding

[3][11]. However, as the existing SVM-based approaches aim

to minimize the loss of quality while reducing complexity, they

offer different complexity reductions depending on video

content. Moreover, due to their fixed decision boundary, they

cannot be used to adjust the complexity at the encoding time,

i.e. controlling the complexity.

As the complexity of intra coding has specifically increased

in HEVC, extra efforts have been dedicated to reducing [3][11],

and controlling [4][12] its complexity. All-intra coding is useful

for video surveillance in wireless sensor networks [13], video

archiving [14], screen content coding [15], and video

communication in complex networking environment [16].

This paper proposes a method for the complexity control of

HEVC intra coding. To exploit the available processing power

for the best coding efficiency, an SVM-based approach is

employed to decide the CU partitioning at each coding depth.

First, a set of features are designed to measure the texture

characteristics for CU partitioning. The application of texture

analysis via complex wavelet transform and planar filter for fast

Moncef Gabbouj is a member of EURASIP

mailto:rhashemi@ut.ac.ir

 2

intra direction estimation has recently been introduced in [17]

and [18]. To be able to solve the more challenging problem of

CU partitioning and complexity control, this concept is greatly

extended in this paper to measure different aspects of texture

complexity. Second, to solve the problem of fixed decision

boundary in existing SVM-based methods, an adjustable

classification approach is developed that performs the

classification based on the probability of each class. This

approach provides the ability to adjust the complexity-

efficiency trade off on the fly. Finally, the coding complexity

and loss of coding efficiency are modeled based on the

distribution of classification probabilities, and the best

partitioning decision that satisfies the target complexity is

derived through solving an optimization problem. The main

contributions of the paper are summarized as follows:

1) A new hand-crafted feature set for CU partitioning is

proposed through analyzing sub-bands of a complex

wavelet transform [19]. The features (which are

essentially different from the ones used in [17]) are

shown to be more effective than traditional features used

in the state-of-the-art methods.

2) CU partitioning is modeled through an offline trained

SVM-based approach and online distribution modeling.

Then, an adaptive thresholding method is proposed to

decide the CU partitioning at each coding depth.

Compared to the conventional methods which use a fixed

binary classification, this approach provides flexibility

and adjustable encoding complexity.

3) The relationship between the coding complexity and the

partitioning decision is investigated at each coding

depth. Accordingly, the encoding complexity

(equivalent to encoding time throughout this paper) is

modeled, based on the CU partitioning decision. This

provides a more accurate model of encoding complexity

compared to alternative approaches, which simplifies the

CU partitioning problem into a depth estimation

problem.

4) The complexity control problem is modeled and solved

as a constrained optimization problem. This optimization

guarantees the target complexity, while maximizing the

coding efficiency, through a content-adaptive process.

The rest of the paper is organized as follows. Section 2

reviews the related works. In section 3, some observations from

the HEVC intra coding are presented. The proposed method is

presented in section 4. Section 5 presents the experimental

results and comparisons with the state-of-the-art methods.

Finally, section 6, concludes the paper.

2. Related Works

Several research papers have addressed the high complexity

issue of HEVC intra coding. These works can be classified into

three major categories.

2.1 Fast mode decision

HEVC offers 35 intra modes for each CU size. To speed-up

the intra prediction process, [20][21][22] use information from

the encoded neighboring blocks. Intra mode decision in these

papers is formulated through the RD cost of the coded blocks,

and exploiting the spatial correlations among the blocks.

Texture analysis for fast intra prediction is another major

approach which was investigated in [17][18][23][24]. In these

papers, signal processing tools such as Sobel and Prewitt

operators are adopted to estimate the best intra direction. In our

previous works, we have designed features using sub-bands of

a Dual-Tree Complex Wavelet Transform (DT-CWT) [19][17],

and the Planar filter [18], for fast intra direction prediction.

However, these features are designed to estimate the edge

directions for fast intra mode selection, not CU partitioning;

hence, they are not directly related to this paper. Section 4.1

explains how this paper uses DT-CWT to measure texture

complexity, edge complexity, and homogeneity, for CU

partitioning.

2.2 Fast CU partitioning

While fast mode decision algorithms try to reduce the number

of intra modes checked in each CU size, fast CU partitioning

schemes reduce the complexity by minimizing the number of

candidate CU sizes that are checked. Usman et al. [25] and Min

et al. [26] exploit the correlation between texture complexity

and partitioning decision. To this end, the texture complexity is

measured through the pixels’ variance in [25], the energy of

dominant edges of the block in [3], or by comparing the global

and local energy as in [26]. After estimating the texture energy,

thresholding techniques are applied to either skip a certain CU

size, or to terminate the splitting process.

Another approach to decide the best partitioning, is to exploit

the information from neighboring coded blocks [27][28][29].

Cho et al. [27] and Lim et al. [28] analyze the distribution of

the RD cost through the scene. Then a Bayesian decision

process is performed to find the best partitioning. A similar

method in [30] proposes early termination decision based on a

Bayesian model. Kim et al. [31] present a two-step approach,

where the misprediction penalty is learned through an offline

learning process first. Then the Bayesian rule is used to jointly

consider the splitting/skipping probabilities, and misprediction

costs, to decide the best partitioning. Moreover, Shen et al.

measure the texture complexity based on the mean absolute

deviation of the luma values [32]. If the CU is considered

complex, the most similar neighboring blocks are used to

decide the most suitable coding depth.

While deep neural network-based methods have been

investigated in [33] and [34], other machine learning

approaches are more popular in improving the decision

accuracy. Lee et al. [35] use Fisher’s linear discriminant

analysis to project features to a more separable space. Then the

K-nearest neighbors (K-NN) is used to decide the partitioning.

Zhu et al. [36] and Grellert et al. [37] adopt SVM with a set of

encoder-level features, such as prediction modes, depth

information and coding bits. [37] sets the SVM’s decision

threshold to favor CU splitting. However, this is done statically

and does not correspond to an adaptive decision making. Zhang

et al. [11] propose features based on similarity between the

neighboring blocks, and train SVMs to decide the CU splitting

or CU termination. Liu et al. [3] however, present a set of

features based on spatial domain image processing techniques.

Then, they present a dual-SVM technique that enables a trade-

 3

off between classification accuracy and time saving. However,

this trade-off can only be adjusted during the (offline) training

time, thus it cannot be used to regulate the complexity during

the encoding time. In section 4.2, we present our novel SVM

approach that provides this flexibility during the encoding time.

2.3 Controlling the complexity

The performance of fast CU partitioning schemes strongly

depends on the video content. As a result, they provide different

time savings for different video scenes. However, in many

video applications, e.g. power constrained video coding and

video networking, the encoder should be able to deliver video

compression at a specified target complexity (time or power).

To accurately control the complexity, Correa et al. constrain

the maximum coding depth for a portion of frames [5][38]. The

number of constrained frames and the maximum depths are set

according to the target complexity and the outcome of

previously unconstrained coded frames, respectively. Another

method in [8] considers early termination conditions for

complexity control. Offline trained controller schemes are

proposed in [10][39], where the best configurations for each

complexity level is learned through exhaustive Pareto-frontier

analysis. At the encoding time, the next configuration is

derived, through a predefined table, based on the current

measured complexity and the target complexity.

Deng et al. [9] also control the complexity through maximum

coding depth, while emphasizing visual quality. First, the

encoding complexity and the visual distortion are modeled

based on the maximum depth. Then, the coding complexity is

distributed among the Coding Tree Units (CTU), based on a

visual attention model, to ensure the best visual quality. An

objective map has been employed to extend this work in [40].

Zhang et al. propose a complexity control scheme for intra

coding [4]. The coding complexity of each CTU is estimated

using the prediction performance. Then the complexity budget

is distributed among CTUs, based on the estimated complexity

and predicting the dominant block size. The complexity

allocation is performed through finding a subset of candidate

CU sizes for each CTU. A similar approach has also been used

for inter prediction [41]. Because of single metric for modeling

the complexity, and predefined subsets of decision space, this

approach leads to sub-optimum decision making. Finally, a

time and energy estimation model for intra coding is presented

in [12] that can be used for complexity control.

While methods presented in 2.1 and 2.2 can reduce the coding

complexity of HEVC encoding, they provide content-

dependent solutions and their coding complexity depends on

the video sequence. Hence, these methods are not suitable for

applications where complexity needs to be adjusted

dynamically, i.e. complexity control. Methods in 2.3 aim to

control the complexity; however, they mainly provide sub-

optimum solutions due to 1) single-feature, or inadequate

texture complexity criteria, 2) simplifying the CU partitioning

decision into a CTU-level depth estimation, which limits the

decision space, or 3) oversimplification due to providing fixed

offline solutions. The proposed method in section 4 tackles

these issues by designing a feature set that models different

aspects of CU partitioning, and a complexity controller, that

considers the CU partitioning at each CU depth, leading to the

maximum decision space and hence better coding efficiency.

3. HEVC Intra Coding Process

HEVC introduces a new Coding Tree Unit (CTU) as the main

coding structure. A CTU can be as large as 64×64 pixels and

can be split into smaller Coding Units (CU) and Prediction

Units (PU) through a quadtree structure.

