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ABSTRACT
To survive in dynamic markets and meet the changing requirements, manufacturing companies 
must rapidly design new production systems and reconfigure existing ones. The current designer- 
centric search of feasible resources from various catalogues is a time-consuming and laborious 
process, which limits the consideration of many different alternative resource solutions. This article 
presents the implementation of an automatic capability matchmaking approach and software, 
which searches through resource catalogues to find feasible resources and resource combinations 
for the processing requirements of the product. The approach is based on formal ontology-based 
descriptions of both products and resources and the semantic rules used to find the matches. The 
article focuses on these rules implemented with SPIN rule language. They relate to 1) inferring and 
asserting parameters of combined capabilities of combined resources and 2) comparison of the 
product characteristics against the capability parameters of the resource (combination). The 
presented case study proves that the matchmaking system can find feasible matches. However, 
a human designer must validate the result when making the final resource selection. The approach 
should speed up the system design and reconfiguration planning and allow more alternative 
solutions be considered, compared with traditional manual design approaches.
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1. Introduction

Smart manufacturing calls for responsive production 
systems as well as design and planning approaches 
that allow companies to operate efficiently in a highly 
dynamic environment. This dynamism arises from the 
ever-increasing requirements of the highly flexible 
production of individualized products in small 
batches (Bortolini, Gabriele Galizia, and Mora 2018; 
Lu and Xu 2018). Presently, system design and recon
figuration planning are still human-driven laborious 
activities. They require the designer to browse various 
paper and online catalogues, searching for suitable 
resources. The designers must complete several tasks 
during this search and resource selection process. 
First, they compare the product characteristics against 
the technical properties of the available resources. 
Second, they analyse the emerging combined cap
abilities of the resources that will be connected. 
Third, they make sure that these resources have com
patible interfaces. This search and filtering process is 
called here as ‘capability matchmaking’.

Since there is no standard, vendor neutral way to 
describe the resources in these catalogues, the com
parison of alternatives from various resource provi
ders may be difficult. Depending on the system 
complexity, the number of required resources might 
number in the thousands. The cumbersome and slow 
search and filtering activity limits the number of 
resource alternatives that may be considered. This 
limit means that better solutions might be uninten
tionally neglected as the designer favours their former 
solutions, which might be sub-optimal – if even that – 
for the given task. Thus, the system design and recon
figuration planning should be supported by new 
intelligent decision support tools that reduce the 
time and effort needed for these design and planning 
activities.

A key enabler of smart manufacturing is the virtua
lization of physical assets of the manufacturing, 
namely, resources and products (Lu and Xu 2018; 
Thoben, Wiesner, and Wuest 2017). In the context of 
capability matchmaking, such information models 
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should allow resource vendors to describe the func
tionality of their offerings comparably and system 
designers to make a match between product require
ments and resource capabilities. Formal ontologies 
and other Semantic Web technologies have become 
popular solutions for addressing resource virtualiza
tion and representing other heterogeneous produc
tion-related information (Jardim-Goncalves, Grilo, and 
Popplewell 2016; Leitão, Walter Colombo, and 
Karnouskos 2016). For instance, the recent review by 
Yahya, Breslin, and Intizar Ali (2021) showed that sev
eral ontologies have been developed recently to sup
port smart manufacturing and the Industry 4.0 
paradigm. In the context of distributed intelligent 
systems, such as agent-based or service-oriented sys
tems, ontologies play a key role, as they provide 
a shared, machine-understandable vocabulary for 
communication of domain knowledge among dis
persed actors (Leitão, Colombo, and Karnouskos 
2016).

An inherent activity during the resource search and 
selection is the generation of resource combinations 
that, together, match the processing requirements of 
the product. The capabilities of the production systems 
originate from the tool and device level. Especially in 
the case of modular and reconfigurable plug-and- 
produce production systems, these devices can be 
organized into various configurations. Thus, the formal 
resource models and the capability matchmaking sys
tem should automatically infer the combined capabil
ity information based on the capability description of 
these individual devices. Pure OWL (Ontology Web 
Language) does not provide solutions for making 
such inferences and assertions of new instances and 
their property values (The OWL Working Group 2004; 
Meditskos et al. 2013). Therefore, the OWL-based 
ontology needs to be enriched with semantic rules 
and supported with external software for enabling 
the automatic inference of capability and resource 
combination information.

In their earlier works, the authors have presented 
a Manufacturing Resource Capability Ontology 
(MaRCO), which is a unique OWL-based information 
model for describing the capabilities of manufactur
ing resources (Järvenpää et al. 2019a). This article will 
describe the concept and implementation of the cap
ability matchmaking approach and software. It aims 
to support production system design and reconfi
guration planning by providing automatic means for 

finding alternative system configuration suggestions 
to product requirements from large search spaces. 
While earlier publications concentrated on describing 
the information models or the matchmaking 
approach in general, the specific contribution of this 
article is the detailed explanation of the usage of SPIN 
(SPARQL Inferencing Notation) rules during match
making. These rules 1) automatically infer and assert 
the parameters of combined capabilities based on the 
parameters of the lower-level capabilities originating 
from individual resources, and 2) compare the pro
duct requirements with this inferred information to 
find resources matching with the product 
requirements.

The article is organized as follows. First, Section 2 
will discuss the background and limitations of the 
related works to highlight the contributions of this 
work. Section 3 will introduce the overall capability 
matchmaking concept and related OWL-based infor
mation models. In Section 4, the matchmaking pro
cess will be introduced and continued by detailed 
examples of the rules used during matchmaking. 
Then Section 5 describes the implementation of the 
capability matchmaking software. The approach will 
be validated by illustrating the matchmaking steps 
and results from a case study with real industrial 
data in Section 6. Section 7 analyses and discusses 
the results and impact of the presented approach, 
and finally, Section 8 concludes the article.

2. Background and limitations of existing 
approaches

Extensive literature reviews on capability and 
resource models appeared in the authors’ earlier 
research works (Järvenpää et al. 2019a) and will not 
be repeated here. Köcher et al. (2020) summarized 
that the earlier research approaches on capability or 
skill descriptions fell into two categories: first, to con
tributions focusing on formal models, such as ontol
ogies to create descriptions that can be used as 
a shared vocabulary or for reasoning purposes; 
and second, to works, which focus on the plug-and- 
produce production environment, where skills are 
used to encapsulate machine functionalities and are 
directly used to control the execution of the pro
cesses. The work presented in this article falls into 
the first category. The execution of the processes is 
out of its scope.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 129



In the context of Cloud Manufacturing, researchers 
have proposed many semantic ontology-based 
descriptions for the service description (Luo et al. 
2013; Yuan, Deng, and Chaovalitwongse 2017; Lu, 
Wang, and Xu 2016). Lu and Xu (2017) also presented 
a service composition and mapping approach, as well 
as Jena rules which compared the service request 
with the offering. However, although several techni
ques for service description and resource virtualiza
tion have appeared in the literature, the current 
research has shown more conceptual solutions than 
practical implementations of the capability or service 
matchmaking. Furthermore, based on the earlier 
review by the authors (Järvenpää et al. 2019a), the 
existing resource and capability models do not con
sider the combined capabilities of multiple co- 
operating resources. Consequently, they do not 
include mechanisms for automatic reasoning of the 
combined capability parameters.

In order to perform capability matchmaking, also 
the product requirements need a formal description. 
The skill-based approach has been utilized in many 
studies to define both the processing requirements of 
a product and functionalities provided by the 
resources. These works, for instance (Backhaus and 
Reinhart 2017; Pfrommer et al. 2014; Bengel 2009) 
have often attempted to enable autonomous setup 
and execution of production tasks. The same skill 
model has been used for both product and resource 
representation. This allows simple matchmaking 
between the product requirements and resource 
offerings but forces the designer to represent the 
products in terms of specific skills it requires, rather 
than describing the product characteristics and pro
cesses in a resource-independent way. In this work 
the goal is to avoid such resource-centric representa
tion of product requirements and separate the pro
duct description from the resource description.

The literature discusses several works utilizing 
semantic rules to extend the reasoning abilities of 
pure OWL-ontologies. Ameri and McArthur (2014) 
presented an idea comparable to capability match
making. In their work, SWRL (Semantic Web Rule 
Language) was utilized for intelligent supplier discov
ery based on the services they offer. With SWRL, they 
were able to infer new capabilities that were not 
explicitly stated in the original service description 
and to classify concepts based on the given property 
values. However, SWRL cannot assert new instances 

or property values to the ontology (Horrocks et al. 
2004; Meditskos et al. 2013), which is a key function
ality needed by the capability matchmaking pursued 
in this article. For instance, in the work of Ameri and 
McArthur (2014), inferring new capabilities meant 
that the capabilities were predefined instances in 
the ontology, and the rule inference established new 
relations between the supplier and these capability 
instances but did not create new named individuals.

