
Semantic rules for capability matchmaking in the context of manufacturing
system design and reconfiguration
Eeva Järvenpää a, Niko Siltala a, Otto Hyllib, Hasse Nylund a and Minna Lanz a

aFaculty of Engineering and Natural Sciences, Automation Technology and Mechanical Engineering, Tampere University, Tampere, Finland;
bFaculty of Information Technology and Communication Sciences, Computing Sciences, Tampere University, Tampere, Finland

ABSTRACT
To survive in dynamic markets and meet the changing requirements, manufacturing companies
must rapidly design new production systems and reconfigure existing ones. The current designer-
centric search of feasible resources from various catalogues is a time-consuming and laborious
process, which limits the consideration of many different alternative resource solutions. This article
presents the implementation of an automatic capability matchmaking approach and software,
which searches through resource catalogues to find feasible resources and resource combinations
for the processing requirements of the product. The approach is based on formal ontology-based
descriptions of both products and resources and the semantic rules used to find the matches. The
article focuses on these rules implemented with SPIN rule language. They relate to 1) inferring and
asserting parameters of combined capabilities of combined resources and 2) comparison of the
product characteristics against the capability parameters of the resource (combination). The
presented case study proves that the matchmaking system can find feasible matches. However,
a human designer must validate the result when making the final resource selection. The approach
should speed up the system design and reconfiguration planning and allow more alternative
solutions be considered, compared with traditional manual design approaches.

ARTICLE HISTORY
Received 24 June 2021
Accepted 18 May 2022

KEYWORDS
Manufacturing ontology;
capability matchmaking;
semantic rules; automatic
inference; smart
manufacturing; SPIN rules

1. Introduction

Smart manufacturing calls for responsive production
systems as well as design and planning approaches
that allow companies to operate efficiently in a highly
dynamic environment. This dynamism arises from the
ever-increasing requirements of the highly flexible
production of individualized products in small
batches (Bortolini, Gabriele Galizia, and Mora 2018;
Lu and Xu 2018). Presently, system design and recon
figuration planning are still human-driven laborious
activities. They require the designer to browse various
paper and online catalogues, searching for suitable
resources. The designers must complete several tasks
during this search and resource selection process.
First, they compare the product characteristics against
the technical properties of the available resources.
Second, they analyse the emerging combined cap
abilities of the resources that will be connected.
Third, they make sure that these resources have com
patible interfaces. This search and filtering process is
called here as ‘capability matchmaking’.

Since there is no standard, vendor neutral way to
describe the resources in these catalogues, the com
parison of alternatives from various resource provi
ders may be difficult. Depending on the system
complexity, the number of required resources might
number in the thousands. The cumbersome and slow
search and filtering activity limits the number of
resource alternatives that may be considered. This
limit means that better solutions might be uninten
tionally neglected as the designer favours their former
solutions, which might be sub-optimal – if even that –
for the given task. Thus, the system design and recon
figuration planning should be supported by new
intelligent decision support tools that reduce the
time and effort needed for these design and planning
activities.

A key enabler of smart manufacturing is the virtua
lization of physical assets of the manufacturing,
namely, resources and products (Lu and Xu 2018;
Thoben, Wiesner, and Wuest 2017). In the context of
capability matchmaking, such information models

CONTACT Eeva Järvenpää eeva.jarvenpaa@tuni.fi Faculty of Engineering and Natural Sciences, Automation Technology and Mechanical Engineering,
Tampere University, Korkeakoulunkatu 6, Tampere 33720, Finland

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING
2023, VOL. 36, NO. 1, 128–154
https://doi.org/10.1080/0951192X.2022.2081361

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-
nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built
upon in any way.

http://orcid.org/0000-0001-6513-135X
http://orcid.org/0000-0001-6456-1251
http://orcid.org/0000-0002-1486-2301
http://orcid.org/0000-0003-2182-4669
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2022.2081361&domain=pdf&date_stamp=2023-01-20

should allow resource vendors to describe the func
tionality of their offerings comparably and system
designers to make a match between product require
ments and resource capabilities. Formal ontologies
and other Semantic Web technologies have become
popular solutions for addressing resource virtualiza
tion and representing other heterogeneous produc
tion-related information (Jardim-Goncalves, Grilo, and
Popplewell 2016; Leitão, Walter Colombo, and
Karnouskos 2016). For instance, the recent review by
Yahya, Breslin, and Intizar Ali (2021) showed that sev
eral ontologies have been developed recently to sup
port smart manufacturing and the Industry 4.0
paradigm. In the context of distributed intelligent
systems, such as agent-based or service-oriented sys
tems, ontologies play a key role, as they provide
a shared, machine-understandable vocabulary for
communication of domain knowledge among dis
persed actors (Leitão, Colombo, and Karnouskos
2016).

An inherent activity during the resource search and
selection is the generation of resource combinations
that, together, match the processing requirements of
the product. The capabilities of the production systems
originate from the tool and device level. Especially in
the case of modular and reconfigurable plug-and-
produce production systems, these devices can be
organized into various configurations. Thus, the formal
resource models and the capability matchmaking sys
tem should automatically infer the combined capabil
ity information based on the capability description of
these individual devices. Pure OWL (Ontology Web
Language) does not provide solutions for making
such inferences and assertions of new instances and
their property values (The OWL Working Group 2004;
Meditskos et al. 2013). Therefore, the OWL-based
ontology needs to be enriched with semantic rules
and supported with external software for enabling
the automatic inference of capability and resource
combination information.

In their earlier works, the authors have presented
a Manufacturing Resource Capability Ontology
(MaRCO), which is a unique OWL-based information
model for describing the capabilities of manufactur
ing resources (Järvenpää et al. 2019a). This article will
describe the concept and implementation of the cap
ability matchmaking approach and software. It aims
to support production system design and reconfi
guration planning by providing automatic means for

finding alternative system configuration suggestions
to product requirements from large search spaces.
While earlier publications concentrated on describing
the information models or the matchmaking
approach in general, the specific contribution of this
article is the detailed explanation of the usage of SPIN
(SPARQL Inferencing Notation) rules during match
making. These rules 1) automatically infer and assert
the parameters of combined capabilities based on the
parameters of the lower-level capabilities originating
from individual resources, and 2) compare the pro
duct requirements with this inferred information to
find resources matching with the product
requirements.

The article is organized as follows. First, Section 2
will discuss the background and limitations of the
related works to highlight the contributions of this
work. Section 3 will introduce the overall capability
matchmaking concept and related OWL-based infor
mation models. In Section 4, the matchmaking pro
cess will be introduced and continued by detailed
examples of the rules used during matchmaking.
Then Section 5 describes the implementation of the
capability matchmaking software. The approach will
be validated by illustrating the matchmaking steps
and results from a case study with real industrial
data in Section 6. Section 7 analyses and discusses
the results and impact of the presented approach,
and finally, Section 8 concludes the article.

2. Background and limitations of existing
approaches

Extensive literature reviews on capability and
resource models appeared in the authors’ earlier
research works (Järvenpää et al. 2019a) and will not
be repeated here. Köcher et al. (2020) summarized
that the earlier research approaches on capability or
skill descriptions fell into two categories: first, to con
tributions focusing on formal models, such as ontol
ogies to create descriptions that can be used as
a shared vocabulary or for reasoning purposes;
and second, to works, which focus on the plug-and-
produce production environment, where skills are
used to encapsulate machine functionalities and are
directly used to control the execution of the pro
cesses. The work presented in this article falls into
the first category. The execution of the processes is
out of its scope.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 129

In the context of Cloud Manufacturing, researchers
have proposed many semantic ontology-based
descriptions for the service description (Luo et al.
2013; Yuan, Deng, and Chaovalitwongse 2017; Lu,
Wang, and Xu 2016). Lu and Xu (2017) also presented
a service composition and mapping approach, as well
as Jena rules which compared the service request
with the offering. However, although several techni
ques for service description and resource virtualiza
tion have appeared in the literature, the current
research has shown more conceptual solutions than
practical implementations of the capability or service
matchmaking. Furthermore, based on the earlier
review by the authors (Järvenpää et al. 2019a), the
existing resource and capability models do not con
sider the combined capabilities of multiple co-
operating resources. Consequently, they do not
include mechanisms for automatic reasoning of the
combined capability parameters.

In order to perform capability matchmaking, also
the product requirements need a formal description.
The skill-based approach has been utilized in many
studies to define both the processing requirements of
a product and functionalities provided by the
resources. These works, for instance (Backhaus and
Reinhart 2017; Pfrommer et al. 2014; Bengel 2009)
have often attempted to enable autonomous setup
and execution of production tasks. The same skill
model has been used for both product and resource
representation. This allows simple matchmaking
between the product requirements and resource
offerings but forces the designer to represent the
products in terms of specific skills it requires, rather
than describing the product characteristics and pro
cesses in a resource-independent way. In this work
the goal is to avoid such resource-centric representa
tion of product requirements and separate the pro
duct description from the resource description.