Fig. 1 shows an example of this structure. It can be observed

that a CTU can include CUs from 64×64 pixels down to 8×8

pixels. For intra coding, HEVC adopts 35 intra modes, which

provide an accurate texture modeling. Many algorithms used

for HEVC encoding, such as the ones used in HEVC test model

(HM) [42], find the best CTU partitioning through

hierarchically processing all possible CU depths (D0 to D3 in

Fig. 1) and choosing the best one via rate-distortion

optimization. This process is extremely heavy in terms of

computations as it includes the predictions for all possible sub-

blocks. Since this process forms the major part of the encoding

complexity, fast CU partitioning is considered to be the most

effective way to reduce or control the coding complexity [31].

Fig. 1 CTU structure and possible intra PUs

Fig. 2 CU size distribution for FourPeople, Kimono1 and Johnny

To investigate this complexity, the CU size distribution in

several video sequences has been analyzed in this research. Fig.

2 summarizes this investigation for three video sequences with

four Quantization Parameters (QPs). For Kimono1 which

includes mainly homogenous low energy texture, larger CU

sizes have a considerable contribution. FourPeople on the other

hand includes a rather detailed scene and sharp texture and is

mainly coded with smaller CUs. It can be observed that the

distribution of CU size varies very much based on the video

content. In short, it is observed that blocks with sharp edges,

high energy textures, and non-homogeneous content, are more

CU (D2)

CU (D1)

CU (D1)

CU

(D3)

CU (D2) CU (D2)

CU (D2)

CU (D2)

CU (D2)

CU

(D3)

CU

(D3)

CU

(D3)

CTU (D0)

CU (D2)

PUPU

PUPU

PU

0

10

20

30

40

50

60

70

80

90

100

QP22 QP27 QP32 QP37 QP22 QP27 QP32 QP37 QP22 QP27 QP32 QP37

D3 D2 D1 D0

FourPeople Kimono1 Johnny

C
o
nt

ri
b
ut

io
n

(%
)

 4

probable to be coded with smaller CUs.

It can also be observed that the contribution of larger CUs

increases with the increase of QP. This is expected, since higher

precision is employed with lower QP values and thus small

details can lead to a further CU split.

To reduce the complexity in a CU partitioning process, two

main decisions can be made, CU Skipping (CUS) [3], and CU

partitioning Termination (CUT) [8]. In CUS, the current depth

is found to be unsuitable and thus the current CU size is skipped

(not processed), while the algorithm continues processing the

sub-CUs. On the contrary, in CUT, the current CU is found to

be the smallest CU size that might be suitable, and thus the

process will be terminated with no further splitting.

To measure the potentials of CUS and CUT for complexity

reduction, these techniques have been performed on different

CU depths of the same three video sequences of Fig. 2, and the

results are summarized in Table 1, where b0
d and b1

d denote

time saving (equivalent to complexity reduction throughout this

paper) of CUT and CUS in depth d, respectively. It is observed

that the best complexity reduction can be achieved through the

termination (CUT) in lower CU depths. Specifically, CUT at

depth 0 (D0) leads to 85.23% and at D1 to 73.58% complexity

reduction on average. This is expected, as termination in the

current depth means that the process of all smaller CUs is

avoided. For Skipping (CUS), an additional gain can be

achieved for higher depths, due to the larger number of CUs.

CUS leads to a smaller complexity reduction (specifically 10%

and 13% for D1 and D2), since it only avoids the process of the

current CU size. Furthermore, as the table suggests, the

complexity reduction of these two techniques is almost the

same for different video sequences.

Table 1

Time saving (%) obtained via CUT and CUS at different depths

Sequence

CUT

at D0

CUS

at D0

CUT

at D1

CUS

at D1

CUT

at D2

CUS

at D2

b0
0 b1

0 b0
1 b1

1 b0
2 b1

2

FourPeople -86.5 -8.19 -74.41 -10.56 -61.17 -12.99

Johnny -84.46 -10.03 -72.52 -10.87 -58.86 -13.22

Kimono1 -84.74 -9.38 -73.8 -11.45 -61.06 -13.92

AVG -85.23 -9.2 -73.58 -10.96 -60.36 -13.38

Some important conclusions can be drawn from the

observations in Fig. 2 and Table 1: 1) The encoding complexity

can be effectively reduced through CUT and CUS. 2) HEVC

encoders (including HM) usually repeat similar coding

operations for all CTUs. Hence, the coding complexity

reduction due to CUT and CUS does not significantly depend

on the video content, and the target coding complexity can be

modeled based on a combination of these two decisions. 3) In

contrast to the coding complexity, the optimum CU size highly

depends on texture characteristics and compression ratio, e.g.

edge complexity, texture energy, texture homogeneity, and QP.

Thus, the complexity control scheme should take all these

features into account in order to achieve the best coding

efficiency.

With these observations and motivations, a novel complexity

control scheme is proposed in the next section, where a machine

learning method is employed to exploit the texture

characteristics in order to deliver the best coding efficiency

within each target complexity.

4. Proposed Method

The complexity control in this paper is done through an

adjustable CU partitioning process. The overall framework of

this method is depicted in Fig. 3. First, a feature set is designed

to measure various aspects of the texture complexity. These

features are used to train SVMs to find the probability of

splitting or terminating CUs at each depth level. Next, the

distributions of these probabilities are modeled to ascertain the

relationship between the coding complexity and coding

efficiency. The encoding complexity is also modeled based on

the percentages of skipped or terminated CUs in each depth.

Finally, the complexity control is modeled as a constrained

optimization problem, where the loss of coding efficiency is

minimized, according to the obtained distribution, while

constraining the complexity to meet the target complexity.

Throughout the paper the term “computational complexity”,

or simply “complexity”, is equivalent to and sometime for the

ease of reading is exchanged with the “encoding time”.

Whereas, the term “texture complexity” refers to the level of

details in the picture and should not be confused with the

computational complexity. The following sub-sections detail

the proposed method.

Table 2 summarizes the important notations used throughout

the paper. Scalars are denoted in plain fonts, while bold

lowercases show vectors, and bold uppercases show sets of

scalars.

4.1 Feature design for texture complexity

Appropriate features are required to perform classification

for the CU partitioning process. As a complicated context-

Fig. 3 Overall framework of the proposed method

Training

sequences

Texture

Analysis

HM encoder

T
ra

in
in

g
 d

at
a

se
t

A) FEATURE EXTRACTION

Log10 Scaling

Model

16×16
Model

32×32
Model

64×64

B) MODEL TRAINING (OFFLINE)

Probability

Modeling

Adaptive thresholding through error

minimization

Modified

HEVC Encoder

Frame level complexity control
C) COMPLEXITY AWARE ENCODING (ONLINE)

Frames
0 to t-1

Frames t to r

Coded

bitstream

Depth specific parameters (bc
d
)

SVM

5-fold cross validation

Feature

extraction

Trained

model
16×16

Trained

model

32×32

Trained

model

64×64

 5

dependent phenomenon, CU partitioning can hardly be

modeled by a single feature. However, according to the

observations in section 3, CUs with high edge complexity, high

texture energy, non-homogenous content, and low compression

ratio, are more probable to split into sub-CUs. Hence, these

criteria were used to design a feature set, which measures

different aspects leading into CU partitioning.

The feature set is designed based on filters of a Dual-Tree

Complex Wavelet Transform (DT-CWT). In our previous work

[17], we demonstrated the effectiveness of DT-CWT analysis

for intra mode decision and showed that it results from its

directional selectivity, near shift invariance, and less oscillation

around singularities [19]. Here, DT-CWT is used to design new

features for a different task than [17], which is fast CU

partitioning.

Assuming 𝜓ℎ(𝑥) and 𝜓𝑔(𝑥) to be two real wavelets, with,

h(n) and g(n) as a pair of biorthogonal filter sets, the DT-CWT

is defined as (1):

𝜓(𝑥) = 𝜓ℎ(𝑥) + 𝑗 𝜓𝑔(𝑥) (1)

Four directional sub-bands through (2) and (3) are defined,

where ϕ(.) is a low pass filter, 𝜓(.) represents the complex

conjugate of 𝜓 (.), and |.| denotes the magnitude. A low

frequency band is also defined in (4). DT-CWT applies a

subsampling (decimation) similar to most real discrete wavelet

transforms. Hence, (2)-(4) define sub-bands with half samples

in each dimension, compared to the input signal.

𝜓1(𝑥, 𝑦) = |𝜙(𝑥)𝜓(𝑦)|, 𝜓2(𝑥, 𝑦) = |𝜙(𝑥)𝜓(𝑦)| (2)

𝜓3(𝑥, 𝑦) = |𝜓(𝑥)𝜙(𝑦)|, 𝜓4(𝑥, 𝑦) = |𝜓(𝑥)𝜙(𝑦)| (3)

𝜓0(𝑥, 𝑦) = 𝜙(𝑥)𝜙(𝑦) (4)

Due to high-pass filtering in the vertical direction, 𝜓1 and 𝜓2

represent two different nearly vertical frequency bands

(equivalently horizontal bands in the pixel domain), and the

opposite is for 𝜓3 and 𝜓4. More in-depth information on DT-

CWT can be found in [19] and [17].

Assuming 𝜓𝑠(i,j) represents the element in row i and column

j of sub-band s, which is derived for a block of luma, X, the set

of features E={E1, E2, E3, E4, E5} is defined for CU partitioning.

Features E1 and E2 in the following paragraphs measure the

energy-related complexity, E3 and E4 measure the

homogeneity-related metrics, and E5 measures the quantization

which affects the compression ratio.