SWRL has also been widely applied in other research 
works. For instance, Li et al. (2018) presented an ontol
ogy-based product design framework for manufactur
ability verification and knowledge reuse. They used 
SWRL to create inference and constraint rules between 
the design and manufacturing knowledge to provide 
design recommendations for the product designers 
during the design process. Sun, Ma, and Gao (2009) 
applied SWRL rules to store experts’ design experi
ences, product configuration and variant rules as well 
as constraints, in order to provide routine design assis
tance for product configuration. Cao et al. (2019) used 
SWRL rules to identify defects in parts to support 
machine condition monitoring.

Efthymiou et al. (2015) presented an approach that 
utilizes inference rules written in Jena Rule language. 
Also, it uses similarity measurements that facilitate the 
manufacturing system design by automatically identi
fying past similar projects, which can then be the basis 
for the design of the new production line. Pintzos, 
Matsas, and Chryssolouris (2012) presented an ontol
ogy representation for manufacturing performance 
indicators, which included calculation formulas for the 
value of specific performance indicators based on the 
value of other indicators. However, they didn’t specify 
the implementation method for the rules, and it 
remains unclear if the calculation takes place through 
automatic inference or by specific software. Maleki 
et al. (2018) presented an ontology-based framework 
that integrates sensing systems and machine compo
nents to allow machine health monitoring and notifi
cations when maintenance actions are needed. Their 
approach does not infer new knowledge to the ontol
ogy by rules, but the services are based on external 
software querying the ontology with SPARQL.

SPIN (SPARQL Inferencing Notation) is a semantic 
rule language that, among other features, provides 
the functionality of asserting new named individuals. 
Meditskos et al. (2013) used SPIN to perform temporal 
reasoning with context information and to assert new 
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named individuals in an application related to recogni
tion of human activity. Aarnio, Vyatkin, and Hastbacka 
(2016) targeted industrial maintenance support. They 
utilized SPIN for situation rules in context modelling. 
Doulaverakis et al. (2017) presented an approach to 
model and execute clinical practice guidelines (CPG) 
using OWL-ontologies and SPIN rules. They demon
strated it through CPGs for arterial hypertension man
agement. Other research publications utilizing SPIN are 
rare, and the authors have not found any application of 
SPIN comparable to the work presented in this article.

As a summary, the work presented in this article 
aims to overcome the limitations of existing 
approaches and will provide the following novel con
tributions: 1) formal information model and semantic 
rules, which allow automatic inference of combined 
capability information; 2) the ability to present the 
product requirements independently from the 
resource capabilities, but to find matches between 
these two; and 3) a detailed illustration on how to 
utilize SPIN in the context of capability matchmaking, 
to automatically infer and assert new knowledge from 
the manually asserted information.

3. Capability matchmaking and involved 
information models

The following subsections will introduce the aims and 
scope of capability matchmaking in general. Next is 
the introduction to the underlying OWL-based 

information models used during matchmaking. 
Ontology Engineering Methodology (Sure, Staab, 
and Studer 2009) has been applied to construct 
these ontologies and the development process, 
including a detailed requirements definition, has 
been described in (Järvenpää et al. 2019a). This sec
tion will summarize the main points about the con
cept and models to provide a solid background for 
the reader to understand the remaining parts of this 
article.

3.1. Aims and scope of capability matchmaking

This work builds on the integrated product-process- 
system framework, which has been widely used in 
production- and manufacturing-related research 
(Rampersad 1994; Cutting-Decelle et al. 2007; Tolio 
et al. 2010), and extends it with the concept of cap
ability (see Figure 1). Capability matchmaking aims to 
support the production system designers and recon
figuration planners by automating the search for fea
sible resources and resource combinations to 
particular product requirements from large resource 
spaces. The approach is implemented as a software 
component, which external design and planning sys
tems can utilize as a service. The primary goal of 
matchmaking is to provide these systems with infor
mation about resources or resource combinations 
that can perform a specific process step. The detailed 
definition of the requirements for matchmaking from 

Figure 1. Basic idea of capability matchmaking.
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the information model perspective and the ontology 
development process appeared in (Järvenpää et al. 
2019a).

As opposed to other related works, this work aims 
to avoid resource-centric representation of product 
requirements and clearly separate the product 
description from the resource description. The 
required processes are organized in a taxonomic hier
archy, implying that the product requirements may 
be defined in different levels of detail. If the definition 
of a specific processing method is not critical from the 
product perspective, the process designer does not 
have to specify it exactly. For example, the designer 
can simply define that the joining of two parts 
requires a riveting process. The selection of the actual 
method of riveting can be left until after the potential 
results have been found by the matchmaking process. 
The method could be e.g. impact, radial or orbital 
riveting. Several existing process descriptions and 
standards were used as a basis for the development 
of the process taxonomy and associated capabilities, 
including the German standard DIN 8580, the EUPASS 
processes (Lohse, Maraldo, and Barata 2008) and the 
production taxonomy used in the CO2PE!-initiative 
(CO2PE! 2010).

The matchmaking system supports both greenfield 
(new system design) and brownfield (reconfiguration) 
scenarios (Järvenpää et al. 2019b). Figure 1 represents 
the conceptual idea of capability matchmaking. On 
the left-hand side, there is the product requirement 
description, containing the relevant product charac
teristics and processing requirements and on the 
right-hand side, there are the resource catalogues, 
containing the capability and interface descriptions 
of resources included in the matchmaking search 
space. Both the product requirements and the 
resource capabilities are presented as formal OWL- 
based ontologies, which will be introduced in the 
following section.

The matchmaking procedure and software have 
been developed to partly automate the design process 
traditionally done by human designer. Thus, it should 
mimic the manual process. In the greenfield scenario, 
the matchmaking system searches for suitable 
resources through the given resource catalogue(s) 
and creates resource combinations that can perform 
the process step requested by the product. Each 
resource has its own capabilities, and when the 
resources are combined with other resources, 

combined capabilities emerge. These combined cap
abilities and their parameters need to be inferred 
based on the capability descriptions of the single 
resources involved in the combination. While creating 
these resource combinations, the matchmaking sys
tem checks the compatibility of the resource inter
faces. Finally, it checks that the parameters of the 
capabilities match the parametric requirements of 
the requested process steps. In the brownfield sce
nario, the capabilities existing on the current layout 
are matched against the product requirements in 
a similar fashion.

3.2. Involved information models

As stated earlier, capability matchmaking relies on 
formal ontological descriptions of product require
ments and capabilities of manufacturing resources. 
The developed OWL-based (Web Ontology 
Language) information models have been introduced 
in detail in (Järvenpää et al. 2019a, 2018b, 2017, 
2018a; Siltala, Järvenpää, and Lanz 2018). The import 
structure of these models appears in Figure 2, and the 
models are available to download from (Järvenpää, 
Siltala, and Hylli 2019).

The Matchmaking Ontology Model, importing the 
Product and Resource Models (see Figure 2), is used to 
perform the capability matchmaking. Figure 3 pre
sents a limited view of the Matchmaking Ontology. 
It shows its main classes and relations, including those 
inherited from the imported models. The boxes in the 
figure represent the classes of the ontology, while the 
inheritance arrows indicate the subclass hierarchies. 
The association arrows specify object properties, 
which model the relations between the instances 
belonging to those classes. In addition, datatype 
properties characterize the classes, but these are not 
in the figure. Similar colours indicate the model 
(Figure 2) to which the classes (boxes in Figure 3) 
belong. For instance, ‘Device’ is a class in the 
Resource Model. Also, the prefix in the class name 
indicates the namespace (i.e. the model) from where 
it originates (e.g. ‘rm’ refers to the Resource Model, as 
shown in Figure 2). The same prefixes are used when 
classes are referred to in the following text and rule 
examples.

The Resource Model ontology (Järvenpää et al. 
2019a) describes the available manufacturing 
resources and their characteristics, such as interfaces 
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and capabilities. It can also describe systems, that are 
aggregated from multiple resources. Class rm:Device 
(Figure 3) is used for modelling the machine and 
tooling resources. Human workers belong to another 
class that is not in the figure. The focus here is on the 
class descriptions for classes rm:DeviceBlueprint, rm: 
IndividualDevice, and rm:DeviceCombination. These 
classes link the capabilities to both catalogue devices 
and actual devices existing on the factory floor. 
Therefore, they form the very core of the developed 
model. They enable the emergence of the combined 
capabilities by modelling the combinations of the 

devices. The Resource Model imports two other ontol
ogies, namely the Resource Interface Model and 
Capability Model. The Resource Interface Model 
(Siltala, Järvenpää, and Lanz 2019b) is used to give 
a formal description of the resource interfaces. With 
this information it is possible to identify whether the 
interfaces of multiple resources are compatible and if 
the resources can be connected from their interface 
perspective.

The resource functionalities and their related 
parameters are formalised by the Capability Model 
(Järvenpää et al. 2019a). This model defines simple 

Figure 2. Information models used for capability matchmaking. (Modified from Järvenpää et al. (2019b) by adding the ontology 
namespace acronym to the brackets.).