The literature discusses several works utilizing
semantic rules to extend the reasoning abilities of
pure OWL-ontologies. Ameri and McArthur (2014)
presented an idea comparable to capability match
making. In their work, SWRL (Semantic Web Rule
Language) was utilized for intelligent supplier discov
ery based on the services they offer. With SWRL, they
were able to infer new capabilities that were not
explicitly stated in the original service description
and to classify concepts based on the given property
values. However, SWRL cannot assert new instances

or property values to the ontology (Horrocks et al.
2004; Meditskos et al. 2013), which is a key function
ality needed by the capability matchmaking pursued
in this article. For instance, in the work of Ameri and
McArthur (2014), inferring new capabilities meant
that the capabilities were predefined instances in
the ontology, and the rule inference established new
relations between the supplier and these capability
instances but did not create new named individuals.

SWRL has also been widely applied in other research
works. For instance, Li et al. (2018) presented an ontol
ogy-based product design framework for manufactur
ability verification and knowledge reuse. They used
SWRL to create inference and constraint rules between
the design and manufacturing knowledge to provide
design recommendations for the product designers
during the design process. Sun, Ma, and Gao (2009)
applied SWRL rules to store experts’ design experi
ences, product configuration and variant rules as well
as constraints, in order to provide routine design assis
tance for product configuration. Cao et al. (2019) used
SWRL rules to identify defects in parts to support
machine condition monitoring.

Efthymiou et al. (2015) presented an approach that
utilizes inference rules written in Jena Rule language.
Also, it uses similarity measurements that facilitate the
manufacturing system design by automatically identi
fying past similar projects, which can then be the basis
for the design of the new production line. Pintzos,
Matsas, and Chryssolouris (2012) presented an ontol
ogy representation for manufacturing performance
indicators, which included calculation formulas for the
value of specific performance indicators based on the
value of other indicators. However, they didn’t specify
the implementation method for the rules, and it
remains unclear if the calculation takes place through
automatic inference or by specific software. Maleki
et al. (2018) presented an ontology-based framework
that integrates sensing systems and machine compo
nents to allow machine health monitoring and notifi
cations when maintenance actions are needed. Their
approach does not infer new knowledge to the ontol
ogy by rules, but the services are based on external
software querying the ontology with SPARQL.

SPIN (SPARQL Inferencing Notation) is a semantic
rule language that, among other features, provides
the functionality of asserting new named individuals.
Meditskos et al. (2013) used SPIN to perform temporal
reasoning with context information and to assert new

130 E. JÄRVENPÄÄ ET AL.

named individuals in an application related to recogni
tion of human activity. Aarnio, Vyatkin, and Hastbacka
(2016) targeted industrial maintenance support. They
utilized SPIN for situation rules in context modelling.
Doulaverakis et al. (2017) presented an approach to
model and execute clinical practice guidelines (CPG)
using OWL-ontologies and SPIN rules. They demon
strated it through CPGs for arterial hypertension man
agement. Other research publications utilizing SPIN are
rare, and the authors have not found any application of
SPIN comparable to the work presented in this article.

As a summary, the work presented in this article
aims to overcome the limitations of existing
approaches and will provide the following novel con
tributions: 1) formal information model and semantic
rules, which allow automatic inference of combined
capability information; 2) the ability to present the
product requirements independently from the
resource capabilities, but to find matches between
these two; and 3) a detailed illustration on how to
utilize SPIN in the context of capability matchmaking,
to automatically infer and assert new knowledge from
the manually asserted information.

3. Capability matchmaking and involved
information models

The following subsections will introduce the aims and
scope of capability matchmaking in general. Next is
the introduction to the underlying OWL-based

information models used during matchmaking.
Ontology Engineering Methodology (Sure, Staab,
and Studer 2009) has been applied to construct
these ontologies and the development process,
including a detailed requirements definition, has
been described in (Järvenpää et al. 2019a). This sec
tion will summarize the main points about the con
cept and models to provide a solid background for
the reader to understand the remaining parts of this
article.

3.1. Aims and scope of capability matchmaking

This work builds on the integrated product-process-
system framework, which has been widely used in
production- and manufacturing-related research
(Rampersad 1994; Cutting-Decelle et al. 2007; Tolio
et al. 2010), and extends it with the concept of cap
ability (see Figure 1). Capability matchmaking aims to
support the production system designers and recon
figuration planners by automating the search for fea
sible resources and resource combinations to
particular product requirements from large resource
spaces. The approach is implemented as a software
component, which external design and planning sys
tems can utilize as a service. The primary goal of
matchmaking is to provide these systems with infor
mation about resources or resource combinations
that can perform a specific process step. The detailed
definition of the requirements for matchmaking from

Figure 1. Basic idea of capability matchmaking.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 131

the information model perspective and the ontology
development process appeared in (Järvenpää et al.
2019a).

As opposed to other related works, this work aims
to avoid resource-centric representation of product
requirements and clearly separate the product
description from the resource description. The
required processes are organized in a taxonomic hier
archy, implying that the product requirements may
be defined in different levels of detail. If the definition
of a specific processing method is not critical from the
product perspective, the process designer does not
have to specify it exactly. For example, the designer
can simply define that the joining of two parts
requires a riveting process. The selection of the actual
method of riveting can be left until after the potential
results have been found by the matchmaking process.
The method could be e.g. impact, radial or orbital
riveting. Several existing process descriptions and
standards were used as a basis for the development
of the process taxonomy and associated capabilities,
including the German standard DIN 8580, the EUPASS
processes (Lohse, Maraldo, and Barata 2008) and the
production taxonomy used in the CO2PE!-initiative
(CO2PE! 2010).

The matchmaking system supports both greenfield
(new system design) and brownfield (reconfiguration)
scenarios (Järvenpää et al. 2019b). Figure 1 represents
the conceptual idea of capability matchmaking. On
the left-hand side, there is the product requirement
description, containing the relevant product charac
teristics and processing requirements and on the
right-hand side, there are the resource catalogues,
containing the capability and interface descriptions
of resources included in the matchmaking search
space. Both the product requirements and the
resource capabilities are presented as formal OWL-
based ontologies, which will be introduced in the
following section.

The matchmaking procedure and software have
been developed to partly automate the design process
traditionally done by human designer. Thus, it should
mimic the manual process. In the greenfield scenario,
the matchmaking system searches for suitable
resources through the given resource catalogue(s)
and creates resource combinations that can perform
the process step requested by the product. Each
resource has its own capabilities, and when the
resources are combined with other resources,

combined capabilities emerge. These combined cap
abilities and their parameters need to be inferred
based on the capability descriptions of the single
resources involved in the combination. While creating
these resource combinations, the matchmaking sys
tem checks the compatibility of the resource inter
faces. Finally, it checks that the parameters of the
capabilities match the parametric requirements of
the requested process steps. In the brownfield sce
nario, the capabilities existing on the current layout
are matched against the product requirements in
a similar fashion.

3.2. Involved information models

As stated earlier, capability matchmaking relies on
formal ontological descriptions of product require
ments and capabilities of manufacturing resources.
The developed OWL-based (Web Ontology
Language) information models have been introduced
in detail in (Järvenpää et al. 2019a, 2018b, 2017,
2018a; Siltala, Järvenpää, and Lanz 2018). The import
structure of these models appears in Figure 2, and the
models are available to download from (Järvenpää,
Siltala, and Hylli 2019).

The Matchmaking Ontology Model, importing the
Product and Resource Models (see Figure 2), is used to
perform the capability matchmaking. Figure 3 pre
sents a limited view of the Matchmaking Ontology.
It shows its main classes and relations, including those
inherited from the imported models. The boxes in the
figure represent the classes of the ontology, while the
inheritance arrows indicate the subclass hierarchies.
The association arrows specify object properties,
which model the relations between the instances
belonging to those classes. In addition, datatype
properties characterize the classes, but these are not
in the figure. Similar colours indicate the model
(Figure 2) to which the classes (boxes in Figure 3)
belong. For instance, ‘Device’ is a class in the
Resource Model. Also, the prefix in the class name
indicates the namespace (i.e. the model) from where
it originates (e.g. ‘rm’ refers to the Resource Model, as
shown in Figure 2). The same prefixes are used when
classes are referred to in the following text and rule
examples.

The Resource Model ontology (Järvenpää et al.
2019a) describes the available manufacturing
resources and their characteristics, such as interfaces

132 E. JÄRVENPÄÄ ET AL.

and capabilities. It can also describe systems, that are
aggregated from multiple resources. Class rm:Device
(Figure 3) is used for modelling the machine and
tooling resources. Human workers belong to another
class that is not in the figure. The focus here is on the
class descriptions for classes rm:DeviceBlueprint, rm:
IndividualDevice, and rm:DeviceCombination. These
classes link the capabilities to both catalogue devices
and actual devices existing on the factory floor.
Therefore, they form the very core of the developed
model. They enable the emergence of the combined
capabilities by modelling the combinations of the

devices. The Resource Model imports two other ontol
ogies, namely the Resource Interface Model and
Capability Model. The Resource Interface Model
(Siltala, Järvenpää, and Lanz 2019b) is used to give
a formal description of the resource interfaces. With
this information it is possible to identify whether the
interfaces of multiple resources are compatible and if
the resources can be connected from their interface
perspective.