1) E1: Edge complexity

E1 is defined as the sum of edge energy in four directional

sub-bands, as in (5). DVARV and DVARH are the directional

variances in vertical and horizontal directions, as defined in (6).

𝜓
𝑐𝑜𝑙 𝑗

 (𝜓
𝑟𝑜𝑤 𝑗

) represents the mean of the values in column

(row) j of 𝜓 (a sub-band of X after DT-CWT), and n and m are

the number of elements of 𝜓 in each dimension.

𝐸1(𝑋) = 𝐷𝑉𝐴𝑅𝑉(𝜓1) + 𝐷𝑉𝐴𝑅𝑉(𝜓2) + 𝐷𝑉𝐴𝑅𝐻(𝜓3) +
𝐷𝑉𝐴𝑅𝐻(𝜓4) (5)

𝐷𝑉𝐴𝑅𝑉(𝜓) =
1

𝑚𝑛
∑ ∑ (𝜓(𝑖, 𝑗) − 𝜓

𝑐𝑜𝑙 𝑗
)

2
𝑚−1
𝑗=0

𝑛−1
𝑖=0 (6)

𝐷𝑉𝐴𝑅𝐻(𝜓) =
1

𝑚𝑛
∑ ∑ (𝜓(𝑖, 𝑗) − 𝜓

𝑟𝑜𝑤 𝑖
)

2
𝑚−1
𝑗=0 𝑛−1

𝑖=0

The intuition behind this is that, ideally, if a CU contains pure

vertical edges, it would be reflected in the vertical bands

(equivalent to horizontal frequency bands) as large elements

and thus a common variance will show a large energy.

However, the HEVC encoder is able to model such texture with

a vertical intra prediction, which ideally leads to a perfect

prediction and thus no splitting is required. Hence, E1 suggests

that in order to follow the HEVC behavior, for vertical bands

only the variance in the vertical direction should be considered

and similarly, for horizontal bands only the variance in

horizontal direction should be considered.

2) E2: Texture complexity

To measure the texture complexity, the effect of sharp edges

is excluded through the analysis of the low frequency band

(𝜓0), as (7). Variance of 𝜓0 represents the global energy of CU.

𝐸2(𝑋) = 𝑉𝐴𝑅(𝜓0) (7)

3) E3: Texture homogeneity

Non-uniform texture in a CU can lead to a splitting decision.

Thus, the range of texture energy in sub-blocks of the parent

Table 2

Summary of notations used in the paper

Notation Definition

𝜓(.) Dual-tree complex wavelet transform (DT-CWT)

ϕ(.) Low-pass filter

𝜓𝑠 Sub-band s of X, derived from applying DT-CWT to X

𝜓𝑠(i,j) Element (i,j) of sub-band s

X A block of luma samples

𝑋𝑏 bth sub-block of X

𝜓
𝑐𝑜𝑙 𝑗

 Mean of elements in column j of 𝜓

E Set of five features, Ei

𝒘 Vector of weights for SVM

𝜉 Slack variable for SVM

𝒙𝑖 ith features vector

𝑦𝑖 ith sample label

b Bias for SVM

𝒘̂, 𝑏̂ Trained SVM weights and bias

R Set of six resolution dependent factors, Rc
d, for different

classes and depths

𝑠𝑐,𝑖
𝑑 Classification score of class c and depth d, for sample i

𝑆𝑐
𝑑 Threshold of classification for class c and depth d

S Set of six thresholds, 𝑆𝑐
𝑑, for different

classes and depths

t Number of training frames

r-t Number of non-training frames after t training frames

φ(.) Gaussian function

Fcd(S) CDF of classification scores for class c and depth d,

using threshold S

bcd Average complexity reduction for class c in depth d

(as given in Table 1)

𝐶𝑅(S) Encoding complexity ratio using set of thresholds S

𝐶𝑅𝑅(S) Encoding complexity reduction ratio using set of thresholds S

𝐶𝑅f Measured encoding complexity ratio for frame f

𝐶𝑅T Target complexity ratio

𝐶𝑅bias Bias value to adjust the target complexity, to compensate the

complexity control error

CRa Predefined tolerable complexity control error

 6

block is measured through (8), where Xb denotes the bth sub-

block of X.

𝐸3(𝑋) = max
𝑏=1:4

(𝐸1 (𝑋𝑏)) − 𝑚𝑖𝑛
𝑏=1:4

(𝐸1 (𝑋𝑏)) (8)

4) E4: CU size efficiency

To measure the efficiency of the parent CU compared to the

sub-CUs, (9) subtracts the sum of the energies in the four sub-

CUs from the energy of the parent CU. In case of a uniform

texture, the energy of the parent CU is almost equal to the sum

of the sub-CU energies. Whereas in complex textures, these two

energies tend to be different.

𝐸4(𝑋) = 𝐸2(𝑋) − ∑ 𝐸2(𝑋𝑏)4
𝑏=1 (9)

5) E5: Compression ratio

As explained earlier through Fig. 1, the compression ratio has

an important effect on CU partitioning. To cover this aspect, the

quantizer step size as the main parameter for adjusting the

compression ratio is used, as suggested by [3]:

𝐸5 = 𝑄𝑠𝑡𝑒𝑝 = 2
𝑄𝑃−4

6 (10)

Fig. 4 Average Fisher-score for the training data set, in CU depth 0, 1 and 2

To ensure the feasibility of these features for SVM

classification, the Fisher score is used which has been reported

to be an efficient measure for SVM classification [37][43]. The

Fisher score measures the discrimination of a data set over

binary classification, using a feature. Fig. 4 compares the

proposed feature set with the ones used in some of the recent

CU partitioning schemes [3][37]. In this figure, NMSE, DCom

and SCCD are the features representing texture complexity

used in [3]. PredMode, DepthRQT, AvgDepthCTX, and SplitFlag

are encoder level information, from the current and neighboring

blocks, used in [37]. It can be observed that the proposed

features achieve the highest Fisher scores, meaning they are

more discriminative. This indicates that they can be effectively

used for SVM classification, for CU partitioning.

4.2 Adjustable CU classification using SVM

In this paper, SVM classifier is adopted to model CU

partitioning. For a CU at depth d, the ideal case is to be

classified into one of the two classes: class0 for cases that need

to be treated as a whole block (non-split), and class1for blocks

that should be split into sub-CUs. However, like many other

real-world applications, CU partitioning data is not ideally

separable [3][37]. This means that no decision boundary can be

found to classify all data instances into their correct classes. For

this reason, two main SVM approaches have been adopted by

researchers. The first approach, depicted in Fig. 5 (a), is to

classify data with a single SVM line. A variation of this

approach is used in [37] that shifts the decision line towards one

class, to favor CU splitting. The second approach, depicted in

Fig. 5 (b), is to use class specific optimization to separate the

noisy data region [3]. Doing so, the data is classified into three

classes: class0 for non-split (CUT), class1 for split (CUS), and

class2 for undecided. While the encoding of the first two classes

is accelerated, the baseline coding is adopted for the undecided

class. Moving the two hyperplanes through parameter setting,

various trade-offs can be achieved between complexity

reduction and coding efficiency. Although the latter approach

can provide flexible decision boundaries, this decision is made

at the time of training, and hence cannot provide flexibility at

the time of encoding, which is required for controlling the

complexity.

To provide this flexibility during the encoding, a third

approach is proposed here, as depicted in Fig. 5 (c). In this

approach, a single SVM is trained for the best possible

classification, similar to the first approach. Then, during

encoding, instead of a simple binary classification, the distance

of each sample from the hyperplane is measured, and an

adaptive thresholding is applied on it for classification. The

dashed lines in Fig. 5 (c) represent two hypothetical thresholds

for class0 and class1. This way a CU is classified into three

classes of split, non-split, and undecided. A large distance

between a sample and the hyperplane, indicates that the sample

can be classified into that class with high confidence. Based on

this, threshold lines farther from the hyperplane provide more

accuracy, and also less complexity reduction, since more

samples will fall into the undecided class. The important

advantage of this approach is that the thresholds for

classification can be adjusted during encoding, according to the

available processing power and the video content, which is

useful for complexity control.

(a) (b) (c)

Fig. 5 SVM classification approaches for CU partitioning a) single SVM b)

dual-SVM c) proposed adjustable SVM classification

To train the SVM, first, the training data was collected by

calculating the feature set E, for four different video sequences.

Then the training data was labeled with partitioning decisions

(ground truth) collected through encoding of these sequences,

using the HM encoder, with QP values of 22, 27, 32, and 37.

Before feeding these data into the SVM, Log10 is applied to all

features as suggested in [3], which normalizes the data for linear

classification, and then all features are scaled into the same

range of [-1,1].

To find the best SVM hyperplane, defined with weights, w,

and bias, b, for each depth level the following optimization

problem in (11) is solved. In this equation, xi ∈ℝ5, i=1,…,l, are
training vectors and y∈ℝl, are sample labels. ξi are slack

0

0.5

1

1.5

2

2.5

3

E
1

E
2

E
3

E
4

N
M

S
E

S
C

C
D

D
co

m

P
re

d
M

o
d

e

D
ep

th
R

Q
T

A
v
g
D

ep
th

C
T

X

S
p
li

tF
la

g

E
1

E
2

E
3

E
4

N
M

S
E

S
C

C
D

D
co

m

P
re

d
M

o
d

e

D
ep

th
R

Q
T

A
v
g
D

ep
th

C
T

X

S
p
li

tF
la

g

E
1

E
2

E
3

E
4

N
M

S
E

S
C

C
D

D
co

m

P
re

d
M

o
d

e

D
ep

th
R

Q
T

A
v
g
D

ep
th

C
T

X

S
p
li

tF
la

g

Proposed [3] [37] Proposed [3] [37] Proposed [3] [37]

D0 D1 D2

 7

variables for penalizing misclassifications, and C controls the

weights of the two terms of the optimization.