Figure 3. Simplified view of the matchmaking ontology. (Modified from Järvenpää et al. (2019b) by adding namespace definition in 
front of the class and property names and reorganizing the elements to improve readability).
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and combined capabilities and formalises their rela
tionships through the cm:hasInputCapability object 
property. As an example, a robot can have the 
simple capability ‘Moving’, and similarly, a gripper 
can have simple capabilities ‘Grasping’ and 
‘Releasing’. If a robot and gripper are combined, 
they can have combined capabilities ‘Pick and 
Place’ and ‘Transporting’. The instances of cm: 
Capability are linked to the instances of rm:Device 
through the rm:hasCapability object property. The 
formalised relations between the simple and com
bined capabilities allow computer programs to form 
potential resource combinations having specific 
combined capabilities by utilizing information quer
ied from the ontology by SPARQL. SPARQL is 
a semantic query language for databases, able to 
retrieve and manipulate data stored in Resource 
Description Framework (RDF) format and OWL 
ontologies (W3C SPARQL Working Group 2013). 
The following section will discuss the rules that 
allow automatic inference of the parameters of the 
combined capabilities. The rm:hasCalculatedCapability 
object property links this combined capability infor
mation to the specific device combination.

The Capability Model imports another ontology, 
called the Process Taxonomy Model. This model cate
gorizes various manufacturing and assembly processes 
in a hierarchical structure. It is a pure taxonomy, with
out any properties. In the Capability Model, the differ
ent sub-classes of cm:Capability are linked to the sub- 
classes of pt:ProcessTaxonomyElement according to 
what kind of process they can provide. This linkage is 
implemented as a direct sub-class (is-a) relationship 
between the classes of cm:Capability and pt: 
ProcessTaxonomyElement. For instance, cm:Screwing 
is a sub-class of the pt:Screwing. Due to the class 
inheritance, instances of capability cm:Screwing, will 
also become instances of process pt:Fastening. Thus, 
the process taxonomy links the capabilities to the 
upper levels in the process hierarchy, e.g. the ‘Milling’ 
capability will be automatically classified as a ‘Material 
Removing’ process in the taxonomy.

The primary purpose of the Product Model ontol
ogy is to represent the processing requirements of 
the product in a manner by which these requirements 
can be matched against the resource capabilities. The 
Product Model was introduced in detail in (Järvenpää 
et al. 2018b). The Product Model describes the parts 
and their basic characteristics, subassemblies and 

their contained parts, the processes of the parts and 
subassemblies, the capability requirements related to 
the processes, and the sequence of the processes. The 
Product Model imports the same Process Taxonomy 
as the Capability Model, and it models the product’s 
processing requirements as instances of the pt: 
ProcessTaxonomyElement subclasses. For example, if 
the product requires a screwing process, this require
ment is modelled as an instance of the taxonomy 
class pt:Screwing. This link is established through 
the pm:requiresProcessCapability object property 
between the instances of the pm:Process class and 
the instances of the pt:ProcessTaxonomyElement 
class. In the Product Model, the parametric require
ments related to the processes are modelled as prop
erty restrictions of the pt:ProcessTaxonomyElement 
subclasses. An example of such a parameter may be 
the minimum torque required for screwing.

Since the publication of (Järvenpää et al. 2018b), 
the Product Model has added a few new properties to 
support the matchmaking software implementation. 
For instance, the model includes properties to indi
cate whether automatic matchmaking should be per
formed. The target is to allow full description of the 
product to be used, without forcing the matchmaking 
for each process step, thus lightening the matchmak
ing process and the associated matchmaking result. 
For instance, if it is predefined that the process will be 
performed manually, it can be omitted from the auto
matic matchmaking. There are two ways to limit 
matchmaking. First, the pt:ProcessTaxonomyElement 
class has a property pm:matchmakingRequired, which 
gets Boolean values. This property will indicate 
whether automatic matchmaking should be per
formed. Second, if a pm:Activity instance does not 
refer anywhere by the pm:requiresProcessCapability 
relation, then that instance will be naturally left out 
from the matchmaking. The first option provides 
a more dynamic process to change the input data 
for various matchmaking scenarios by just changing 
the Boolean value, while the second option requires 
less modelling effort, but is less flexible for different 
matchmaking scenarios.

In addition to importing the two ontologies, Product 
Model and Resource Model, the Matchmaking 
Ontology includes a few additional object properties, 
as illustrated in Figure 3. These properties are mmo: 
hasCapabilityMatch and mmo:canBeImplementedWith, 
which link the capability requirements (instances of 
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pt:ProcessTaxonomyElement subclasses) with the cm: 
Capability instances. This linkage establishes dynami
cally when the capability matchmaking rules infer new 
knowledge to find the matches. The mmo: 
hasCapabilityMatch indicates that the capability 
matches the requirement on the capability concept 
name level, while the mmo:canBeImplementedWith 
indicates a detailed match, i.e. that the capability para
meters also match with the requirement.

4. Capability matchmaking procedure and rules

In addition to the information models, matchmaking 
requires several rules. The development of the rule 
base began by defining what kind of rules are needed 
in various phases of the system design process. 
Manufacturing engineering domain knowledge, 
including manufacturing engineering handbooks, 
resource provider datasheets, and discussions with 
manufacturing engineers were used to define the 
content of the rules. Even though a case-based 
approach was used in the development and testing 
of these rules, the rules were defined to be generally 
applicable to all cases and not just for the specific use 
cases in testing and validation. The following subsec
tions will introduce the overall matchmaking proce
dure and the semantic rules used during 
matchmaking.

4.1. Matchmaking procedure

The overall capability matchmaking procedure con
sists of multiple steps and viewpoints, which require 
specific rules to perform the needed reasoning pro
cess. Figure 4 illustrates these viewpoints and rules. 
First, matchmaking must generate new resource 

combinations for the different capability require
ments. Second, matchmaking needs to check whether 
the capability of the resource matches with the 
requirements of the product. When new resource 
combinations are generated, the matchmaking must 
consider the capability of the combined resources 
and whether the resources can be combined from 
their interface perspective. Combined capability 
rules calculate the parameters of the combined cap
abilities based on the capabilities of the resources 
involved in the combination. The interface match
making rules check the compatibility of the interfaces 
between the intended combined resources. Finally, 
when the resource combinations have been created 
and their combined capabilities have been calculated, 
these combined capabilities need to be compared to 
the characteristics and requirements of the product. 
For this purpose, capability matchmaking rules have 
been defined. Furthermore, as the design systems 
consuming the matchmaking results benefit from 
getting some information about the performance of 
the found resource combinations, i.e. a roughly esti
mated duration of the process step with the sug
gested match, simple rules for performance 
evaluation have also been defined. This evaluation is 
not at the core of the capability matchmaking 
approach, and therefore, it is marked with dashed 
lines in Figure 4. The authors consider the perfor
mance evaluation to be the task of the design and 
planning system. It is dependent on, e.g. the layout of 
the system and spatial relations and limitations 
between the resources, which cannot be analysed in 
detail with the presented ontologies.

Figure 5 gives an overview of the matchmaking 
procedure, including both the brownfield (reconfi
guration) and greenfield (new system design) 

Figure 4. Matchmaking viewpoints and rules.
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viewpoints. As an input, the matchmaking needs to 
receive the search space used for the matchmaking. It 
includes the Product Requirement Description (PRD) 
and the Resource Pool. The Resource Pool consists of 
the selected resources from the resource catalogue(s) 
that the system designer wants to include in the 
matchmaking search space. The input differs, 
depending on the scenario. In the brownfield sce
nario, the existing layout description is also an input. 
The System Layout consists of the description of the 
existing resource combinations of the current system, 
modelled in MaRCO format. External design and plan
ning tools, which want to utilize the matchmaking 
service, will provide these inputs for matchmaking.

The capability matching algorithm takes the cap
ability requirements (i.e. pm:Activity instances) and 
matches them with the existing capabilities on the 
current layout or creates new resource combinations 
that match with the requirements. The matchmaking 
result is provided as an output. It includes the IDs of 

the resources and resource combinations matching 
with each process step defined in the PRD. The output 
is independent of the scenario. This output is pro
vided to the external design tools, where the designer 
will utilize it to make decisions about the resource 
selection and system configuration based on their 
valued criteria. The matchmaking procedure can be 
run in an iterative manner. Thus, several matchmaking 
rounds can be run with different inputs, depending 
on the design strategy.