The resource functionalities and their related
parameters are formalised by the Capability Model
(Järvenpää et al. 2019a). This model defines simple

Figure 2. Information models used for capability matchmaking. (Modified from Järvenpää et al. (2019b) by adding the ontology
namespace acronym to the brackets.).

Figure 3. Simplified view of the matchmaking ontology. (Modified from Järvenpää et al. (2019b) by adding namespace definition in
front of the class and property names and reorganizing the elements to improve readability).

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 133

and combined capabilities and formalises their rela
tionships through the cm:hasInputCapability object
property. As an example, a robot can have the
simple capability ‘Moving’, and similarly, a gripper
can have simple capabilities ‘Grasping’ and
‘Releasing’. If a robot and gripper are combined,
they can have combined capabilities ‘Pick and
Place’ and ‘Transporting’. The instances of cm:
Capability are linked to the instances of rm:Device
through the rm:hasCapability object property. The
formalised relations between the simple and com
bined capabilities allow computer programs to form
potential resource combinations having specific
combined capabilities by utilizing information quer
ied from the ontology by SPARQL. SPARQL is
a semantic query language for databases, able to
retrieve and manipulate data stored in Resource
Description Framework (RDF) format and OWL
ontologies (W3C SPARQL Working Group 2013).
The following section will discuss the rules that
allow automatic inference of the parameters of the
combined capabilities. The rm:hasCalculatedCapability
object property links this combined capability infor
mation to the specific device combination.

The Capability Model imports another ontology,
called the Process Taxonomy Model. This model cate
gorizes various manufacturing and assembly processes
in a hierarchical structure. It is a pure taxonomy, with
out any properties. In the Capability Model, the differ
ent sub-classes of cm:Capability are linked to the sub-
classes of pt:ProcessTaxonomyElement according to
what kind of process they can provide. This linkage is
implemented as a direct sub-class (is-a) relationship
between the classes of cm:Capability and pt:
ProcessTaxonomyElement. For instance, cm:Screwing
is a sub-class of the pt:Screwing. Due to the class
inheritance, instances of capability cm:Screwing, will
also become instances of process pt:Fastening. Thus,
the process taxonomy links the capabilities to the
upper levels in the process hierarchy, e.g. the ‘Milling’
capability will be automatically classified as a ‘Material
Removing’ process in the taxonomy.

The primary purpose of the Product Model ontol
ogy is to represent the processing requirements of
the product in a manner by which these requirements
can be matched against the resource capabilities. The
Product Model was introduced in detail in (Järvenpää
et al. 2018b). The Product Model describes the parts
and their basic characteristics, subassemblies and

their contained parts, the processes of the parts and
subassemblies, the capability requirements related to
the processes, and the sequence of the processes. The
Product Model imports the same Process Taxonomy
as the Capability Model, and it models the product’s
processing requirements as instances of the pt:
ProcessTaxonomyElement subclasses. For example, if
the product requires a screwing process, this require
ment is modelled as an instance of the taxonomy
class pt:Screwing. This link is established through
the pm:requiresProcessCapability object property
between the instances of the pm:Process class and
the instances of the pt:ProcessTaxonomyElement
class. In the Product Model, the parametric require
ments related to the processes are modelled as prop
erty restrictions of the pt:ProcessTaxonomyElement
subclasses. An example of such a parameter may be
the minimum torque required for screwing.

Since the publication of (Järvenpää et al. 2018b),
the Product Model has added a few new properties to
support the matchmaking software implementation.
For instance, the model includes properties to indi
cate whether automatic matchmaking should be per
formed. The target is to allow full description of the
product to be used, without forcing the matchmaking
for each process step, thus lightening the matchmak
ing process and the associated matchmaking result.
For instance, if it is predefined that the process will be
performed manually, it can be omitted from the auto
matic matchmaking. There are two ways to limit
matchmaking. First, the pt:ProcessTaxonomyElement
class has a property pm:matchmakingRequired, which
gets Boolean values. This property will indicate
whether automatic matchmaking should be per
formed. Second, if a pm:Activity instance does not
refer anywhere by the pm:requiresProcessCapability
relation, then that instance will be naturally left out
from the matchmaking. The first option provides
a more dynamic process to change the input data
for various matchmaking scenarios by just changing
the Boolean value, while the second option requires
less modelling effort, but is less flexible for different
matchmaking scenarios.

In addition to importing the two ontologies, Product
Model and Resource Model, the Matchmaking
Ontology includes a few additional object properties,
as illustrated in Figure 3. These properties are mmo:
hasCapabilityMatch and mmo:canBeImplementedWith,
which link the capability requirements (instances of

134 E. JÄRVENPÄÄ ET AL.

pt:ProcessTaxonomyElement subclasses) with the cm:
Capability instances. This linkage establishes dynami
cally when the capability matchmaking rules infer new
knowledge to find the matches. The mmo:
hasCapabilityMatch indicates that the capability
matches the requirement on the capability concept
name level, while the mmo:canBeImplementedWith
indicates a detailed match, i.e. that the capability para
meters also match with the requirement.

4. Capability matchmaking procedure and rules

In addition to the information models, matchmaking
requires several rules. The development of the rule
base began by defining what kind of rules are needed
in various phases of the system design process.
Manufacturing engineering domain knowledge,
including manufacturing engineering handbooks,
resource provider datasheets, and discussions with
manufacturing engineers were used to define the
content of the rules. Even though a case-based
approach was used in the development and testing
of these rules, the rules were defined to be generally
applicable to all cases and not just for the specific use
cases in testing and validation. The following subsec
tions will introduce the overall matchmaking proce
dure and the semantic rules used during
matchmaking.

4.1. Matchmaking procedure

The overall capability matchmaking procedure con
sists of multiple steps and viewpoints, which require
specific rules to perform the needed reasoning pro
cess. Figure 4 illustrates these viewpoints and rules.
First, matchmaking must generate new resource

combinations for the different capability require
ments. Second, matchmaking needs to check whether
the capability of the resource matches with the
requirements of the product. When new resource
combinations are generated, the matchmaking must
consider the capability of the combined resources
and whether the resources can be combined from
their interface perspective. Combined capability
rules calculate the parameters of the combined cap
abilities based on the capabilities of the resources
involved in the combination. The interface match
making rules check the compatibility of the interfaces
between the intended combined resources. Finally,
when the resource combinations have been created
and their combined capabilities have been calculated,
these combined capabilities need to be compared to
the characteristics and requirements of the product.
For this purpose, capability matchmaking rules have
been defined. Furthermore, as the design systems
consuming the matchmaking results benefit from
getting some information about the performance of
the found resource combinations, i.e. a roughly esti
mated duration of the process step with the sug
gested match, simple rules for performance
evaluation have also been defined. This evaluation is
not at the core of the capability matchmaking
approach, and therefore, it is marked with dashed
lines in Figure 4. The authors consider the perfor
mance evaluation to be the task of the design and
planning system. It is dependent on, e.g. the layout of
the system and spatial relations and limitations
between the resources, which cannot be analysed in
detail with the presented ontologies.

Figure 5 gives an overview of the matchmaking
procedure, including both the brownfield (reconfi
guration) and greenfield (new system design)

Figure 4. Matchmaking viewpoints and rules.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 135

viewpoints. As an input, the matchmaking needs to
receive the search space used for the matchmaking. It
includes the Product Requirement Description (PRD)
and the Resource Pool. The Resource Pool consists of
the selected resources from the resource catalogue(s)
that the system designer wants to include in the
matchmaking search space. The input differs,
depending on the scenario. In the brownfield sce
nario, the existing layout description is also an input.
The System Layout consists of the description of the
existing resource combinations of the current system,
modelled in MaRCO format. External design and plan
ning tools, which want to utilize the matchmaking
service, will provide these inputs for matchmaking.

The capability matching algorithm takes the cap
ability requirements (i.e. pm:Activity instances) and
matches them with the existing capabilities on the
current layout or creates new resource combinations
that match with the requirements. The matchmaking
result is provided as an output. It includes the IDs of

the resources and resource combinations matching
with each process step defined in the PRD. The output
is independent of the scenario. This output is pro
vided to the external design tools, where the designer
will utilize it to make decisions about the resource
selection and system configuration based on their
valued criteria. The matchmaking procedure can be
run in an iterative manner. Thus, several matchmaking
rounds can be run with different inputs, depending
on the design strategy.

4.2. Rule implementation

The combined capabilities and their parameters
should be automatically defined and saved to the
Resource Model ontology without the need to manu
ally fill in the parameters. Similarly, the link between
requirements and matching capabilities should be
automatically inferred and asserted within the
Matchmaking ontology. These tasks require semantic

Figure 5. Capability matchmaking procedure on a high level.

136 E. JÄRVENPÄÄ ET AL.

rules. As pure OWL does not provide solutions for
making required inference and assertions of new
instances and their property values, nor to perform
complex arithmetic operations (Meditskos et al. 2013),
SPIN (SPARQL Inferencing Notation) is used for rule
implementation. SPIN is a W3C member submission
that was, at the time of the rule implementation, the
de-facto industry standard to represent SPARQL rules
and constraints on Semantic Web models (SPIN
Working Group 2017). In research the more com
monly used SWRL (Semantic Web Rule Language)
was not considered appropriate, as it does not sup
port the assertion of new named individuals.
Furthermore, as discussed by Bassiliades (2018),
despite its longevity, SWRL had never achieved
a W3C recommendation status.