Solving this optimization, which is explained in details in

[44], obtains the best hyperplane which is denoted with the

weights, 𝒘̂ and bias, 𝑏̂ . Furthermore, to ensure learning

generalization, a 5-fold cross validation is performed.

{
𝑚𝑖𝑛 {

1

2
𝒘𝑇𝒘 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1 }

𝑠. 𝑡. 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑙
 (11)

After the training phase, for evaluating each testing instance

with a feature set of xi, first the distance to the hyperplane is

measured using (12). Then this score is used to find the

posterior probability for each class, c, using (13) [45]. A and B

in (13) represent the slope and the intercept respectively, see

[45] for more details. As choosing smaller or larger CU sizes

lead to different losses of coding efficiency in different

resolutions, R = {R0
0, R1

0, R0
1, R1

1, R0
2, R1

2} is used as a

resolution dependent factor to balance the probabilities towards

the CU sizes that are more suitable for each resolution, for class

c at depth d. The following sets of values have been found

experimentally for each resolution class: Class A: {1, 0.8, 1,

0.9, 1, 0.5}, class B, C and E: {1, 1, 1, 1, 1, 1}, and class D {0.1,

1, 0.3, 1, 0.7, 1}. Furthermore, due to the binary classification,

it is obvious that the probability of class0 and class1 are

complementary. Values near 1 for sc,i indicate that sample i is

far from the hyperplane and thus can be safely classified into

class c, and in the opposite class for values near zero. Whereas,

values in between (e.g. 0.5) indicate that the sample is near the

decision boundary and a classification can still be performed,

but with a lower confidence level.

𝑦̂𝑖 = 𝒘̂𝑇𝒙𝒊 + 𝑏̂ (12)

𝑠𝑐,𝑖 = 𝑅𝑐
𝑑 × 𝑃(𝑦̂𝑖 = 𝑐|𝑥𝑖) = 𝑅𝑐

𝑑 ×
1

1+exp (𝐴𝑦̂𝑖+𝐵)
 , 𝑐 = {0,1},

𝑠0,𝑖 + 𝑠1,𝑖 = 1 (13)

Finally, for each CU depth d, CU partitioning is decided

through (14). If the probability of a sample i for class0, s0,i
d, is

greater than a threshold, S0
d, CU is classified into class0

(associated with CUT). If this probability for class1, s1,i
d, is

greater than a threshold, S1
d, it is classified into class1

(associated with CUS); otherwise, it is put in class2 (meaning

undecided, leading to baseline encoding process). By properly

setting the values of S0
d and S1

d, one can reach the desired

balance between classification accuracy and complexity

reduction.

{

𝐶𝑙𝑎𝑠𝑠0: 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 (𝐶𝑈𝑇), 𝑖𝑓 𝑠0,𝑖
𝑑 ≥ 𝑆0

𝑑

𝐶𝑙𝑎𝑠𝑠1: 𝑆𝑝𝑙𝑖𝑡 (𝐶𝑈𝑆), 𝑖𝑓 𝑠1,𝑖
𝑑 ≥ 𝑆1

𝑑

𝐶𝑙𝑎𝑠𝑠2: 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑜𝑑𝑖𝑛𝑔), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14)

Fig. 6 shows the classification performance and complexity

reduction, for two video sequences, using different values of S0
d

and S1
d. Each plot shows the performance for different

thresholds on a specific depth and class, while other depths and

other classes are processed with the baseline coding method. As

expected, increasing the thresholds improves the accuracy and

reduces the complexity reduction. However, this effect depends

on the video content. For instance, it is observed that for class0

in almost all depths, the performance of ParkScene drops faster

than that of Kimono1, whereas, the reverse is true for class1.

This is explained by the rather detailed texture of ParkScene

compared to the plain texture of Kimono1. For plain textures,

(a) (b) (c)

(d) (e) (f)

Fig. 6 Classification accuracy and time saving of Kimono1 and ParkScene, for different threshold values of (a) depth0 class0 (b) depth0 class1 (c) depth1 class0

(d) depth1 class1 (e) depth2 class0 (f) depth2 class1

 8

such as Kimono1, larger CUs are more suitable, thus CUT

associated with class0 has a better performance. A similar

argument holds for CUS (class1) and detailed textures.

Choosing the right threshold value depends on the desired target

complexity as well as the video content. In the next section, a

method is presented to choose the suitable threshold values

adaptively, based on the video texture content.

4.3 Complexity control through adaptive thresholding

Based on the proposed adjustable classification method in

section 4.2, the encoding complexity (time) can be controlled,

by finding the right threshold values. While different

combinations of these values can lead to the same target

complexity, as suggested by Fig. 6, these values can differently

affect the coding quality of different video content. To maintain

quality while controlling the complexity, the distribution of the

classification score (probability), i.e. distribution of sc
d, for t

training frames (t=1 in our experiments) is modeled, and used

to adaptively find the best thresholds for the next r-t frames

(r=100 in experiments).

The bars in Fig. 7 show the distribution of classification

scores s0
d (class0) for the first frame of ParkScene, Kimono1,

and PartyScene. As expected, this distribution is different for

different depths and video contents. For instance, for

PartyScene, at all three depths, most instances have

probabilities near zero, which suggests that their processes

should not be terminated, but the current CU depth can be

skipped. This indicates a very detailed scene which should

mainly be coded with the smallest CU sizes. For Kimono1 on

the other hand, parts of depth0 and 1, and the majority of depth2

have probabilities near 1 and can thus be terminated.

Due to the varying type of these distributions for different

videos and different coding depths, a single distribution cannot

be used to effectively model all contents. Hence, a Gaussian

kernel (φ(.)) distribution, which is a non-parametric

distribution, is used to model them, as formulated in (15) [46].

Here, f is the Probability Density Function (PDF), n is the

number of data samples, σ is a bandwidth that sets the width of

each Gaussian component, which is obtained based on the data

range, and sc,i
d is the ith probability sample collected for class c

in depth d. Consequently, the Cumulative Distribution Function

(CDF) associated with this PDF can be obtained by (16).

𝑓(𝑠𝑐
𝑑) =

1

𝑛𝜎
∑ 𝜑 (

𝑠𝑐
𝑑− 𝑠𝑐,𝑖

𝑑

𝜎
) , 𝜎 = (

𝑚𝑎𝑥𝑖=1
𝑛 (𝑠𝑐,𝑖

𝑑) − 𝑚𝑖𝑛𝑖=1
𝑛 (𝑠𝑐,𝑖

𝑑)

𝑛
)𝑛

𝑖=1

(15)

𝐹𝑐
𝑑(𝑆) = 𝑃(𝑠𝑐

𝑑 ≤ 𝑆) = ∫ 𝑓(𝑠𝑐
𝑑)𝑑𝑠𝑐

𝑑𝑆

−∞
 (16)

Having Fc
d as the CDF of class c at depth d, and also having

bc
d as the contribution of class c to the complexity reduction, as

given in Table 1, the encoding complexity ratio for a given set

of thresholds, S ={S0
0, S1

0, S0
1, S1

1, S0
2, S1

2}, can be formulated

as (17) and (18). Here, 𝐶𝑅(𝑺) is the encoding complexity ratio

using S as the set of thresholds. Considering that at each CU

depth, complexity reduction is equal to the percentage of blocks

being split or terminated multiplied by their associated

complexity reduction, the total complexity reduction ratio,

CRR(S), is the sum of the complexity reductions from CUT and

CUS obtained from different CU depths.

𝐶𝑅(𝑺) =
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐸𝑛𝑐 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

𝑈𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
= 1 − 𝐶𝑅𝑅(𝑺) (17)

𝐶𝑅𝑅(𝑺) = 𝑏0
0(1 − 𝐹0

0(𝑆0
0)) + 𝑏1

0(1 − 𝐹1
0(𝑆1

0)) +

𝐹0
0(𝑆0

0) (𝑏0
1(1 − 𝐹0

1(𝑆0
1)) + 𝑏1

1(1 − 𝐹1
1(𝑆1

1))) +

𝐹0
0(𝑆0

0) 𝐹0
1(𝑆0

1) (𝑏0
2(1 − 𝐹0

2(𝑆0
2)) + 𝑏1

2(1 − 𝐹1
2(𝑆1

2))) (18)

To provide the best (possible) RD performance, the

thresholds need to be ideally close to one. In other words,

ideally CUT or CUS should be performed when the SVM

classification predicts the highest probability for them. To this

end, (19) defines Err(S) as the sum of the squared differences

of the threshold values from 1.

𝐸𝑟𝑟(𝑺) = ∑ ∑ (1 − 𝑆𝑐
𝑑)22

𝑑=0
1
𝑐=0 (19)

To obtain the best set of thresholds, S, the following

optimization problem in (20) is solved, where Err(S) is

minimized, while the encoding complexity ratio, CR(S), is

constrained to be equal to the target complexity ratio, CRT.