4.2. Rule implementation

The combined capabilities and their parameters 
should be automatically defined and saved to the 
Resource Model ontology without the need to manu
ally fill in the parameters. Similarly, the link between 
requirements and matching capabilities should be 
automatically inferred and asserted within the 
Matchmaking ontology. These tasks require semantic 

Figure 5. Capability matchmaking procedure on a high level.
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rules. As pure OWL does not provide solutions for 
making required inference and assertions of new 
instances and their property values, nor to perform 
complex arithmetic operations (Meditskos et al. 2013), 
SPIN (SPARQL Inferencing Notation) is used for rule 
implementation. SPIN is a W3C member submission 
that was, at the time of the rule implementation, the 
de-facto industry standard to represent SPARQL rules 
and constraints on Semantic Web models (SPIN 
Working Group 2017). In research the more com
monly used SWRL (Semantic Web Rule Language) 
was not considered appropriate, as it does not sup
port the assertion of new named individuals. 
Furthermore, as discussed by Bassiliades (2018), 
despite its longevity, SWRL had never achieved 
a W3C recommendation status.

SPIN allows to link SPARQL queries directly to the 
class definitions in the ontology. These queries cap
ture constraints and rules which formalise the 
expected behaviour of those classes. The extra infor
mation created by these rules can be inferred by 
a SPIN compatible reasoner tool, such as SPIN API, 
and then be used in further SPARQL query execution 
(Knublauch 2016). Consequently, these SPARQL 
queries can be organized in an object-oriented man
ner, which makes the rules accessible and easy to 
maintain, extend, and share. With SPIN the rules can 
be represented and stored as SPARQL queries as 
a natural part of ontology knowledge in the same 
knowledge base (SPIN Working Group 2017). This is 
a clear advantage over SWRL, which stores rules as 
a flat list. In this work the combined capability rules 
are stored directly into the Resource Model ontology, 
while the matchmaking rules are stored in the 
Matchmaking Ontology, which make them commonly 
shared across the users.

SPIN offers the ability to calculate property 
values based on other property values. It can also 
be used to isolate a set of rules to be executed 
under certain conditions, e.g. to support incremen
tal reasoning, to initialize certain values when 
a resource is first created, or to drive interactive 
applications. Furthermore, SPIN features a useful 
metamodeling capability, which lets users specify 
their own reusable SPARQL query templates and 
functions. The templates are parameterized 
SPARQL queries that can be customized by 

instantiating them with the argument values of 
a new context. The SPIN function is a special kind 
of template query that returns only one result 
value, and it can be used as a part of another 
SPARQL query. Functions can be chained, meaning 
that functions may utilize other functions and so on 
(SPIN Working Group 2017).

The rules needed during the matchmaking proce
dure relate to the creation of the new resource com
binations and comparing the product requirements 
to the resource capabilities. These rules were first 
defined in an informal textual format based on 
domain expert knowledge. After that, they were 
implemented in SPIN with the help of the TopBraid 
Composer Semantic Web editor. Many rules share 
similarities, and thus the metamodeling features of 
SPIN, i.e. functions and templates, were utilised. The 
following subsections discuss these rules in detail, 
including examples of the usage of templates and 
functions.

4.2.1. Resource combination generation
As visualised by Figure 4, when two or more resources 
are to be combined, two aspects need to be consid
ered: 1) the combined capability that they can pro
duce and 2) the compatibility of the resource 
interfaces. This section will only discuss the rules 
used for inferring the combined capability para
meters, because the interface compatibility check is 
described in detail in other publications (Siltala, 
Järvenpää, and Lanz 2019b; 2019a; 2021).

There are different ways how the combined cap
ability parameters are formed, for example (Järvenpää 
et al. 2018a):

● Directly inheriting a parameter value from one of 
the involved lower-level capabilities. For 
instance, in the case of ‘Transporting’ combined 
capability, formed by ‘Moving’ and 
‘FingerGrasping’ capabilities, the value of the 
dof (degrees of freedom) property is the same as 
the value of dof of the ‘Moving’ capability.

● Calculating the parameter value by arithmetic 
operations from two or more involved lower- 
level capabilities. For instance, the value of the 
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payload property of ‘Transporting’ capability is 
the value of the payload property of the 
‘Moving’ capability subtracted by the value of 
the mass property of the gripper or the value of 
the payload property of the ‘FingerGrasping’ cap
ability. The smaller value dominates.

● Defining the parameter value by comparing the 
values of the involved lower-level capabilities 
and selecting the maximum or minimum value, 
depending on the specific capability parameter. 
For example, the itemSize_max property, which is 
used for multiple capabilities, gets its value from 
the capability that has the lowest value.

The ‘lower-level capability’ refers to capabilities 
that are on a lower level in the part_of hierarchy. 
The term ‘simple capability’ is not appropriate 
because the combined capabilities can be composed 
of other combined capabilities, not just simple ones.

The combined capability rules are linked to the 
related cm:CombinedCapability subclasses in the 
Resource Model ontology. For each parameter of 
a combined capability, there is a SPIN rule that links 
to that specific capability class in the ontology. 
Common for all these rules is that they must retrieve 
at least one of the lower-level capabilities that pro
duced the combined capability. In addition, they 
must retrieve one of the parameters of that lower- 
level capability. For retrieving the specific lower-level 
capability instance of interest, a SPIN function, 
getPartCapability, was created (see Rule example 1). 
The function can be used in another SPARQL query 
by giving specific values to its two arguments (?arg1, 
which refers to the instance of cm:CombinedCapability 
and ?arg2, which refers to the capability class, i.e. any 
subclass of cm:Capability) from outside, as will be later 
shown in the Rule example 2. Line #3 retrieves the ? 
deviceCombination, which is linked to the given com
bined capability instance (?arg1) through the rm: 
hasCalculatedCapability object property. Line #4 
retrieves a device (?device), which is linked to the ? 
deviceCombination. Line #5 retrieves the ?blueprint of 
the specific device (?device), and line #6 retrieves the 
capability instance (?capability) associated with that ? 
blueprint. Finally, the SELECT clause (row #1) returns 

the found capability instance (?capability) if it is of 
a type defined by the ?arg2 (row #7). For more informa
tion about SPARQL and SPIN syntax, please refer to 
Knublauch (2013) and the W3C SPARQL Working 
Group (2013).

SPIN Rule example 1: Function for retrieving the 
capability instance of interest – getPartCapability 
(arguments arg1 and arg2 highlighted) 

#1 SELECT ?capability
#2 WHERE {
#3 ?deviceCombination rm:hasCalculatedCapability ?arg1.
#4 ?deviceCombination rm: 

hasIndividualDeviceOrDeviceCombination)* ?device .
#5 ?device rm:hasDeviceBlueprint ?blueprint .
#6 ?blueprint rm:hasCapability ?capability .
#7 ?capability a ?arg2 .
#8 }

As described earlier, the first and easiest way to 
infer and assert a combined capability parameter is to 
inherit it from a lower-level capability instance. For 
example, the dof of ‘Transporting’ is the same as the 
dof of ‘Moving’, or the torque_max of ‘Screwing’ is the 
same as the torque_max of the ‘SpinningTool’ cap
ability. In both cases, the logic of the rule is the 
same, but just the type of the capability and the 
parameter are different. For this kind of situation, 
a SPIN template called inheritCapabilityParameter 
(see Rule example 2) has been created. A template 
has a body consisting of a SPARQL query and argu
ments (?capability, ?parameter), whose values will be 
replaced in the query. The argument ?capability refers 
to the capability class (subclass of cm:Capability) from 
which the value of the parameter, referred by the 
argument ?parameter, will be inherited.

CONSTRUCT and WHERE clauses are used for those 
rules which infer and assert new parameter values to 
the ontology. The CONSTRUCT defines a set of triple 
patterns to add to the underlying resource model 
upon the successful pattern matching of the triple 
patterns in the WHERE clause. The CONSTRUCT part 
(lines #1–3) defines how the query results are utilized 
to modify the ontology: give the parameter value to 
the combined capability instance. On line #5, we use 
the getPartCapability function, defined in Rule exam
ple 1, to retrieve the instance of the given lower-level 
capability (?capability) related to the combined cap
ability instance (?this). Line #6 checks whether the 
function returned a result. If not, nothing happens. 
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On line #7, the result is assigned to a different variable 
(?resourceCapability). Using the ?result variable directly 
would lead to issues because, if it is unbound after the 
function call, it can bind to other capability instances. 
Finally, line #8 gets the value (?value) of the desired 
parameter (?parameter) from the lower-level capabil
ity instance, which is then saved by the CONSTRUCT 
clause to the higher-level capability instance (?this) 
(lines #1–3).

SPIN Rule example 2: Template for inheriting the 
capability parameter – inheritCapabilityParameter 
(arguments ?parameter and ?capability highlighted) 

#1 CONSTRUCT {
#2 ?this ?parameter ?value .
#3 }
#4 WHERE {
#5 BIND (:getPartCapability(?this, ?capability) AS ?result) .
#6 FILTER bound(?result) .
#7 BIND (?result AS ?resourceCapability) .
#8 ?resourceCapability ?parameter ?value .
#9 }

The actual combined capability rule is then an 
instance of this template, in which the arguments 
are given concrete values. For example, when the 
inheritCapabilityParameter is used to create the 
combined capability parameter rule for defining 
the torque_max of ‘Screwing’, the argument ?cap
ability is replaced with ‘cm:SpinningTool’ and ? 
parameter with ‘cm:torque_max’. The SPIN rule 
engine, which executes the rules, will use the 
template and create the rule with given concrete 
values for the arguments.