SPIN allows to link SPARQL queries directly to the
class definitions in the ontology. These queries cap
ture constraints and rules which formalise the
expected behaviour of those classes. The extra infor
mation created by these rules can be inferred by
a SPIN compatible reasoner tool, such as SPIN API,
and then be used in further SPARQL query execution
(Knublauch 2016). Consequently, these SPARQL
queries can be organized in an object-oriented man
ner, which makes the rules accessible and easy to
maintain, extend, and share. With SPIN the rules can
be represented and stored as SPARQL queries as
a natural part of ontology knowledge in the same
knowledge base (SPIN Working Group 2017). This is
a clear advantage over SWRL, which stores rules as
a flat list. In this work the combined capability rules
are stored directly into the Resource Model ontology,
while the matchmaking rules are stored in the
Matchmaking Ontology, which make them commonly
shared across the users.

SPIN offers the ability to calculate property
values based on other property values. It can also
be used to isolate a set of rules to be executed
under certain conditions, e.g. to support incremen
tal reasoning, to initialize certain values when
a resource is first created, or to drive interactive
applications. Furthermore, SPIN features a useful
metamodeling capability, which lets users specify
their own reusable SPARQL query templates and
functions. The templates are parameterized
SPARQL queries that can be customized by

instantiating them with the argument values of
a new context. The SPIN function is a special kind
of template query that returns only one result
value, and it can be used as a part of another
SPARQL query. Functions can be chained, meaning
that functions may utilize other functions and so on
(SPIN Working Group 2017).

The rules needed during the matchmaking proce
dure relate to the creation of the new resource com
binations and comparing the product requirements
to the resource capabilities. These rules were first
defined in an informal textual format based on
domain expert knowledge. After that, they were
implemented in SPIN with the help of the TopBraid
Composer Semantic Web editor. Many rules share
similarities, and thus the metamodeling features of
SPIN, i.e. functions and templates, were utilised. The
following subsections discuss these rules in detail,
including examples of the usage of templates and
functions.

4.2.1. Resource combination generation
As visualised by Figure 4, when two or more resources
are to be combined, two aspects need to be consid
ered: 1) the combined capability that they can pro
duce and 2) the compatibility of the resource
interfaces. This section will only discuss the rules
used for inferring the combined capability para
meters, because the interface compatibility check is
described in detail in other publications (Siltala,
Järvenpää, and Lanz 2019b; 2019a; 2021).

There are different ways how the combined cap
ability parameters are formed, for example (Järvenpää
et al. 2018a):

● Directly inheriting a parameter value from one of
the involved lower-level capabilities. For
instance, in the case of ‘Transporting’ combined
capability, formed by ‘Moving’ and
‘FingerGrasping’ capabilities, the value of the
dof (degrees of freedom) property is the same as
the value of dof of the ‘Moving’ capability.

● Calculating the parameter value by arithmetic
operations from two or more involved lower-
level capabilities. For instance, the value of the

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 137

payload property of ‘Transporting’ capability is
the value of the payload property of the
‘Moving’ capability subtracted by the value of
the mass property of the gripper or the value of
the payload property of the ‘FingerGrasping’ cap
ability. The smaller value dominates.

● Defining the parameter value by comparing the
values of the involved lower-level capabilities
and selecting the maximum or minimum value,
depending on the specific capability parameter.
For example, the itemSize_max property, which is
used for multiple capabilities, gets its value from
the capability that has the lowest value.

The ‘lower-level capability’ refers to capabilities
that are on a lower level in the part_of hierarchy.
The term ‘simple capability’ is not appropriate
because the combined capabilities can be composed
of other combined capabilities, not just simple ones.

The combined capability rules are linked to the
related cm:CombinedCapability subclasses in the
Resource Model ontology. For each parameter of
a combined capability, there is a SPIN rule that links
to that specific capability class in the ontology.
Common for all these rules is that they must retrieve
at least one of the lower-level capabilities that pro
duced the combined capability. In addition, they
must retrieve one of the parameters of that lower-
level capability. For retrieving the specific lower-level
capability instance of interest, a SPIN function,
getPartCapability, was created (see Rule example 1).
The function can be used in another SPARQL query
by giving specific values to its two arguments (?arg1,
which refers to the instance of cm:CombinedCapability
and ?arg2, which refers to the capability class, i.e. any
subclass of cm:Capability) from outside, as will be later
shown in the Rule example 2. Line #3 retrieves the ?
deviceCombination, which is linked to the given com
bined capability instance (?arg1) through the rm:
hasCalculatedCapability object property. Line #4
retrieves a device (?device), which is linked to the ?
deviceCombination. Line #5 retrieves the ?blueprint of
the specific device (?device), and line #6 retrieves the
capability instance (?capability) associated with that ?
blueprint. Finally, the SELECT clause (row #1) returns

the found capability instance (?capability) if it is of
a type defined by the ?arg2 (row #7). For more informa
tion about SPARQL and SPIN syntax, please refer to
Knublauch (2013) and the W3C SPARQL Working
Group (2013).

SPIN Rule example 1: Function for retrieving the
capability instance of interest – getPartCapability
(arguments arg1 and arg2 highlighted)

#1 SELECT ?capability
#2 WHERE {
#3 ?deviceCombination rm:hasCalculatedCapability ?arg1.
#4 ?deviceCombination rm:

hasIndividualDeviceOrDeviceCombination)* ?device .
#5 ?device rm:hasDeviceBlueprint ?blueprint .
#6 ?blueprint rm:hasCapability ?capability .
#7 ?capability a ?arg2 .
#8 }

As described earlier, the first and easiest way to
infer and assert a combined capability parameter is to
inherit it from a lower-level capability instance. For
example, the dof of ‘Transporting’ is the same as the
dof of ‘Moving’, or the torque_max of ‘Screwing’ is the
same as the torque_max of the ‘SpinningTool’ cap
ability. In both cases, the logic of the rule is the
same, but just the type of the capability and the
parameter are different. For this kind of situation,
a SPIN template called inheritCapabilityParameter
(see Rule example 2) has been created. A template
has a body consisting of a SPARQL query and argu
ments (?capability, ?parameter), whose values will be
replaced in the query. The argument ?capability refers
to the capability class (subclass of cm:Capability) from
which the value of the parameter, referred by the
argument ?parameter, will be inherited.

CONSTRUCT and WHERE clauses are used for those
rules which infer and assert new parameter values to
the ontology. The CONSTRUCT defines a set of triple
patterns to add to the underlying resource model
upon the successful pattern matching of the triple
patterns in the WHERE clause. The CONSTRUCT part
(lines #1–3) defines how the query results are utilized
to modify the ontology: give the parameter value to
the combined capability instance. On line #5, we use
the getPartCapability function, defined in Rule exam
ple 1, to retrieve the instance of the given lower-level
capability (?capability) related to the combined cap
ability instance (?this). Line #6 checks whether the
function returned a result. If not, nothing happens.

138 E. JÄRVENPÄÄ ET AL.

On line #7, the result is assigned to a different variable
(?resourceCapability). Using the ?result variable directly
would lead to issues because, if it is unbound after the
function call, it can bind to other capability instances.
Finally, line #8 gets the value (?value) of the desired
parameter (?parameter) from the lower-level capabil
ity instance, which is then saved by the CONSTRUCT
clause to the higher-level capability instance (?this)
(lines #1–3).

SPIN Rule example 2: Template for inheriting the
capability parameter – inheritCapabilityParameter
(arguments ?parameter and ?capability highlighted)

#1 CONSTRUCT {
#2 ?this ?parameter ?value .
#3 }
#4 WHERE {
#5 BIND (:getPartCapability(?this, ?capability) AS ?result) .
#6 FILTER bound(?result) .
#7 BIND (?result AS ?resourceCapability) .
#8 ?resourceCapability ?parameter ?value .
#9 }

The actual combined capability rule is then an
instance of this template, in which the arguments
are given concrete values. For example, when the
inheritCapabilityParameter is used to create the
combined capability parameter rule for defining
the torque_max of ‘Screwing’, the argument ?cap
ability is replaced with ‘cm:SpinningTool’ and ?
parameter with ‘cm:torque_max’. The SPIN rule
engine, which executes the rules, will use the
template and create the rule with given concrete
values for the arguments.

Some rules are identical for different capabilities.
For example, the payload rules of ‘Transporting’ and
‘PickAndPlace’ are identical, and therefore, the same
SPIN rule (Rule example 3) can be copied and applied
in each case. The CONSTRUCT part (lines #1–3) creates
and assigns the payload value (?payload), determined
by the rule, to the combined capability instance (?
this). Line #5 utilizes the getPartCapability function to
retrieve the instance of the ‘cm:FingerGrasping’ cap
ability involved with the combined capability instance
(?this). Line #7 assigns the result to the variable ?
fingerGrasping. Line #8 retrieves the device instance,
which is associated to the given capability ?
fingerGrasping, and line #9 retrieves its basic resource
information. Lines #10 and #11 retrieve the mass and
payload of the gripper. Lines #12–15 similarly retrieve
the payload of the ‘Moving’ capability. Line #16 sub
tracts the gripper’s mass from the payload of the

‘Moving’ capability and binds it to the variable ?alter
native. Finally, line #17 compares the result from the
previous line to the gripper payload and defines the
lesser value as the ?payload of the combined capabil
ity ?this.