Since values of Sc
d represent thresholds on a probability, they

are bound to be in the range of [0,1]. Moreover, S0
d and S1

d are

thresholds for the PDFs of two complementary probability

distributions (class 0 and 1). Thus, their sum should not be less

than 1, to ensure that the samples of the two classes do not

overlap (not to be confused with the sum of probabilities for

two classes, which is less than or equal to 1).

{
𝑚𝑖𝑛{𝐸𝑟𝑟(𝑺)}

s. t. 𝐶𝑅(𝑺) = 𝐶𝑅𝑇 , 0 ≤ 𝑆𝑐
𝑑 ≤ 1, 𝑆0

𝑑 + 𝑆1
𝑑 ≥ 1, ∀𝑑

 (20)

This optimization is solved with the fast Sequential Quadratic

Programming (SQP) algorithm. The details of this algorithm

(a) (b) (c)

Fig. 7 Distribution of SVM score for class0, in (a) ParkScene, (b) Kimono1, and (c) PartyScene

 9

can be found in [47]. Solving this optimization, the set of

thresholds, S, is obtained and used for encoding of the next

frames.

4.4 Frame level complexity control

Even though the proposed method provides an efficient and

accurate complexity decision, due to imperfections in PDF

modeling, complexity modeling, optimization approximations,

and also real time variations, such as slight texture difference

between consecutive frames, and variations in the processing

power, the final encoding complexity might be slightly different

from the target complexity. This difference was measured to be

up to 3% and 4% for Kimono1 and PartyScene, respectively.

To compensate for this, a complexity control at the frame level

is often employed [8]. Section 5.3 and Fig. 10 discuss how the

frame-level complexity control strategy proposed here, reduces

the above-mentioned errors to less than 1%.

The following frame level complexity control strategy is

proposed in this paper. The achieved encoding complexity ratio

for frame f, CRf, is measured for each frame, and its distance

from the target complexity ratio is calculated as CRerr, through

(21). To narrow this distance in the next frame, a bias

complexity, CRbias, is defined and added to the target ratio. To

do so, CRerr and its corresponding CRbias from the past few

frames are stored in a table. This way CRbias for the current

frame can be interpolated from the two nearest CRerr values

from previous frames.

To provide a practical control mechanism, we allow

complexity variations up to a predefined tolerable error, CRa,

and ignore them (CRa =1% in our experiments). As depicted in

(22), only if CRerr is larger than CRa, a bias complexity, CRbias,

is calculated and added to the target complexity ratio when

finding S for the next frame (via (20)). For the first frame, where

no previous history is available, CRerr is used as CRbias. For the

following frames, first the two closest entries to the current

CRerr value are located in the table. Then the value of CRbias is

calculated from CRbias values associated with these two entries,

via linear interpolation.

𝐶𝑅𝑒𝑟𝑟 = 𝐶𝑅𝑇 − 𝐶𝑅𝑓 (21)

𝐶𝑅𝑏𝑖𝑎𝑠 = {

0, 𝑖𝑓 𝐶𝑅𝑒𝑟𝑟 < 𝐶𝑅𝑎

 𝐶𝑅𝑒𝑟𝑟 , 𝑖𝑓 𝑛𝑜 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 (𝐶𝑅𝑒𝑟𝑟1, 𝐶𝑅𝑒𝑟𝑟2), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (22)

4.5 Overall algorithm

The Algorithm in Fig. 8 sums up the proposed method of

complexity control for the HEVC intra coding. At the start of

encoding a video sequence, the first frame is passed through all

CU levels, and the classification scores (sc,i
d) are collected for

the whole frame. Based on these samples, the PDF (and thus

CDF) models for different classes and all CU depths are

updated. Then the threshold values are calculated for the next

frames, via (20). This process is repeated every r frames (r=100

in experiments), and at scene changes [31].

For non-training frames, the proposed method repeats

through the hierarchical structure of HEVC. For each CTU, at

each CU depth, the features are extracted using (5)-(10) and the

classification probabilities are obtained via (13). These

probabilities are compared with the threshold values to classify

the CU into termination, splitting, or undecided, using (14). If

terminated, the process of the current CTU ends and the best

partitioning is decided from the processed CU sizes. In case of

a skip, the current CU size is not processed, and the algorithm

continues with the next depth. If undecided, both the current CU

size and the next depth level are processed, as in the baseline

encoding algorithm.

After encoding each frame, the encoding complexity ratio is

compared to the target complexity ratio, and if needed, the

target complexity ratio is updated through addition with CRbias

via (22). If the target complexity ratio was updated, the

thresholds are updated using (20); otherwise they remain

unchanged for the next frame.

5. Experimental Results

To evaluate the performance of the proposed method, it was

implemented on top of HM test model 16.9 [42]. Video

sequences of the common test conditions [48] have been

encoded with the proposed method, and the results were

compared with those of state-of-the-art methods [4][9]. For the

subjective-driven complexity control (TCSVT_SDCC) method

[9], their implementation has been modified to support intra

coding, and was tested for the all-intra configuration. For the

complexity control of intra coding for industrial applications

method (TII_CCII) in [4], the reported results of the paper are

obtained using exactly the same testing conditions and version

of HM as ours, thus the reported results from the paper are used

here. Through all experiments, the all-intra configuration has

been adopted. Sub-bands of level 2 DT-CWT decomposition

have been used for feature extraction, as described in section

4.1, and a value of 1% has been used for CRa, as in practical

applications. In the training phase, four video sequences with

various resolutions and texture characteristics, including

ParkScene, Johnny, FourPeople, and BQMall, have been used.

A separate training set including Kimono1, FourPeople, and

Fig. 8 The final algorithm for complexity control

 Training frame or

scene change?

Next frame

Find E1-E5 for all

CUs of depth 0-2,

using (5)-(10)

Y

Collect sc
d for

d=0,1,2 and c=0,1

via (13)

Update the PDFs

and CDFs using

(15)-(16)

N

Find thresholds

via (20)

Measure CRf, update

CRbias via (22)

Update thresholds

via (20)

Obtain features

using (5)-(10)

Find sc
d
 via (13)

Compare sc
d

to threshold

values and decide the

partitioning using (14)

Next depth?

Y

N

Next CTU

 10

BQMall has been used to evaluate the coding performance of

ParkScene and Johnny. Also, ParkScene, Johnny, and Kimono1

were used for training a model to evaluate FourPeople and

BQMall, meaning the sequences included in the training set

were not evaluated with the same trained model. In the

following sections, different aspects of the proposed method are

evaluated.

5.1 Encoder performance at constant quality

To evaluate the performance of the proposed method, video

sequences were encoded with four target complexities of 80%,

60%, 40% and 20%, and compared to the 100% complexity, i.e.

the best HEVC encoding. All experiments were repeated for QP

values of 22, 27, 32, and 37, and the Bjotengaard Delta (BD)-

Rate and BD-PSNR [49] were measured.

Tables 3 to 6 summarize the coding performance and the

measured complexity ratios (CR) for each target complexity. To

compare our method with the state-of-the-art methods, these

tables also include the results of TII_CCII and TCSVT_SDCC,

and provide separate average performance of the proposed

method for the sequences reported for each competing method.

It can be observed that with smaller target complexities,

naturally the BD-Rate increases, since more operations are

pruned to meet the target complexity. For the proposed method,

Table 3

Experimental results with target complexity of 80%

Sequence Resolution class
TCSVT_SDCC [9] TII_CCII [4] Proposed

BD-Rate (%) CR (%) BD-Rate (%) CR (%) BD-Rate (%) CR (%)

PeopleOnStreet A - - 0.32 79.6 0.14 79.25

Traffic A - - - - 0.09 80.06

NebutaFestival A - - - - 0.33 80.86

SteamLocomotiveTrain A - - - - 0.22 80.18

Kimono1 B 0.05 79.42 0.03 80.21 0.04 79.67

ParkScene B 1.14 81.5 0.29 79.47 0.08 80.11

Cactus B 2.45 80.95 0.26 79.62 0.05 79.34

BasketballDrive B 0.48 81.34 0.29 79 -0.07 79.99

BQTerrace B 1.19 81.05 - - 0.07 80.05

BasketballDrill C 2.2 80.34 0.68 79.58 -0.07 80.29

PartyScene C 4.84 80.64 0.06 80.16 -0.02 80.74

BQMall C 4.68 78.99 - - -0.01 80.32

RaceHorses C 2.45 78.56 - - 0.06 80.27

BQSquare D - - 0.43 79.91 0.16 79.23

RaceHorses D - - 0.6 80.42 0.12 79.43

BlowingBubbles D - - - - 0.29 80.14

Johnny E 0.6 80.48 0.53 80.24 0.01 79.86

KristenAndSara E 1.86 78.55 0.48 79.76 -0.01 79.52

Vidyo1 E 1.61 80.3 - - -0.04 80.34

FourPeople E 2.68 81.01 - - 0.09 80.3

AVG 2.02 80.24 0.36 79.82 0.08 80

AVG_TCSVT 2.02 80.24 - - 0.01 80.06

AVG_TII - - 0.36 79.82 0.04 79.77

Table 4

Experimental results with target complexity of 60%

Sequence Resolution class
TCSVT_SDCC [9] TII_CCII [4] Proposed

BD-Rate (%) CR (%) BD-Rate (%) CR (%) BD-Rate (%) CR (%)