Some rules are identical for different capabilities. 
For example, the payload rules of ‘Transporting’ and 
‘PickAndPlace’ are identical, and therefore, the same 
SPIN rule (Rule example 3) can be copied and applied 
in each case. The CONSTRUCT part (lines #1–3) creates 
and assigns the payload value (?payload), determined 
by the rule, to the combined capability instance (? 
this). Line #5 utilizes the getPartCapability function to 
retrieve the instance of the ‘cm:FingerGrasping’ cap
ability involved with the combined capability instance 
(?this). Line #7 assigns the result to the variable ? 
fingerGrasping. Line #8 retrieves the device instance, 
which is associated to the given capability ? 
fingerGrasping, and line #9 retrieves its basic resource 
information. Lines #10 and #11 retrieve the mass and 
payload of the gripper. Lines #12–15 similarly retrieve 
the payload of the ‘Moving’ capability. Line #16 sub
tracts the gripper’s mass from the payload of the 

‘Moving’ capability and binds it to the variable ?alter
native. Finally, line #17 compares the result from the 
previous line to the gripper payload and defines the 
lesser value as the ?payload of the combined capabil
ity ?this.

SPIN Rule example 3: Calculating the payload of 
‘Transporting’ and ‘PickAndPlace’ capabilities 

#1 CONSTRUCT {
#2 ?this cm:payload ?payload .
#3 }
#4 WHERE {
#5 BIND (:getPartCapability(?this, cm:FingerGrasping) AS ?result) .
#6 FILTER bound(?result) .
#7 BIND (?result AS ?fingerGrasping) .
#8 ?gripperDevice rm:hasCapability ?fingerGrasping .
#9 ?gripperDevice rm:hasBasicResourceInformation ?info .
#10 ?info cm:mass ?mass .
#11 ?fingerGrasping cm:payload ?graspingPayload .
#12 BIND (:getPartCapability(?this, cm:Moving) AS ?result2).
#13 FILTER bound(?result2) .
#14 BIND (?result2 AS ?moving) .
#15 ?moving cm:payload ?movingPayload .
#16 BIND ((?movingPayload – ?mass) AS ?alternative) .
#17 BIND (IF((?alternative > ?graspingPayload), ?graspingPayload, ? 

alternative) AS ?payload) .
#18 }

The reasoner saves the inferred parameter values to 
the same ontology file with the initial instances. The 
value is linked to the rm:DeviceCombination instance 
by the cm:hasCalculatedCapability object property. This 
property is a subproperty of cm:hasCapability. Thus, 
when the matchmaking tries to search for devices with 
specific capability, the device combinations also linked 
to that capability by the cm:hasCalculatedCapability 
property are taken into consideration.

4.2.2. Product requirement – resource capability 
matchmaking
The Matchmaking Ontology contains SPIN rules for 
matchmaking, and properties and classes used by the 
rules. The capability matchmaking rules are attached 
to the subclasses of the pt:ProcessTaxonomyElement. 
These rules are executed in the matchmaking process 
after the combined capabilities and their parameters 
have been calculated for involved device combina
tions with the rules discussed in the previous section.

During the product requirement – resource capabil
ity matchmaking, there are rules for the following 
purposes:

(1) Find capability name-level matches
(2) Find parameter-level matches
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These rules and their associated properties and 
classes are described in more detail below. Since 
these rules must be executed in the order listed 
above, they are associated with the ontology classes 
by different sub-properties of spin:rule, defined in the 
Matchmaking Ontology. The execution priority of 
these rules is then determined with the spin: 
nextRuleproperty property.

4.2.2.1. Find capability name-level matches. The 
first part of the matchmaking process is to find 
the resources that, on the capability name-level, 
could be used to perform the product manufac
turing activity. The pm:Activity instances in the 
product requirement description refer to specific 
instances of the pt:ProcessTaxonomyElement sub
classes. The capability instances defined in the 
Resource Model are also instances of specific sub
classes of the pt:ProcessTaxonomyElement (see 
Figure 3). This relation creates a direct conceptual 
match between the product requirements and 
the resource capabilities. Thus, this first step of 
capability matchmaking is performed with one 
SPIN rule (Rule example 4), which is associated 
with the mmo:capabilityNameLevelRule property 
to the pt:ProcessTaxonomyElement class. For the 
given instance of pt:ProcessTaxonomyElement or, 
in this case, one of its subclasses (e.g. pt: 
Screwing), the rule will find all capabilities that 
implement the process i.e. its subclasses (lines 
#4–9). Then all instances of that cm:Capability 
are connected to the pt: 
ProcessTaxonomyElement instance with the 
mmo:hasCapabilityMatch property (lines #1–3). 
However, the Matchmaking software runs this 
rule only to the pt:ProcessTaxonomyElement 
instances which have the value ‘true’ for the 
pm:matchmakingRequired property.

SPIN Rule example 4: Finding match with cap
ability name level 

#1 CONSTRUCT {
#2 ?this:hasCapabilityMatch ?instance .
#3 }
#4 WHERE {
#5 ?this a ?class .
#6 ?capability (rdfs:subClassOf)+ ?class .
#7 ?capability (rdfs:subClassOf)* cm:Capability .
#8 ?instance a ?capability .
#9 }

The subsumption-based reasoning, related to var
ious alternative processing methods, is handled by 
the Process Taxonomy. The reasoning ability of OWL 
allows a direct inference to be made that each 
instance saved to a specific cm:Capability class is 
also an instance of the pt:ProcessTaxonomyElement 
class, which was defined as the parent class of that 
specific capability class. Thus, if the product requires 
a riveting process, any resource providing riveting 
capabilities (e.g. orbital or radial) can be suggested 
as a match.

4.2.2.2. Find parameter-level matches. After the 
capability concept name-level matches are found, 
the actual matches can be determined by comparing 
the parameters of the manufacturing activity require
ments and the parameters of the capability. This pro
cess uses various matchmaking rules attached to the 
pm:ProcessTaxonomyElement subclasses with the 
mmo:implementRule property. Each rule gets the cm: 
Capability instance connected to the pt: 
ProcesTaxonomyElement instance with the mmo: 
hasCapabilityMatch property and makes process- 
and capability-specific parameter comparisons. If 
they match, the cm:Capability instance is further con
nected to the pt:ProcessTaxonomyElement instance 
with the mmo:canBeImplementedWith property.

Since there are many similarities between the 
rules, many common comparisons have been 
implemented as SPIN functions that can be reused 
in multiple rules. These include, for example, com
parisons of shape and size or torque. An example 
of a function for checking whether the torque 
range of the provided capability matches with the 
torque required by the product is presented in 
Rule example 5. It takes two arguments as inputs: 
?capability, which refers to an instance of cm: 
Capability, and ?taxonomy, which refers to an 
instance of pt:ProcessTaxonomyElement. This func
tion is utilized e.g. by the matchmaking rule for 
Screwing, illustrated in Rule example 6 (on row 
#12). Some of the capabilities may have only cm: 
torque_max defined, and some of the product 
requirements may define either exact, maximum, 
or minimum values for required torque. Therefore, 
the rule also needs to include these as optional 
parameters, as shown in lines #3–14. If the para
meter does not exist, it is ignored by the ‘not 
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bound’” part of the filter (#15–18), and the filter 
passes. If the parameter exists, it must comply with 
the rest of the filter conditions.

SPIN Rule example 5: Function for matching 
with torque parameters – torqueMatch (arguments 
?capability and ?taxonomy highlighted) 

#1 ASK WHERE {
#2 ?capability cm:torque_max ?max .
#3 OPTIONAL {
#4 ?capability cm:torque_min ?min .
#5 } .
#6 OPTIONAL {
#7 ?taxonomy pm:requiredTorque_max ?requiredMax .
#8 } .
#9 OPTIONAL {
#10 ?taxonomy pm:requiredTorque_exact ?requiredExact .
#11 } .
#12 OPTIONAL {
#13 ?taxonomy pm:requiredTorque_min ?requiredMin .
#14 } .
#15 FILTER ((!bound(?requiredExact)) || (?requiredExact ≤ ?max)) .
#16 FILTER (((!bound(?requiredExact)) || (!bound(?min))) || (? 

requiredExact ≥ ?min)) .
#17 FILTER (((!bound(?requiredMax)) || (!bound(?min))) || (? 

requiredMax ≥ ?min)) .
#18 FILTER ((!bound(?requiredMin)) || (?requiredMin ≤ ?max)) .
#19 }

Rule example 6 shows an example rule that 
finds capabilities that match with the required 
screwing process. The rule compares the type 
and size of the screw and the torque require
ments with the parameters of the available cap
abilities (lines #10–12) and connects the 
requirement instance (?this) with the capability 
instance (?instance) by the mmo: 
canBeImplementedWith property (lines #1–3).