SPIN Rule example 3: Calculating the payload of
‘Transporting’ and ‘PickAndPlace’ capabilities

#1 CONSTRUCT {
#2 ?this cm:payload ?payload .
#3 }
#4 WHERE {
#5 BIND (:getPartCapability(?this, cm:FingerGrasping) AS ?result) .
#6 FILTER bound(?result) .
#7 BIND (?result AS ?fingerGrasping) .
#8 ?gripperDevice rm:hasCapability ?fingerGrasping .
#9 ?gripperDevice rm:hasBasicResourceInformation ?info .
#10 ?info cm:mass ?mass .
#11 ?fingerGrasping cm:payload ?graspingPayload .
#12 BIND (:getPartCapability(?this, cm:Moving) AS ?result2).
#13 FILTER bound(?result2) .
#14 BIND (?result2 AS ?moving) .
#15 ?moving cm:payload ?movingPayload .
#16 BIND ((?movingPayload – ?mass) AS ?alternative) .
#17 BIND (IF((?alternative > ?graspingPayload), ?graspingPayload, ?

alternative) AS ?payload) .
#18 }

The reasoner saves the inferred parameter values to
the same ontology file with the initial instances. The
value is linked to the rm:DeviceCombination instance
by the cm:hasCalculatedCapability object property. This
property is a subproperty of cm:hasCapability. Thus,
when the matchmaking tries to search for devices with
specific capability, the device combinations also linked
to that capability by the cm:hasCalculatedCapability
property are taken into consideration.

4.2.2. Product requirement – resource capability
matchmaking
The Matchmaking Ontology contains SPIN rules for
matchmaking, and properties and classes used by the
rules. The capability matchmaking rules are attached
to the subclasses of the pt:ProcessTaxonomyElement.
These rules are executed in the matchmaking process
after the combined capabilities and their parameters
have been calculated for involved device combina
tions with the rules discussed in the previous section.

During the product requirement – resource capabil
ity matchmaking, there are rules for the following
purposes:

(1) Find capability name-level matches
(2) Find parameter-level matches

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 139

These rules and their associated properties and
classes are described in more detail below. Since
these rules must be executed in the order listed
above, they are associated with the ontology classes
by different sub-properties of spin:rule, defined in the
Matchmaking Ontology. The execution priority of
these rules is then determined with the spin:
nextRuleproperty property.

4.2.2.1. Find capability name-level matches. The
first part of the matchmaking process is to find
the resources that, on the capability name-level,
could be used to perform the product manufac
turing activity. The pm:Activity instances in the
product requirement description refer to specific
instances of the pt:ProcessTaxonomyElement sub
classes. The capability instances defined in the
Resource Model are also instances of specific sub
classes of the pt:ProcessTaxonomyElement (see
Figure 3). This relation creates a direct conceptual
match between the product requirements and
the resource capabilities. Thus, this first step of
capability matchmaking is performed with one
SPIN rule (Rule example 4), which is associated
with the mmo:capabilityNameLevelRule property
to the pt:ProcessTaxonomyElement class. For the
given instance of pt:ProcessTaxonomyElement or,
in this case, one of its subclasses (e.g. pt:
Screwing), the rule will find all capabilities that
implement the process i.e. its subclasses (lines
#4–9). Then all instances of that cm:Capability
are connected to the pt:
ProcessTaxonomyElement instance with the
mmo:hasCapabilityMatch property (lines #1–3).
However, the Matchmaking software runs this
rule only to the pt:ProcessTaxonomyElement
instances which have the value ‘true’ for the
pm:matchmakingRequired property.

SPIN Rule example 4: Finding match with cap
ability name level

#1 CONSTRUCT {
#2 ?this:hasCapabilityMatch ?instance .
#3 }
#4 WHERE {
#5 ?this a ?class .
#6 ?capability (rdfs:subClassOf)+ ?class .
#7 ?capability (rdfs:subClassOf)* cm:Capability .
#8 ?instance a ?capability .
#9 }

The subsumption-based reasoning, related to var
ious alternative processing methods, is handled by
the Process Taxonomy. The reasoning ability of OWL
allows a direct inference to be made that each
instance saved to a specific cm:Capability class is
also an instance of the pt:ProcessTaxonomyElement
class, which was defined as the parent class of that
specific capability class. Thus, if the product requires
a riveting process, any resource providing riveting
capabilities (e.g. orbital or radial) can be suggested
as a match.

4.2.2.2. Find parameter-level matches. After the
capability concept name-level matches are found,
the actual matches can be determined by comparing
the parameters of the manufacturing activity require
ments and the parameters of the capability. This pro
cess uses various matchmaking rules attached to the
pm:ProcessTaxonomyElement subclasses with the
mmo:implementRule property. Each rule gets the cm:
Capability instance connected to the pt:
ProcesTaxonomyElement instance with the mmo:
hasCapabilityMatch property and makes process-
and capability-specific parameter comparisons. If
they match, the cm:Capability instance is further con
nected to the pt:ProcessTaxonomyElement instance
with the mmo:canBeImplementedWith property.

Since there are many similarities between the
rules, many common comparisons have been
implemented as SPIN functions that can be reused
in multiple rules. These include, for example, com
parisons of shape and size or torque. An example
of a function for checking whether the torque
range of the provided capability matches with the
torque required by the product is presented in
Rule example 5. It takes two arguments as inputs:
?capability, which refers to an instance of cm:
Capability, and ?taxonomy, which refers to an
instance of pt:ProcessTaxonomyElement. This func
tion is utilized e.g. by the matchmaking rule for
Screwing, illustrated in Rule example 6 (on row
#12). Some of the capabilities may have only cm:
torque_max defined, and some of the product
requirements may define either exact, maximum,
or minimum values for required torque. Therefore,
the rule also needs to include these as optional
parameters, as shown in lines #3–14. If the para
meter does not exist, it is ignored by the ‘not

140 E. JÄRVENPÄÄ ET AL.

bound’” part of the filter (#15–18), and the filter
passes. If the parameter exists, it must comply with
the rest of the filter conditions.

SPIN Rule example 5: Function for matching
with torque parameters – torqueMatch (arguments
?capability and ?taxonomy highlighted)

#1 ASK WHERE {
#2 ?capability cm:torque_max ?max .
#3 OPTIONAL {
#4 ?capability cm:torque_min ?min .
#5 } .
#6 OPTIONAL {
#7 ?taxonomy pm:requiredTorque_max ?requiredMax .
#8 } .
#9 OPTIONAL {
#10 ?taxonomy pm:requiredTorque_exact ?requiredExact .
#11 } .
#12 OPTIONAL {
#13 ?taxonomy pm:requiredTorque_min ?requiredMin .
#14 } .
#15 FILTER ((!bound(?requiredExact)) || (?requiredExact ≤ ?max)) .
#16 FILTER (((!bound(?requiredExact)) || (!bound(?min))) || (?

requiredExact ≥ ?min)) .
#17 FILTER (((!bound(?requiredMax)) || (!bound(?min))) || (?

requiredMax ≥ ?min)) .
#18 FILTER ((!bound(?requiredMin)) || (?requiredMin ≤ ?max)) .
#19 }

Rule example 6 shows an example rule that
finds capabilities that match with the required
screwing process. The rule compares the type
and size of the screw and the torque require
ments with the parameters of the available cap
abilities (lines #10–12) and connects the
requirement instance (?this) with the capability
instance (?instance) by the mmo:
canBeImplementedWith property (lines #1–3).

SPIN Rule example 6: Matchmaking for
Screwing process parameters.

#1 CONSTRUCT {
#2 ?this mmo:canBeImplementedWith ?instance .
#3 }
#4 WHERE {
#5 ?this pm:screwType ?requiredType .
#6 ?this pm:screwDiameter ?diameter .
#7 ?this mmo:hasCapabilityMatch ?instance .
#8 ?instance cm:screwType ?instanceType .
#9 ?instance cm:screwSize ?size .
#10 FILTER (?requiredType = ?instanceType) .
#11 FILTER (?diameter = ?size) .
#12 FILTER mmo:torqueMatch(?instance, ?this) .
#13 }

The rules attached to the classes follow similar
inheritance like other properties. Thus, the rules
attached to a class apply also to the subclasses of
this class. For instance, the rules defined for pt:

Feeding are also used on the subclasses of pt:
Feeding. In addition, it is possible to add specific
rules to the lower-level classes.