PeopleOnStreet A - - 2.35 60.44 1.1 60.25

Traffic A - - - - 0.66 60.37

NebutaFestival A - - - - 0.43 59.64

SteamLocomotiveTrain A - - - - 0.2 60.45

Kimono1 B 0.48 59.52 0.29 60.84 0.16 60.31

ParkScene B 2.66 60.73 1.35 60.52 0.95 59.68

Cactus B 5.24 59.64 2 60.21 0.75 60

BasketballDrive B 3.21 60.57 1.38 59.34 0.24 60.69

BQTerrace B 5.79 58.65 - - 0.2 60.95

BasketballDrill C 7.51 61.61 2.44 60.24 0.85 59.79

PartyScene C 8.32 58.8 1.83 61.31 0.58 60.22

BQMall C 10.58 59.28 - - 0.34 60.75

RaceHorses C 6.17 57.75 - - 0.74 61

BQSquare D - - 4.63 60.15 0.9 60.46

RaceHorses D - - 3.4 61.19 3.36 59.76

BlowingBubbles D - - - - 2.69 59.23

Johnny E 3.12 61.22 3.04 61.04 0.25 59.68

KristenAndSara E 3.53 60.27 3.51 60.62 0.04 59.92

Vidyo1 E 6.75 60.76 - - 0.08 60.71

FourPeople E 7.61 57.12 - - 0.38 60.64

AVG 5.46 59.69 2.38 60.54 0.74 60.23

AVG_TCSVT 5.46 59.69 - - 0.45 60.28

AVG_TII - - 2.38 60.54 0.83 60.07

 11

average BD-Rates for target complexities of 80%, 60% 40%

and 20% are 0.08%, 0.74%, 3.22%, and 11.71%, respectively.

Compared to previous works, our method gains a considerable

improvement, especially in high and middle ranges of power

quota. For instance, in 60% target complexity, the proposed

method gains 1.55% BD-Rate over TII_CCII and 5.01% over

TCSVT_SDCC. This superiority is mainly due to the multi-

feature representation of complexity and finer grained

complexity modeling of the proposed method.

Compared to TII_CCII which uses the prediction accuracy as

the only estimation of texture complexity, the proposed method

uses five different features that capture different aspects of

complexity. Consequently, the proposed method leads into a

fairer complexity allocation in different scenes. More

specifically, in scenes with both detailed and plain regions, the

single feature of TII_CCII causes over-allocation to the detailed

regions, which in turn leads to more degradation in other

regions. Such results can be observed in the tables for

BasketballDrive, Cactus, and Johnny, where the difference of

the two methods is higher than the average of sequences.

Moreover, the proposed method decides the CU partitioning at

all CU depths, which compared to the CTU level decision of

Table 5

Experimental results with target complexity of 40%

Sequence Resolution class
TCSVT_SDCC [9] TII_CCII [4] Proposed

BD-Rate (%) CR (%) BD-Rate (%) CR (%) BD-Rate (%) CR (%)

PeopleOnStreet A - - 3.62 39.67 3.41 40.38

Traffic A - - - - 3.03 39.73

NebutaFestival A - - - - 1.41 39.71

SteamLocomotiveTrain A - - - - 0.65 39.89

Kimono1 B 1.56 40.84 0.99 40.8 1.01 40.45

ParkScene B 4.69 41.22 2.76 40.12 2.05 40.64

Cactus B 9.24 41.07 4.17 39.91 2.54 39.64

BasketballDrive B 7.33 40.8 4.17 39.91 2.24 39.39

BQTerrace B 10.48 41.64 - - 2.36 39.5

BasketballDrill C 16.69 38.46 6.38 39.61 5.83 40.86

PartyScene C 11.97 40.93 5.67 41.19 5.33 39.69

BQMall C 16.24 42.29 - - 3.59 40.69

RaceHorses C 10.29 41.31 - - 2.21 39.36

BQSquare D - - 13.6 40.93 8.98 39.47

RaceHorses D - - 10.18 41.9 5.86 40.15

BlowingBubbles D - - - - 5.53 40.56

Johnny E 12.68 39.5 6.57 40.86 2.34 40.76

KristenAndSara E 14.96 41.27 7.09 40.81 2.35 39.65

Vidyo1 E 13.71 41.12 - - 2.09 40.52

FourPeople E 13.14 39.32 - - 1.66 40.25

AVG 11 40.75 5.93 40.52 3.22 40.06

AVG_TCSVT 11 40.75 - - 2.77 40.16

AVG_TII - - 5.93 40.52 3.81 40.1

Table 6

Experimental results with target complexity of 20%

Sequence Resolution class
TCSVT_SDCC [9] TII_CCII [4] Proposed

BD-Rate (%) CR (%) BD-Rate (%) CR (%) BD-Rate (%) CR (%)

PeopleOnStreet A - - 9.67 19.41 13.44 19.94

Traffic A - - - - 8.71 19.65

NebutaFestival A - - - - 3.61 20.42

SteamLocomotiveTrain A - - - - 1.32 20.19

Kimono1 B 2.63 19.55 3.3 19.27 1.93 19.24

ParkScene B 7.89 19.49 6.9 19.83 6.27 20.4

Cactus B 13.87 18.4 13.89 19.96 13.6 20.77

BasketballDrive B 16.01 19.06 13.84 19.56 11.6 19.68

BQTerrace B 15.82 21.03 - - 13.69 19.79

BasketballDrill C 29.22 19.87 26.29 22.18 21.38 19.04

PartyScene C 19.92 20.53 18.26 22.18 12.9 20.01

BQMall C 22.4 18.81 - - 20.46 19.38

RaceHorses C 14.09 18.22 - - 13.05 19.96

BQSquare D - - - - 12.95 20.63

RaceHorses D - - - - 9.23 20.83

BlowingBubbles D - - - - 7.41 20.51

Johnny E 23.89 19.71 16.78 19.56 14.85 19.39

KristenAndSara E 21.29 20.13 16.35 19.41 21.55 20.13

Vidyo1 E 17.54 19.43 - - 17.22 19.64

FourPeople E 16.74 19.17 - - 9.11 19.27

AVG 17.02 19.49 13.92 20.15 11.71 19.94

AVG_TCSVT 17.02 19.49 - - 13.66 19.74

AVG_TII - - 13.92 20.15 12.7 20.01

 12

TII_CCII (from a predefined set of decisions), provides a wider

decision space and hence more accurate decision making.

Similar argument can be made for TCSVT_SDCC, which sets

a maximum coding depth based on the visual attention.

Consequently, the quality of the salient parts of the frames is

preserved; however, the quality of other regions drops and the

total bitrate also increases.

While the proposed method yields better results than the two

mentioned works in most cases, the difference is smaller for

smaller target complexities. Ultimately for 20% complexity, the

proposed method gains a 1.22% BD-Rate over TII_CCII and

3.36% over TCSVT_SDCC, which compared to the two-digit

BD-Rates in 20% complexity, is relatively small. The reason

for this is that when only 20% of the processing power is

available, most of the baseline operations are pruned, and all

three methods need to sacrifice the coding efficiency to

guarantee the target complexity; hence, coding options are

limited. Moreover, in the case of 80% complexity, small

negative BD-Rates are observed for few sequences which might

be due to the slight change of entropy or estimation error of BD-

Rate calculation and is insignificant to make any conclusions.

The tables also report the achieved complexity ratios for all

methods. It can be observed that the proposed method

successfully delivers the target complexity ratio, with a very

negligible complexity variation. The average control error for

the proposed method is 0.00%, 0.23%, 0.06% and 0.06% for

target complexities of 80%, 60%, 40% and 20% respectively,

which is always below 1%, constrained by the value for CRa

(the tolerable complexity control error, CRa=1%). The achieved

complexity ratio is also the closest to the target complexity

among the three competing methods.

5.2 Encoder performance at constant bitrate

To further evaluate the performance of the proposed method

for video networking environments, several video sequences

were encoded within a target bitrate, under specified target

complexity ratios. Table 7 compares the performance of our

method, with HM encoder at 100% complexity ratio. It can be

observed that the proposed method delivers the target bitrate for

all target complexities, while maintaining the target complexity,

which justifies the effectiveness of this method. However, to

deliver the same bitrate within the limited complexity, the

proposed method slightly loses in terms of PSNR. This

degradation depends on the complexity level, texture

complexity and the target bitrate. Generally, the lower is the

target complexity and the higher is the target bitrate, the higher

will be the degradation. Also, in detailed scenes, the

degradation is higher. For instance, for Kimono1 with a plain

texture, the degradation is negligible and in the worst case 0.1

dB (for 20% complexity). For KristenAndSara and

BasketballDrill, this degradation is also negligible till 60%

complexity. However, in 20% complexity level, the

degradation can exceed 1 dB.