SPIN Rule example 6: Matchmaking for 
Screwing process parameters. 

#1 CONSTRUCT {
#2 ?this mmo:canBeImplementedWith ?instance .
#3 }
#4 WHERE {
#5 ?this pm:screwType ?requiredType .
#6 ?this pm:screwDiameter ?diameter .
#7 ?this mmo:hasCapabilityMatch ?instance .
#8 ?instance cm:screwType ?instanceType .
#9 ?instance cm:screwSize ?size .
#10 FILTER (?requiredType = ?instanceType) .
#11 FILTER (?diameter = ?size) .
#12 FILTER mmo:torqueMatch(?instance, ?this) .
#13 }

The rules attached to the classes follow similar 
inheritance like other properties. Thus, the rules 
attached to a class apply also to the subclasses of 
this class. For instance, the rules defined for pt: 

Feeding are also used on the subclasses of pt: 
Feeding. In addition, it is possible to add specific 
rules to the lower-level classes.

5. Software architecture for the matchmaking

The implementation of the Capability Matchmaking 
Software follows the principles of client-server 
architecture and the common layered model of 
service-oriented architectures. The layered architec
ture is illustrated in Figure 6 and presented earlier 
in (Järvenpää et al. 2019b). The main layers are the 
data model layer, data layer, business layer, and 
web service layer. The purpose here is not to pre
sent a novel software architecture, but to introduce 
the full architecture that makes available the novel 
functionalities provided by the modules on the 
business and data model layer. Thus, this section 
focuses on the activities taking place on the busi
ness layer, where the actual matchmaking activities 
occur, i.e. the internal functionality of the match
making system.

The data model layer contains the ontology mod
els discussed earlier, while the data layer represents 
the actual data, i.e. instances used during matchmak
ing. The web service layer provides a back-end appli
cation, Matchmaking Service, which can be called by 
other design and planning software through the 
RESTful Web Service interface. As RESTful API supports 
both XML and JSON, the interaction format for inputs 
and outputs can be selected based on the require
ments of the client software. The data model for 
inputs and outputs has been optimized for XML- 
structure. The web service and associated software 
modules are deployed and hosted on an Apache 
Tomcat server.

As discussed in (Järvenpää et al. 2019b), from the 
viewpoint of the matchmaking reasoning activities, 
the most important software packages in the archi
tecture are the Capability Query Library (CQL) and the 
Matchmaker. The Matchmaker takes care of the man
agement, sequencing, and execution of the match
making process for the incoming requests. Its 
constructor receives Product Model and Resource 
Model instance ontologies, between which the 
matchmaking should be performed. It also receives 
the matchmaking request, which determines the pro
cess steps that should be matched for and, in case 
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there is an existing system layout, whether it should 
be kept fixed (i.e. if new combination possibilities can 
be created from the resources in the layout or not). It 
creates resource combination possibilities, calculates 
combined capabilities and parameters for the 
resource combinations, checks the interface compat
ibility of the resources, executes matchmaking rules, 
and constructs the matchmaking result from the rule 
inferences. The Matchmaker calls the execution of the 
SPIN rules through the Capability Query Library (CQL).

The Capability Query Library (CQL) is a Java- 
based application that offers a Java API for other 
applications to work with the developed MaRCO 
model. In capability matchmaking, it is responsible 

for running the rules needed for the resource com
bination generation and combined capability calcu
lation. The CQL uses the open source Jena semantic 
web framework (Apache Software Foundation 2017) 
and Pellet reasoner (Sirin et al. 2007) for working 
with the ontology models. For the execution of the 
SPIN rules, the SPIN API is used, since Jena or Pellet 
themselves do not support SPIN. SPIN API is an 
open-source library that builds on top of Jena 
(Knublauch 2016).

Figure 7 illustrates the functionality of the CQL and 
Matchmaker during a matchmaking scenario. The 
defined combined capability SPIN rules, including the 
templates and functions used by the rules, are included 

Figure 6. Overall software architecture of the capability matchmaking system, modified from Järvenpää et al. (2019b).
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in a separate Parameter Rules ontology used by the 
CQL. This ontology imports the Resource Model ontol
ogy. When defining the combined capabilities for 
resources, CQL reads in the Resource Model instances 
ontology and calculates the combined capabilities of 
the device combinations on a concept name level. This 
combined capability information is saved to 
a temporary ontology inside CQL (Combinations 
Ontology in Figure 7), which imports the original 
Resource Model instances ontology and the Parameter 
Rules ontology. The combined capability parameters are 
then inferred by SPIN API for the combinations, and this 
information is saved to the Combinations Ontology. If 
new device combination possibilities are required, CQL 
will generate combination possibilities for the required 
capabilities. The process can be given an external func
tion for filtering the created combinations based on 
their interface compatibility. This same process is then 
used to calculate the combined capabilities and their 
parameters for these combination possibilities, and this 
information is then saved again to the temporary ontol

ogy inside CQL. This generated ontology file will then be 
used by the Matchmaker for capability matchmaking. 
The Matchmaker executes the matchmaking rules and 
builds the matchmaking result by making various 
SPARQL queries to the ontology containing the informa
tion inferred by the rules and related product and 
resource information.

6. Use case and validation

This section illustrates an example use case and walks 
through the matchmaking process. The use case initi
ally appeared in (Järvenpää et al. 2021). Secondly, the 
validation of the matchmaking results is discussed, 
followed by a discussion of the performance of the 
matchmaking system.

6.1. Example scenario of capability matchmaking

In the example scenario, the production system 
designer designs a new production system for 
a switch valve assembly process and utilizes the 

Figure 7. Functionality of the CQL and matchmaking process module during capability matchmaking.
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capability matchmaking system to find feasible 
resources or resource combinations. Figure 8 demon
strates the inputs provided by the client system to the 
matchmaking system, i.e. the matchmaking request. 
Figure 9 demonstrates the outputs received by the 
client system from the matchmaking system, i.e. the 
matchmaking result. The figures show real test data 
from running the matchmaking system through its 
web service interface.

First, the request contains a reference to the pro
duct requirement description (PRD) of the switch 
valve product. This PRD contains all the process 
steps and their requirements included in the valve 
assembly process, but for illustration, the focus here 

is on one step, ‘stick subassembly screwing’ (green 
arrow). It requires the screwing of an M6 hexagon 
socket head screw to the end torque between 13 
and 17 Nm. The PRD is graphically illustrated in the 
top left corner of Figure 8, while the lower part illus
trates the actual request message sent by the client 
through the web service interface in XML format. 
Figure 10 illustrates the requirement data modelled 
with the Protégé ontology editor in the Product 
Model format. It contains the description of the 
parts and assemblies, the processes, and their related 
process capability requirements, including the 

Figure 8. Example of matchmaking request.
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parameters. The figure highlights the requirement 
data related to the specific process step ‘stick subas
sembly screwing’.

Another input needed by the matchmaking system 
is the description of the resources included in the 
matchmaking search space (i.e. the resource pool). 
This is illustrated with the resource pool and blue 
arrow in Figure 8. Figure 11 represents the example 
capability and interface information of a few sample 
resources included in the sample resource pool. The 
interface information contains the interface standard, 
interface gender, and interface parameters with asso
ciated values. The interfaces must be compatible to 
allow for a connection. For example, IF2 of UR10 and 
IF1 of FingerGripper are connectable: they follow the 
same standard (Schunk_SWS), and their parameters 
are the same. Interface gender is the opposite (M)ale 

and (F)emale, so these interfaces are connectable. 
Thus, these resources are connectable. Interface con
cept and matchmaking are discussed in more detail in 
(Siltala, Järvenpää, and Lanz 2019b; Järvenpää et al. 
2019a; Siltala, Järvenpää, and Lanz 2021).

After the request has been sent through the 
designer’s client system, matchmaking is per
formed for each process step. Figure 12 represents 
the internal reasoning process of the matchmaking 
system for dealing with the specific process step 
requiring the ‘Screwing’ capability. Only a subset of 
the complete test data is shown. First, matchmak
ing creates new resource combinations from the 
available resource pool for the required capability 
at the concept name level, i.e. resource combina
tions that could provide the ‘Screwing’ capability. 
The available resources in the resource pool are 

Figure 9. Example of matchmaking result.
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illustrated in the left of the figure, while the first 
phase presents four different combinations (i–iv) 
created by the matchmaking software, matching 
on the capability name level. While creating these 
combinations, matchmaking software will simulta
neously check that the interfaces of the resources 
are compatible, and the resources can be physi
cally connected. In the case of the resource 

combination (ii) in the second phase, the tool bit 
does not fit into the screw driver’s tool interface, 
so the incompatible combination from the inter
face perspective is filtered out.

Figures 13 and 14 show sample resource combina
tions created during the matchmaking process for the 
‘Screwing’ and ‘PickAndPlace’ capabilities in more 
detail. The figures include information about the 

Figure 10. Example PRD modelled with Protégé ontology editor.