5. Software architecture for the matchmaking

The implementation of the Capability Matchmaking
Software follows the principles of client-server
architecture and the common layered model of
service-oriented architectures. The layered architec
ture is illustrated in Figure 6 and presented earlier
in (Järvenpää et al. 2019b). The main layers are the
data model layer, data layer, business layer, and
web service layer. The purpose here is not to pre
sent a novel software architecture, but to introduce
the full architecture that makes available the novel
functionalities provided by the modules on the
business and data model layer. Thus, this section
focuses on the activities taking place on the busi
ness layer, where the actual matchmaking activities
occur, i.e. the internal functionality of the match
making system.

The data model layer contains the ontology mod
els discussed earlier, while the data layer represents
the actual data, i.e. instances used during matchmak
ing. The web service layer provides a back-end appli
cation, Matchmaking Service, which can be called by
other design and planning software through the
RESTful Web Service interface. As RESTful API supports
both XML and JSON, the interaction format for inputs
and outputs can be selected based on the require
ments of the client software. The data model for
inputs and outputs has been optimized for XML-
structure. The web service and associated software
modules are deployed and hosted on an Apache
Tomcat server.

As discussed in (Järvenpää et al. 2019b), from the
viewpoint of the matchmaking reasoning activities,
the most important software packages in the archi
tecture are the Capability Query Library (CQL) and the
Matchmaker. The Matchmaker takes care of the man
agement, sequencing, and execution of the match
making process for the incoming requests. Its
constructor receives Product Model and Resource
Model instance ontologies, between which the
matchmaking should be performed. It also receives
the matchmaking request, which determines the pro
cess steps that should be matched for and, in case

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 141

there is an existing system layout, whether it should
be kept fixed (i.e. if new combination possibilities can
be created from the resources in the layout or not). It
creates resource combination possibilities, calculates
combined capabilities and parameters for the
resource combinations, checks the interface compat
ibility of the resources, executes matchmaking rules,
and constructs the matchmaking result from the rule
inferences. The Matchmaker calls the execution of the
SPIN rules through the Capability Query Library (CQL).

The Capability Query Library (CQL) is a Java-
based application that offers a Java API for other
applications to work with the developed MaRCO
model. In capability matchmaking, it is responsible

for running the rules needed for the resource com
bination generation and combined capability calcu
lation. The CQL uses the open source Jena semantic
web framework (Apache Software Foundation 2017)
and Pellet reasoner (Sirin et al. 2007) for working
with the ontology models. For the execution of the
SPIN rules, the SPIN API is used, since Jena or Pellet
themselves do not support SPIN. SPIN API is an
open-source library that builds on top of Jena
(Knublauch 2016).

Figure 7 illustrates the functionality of the CQL and
Matchmaker during a matchmaking scenario. The
defined combined capability SPIN rules, including the
templates and functions used by the rules, are included

Figure 6. Overall software architecture of the capability matchmaking system, modified from Järvenpää et al. (2019b).

142 E. JÄRVENPÄÄ ET AL.

in a separate Parameter Rules ontology used by the
CQL. This ontology imports the Resource Model ontol
ogy. When defining the combined capabilities for
resources, CQL reads in the Resource Model instances
ontology and calculates the combined capabilities of
the device combinations on a concept name level. This
combined capability information is saved to
a temporary ontology inside CQL (Combinations
Ontology in Figure 7), which imports the original
Resource Model instances ontology and the Parameter
Rules ontology. The combined capability parameters are
then inferred by SPIN API for the combinations, and this
information is saved to the Combinations Ontology. If
new device combination possibilities are required, CQL
will generate combination possibilities for the required
capabilities. The process can be given an external func
tion for filtering the created combinations based on
their interface compatibility. This same process is then
used to calculate the combined capabilities and their
parameters for these combination possibilities, and this
information is then saved again to the temporary ontol

ogy inside CQL. This generated ontology file will then be
used by the Matchmaker for capability matchmaking.
The Matchmaker executes the matchmaking rules and
builds the matchmaking result by making various
SPARQL queries to the ontology containing the informa
tion inferred by the rules and related product and
resource information.

6. Use case and validation

This section illustrates an example use case and walks
through the matchmaking process. The use case initi
ally appeared in (Järvenpää et al. 2021). Secondly, the
validation of the matchmaking results is discussed,
followed by a discussion of the performance of the
matchmaking system.

6.1. Example scenario of capability matchmaking

In the example scenario, the production system
designer designs a new production system for
a switch valve assembly process and utilizes the

Figure 7. Functionality of the CQL and matchmaking process module during capability matchmaking.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 143

capability matchmaking system to find feasible
resources or resource combinations. Figure 8 demon
strates the inputs provided by the client system to the
matchmaking system, i.e. the matchmaking request.
Figure 9 demonstrates the outputs received by the
client system from the matchmaking system, i.e. the
matchmaking result. The figures show real test data
from running the matchmaking system through its
web service interface.

First, the request contains a reference to the pro
duct requirement description (PRD) of the switch
valve product. This PRD contains all the process
steps and their requirements included in the valve
assembly process, but for illustration, the focus here

is on one step, ‘stick subassembly screwing’ (green
arrow). It requires the screwing of an M6 hexagon
socket head screw to the end torque between 13
and 17 Nm. The PRD is graphically illustrated in the
top left corner of Figure 8, while the lower part illus
trates the actual request message sent by the client
through the web service interface in XML format.
Figure 10 illustrates the requirement data modelled
with the Protégé ontology editor in the Product
Model format. It contains the description of the
parts and assemblies, the processes, and their related
process capability requirements, including the

Figure 8. Example of matchmaking request.

144 E. JÄRVENPÄÄ ET AL.

parameters. The figure highlights the requirement
data related to the specific process step ‘stick subas
sembly screwing’.

Another input needed by the matchmaking system
is the description of the resources included in the
matchmaking search space (i.e. the resource pool).
This is illustrated with the resource pool and blue
arrow in Figure 8. Figure 11 represents the example
capability and interface information of a few sample
resources included in the sample resource pool. The
interface information contains the interface standard,
interface gender, and interface parameters with asso
ciated values. The interfaces must be compatible to
allow for a connection. For example, IF2 of UR10 and
IF1 of FingerGripper are connectable: they follow the
same standard (Schunk_SWS), and their parameters
are the same. Interface gender is the opposite (M)ale

and (F)emale, so these interfaces are connectable.
Thus, these resources are connectable. Interface con
cept and matchmaking are discussed in more detail in
(Siltala, Järvenpää, and Lanz 2019b; Järvenpää et al.
2019a; Siltala, Järvenpää, and Lanz 2021).

After the request has been sent through the
designer’s client system, matchmaking is per
formed for each process step. Figure 12 represents
the internal reasoning process of the matchmaking
system for dealing with the specific process step
requiring the ‘Screwing’ capability. Only a subset of
the complete test data is shown. First, matchmak
ing creates new resource combinations from the
available resource pool for the required capability
at the concept name level, i.e. resource combina
tions that could provide the ‘Screwing’ capability.
The available resources in the resource pool are

Figure 9. Example of matchmaking result.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 145

illustrated in the left of the figure, while the first
phase presents four different combinations (i–iv)
created by the matchmaking software, matching
on the capability name level. While creating these
combinations, matchmaking software will simulta
neously check that the interfaces of the resources
are compatible, and the resources can be physi
cally connected. In the case of the resource

combination (ii) in the second phase, the tool bit
does not fit into the screw driver’s tool interface,
so the incompatible combination from the inter
face perspective is filtered out.

Figures 13 and 14 show sample resource combina
tions created during the matchmaking process for the
‘Screwing’ and ‘PickAndPlace’ capabilities in more
detail. The figures include information about the

Figure 10. Example PRD modelled with Protégé ontology editor.

Figure 11. Sample instances in the resource pool.

146 E. JÄRVENPÄÄ ET AL.

Figure 12. Internal reasoning procedure of the matchmaking system.

Figure 13. Created resource combination for screwing and its inferred capability parameters.

Figure 14. Created resource combination for PickAndPlace and its inferred capability parameters.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 147

combined capability parameters inferred during the
matchmaking process based on the combined cap
ability SPIN rules. In the case of the ‘PickAndPlace’
Rule example 3 has been used. Figure 13 corresponds
to the combination (iv) in Figure 12.

In the final phase, the matchmaking SPIN rules com
pare the parametric requirements of the product with
the capability parameters. In the example case, Rule
example 6 checks that the screw type and screw head
size match the tool type and size and that the required
torque is within the provided range. Unsuitable
resources and resource combinations are again filtered
out. In this case, the combination possibility (i) (in phase
three of Figure 12) does not provide enough torque,
and it is eliminated from this result. In the end, only two
resource combinations remain as feasible suggestions
in the matchmaking result. The alternative (iv) is the
same and appears as a selected result in Figure 9.

6.2. Validation

For validating the functionality of the Matchmaking
software and rules, various search spaces were used
to run several matchmaking scenarios for six case
products. The case products included three valve pro
ducts from the process and agriculture sector,
a manifold and pitch trimmer from the aviation sector
and a simple demonstration product with a disc stack
ing process from an industrial laboratory environ
ment. Sixty-seven (67) resources were included in
the resource pool, including robots, grippers, screw
drivers, tool bits, presses, fixtures, and human opera
tors. The software validation and testing process and
their results appeared in (Järvenpää et al. 2019b).