Table 7

Performance of proposed method with constant bitrate, compared to HM

encoder with 100% complexity

Sequence

Target

BR

(Kbps)

Target

Complexity

(%)

Actual BR

(Kbps)

PSNR-Y

(dB)

Actual

complexity

(%)

ΔPSNR

(dB)

Kimono1

10000

100 9999.84 38.43 100 0

80 10000.2 38.42 80.26 0

60 10000.24 38.42 60.83 0

40 9999.36 38.41 40.83 -0.02

20 10000.36 38.3 20.54 -0.13

50000

100 50007.32 43.53 100 0

80 50009 43.52 80 -0.01

60 50008.8 43.51 60.92 -0.02

40 50010.8 43.42 39.71 -0.11

20 50010.48 43.48 20.52 -0.05

Cactus

10000

100 10006.28 31.1 100 0

80 10005.84 31.1 80 0

60 10004.16 31.08 59.63 -0.02

40 10005.76 31.02 39.11 -0.07

20 10006.92 30.51 19.18 -0.58

50000

100 50005.84 37.64 100 0

80 50002.12 37.64 79.02 0

60 50001.4 37.6 59.16 -0.04

40 50003.92 37.51 39.72 -0.13

20 50010.76 37.04 20.36 -0.6

Krist&Sara 1000

100 1000.92 29.21 100 0

80 1000.92 29.21 80.12 0

60 1000.92 29.21 60.7 0

40 1000.4 29.16 39.5 -0.04

20 1001.2 28.02 20.44 -1.19

(a) (b) (c)

Fig. 9 Decoded quality and visualized partitioning decision for parts of BasketballDrive (a) 100% (original HM) (b) 60% and (c) 20% target complexities

 13

5000

100 5004.28 37.84 100 0

80 5003.2 37.83 79.03 -0.01

60 5003.24 37.76 59.24 -0.09

40 5003.68 37.69 40.42 -0.15

20 5006.4 35.67 20.95 -2.17

BasketDrill

1000

100 998.2 28.12 100 0

80 1000.96 28.14 79.77 0.02

60 1001.4 28.14 59.87 0.01

40 999.52 28.06 40.44 -0.06

20 1000.56 27.3 20.3 -0.82

5000

100 5008.04 34.79 100 0

80 4989.92 34.77 79.84 -0.02

60 5008.84 34.74 59.3 -0.05

40 5004.04 34.26 40.82 -0.53

20 5005.6 33.62 19.69 -1.17

This loss of quality is expected, since with a limited

processing power, some coding options are pruned, and since

the bitrate is targeted to remain intact, the loss is steered to the

PSNR. However, even at 20% complexity, this loss can still be

reasonably tolerated. Fig. 9 shows parts of the decoded

BasketballDrive sequence and the final partitioning decision,

when it is encoded at 100%, 60% and 20% complexity ratios. It

is observed that even though some degradations can be located

for the 20%, through comparison (e.g. degradations around the

shoes), the quality is still quite acceptable.

As for the partitioning decision, it is observed through Fig. 9

that the quality at 60% complexity is very similar to that in

100%; however, in smooth areas, some blocks of 64×64 pixels

have been skipped to achieve the target complexity. For the

20% though, most of the frames are encoded with blocks of

32×32 and 64×64 pixels. This is because, to save 80% of

complexity (nearly the maximum complexity reduction through

CU partitioning), most CTUs need to be terminated at depth 0

or 1.

5.3 Frame-level complexity analysis

In this section, the performance of the proposed method is

measured through the frames. Fig. 10 shows the encoding

complexity ratio for the first 140 frames of two videos. The first

20 frames were coded at 100% complexity, and then every 30

frames at 80%, 60%, 40% and 20% thereafter. The first frame

is always used as the training to find the threshold values for the

rest of the frames. For this reason, it is always coded with 100%

complexity. It is important to note that for the rest of the training

frames (e.g. the 100th frame, at scene change, or when the target

complexity changes), they do not need to be coded with 100%

complexity. While the features and probabilities should be

calculated for all sub-blocks, the actual intra prediction process

can use the thresholds from previous frames and thus encoding

can be done (roughly) with the same timing.

Fig. 10 shows that in all complexity levels, the encoding

complexity quickly approaches the target complexity. At the

beginning of encoding, or after changing the target complexity

ratio, the achieved complexity can be slightly far from the

target. This error is less than 3% and 4% for Kimono1 and

PartyScene, respectively. However, the frame-level controller

compensates this control error through the first few frames after

changing the target complexity. Specifically, it is observed that

after 2-3 frames, the complexity error falls below 1% (< CRa),

and thus the frame-level controller generally does not change

the thresholds and biases through the rest of the sequence.

Fig. 10 also compares the quality of constrained coding

scenario with HM encoding (100% complexity). A rather

uniform distribution of Y-PSNR is observed through the

decoded frames, which is important for the perceived quality.

For Kimono1 the PSNR remains almost the same throughout all

complexity levels. For Kimono1, at 20% complexity, the

proposed method loses only 0.02 dB PSNR compared to HM

encoding. For the more detailed PartyScene though, a small

drop of PSNR is observable when going from 60% to 40% or

from 40% to 20% complexity levels (0.22 dB and 0.61 dB

respectively). As the figure indicates, PSNR of the complexity

control method follows the same trend as HM encoding which

shows that the gradual change of PSNR in these figures is

related to the gradual change of the video content.

Fig. 10 Performance for first 140 frames of top Kimono1 and bottom

PartyScene. Both cases with QP =32

Fig. 11 Performance in presence of scene change

Scene
Change

Variation due to scene change
Resolved within 2-3 frames

 14

Finally, Fig. 11 shows the coding performance when scene

changes occur. Since there are no scene changes in the video

sequences suggested by the common test conditions [48], video

sequences have been concatenated to create two longer

sequence, with a scene change in each. As the figure suggests,

the target complexity is met throughout the whole sequence. At

the start of each new scene, the controller collects the PDFs for

the first frame of the new scene, while this frame is encoded

with the thresholds associated with the previous scene. As a

result, the target complexity is approximately met, even for this

frame. Similar to previous tests, the fluctuations at the

beginning of the new scene, becomes stable within 2-3 frames.

5.4 Comparison with complexity reduction methods

As explained in sections 1 and 2, the proposed method cannot

directly be compared to complexity reduction methods.

However, here complexity reduction of a classic SVM method

[11], our previous work [17], and a CNN-based method [34] are

compared briefly. These methods can gain 25%-58%, 31%-

38%, and 57%-66% complexity reductions respectively, while

none of them can adjust the complexity during encoding. The

proposed method on the other hand adjusts the complexity

anywhere between 100% and 20%.

5.5 Analyzing computational overhead

Although the computational overhead of the proposed method

has already been included in experimental results, it is

measured and discussed separately here, to provide a realistic

idea for hardware/software implementation of this method.

Similar to all fast decision methods, the proposed method

imposes some computational overhead. However, as the HEVC

encoding is very computationally demanding, and the proposed

feature extraction method is rather simple, the overhead is

tolerable. The overhead of the proposed feature extraction

method on single thread is ~2% of the overall running time of

HM encoding. However, as Wavelet operations can use

separable horizontal and vertical filters, they include several

parallel 1-D filtering operations which not only have moderate

complexity overhead, but they also have a great potential for

parallel processing. Using the OpenMP [50] library to

parallelize this process on only four processing cores, this

overhead is reduced to ~0.5% of the HM encoder on average.

Even considering the case of optimized encoding, e.g. 60% and

20% processing power, this overhead would be 0.89%, and

2.67% respectively, which are tolerable. It is important to note

that as HEVC encoding can benefit from hardware or software

optimizations in commercial products, similar techniques can

be applied to the proposed feature extraction unit.

6. Conclusion

In this paper, a novel SVM-based approach is presented to

flexibly control the complexity of HEVC intra coding. This

approach uses DT-CWT decomposition to design features for

CU partitioning. Then an SVM-based approach is proposed to

learn the probability of CU partitioning at each CU depth.

Finally, an adaptive thresholding technique is used to maximize

the coding efficiency within the target complexity. Extensive

experimental results confirm the performance of the proposed

method within target complexity ratios of 80% to 20%. The

achieved encoding complexity in each target complexity was

measured to be less than 1% away from the target. Also,

through fine-grain decision making at each CU depth, and high-

quality features that measure different aspects of texture

complexity, the proposed method gains better coding efficiency

compared to competing state-of-the-art methods, at all

complexity levels.

Acknowledgment

This work has been funded in part by Business Finland,

within Project IMD-4072.

References

[1] G.J. Sullivan, J. Ohm, W. Han, T. Wiegand, Overview of the High

Efficiency Video Coding, IEEE Trans. Circuits Syst. Video Technol.

22 (2012) 1649–1668.

[2] T. Wiegand, G.J. Sullivan, G. Bjontegaard, A. Luthra, Overview of the

H.264/AVC video coding standard, IEEE Trans. Circuits Syst. Video

Technol. 13 (2003) 560–576.

[3] X. Liu, Y. Li, D. Liu, P. Wang, L.T. Yang, An Adaptive CU Size

Decision Algorithm for HEVC Intra Prediction based on Complexity

Classification using Machine Learning, IEEE Trans. Circuits Syst.

Video Technol. 29 (2019) 144–155.

[4] J. Zhang, S.T.W. Kwong, T. Zhao, H.H.S. Ip, Complexity Control in

the HEVC Intracoding for Industrial Video Applications, IEEE Trans.

Ind. Informatics. 15 (2019) 1437–1449.

[5] G. Correa, P. Assuncao, L. Agostini, L. da Silva Cruz, Complexity

control of high efficiency video encoders for power-constrained

devices, IEEE Trans. Consum. Electron. 57 (2011) 1866–1874.

[6] M. Abdallah, C. Griwodz, K.-T. Chen, G. Simon, P.-C. Wang, C.-H.

Hsu, Delay-Sensitive Video Computing in the Cloud, ACM Trans.

Multimed. Comput. Commun. Appl. 14 (2018) 1–29.