Figure 11. Sample instances in the resource pool.
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Figure 12. Internal reasoning procedure of the matchmaking system.

Figure 13. Created resource combination for screwing and its inferred capability parameters.

Figure 14. Created resource combination for PickAndPlace and its inferred capability parameters.
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combined capability parameters inferred during the 
matchmaking process based on the combined cap
ability SPIN rules. In the case of the ‘PickAndPlace’ 
Rule example 3 has been used. Figure 13 corresponds 
to the combination (iv) in Figure 12.

In the final phase, the matchmaking SPIN rules com
pare the parametric requirements of the product with 
the capability parameters. In the example case, Rule 
example 6 checks that the screw type and screw head 
size match the tool type and size and that the required 
torque is within the provided range. Unsuitable 
resources and resource combinations are again filtered 
out. In this case, the combination possibility (i) (in phase 
three of Figure 12) does not provide enough torque, 
and it is eliminated from this result. In the end, only two 
resource combinations remain as feasible suggestions 
in the matchmaking result. The alternative (iv) is the 
same and appears as a selected result in Figure 9.

6.2. Validation

For validating the functionality of the Matchmaking 
software and rules, various search spaces were used 
to run several matchmaking scenarios for six case 
products. The case products included three valve pro
ducts from the process and agriculture sector, 
a manifold and pitch trimmer from the aviation sector 
and a simple demonstration product with a disc stack
ing process from an industrial laboratory environ
ment. Sixty-seven (67) resources were included in 
the resource pool, including robots, grippers, screw
drivers, tool bits, presses, fixtures, and human opera
tors. The software validation and testing process and 
their results appeared in (Järvenpää et al. 2019b).

During the validation each match suggested by the 
matchmaking result was manually reviewed to check 
if the suggested resource combinations for each pro
cess step were valid. Based on the information models 
and defined rules, certain results were expected, and 

the validity of the matchmaking results was evaluated 
based on those expectations. If the matchmaking 
system produced expected results, these results 
were considered valid. Thus, the limitations of the 
models and rules were considered and the expecta
tions were set according to those limitations. In other 
words, the authors tested that the rules and software 
behaved as expected but acknowledged the fact that 
such rules and information representations are always 
simplifications of reality. For example, matchmaking 
does not consider all constraints deriving from factory 
facilities and other manufacturing resources. If the 
product requirement description requested the 
‘Fixturing’ process, the matchmaking system could 
suggest a press that has an integrated fixture, 
because in addition to ‘Pressing’ it also has 
‘Fixturing’ capability, as requested by the product. In 
this case the result is valid according to the set criteria, 
but still not feasible in practice. Therefore, the sugges
tions provided by the matchmaking system must be 
evaluated by the designer, to make sure of their fea
sibility for the specific application and context.

In addition to the full Matchmaking software test
ing, the rules were tested right after their implemen
tation in TopBraid Composer, a semantic web 
modelling tool. It allowed rapid validation of the 
rules, without the need to run the full matchmaking 
cycle through the Matchmaking Web Service. 
TopBraid Composer was also used to make larger 
matchmaking tests to check that the results provided 
by the Matchmaking Web Service were similar to 
those inferred directly by the semantic rules. 
Multiple PRD files were included in the testing 
simultaneously.

In case of clearly invalid matchmaking results (i.e. 
not expected), the root cause of the problem was 
examined. This was done by checking the software 
code, input data, and matchmaking rules. Two types 
of invalid results were recognized: 1) a found match 
that should not be a match and 2) a known match not 

Table 1. Inputs (resource pools) and results of the matchmaking tests.
Resource pools used for matchmaking (search space) Matchmaking test results

Resource Pool
Device 

Blueprints
Individual 

Devices
Device 

Combinations Capabilities
Layout 
Fixed?

Created 
Resource 

Combinations
Combined 

Capabilities
Found 

Matches

Process Steps 
without 
Matches

Processing 
Time (mm: 

ss)

1 ResPool 1 67 1 0 127 N/A 44 76 24 1 12:33
2 SysLayout 1 25 26 9 55 T 0 26 13 5 00:58
3 SysLayout 1 25 26 9 55 F 18 49 27 1 01:58
4 SysLayout 1 

+ ResPool 1
67 26 9 127 F 44 87 31 1 15:12
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found. It was easy to detect type 1 errors. In the case 
of type 2 errors, some unexpected combinations may 
have been neglected because of being overlooked 
during the analysis. The root causes were fixed, and 
the matchmaking tests run iteratively until no invalid 
results appeared with the given search spaces.

6.3. Performance evaluation

The performance of the Matchmaking system during 
the validation tests has been described in detail in 
(Järvenpää et al. 2019b). In this section, a summary of 
those results will be provided from the perspective of 
the switch valve case product discussed in Section 6.1. 
The total number of process steps requiring match
making was 14. These processes required seven dif
ferent capabilities: Fixturing, Pick&Place, Hammering, 
BlindRiveting, Screwing, Pressing and MountingO- 
ring.

Table 1 presents the inputs and results of four 
matchmaking scenarios. In all these scenarios, the 
input product was the same, but the resource pool 
varied. ResPool 1 contained 67 catalogue resources 
(‘Device Blueprints’), and SysLayout 1 described the 
existing production system layout for another pro
duct, not originally for the switch valve. The layout 
included the physically existing resource instances 
(‘Individual Devices’), their catalogue representation 
(‘Device Blueprints’) and combinations of these indi
vidual instances (‘Device Combinations’) according to 
the production system layout. The resource pools 
included various robots, grippers, fixtures, screwdri
vers, drills and their associated bits, presses, O-ring 
mounting devices, and hammers, as well as human 
operators. The column ‘Capabilities’ indicate how 
many capabilities had been asserted for these 
resources in their resource description.

Table 1 shows the test results from the matchmak
ing with different search spaces: 1) all catalogue 
resources; 2) only the existing layout and its resource 
combinations (without permission to break and 
reconfigure the layout); 3) individual resources in the 
existing layout (with permission to break and reconfi
gure the layout); and 4) existing resources in the 
current layout supplemented with all catalogue 
resources. The last column indicates the duration of 
the matchmaking process with the given search 
space, ranging from less than a minute to over 15 min
utes. The time seems to depend on the number of 

new resource combinations generated during the 
process, which again depends on the number of 
resources included in the search space, their capabil
ities, and the number of different capabilities required 
by the product.

7. Discussion

Designing a manufacturing environment (worksta
tion, cell, line) is a challenging, multi-faceted, and 
time-consuming task for a human. The designer uses 
a lot of time for searching and filtering potential 
resources for the system. Finding feasible resources 
from scattered resource catalogues (each resource 
provider having its own catalogue(s), more or less 
digital) requires a vast amount of work, and the com
parison is difficult because the datasheets and proper
ties on those are not standardized across the resource 
providers. Thus, the number of considered resource 
solutions is usually limited, somewhat random, and 
often dependent on the already established relations 
and collaboration with a few resource providers.

This article presented the capability matchmaking 
concept, procedure, rules, software, and underlying 
information models that can partly automate the 
search and filtering activities done during the produc
tion system design and reconfiguration planning pro
cess. The approach relies on formalized descriptions 
of resources and products by OWL-ontologies, which 
proved a suitable technology for encoding the infor
mation and knowledge traditionally described in an 
unstructured way. The presented MaRCO model pro
vides a standard vocabulary for vendor-neutral repre
sentation of resource capabilities, thus supporting the 
matchmaking in a multi-vendor system design and 
reconfiguration context.

The performed case study proves that it is possible 
to present the requirements of the product, and cap
abilities and interfaces of the resources, in a way that 
allows automatic searching of feasible resources and 
resource combinations to specific product require
ments. The central elements of this matchmaking 
process are the semantic rules implemented with 
the SPIN rule language. SWRL has been the more 
popular rule language in similar research. However, 
compared to SWRL, SPIN has many advantages, 
including its expressiveness and metamodeling fea
tures. The utilisation of templates and functions 
reduces the efforts needed for rule creation and 
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maintenance. Moreover, SPIN builds on top of estab
lished SPARQL, which has good tool support (e.g. 
engines and databases) and doesn’t require learning 
a new language. However, the main reason for select
ing SPIN over SWRL is that the presented application 
requires the ability to assert new instances, which is 
not supported by SWRL (Ian et al. 2004; Meditskos 
et al. 2013).

A particularly interesting and novel contribution in 
the presented approach is the ability to automatically 
infer combined capabilities, including their para
meters, of combined resources. Thus, there is no 
need to create these descriptions manually. Instead, 
the resource combinations, and their descriptions, 
can be dynamically created for specific requirements 
based on the resource descriptions of single 
resources. Furthermore, the existing resource combi
nations can be decomposed into single resources, 
which provides the basis for the automatic reasoning 
methods to provide suggestions for the reconfigura
tion actions. Such suggestions may relate, for 
instance, to changing the tool tip of a screwdriver to 
allow screwing of different size screws, changing the 
magazine of a tube feeder to allow different size parts 
to be fed, or to changing the gripper of a robot to 
manipulate parts of different dimensions. These 
mechanisms are valuable in plug-and-produce sce
narios, both in greenfield and brownfield contexts. 
Furthermore, the capability-oriented description of 
resources allows the separation of the functionality 
provided by the resource from the actual technical 
implementation. This means that different resources 
may provide similar functionality and thus contribute 
to the same capability. For instance, both a milling 
machine and drill can perform the drilling process, 
when combined with a proper tool.