During the validation each match suggested by the
matchmaking result was manually reviewed to check
if the suggested resource combinations for each pro
cess step were valid. Based on the information models
and defined rules, certain results were expected, and

the validity of the matchmaking results was evaluated
based on those expectations. If the matchmaking
system produced expected results, these results
were considered valid. Thus, the limitations of the
models and rules were considered and the expecta
tions were set according to those limitations. In other
words, the authors tested that the rules and software
behaved as expected but acknowledged the fact that
such rules and information representations are always
simplifications of reality. For example, matchmaking
does not consider all constraints deriving from factory
facilities and other manufacturing resources. If the
product requirement description requested the
‘Fixturing’ process, the matchmaking system could
suggest a press that has an integrated fixture,
because in addition to ‘Pressing’ it also has
‘Fixturing’ capability, as requested by the product. In
this case the result is valid according to the set criteria,
but still not feasible in practice. Therefore, the sugges
tions provided by the matchmaking system must be
evaluated by the designer, to make sure of their fea
sibility for the specific application and context.

In addition to the full Matchmaking software test
ing, the rules were tested right after their implemen
tation in TopBraid Composer, a semantic web
modelling tool. It allowed rapid validation of the
rules, without the need to run the full matchmaking
cycle through the Matchmaking Web Service.
TopBraid Composer was also used to make larger
matchmaking tests to check that the results provided
by the Matchmaking Web Service were similar to
those inferred directly by the semantic rules.
Multiple PRD files were included in the testing
simultaneously.

In case of clearly invalid matchmaking results (i.e.
not expected), the root cause of the problem was
examined. This was done by checking the software
code, input data, and matchmaking rules. Two types
of invalid results were recognized: 1) a found match
that should not be a match and 2) a known match not

Table 1. Inputs (resource pools) and results of the matchmaking tests.
Resource pools used for matchmaking (search space) Matchmaking test results

Resource Pool
Device

Blueprints
Individual

Devices
Device

Combinations Capabilities
Layout
Fixed?

Created
Resource

Combinations
Combined

Capabilities
Found

Matches

Process Steps
without
Matches

Processing
Time (mm:

ss)

1 ResPool 1 67 1 0 127 N/A 44 76 24 1 12:33
2 SysLayout 1 25 26 9 55 T 0 26 13 5 00:58
3 SysLayout 1 25 26 9 55 F 18 49 27 1 01:58
4 SysLayout 1

+ ResPool 1
67 26 9 127 F 44 87 31 1 15:12

148 E. JÄRVENPÄÄ ET AL.

found. It was easy to detect type 1 errors. In the case
of type 2 errors, some unexpected combinations may
have been neglected because of being overlooked
during the analysis. The root causes were fixed, and
the matchmaking tests run iteratively until no invalid
results appeared with the given search spaces.

6.3. Performance evaluation

The performance of the Matchmaking system during
the validation tests has been described in detail in
(Järvenpää et al. 2019b). In this section, a summary of
those results will be provided from the perspective of
the switch valve case product discussed in Section 6.1.
The total number of process steps requiring match
making was 14. These processes required seven dif
ferent capabilities: Fixturing, Pick&Place, Hammering,
BlindRiveting, Screwing, Pressing and MountingO-
ring.

Table 1 presents the inputs and results of four
matchmaking scenarios. In all these scenarios, the
input product was the same, but the resource pool
varied. ResPool 1 contained 67 catalogue resources
(‘Device Blueprints’), and SysLayout 1 described the
existing production system layout for another pro
duct, not originally for the switch valve. The layout
included the physically existing resource instances
(‘Individual Devices’), their catalogue representation
(‘Device Blueprints’) and combinations of these indi
vidual instances (‘Device Combinations’) according to
the production system layout. The resource pools
included various robots, grippers, fixtures, screwdri
vers, drills and their associated bits, presses, O-ring
mounting devices, and hammers, as well as human
operators. The column ‘Capabilities’ indicate how
many capabilities had been asserted for these
resources in their resource description.

Table 1 shows the test results from the matchmak
ing with different search spaces: 1) all catalogue
resources; 2) only the existing layout and its resource
combinations (without permission to break and
reconfigure the layout); 3) individual resources in the
existing layout (with permission to break and reconfi
gure the layout); and 4) existing resources in the
current layout supplemented with all catalogue
resources. The last column indicates the duration of
the matchmaking process with the given search
space, ranging from less than a minute to over 15 min
utes. The time seems to depend on the number of

new resource combinations generated during the
process, which again depends on the number of
resources included in the search space, their capabil
ities, and the number of different capabilities required
by the product.

7. Discussion

Designing a manufacturing environment (worksta
tion, cell, line) is a challenging, multi-faceted, and
time-consuming task for a human. The designer uses
a lot of time for searching and filtering potential
resources for the system. Finding feasible resources
from scattered resource catalogues (each resource
provider having its own catalogue(s), more or less
digital) requires a vast amount of work, and the com
parison is difficult because the datasheets and proper
ties on those are not standardized across the resource
providers. Thus, the number of considered resource
solutions is usually limited, somewhat random, and
often dependent on the already established relations
and collaboration with a few resource providers.

This article presented the capability matchmaking
concept, procedure, rules, software, and underlying
information models that can partly automate the
search and filtering activities done during the produc
tion system design and reconfiguration planning pro
cess. The approach relies on formalized descriptions
of resources and products by OWL-ontologies, which
proved a suitable technology for encoding the infor
mation and knowledge traditionally described in an
unstructured way. The presented MaRCO model pro
vides a standard vocabulary for vendor-neutral repre
sentation of resource capabilities, thus supporting the
matchmaking in a multi-vendor system design and
reconfiguration context.

The performed case study proves that it is possible
to present the requirements of the product, and cap
abilities and interfaces of the resources, in a way that
allows automatic searching of feasible resources and
resource combinations to specific product require
ments. The central elements of this matchmaking
process are the semantic rules implemented with
the SPIN rule language. SWRL has been the more
popular rule language in similar research. However,
compared to SWRL, SPIN has many advantages,
including its expressiveness and metamodeling fea
tures. The utilisation of templates and functions
reduces the efforts needed for rule creation and

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 149

maintenance. Moreover, SPIN builds on top of estab
lished SPARQL, which has good tool support (e.g.
engines and databases) and doesn’t require learning
a new language. However, the main reason for select
ing SPIN over SWRL is that the presented application
requires the ability to assert new instances, which is
not supported by SWRL (Ian et al. 2004; Meditskos
et al. 2013).

A particularly interesting and novel contribution in
the presented approach is the ability to automatically
infer combined capabilities, including their para
meters, of combined resources. Thus, there is no
need to create these descriptions manually. Instead,
the resource combinations, and their descriptions,
can be dynamically created for specific requirements
based on the resource descriptions of single
resources. Furthermore, the existing resource combi
nations can be decomposed into single resources,
which provides the basis for the automatic reasoning
methods to provide suggestions for the reconfigura
tion actions. Such suggestions may relate, for
instance, to changing the tool tip of a screwdriver to
allow screwing of different size screws, changing the
magazine of a tube feeder to allow different size parts
to be fed, or to changing the gripper of a robot to
manipulate parts of different dimensions. These
mechanisms are valuable in plug-and-produce sce
narios, both in greenfield and brownfield contexts.
Furthermore, the capability-oriented description of
resources allows the separation of the functionality
provided by the resource from the actual technical
implementation. This means that different resources
may provide similar functionality and thus contribute
to the same capability. For instance, both a milling
machine and drill can perform the drilling process,
when combined with a proper tool.

The SPIN rules attached to the ontology classes
follow similar inheritance like other properties in
OWL. This means that the rules attached to
a specific class also apply to its subclasses. This
makes it possible to have flexibility in the definition
of the product requirements. For instance, it may be
defined that some feeding or joining is required with
out specifying the exact production method.
However, it was noted during the definition of the
rules that it is often difficult to define rules for the
parent classes that would also be feasible for all the
lower-level classes. Feeding is a good example of
a relatively straightforward case, as, for all feeding

methods, the common requirements are the size of
the object and feed rate. Joining is another extreme,
as different joining methods, such as riveting, screw
ing, and gluing, each have their very specific charac
teristics. Thus, it is not possible to make matchmaking
with capability parameters without specifying the
desired joining method. However, it is possible to
practice concurrent engineering and design for
assembly (DFA) principles and use matchmaking to
scan potential alternatives (e.g. in the current system,
in-house, or easily available), before making the final
selection of the preferred joining method.