[7] S. Schmidt, S. Zadtootaghaj, S. Moller, Towards the delay sensitivity

of games: There is more than genres, in: Int. Conf. Qual. Multimed.

Exp., IEEE, 2017: pp. 1–6.

[8] A. Jimenez-Moreno, E. Martinez-Enriquez, F. Diaz-de-Maria,

Complexity Control Based on a Fast Coding Unit Decision Method in

the HEVC Video Coding Standard, IEEE Trans. Multimed. 18 (2016)

563–575.

[9] X. Deng, M. Xu, L. Jiang, X. Sun, Z. Wang, Subjective-Driven

Complexity Control Approach for HEVC, IEEE Trans. Circuits Syst.

Video Technol. 26 (2016) 91–106.

[10] G. Correa, P.A. Assuncao, L.V. Agostini, L.A. da Silva Cruz, Pareto-

Based Method for High Efficiency Video Coding With Limited

Encoding Time, IEEE Trans. Circuits Syst. Video Technol. 26 (2016)

1734–1745.

[11] T. Zhang, M.T. Sun, D. Zhao, W. Gao, Fast Intra-Mode and CU Size

Decision for HEVC, IEEE Trans. Circuits Syst. Video Technol. 27

(2017) 1714–1726.

[12] R. Rodriguez-Sanchez, M.T. Alonso, J.L. Martinez, R. Mayo, E.S.

Quintana-Orti, Time and energy modeling of an intra only HEVC

encoder, in: Vis. Commun. Image Process., IEEE, 2015: pp. 1–4.

[13] O. Alaoui-Fdili, Y. Fakhri, P. Corlay, F.-X. Coudoux, D. Aboutajdine,

Energy consumption analysis and modelling of a H.264/AVC intra-

only based encoder dedicated to WVSNs, in: IEEE Int. Conf. Image

Process., IEEE, 2014: pp. 1189–1193.

[14] Apple ProRes, Apple White Pap. (2018) 1–28. https://apple.com/final-

cut-pro/docs/Apple_ProRes_White_Paper.pdf.

[15] J. Lei, D. Li, Z. Pan, Z. Sun, S. Kwong, C. Hou, Fast Intra Prediction

Based on Content Property Analysis for Low Complexity HEVC-

Based Screen Content Coding, IEEE Trans. Broadcast. 63 (2017) 48–

58.

[16] L. Xu, S. Kwong, Y. Zhang, D. Zhao, Low-Complexity Encoder

Framework for Window-Level Rate Control Optimization, IEEE

Trans. Ind. Electron. 60 (2013) 1850–1858.

[17] F. Pakdaman, M.-R. Hashemi, M. Ghanbari, Fast and efficient intra

mode decision for HEVC, based on dual-tree complex wavelet,

Multimed. Tools Appl. 76 (2017) 9891–9906.

[18] E. Hosseini, F. Pakdaman, M.R. Hashemi, M. Ghanbari, A

 15

computationally scalable fast intra coding scheme for HEVC video

encoder, Multimed. Tools Appl. (2018) 1–24.

[19] I.W. Selesnick, R.G. Baraniuk, N.C. Kingsbury, The dual-tree complex

wavelet transform, IEEE Signal Process. Mag. 22 (2005) 123–151.

[20] L.L. Wang, W.C. Siu, Novel adaptive algorithm for intra prediction

with compromised modes skipping and signaling processes in hevc,

IEEE Trans. Circuits Syst. Video Technol. 23 (2013) 1686–1694.

[21] N. Hu, E.H. Yang, Fast Mode Selection for HEVC Intra-Frame Coding

with Entropy Coding Refinement Based on a Transparent Composite

Model, IEEE Trans. Circuits Syst. Video Technol. 25 (2015) 1521–

1532.

[22] J. Gu, M. Tang, J. Wen, Y. Han, Adaptive Intra Candidate Selection

With Early Depth Decision for Fast Intra Prediction in HEVC, IEEE

Signal Process. Lett. 25 (2018) 159–163.

[23] M. Jamali, S. Coulombe, Fast HEVC Intra Mode Decision Based on

RDO Cost Prediction, IEEE Trans. Broadcast. (2018) 1–14.

[24] M.U.K. Khan, M. Shafique, J. Henkel, Fast hierarchical intra angular

mode selection for high efficiency video coding, in: IEEE Int. Conf.

Image Process., 2014: pp. 3681–3685.

[25] M. Usman, K. Khan, M. Shafique, J. Henkel, An adaptive complexity

reduction scheme with fast prediction unit decision for HEVC intra

encoding, in: Image Process. (ICIP), 2013 20th IEEE Int. Conf., 2013:

pp. 1578–1582.

[26] B. Min, R.C.C. Cheung, A fast CU size decision algorithm for the

HEVC intra encoder, IEEE Trans. Circuits Syst. Video Technol. 25

(2015) 892–896.

[27] S. Cho, M. Kim, Fast CU splitting and pruning for suboptimal CU

partitioning in HEVC intra coding, IEEE Trans. Circuits Syst. Video

Technol. 23 (2013) 1555–1564.

[28] K. Lim, J. Lee, S. Kim, S. Lee, Fast PU Skip and Split Termination

Algorithm for HEVC Intra Prediction, IEEE Trans. Circuits Syst.

Video Technol. 25 (2015) 1335–1346.

[29] Z. Li, Y. Zhao, Z. Dai, K. Rogeany, Y. Cen, Z. Xiao, W. Yang, A fast

CU partition method based on CU depth spatial correlation and RD

cost characteristics for HEVC intra coding, Signal Process. Image

Commun. 75 (2019) 141–146.

[30] W. Liao, Z. Chen, A fast CU partition and mode decision algorithm for

HEVC intra coding, Signal Process. Image Commun. 67 (2018) 140–

148.

[31] H.S. Kim, R.H. Park, Fast CU partitioning algorithm for HEVC using

an online-learning-based Bayesian decision rule, IEEE Trans. Circuits

Syst. Video Technol. 26 (2016) 130–138.

[32] L. Shen, Z. Zhang, Z. Liu, Effective CU size decision for HEVC

intracoding, IEEE Trans. Image Process. 23 (2014) 4232–4241.

[33] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, D. Wang, CU partition mode

decision for HEVC hardwired intra encoder using convolution neural

network, IEEE Trans. Image Process. 25 (2016) 5088–5103.

[34] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang, Z. Guan, Reducing

Complexity of HEVC: A Deep Learning Approach, IEEE Trans. Image

Process. 27 (2018) 5044–5059.

[35] D. Lee, J. Jeong, Fast CU size decision algorithm using machine

learning for HEVC intra coding, Signal Process. Image Commun. 62

(2018) 33–41.

[36] L. Zhu, Y. Zhang, Z. Pan, R. Wang, S. Kwong, Z. Peng, Binary and

multi-class learning based low complexity optimization for HEVC

encoding, IEEE Trans. Broadcast. 63 (2017) 547–561.

[37] M. Grellert, B. Zatt, S. Bampi, L.A. da S. Cruz, Fast Coding Unit

Partition Decision for HEVC Using Support Vector Machines, IEEE

Trans. Circuits Syst. Video Technol. 29 (2019) 1741–1753.

[38] G. Correa, P. Assuncao, L.A. da Silva Cruz, L. Agostini, Adaptive

coding tree for complexity control of high efficiency video encoders,

in: 2012 Pict. Coding Symp., IEEE, 2012: pp. 425–428.

[39] W. Penny, I. Machado, M. Porto, L. Agostini, B. Zatt, Pareto-based

energy control for the HEVC encoder, in: 2016 IEEE Int. Conf. Image

Process., IEEE, 2016: pp. 814–818.

[40] X. Deng, M. Xu, C. Li, Hierarchical Complexity Control of HEVC for

Live Video Encoding, IEEE Access. 4 (2016) 7014–7027.

[41] J. Zhang, S. Kwong, T. Zhao, Z. Pan, CTU-Level Complexity Control

for High Efficiency Video Coding, IEEE Trans. Multimed. 20 (2018)

29–44.

[42] C. Rosewarne, B. Bross, M. Naccari, K. Sharman., G. Sullivan, High

efficiency video coding (HEVC) test model 16 (HM16) improved

encoder description update 5, JCTVC-W1002. (2016).

[43] Y.-W. Chen, C.-J. Lin, Combining SVMs with Various Feature

Selection Strategies, in: Featur. Extr., Springer Berlin Heidelberg,

Berlin, Heidelberg, 2006: pp. 315–324.

[44] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector

machines, ACM Trans. Intell. Syst. Technol. 2 (2011) 1–27.

[45] T.-F. Wu, C.-J. Lin, R.C. Weng, Probability Estimates for Multi-class

Classification by Pairwise Coupling, J. Mach. Learn. Res. 5 (2004)

975–1005.

[46] A.W. Bowman, A. Azzalini, Applied smoothing techniques for data

analysis : the kernel approach with S-Plus illustrations, Oxford

University Press Inc, 1997.

[47] M.J. Powell, A fast algorithm for nonlinearly constrained optimization

calculations, in: Numer. Anal., Springer, Berlin, Heidelberg, 1978: pp.

144–157.

[48] F. Bossen, Common Test Conditions and Software Reference

Configurations, JCTVC-H1100. (2012).

[49] G. Bjontegaard, Calculation of Average PSNR Differences Between

RD Curves, 13th Video Coding Expert. Gr. Meet. (2001).

[50] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon,

Parallel Programming in OpenMP, Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2001.