The SPIN rules attached to the ontology classes 
follow similar inheritance like other properties in 
OWL. This means that the rules attached to 
a specific class also apply to its subclasses. This 
makes it possible to have flexibility in the definition 
of the product requirements. For instance, it may be 
defined that some feeding or joining is required with
out specifying the exact production method. 
However, it was noted during the definition of the 
rules that it is often difficult to define rules for the 
parent classes that would also be feasible for all the 
lower-level classes. Feeding is a good example of 
a relatively straightforward case, as, for all feeding 

methods, the common requirements are the size of 
the object and feed rate. Joining is another extreme, 
as different joining methods, such as riveting, screw
ing, and gluing, each have their very specific charac
teristics. Thus, it is not possible to make matchmaking 
with capability parameters without specifying the 
desired joining method. However, it is possible to 
practice concurrent engineering and design for 
assembly (DFA) principles and use matchmaking to 
scan potential alternatives (e.g. in the current system, 
in-house, or easily available), before making the final 
selection of the preferred joining method.

There is always a trade-off between the compre
hensiveness of the model and the complexity of its 
use. A model is a model and can never exactly mirror 
the complex real-world situation. The authors aimed 
for as simple models as possible without compromis
ing the ability to provide useful matchmaking results. 
But it is evident, that the matchmaking system, in its 
current development stage, can only provide crude 
estimations of feasible resource combinations for spe
cific needs. One reason is that the combined capabil
ity calculation and matchmaking cannot consider 
complex real-world properties, such as temperature 
influences or friction coefficients. The combined cap
abilities and their properties emerge as a behaviour of 
the machine or station as a whole in a specific context 
and environment. It is impossible to decompose these 
properties into the properties of the various resources 
within the station (i.e. simple capabilities). 
Furthermore, some capabilities depend on the physi
cal distance between the co-operating resources. At 
this moment, the resource combinations are consid
ered as a set, not as a connected graph (layout or 
hierarchy) and the approach can not consider the 
relative physical positions between the resources in 
the layout and their interface reservations. Thus, it is 
not possible to analyse e.g. the reachability of the 
robot arm to the components. Auxiliary and support
ing resources (such as frames and structural bodies), 
which don’t directly contribute to the processing cap
abilities, are also not considered. In addition, 
a feasible physical connection between the manipu
lated part and the resource is not considered. Thus, 
the capability matchmaking relies on coarse size defi
nition (bounding box) when comparing e.g. the suit
ability of a gripper for grasping a specific object.
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For the above-mentioned reasons, a human 
designer must validate the matchmaking results and 
make the final resource selection. For instance, in the 
presented case study, the provided matchmaking 
results were reviewed by the researchers to analyse 
their feasibility. It turned out that all the found 
matches were technically possible, but some sugges
tions were more practically reasonable than others. 
For instance, as discussed in the validation section, for 
the fixturing process, the matchmaking suggested, as 
one option, a press with an integrated fixture. If press
ing is not required, it is not practical to select such 
a resource. In such a case, the designer has to consider 
this and select from the suggestion list a resource that 
is a better fit.

Despite these limitations, the authors believe 
that the presented matchmaking approach can 
provide a valuable aid for the system designer to 
find appropriate resource solutions from a large 
amount of input data. By automating the search 
and filtering of feasible resources and resource 
combinations for specific product requirements 
from large search spaces, and automating the 
identification of required reconfiguration actions 
on the current system layout, the matchmaking 
system is expected to provide at least the follow
ing benefits: 1) Letting the designers and reconfi
guration planners use their time for the actual 
design and planning tasks, instead of cumbersome 
search and filtering of feasible resources and 
resource combinations from various catalogues; 2) 
Reducing human errors in resource search and 
filtering; 3) Increasing the number of alternative 
resource solutions considered, leading potentially 
to more efficient production system configura
tions; 4) Reducing the time used for system design 
and reconfiguration planning activity, and thus 
lowering the design costs. As was shown in the 
performance evaluation section, the time con
sumed by producing the matchmaking result for 
the case product varied from 1 minute to 15 min
utes. It is clear, that even though the Matchmaking 
System has not yet been optimized for perfor
mance, it still outperforms humans in the resource 
search and filtering in terms of time.

The new paradigm of Industry 5.0 proposes 
a shift from technology-oriented viewpoint of 
Industry 4.0 to the human-centric viewpoint in 
which humans and machines collaborate, rather 

than compete against each other (Nahavandi 
2019). In (Wilson and Paul 2018) this collaboration 
is referred to as Collaborative Intelligence, in which 
Artificial Intelligence and human intelligence are 
used in a complementary way to enhance each 
other’s strengths and rise above the limitations. 
The proposed work presents a human-centric auto
mation approach that places human in the control 
of decision making, and lets the machine perform 
routine tasks requiring a lot of processing power. 
Humans can reason about situation-specific criteria, 
blending their pre-existing knowledge, experience, 
professional judgment, and subjective perception, 
to create context-aware insights. The capability 
matchmaking system assists the designer (machine 
assisting human) by providing high data proces
sing capacity and data-driven insights at a key 
point of the system design process, letting the 
human designer take informed decisions with 
a greater set of feasible alternatives than before. 
The machine does what it does best, processing 
a vast amount of data to provide alternative 
options for humans, and humans do what they 
do best, exercise their intuition and judgment to 
select the best fit from a set of choices as visioned 
by (Wilson and Paul 2018).

8. Conclusions

This article intended to present the capability match
making concept and system and their underlying 
information models, procedure and rules. Such 
matchmaking can be exploited in greenfield and 
brownfield system design to partly automatize the 
search for suitable resources and resource combina
tions for product requirements. The approach is 
based on semantic reasoning with formal ontologies 
representing manufacturing resources and products 
in OWL format. However, as pure OWL is not able to 
infer and assert new instances to the ontology, nor to 
perform complex arithmetic operations, which are 
required during the matchmaking, the ontologies 
were enriched with semantic rules. For rule imple
mentation SPIN (SPARQL Inferencing Notation) was 
used. These SPIN rules calculate the capabilities of 
combined resources and compare the requirements 
of the product with the capabilities of the resources to 
find matches and save that information back to the 
ontology. The utilisation of ontologies and other 
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Semantic Web technologies allows automatic reason
ing and inference of new information not explicitly 
stated before. Such information can then be used in 
subsequent reasoning activities.

The main scientific contributions of the work are the 
following. The presented MaRCO model and associated 
combined capability rules contribute to the existing 
resource and capability modelling research by provid
ing an approach for inferring and modelling the com
bined capabilities of multiple cooperating resources. It 
is a unique approach and implementation, which other 
researchers have not presented. In the field of capabil
ity matchmaking, similar conceptual ideas have been 
presented, e.g. in (Ameri and McArthur 2014). The main 
difference, however, is the ability to automatically 
aggregate simple capabilities into combined capabil
ities and to infer their parameters. This automatic infer
ence of implicit information allows the resources to be 
described at lower level of granularity and eliminates 
the need to describe the combined capabilities manu
ally for each possible resource combination. Thus, it 
contributes towards reconfigurable plug-and-produce 
scenarios. Furthermore, the research contributes to the 
application of the SPIN rule language, which has not 
been much discussed in scientific articles. This paper 
gives detailed examples on the usage of SPIN in the 
context of capability matchmaking.

Currently, a graphical user interface (GUI) is being 
developed for the Matchmaking service to allow 
easier testing and utilisation of the service without 
an external design system client. Also, a connection to 
a 3D simulation environment is being built to allow 
the loading of the suggested resources directly into 
a simulation canvas for validation and feasibility 
checks. In the future, new industrial projects will be 
established to test the models and associated cap
ability matchmaking in wider industrial settings cov
ering a larger number of different resources and 
process capabilities. Consequently, new capability 
classes and their associated properties, and rules for 
combined capability calculation and matchmaking, 
will be implemented to increase the capability cata
logue when needed. Currently, human resources are 
modelled in the same way as machine resources. In 
the future, human modelling will be further elabo
rated upon to include characteristics of humans and 

to make the description approach more acceptable. 
The authors see that one of the biggest issues hinder
ing large-scale industrial exploitation of the presented 
approach is the lack of formalized resource descrip
tions and global resource catalogues. The possibilities 
of Artificial Intelligence technologies for automatic 
generation of resource descriptions out of resource 
datasheets and other unformalized data to the format 
required by matchmaking should be investigated.
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