There is always a trade-off between the compre
hensiveness of the model and the complexity of its
use. A model is a model and can never exactly mirror
the complex real-world situation. The authors aimed
for as simple models as possible without compromis
ing the ability to provide useful matchmaking results.
But it is evident, that the matchmaking system, in its
current development stage, can only provide crude
estimations of feasible resource combinations for spe
cific needs. One reason is that the combined capabil
ity calculation and matchmaking cannot consider
complex real-world properties, such as temperature
influences or friction coefficients. The combined cap
abilities and their properties emerge as a behaviour of
the machine or station as a whole in a specific context
and environment. It is impossible to decompose these
properties into the properties of the various resources
within the station (i.e. simple capabilities).
Furthermore, some capabilities depend on the physi
cal distance between the co-operating resources. At
this moment, the resource combinations are consid
ered as a set, not as a connected graph (layout or
hierarchy) and the approach can not consider the
relative physical positions between the resources in
the layout and their interface reservations. Thus, it is
not possible to analyse e.g. the reachability of the
robot arm to the components. Auxiliary and support
ing resources (such as frames and structural bodies),
which don’t directly contribute to the processing cap
abilities, are also not considered. In addition,
a feasible physical connection between the manipu
lated part and the resource is not considered. Thus,
the capability matchmaking relies on coarse size defi
nition (bounding box) when comparing e.g. the suit
ability of a gripper for grasping a specific object.

150 E. JÄRVENPÄÄ ET AL.

For the above-mentioned reasons, a human
designer must validate the matchmaking results and
make the final resource selection. For instance, in the
presented case study, the provided matchmaking
results were reviewed by the researchers to analyse
their feasibility. It turned out that all the found
matches were technically possible, but some sugges
tions were more practically reasonable than others.
For instance, as discussed in the validation section, for
the fixturing process, the matchmaking suggested, as
one option, a press with an integrated fixture. If press
ing is not required, it is not practical to select such
a resource. In such a case, the designer has to consider
this and select from the suggestion list a resource that
is a better fit.

Despite these limitations, the authors believe
that the presented matchmaking approach can
provide a valuable aid for the system designer to
find appropriate resource solutions from a large
amount of input data. By automating the search
and filtering of feasible resources and resource
combinations for specific product requirements
from large search spaces, and automating the
identification of required reconfiguration actions
on the current system layout, the matchmaking
system is expected to provide at least the follow
ing benefits: 1) Letting the designers and reconfi
guration planners use their time for the actual
design and planning tasks, instead of cumbersome
search and filtering of feasible resources and
resource combinations from various catalogues; 2)
Reducing human errors in resource search and
filtering; 3) Increasing the number of alternative
resource solutions considered, leading potentially
to more efficient production system configura
tions; 4) Reducing the time used for system design
and reconfiguration planning activity, and thus
lowering the design costs. As was shown in the
performance evaluation section, the time con
sumed by producing the matchmaking result for
the case product varied from 1 minute to 15 min
utes. It is clear, that even though the Matchmaking
System has not yet been optimized for perfor
mance, it still outperforms humans in the resource
search and filtering in terms of time.

The new paradigm of Industry 5.0 proposes
a shift from technology-oriented viewpoint of
Industry 4.0 to the human-centric viewpoint in
which humans and machines collaborate, rather

than compete against each other (Nahavandi
2019). In (Wilson and Paul 2018) this collaboration
is referred to as Collaborative Intelligence, in which
Artificial Intelligence and human intelligence are
used in a complementary way to enhance each
other’s strengths and rise above the limitations.
The proposed work presents a human-centric auto
mation approach that places human in the control
of decision making, and lets the machine perform
routine tasks requiring a lot of processing power.
Humans can reason about situation-specific criteria,
blending their pre-existing knowledge, experience,
professional judgment, and subjective perception,
to create context-aware insights. The capability
matchmaking system assists the designer (machine
assisting human) by providing high data proces
sing capacity and data-driven insights at a key
point of the system design process, letting the
human designer take informed decisions with
a greater set of feasible alternatives than before.
The machine does what it does best, processing
a vast amount of data to provide alternative
options for humans, and humans do what they
do best, exercise their intuition and judgment to
select the best fit from a set of choices as visioned
by (Wilson and Paul 2018).

8. Conclusions

This article intended to present the capability match
making concept and system and their underlying
information models, procedure and rules. Such
matchmaking can be exploited in greenfield and
brownfield system design to partly automatize the
search for suitable resources and resource combina
tions for product requirements. The approach is
based on semantic reasoning with formal ontologies
representing manufacturing resources and products
in OWL format. However, as pure OWL is not able to
infer and assert new instances to the ontology, nor to
perform complex arithmetic operations, which are
required during the matchmaking, the ontologies
were enriched with semantic rules. For rule imple
mentation SPIN (SPARQL Inferencing Notation) was
used. These SPIN rules calculate the capabilities of
combined resources and compare the requirements
of the product with the capabilities of the resources to
find matches and save that information back to the
ontology. The utilisation of ontologies and other

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 151

Semantic Web technologies allows automatic reason
ing and inference of new information not explicitly
stated before. Such information can then be used in
subsequent reasoning activities.

The main scientific contributions of the work are the
following. The presented MaRCO model and associated
combined capability rules contribute to the existing
resource and capability modelling research by provid
ing an approach for inferring and modelling the com
bined capabilities of multiple cooperating resources. It
is a unique approach and implementation, which other
researchers have not presented. In the field of capabil
ity matchmaking, similar conceptual ideas have been
presented, e.g. in (Ameri and McArthur 2014). The main
difference, however, is the ability to automatically
aggregate simple capabilities into combined capabil
ities and to infer their parameters. This automatic infer
ence of implicit information allows the resources to be
described at lower level of granularity and eliminates
the need to describe the combined capabilities manu
ally for each possible resource combination. Thus, it
contributes towards reconfigurable plug-and-produce
scenarios. Furthermore, the research contributes to the
application of the SPIN rule language, which has not
been much discussed in scientific articles. This paper
gives detailed examples on the usage of SPIN in the
context of capability matchmaking.

Currently, a graphical user interface (GUI) is being
developed for the Matchmaking service to allow
easier testing and utilisation of the service without
an external design system client. Also, a connection to
a 3D simulation environment is being built to allow
the loading of the suggested resources directly into
a simulation canvas for validation and feasibility
checks. In the future, new industrial projects will be
established to test the models and associated cap
ability matchmaking in wider industrial settings cov
ering a larger number of different resources and
process capabilities. Consequently, new capability
classes and their associated properties, and rules for
combined capability calculation and matchmaking,
will be implemented to increase the capability cata
logue when needed. Currently, human resources are
modelled in the same way as machine resources. In
the future, human modelling will be further elabo
rated upon to include characteristics of humans and

to make the description approach more acceptable.
The authors see that one of the biggest issues hinder
ing large-scale industrial exploitation of the presented
approach is the lack of formalized resource descrip
tions and global resource catalogues. The possibilities
of Artificial Intelligence technologies for automatic
generation of resource descriptions out of resource
datasheets and other unformalized data to the format
required by matchmaking should be investigated.

Acknowledgments

This research has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement no. 680759 with project title ReCaM (Rapid
Reconfiguration of Flexible Production Systems through
Capability-based Adaptation, Autoconfiguration and
Integrated Tools for Production Planning) and under grant
agreement no. 952003 with project title AI REGIO (Regions
and DIHs alliance for AI-driven digital transformation of
European Manufacturing SMEs).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the European Commission
[680759,952003].

ORCID

Eeva Järvenpää http://orcid.org/0000-0001-6513-135X
Niko Siltala http://orcid.org/0000-0001-6456-1251
Hasse Nylund http://orcid.org/0000-0002-1486-2301
Minna Lanz http://orcid.org/0000-0003-2182-4669

References

Aarnio, P., V. Vyatkin, and D. Hastbacka. 2016. “Context
Modeling with Situation Rules for Industrial Maintenance.”
In IEEE International Conference on Emerging Technologies
and Factory Automation, ETFA, 9. doi:10.1109/
ETFA.2016.7733539.

152 E. JÄRVENPÄÄ ET AL.

https://doi.org/10.1109/ETFA.2016.7733539
https://doi.org/10.1109/ETFA.2016.7733539

Ameri, F., C. Urbanovsky, and C. McArthur. 2012. “A Systematic
Approach to Developing Ontologies for Manufacturing
Service Modeling.” In Proceedings of the Workshop on
Ontology and Semantic Web for Manufacturing July 24,
2012 Graz, Austria, 1–14.

Ameri, F., and C. McArthur. 2014. “Semantic Rule Modelling for
Intelligent Supplier Discovery.” International Journal of
Computer Integrated Manufacturing 27 (6): 570–590.
doi:10.1080/0951192x.2013.834467.

Apache Software Foundation. 2017. “Apache Jena - A Free and
Open Source Java Framework for Building Semantic Web
and Linked Data Applications.” https://jena.apache.org/

Backhaus, J., and G. Reinhart. 2017. “Digital Description of
Products, Processes and Resources for Task-Oriented
Programming of Assembly Systems.” Journal of Intelligent
Manufacturing 28 (8): 1787–1800. doi:10.1007/s10845-015-
1063-3.

Bassiliades, N. 2018. “SWRL2SPIN : A Tool for Transforming
SWRL Rule Bases in OWL Ontologies to Object-Oriented
SPIN Rules.” ArXiv ID 1801.09061, 13.

Bengel, M. 2009. “Model-Based Configuration – A Workpiece-
Centred Approach.” In ASME/IFToMM International
Conference on Reconfigurable Mechanisms and Robots,
689–695. http://ieeexplore.ieee.org/document/5173901/

Bortolini, M., F. Gabriele Galizia, and C. Mora. 2018.
“Reconfigurable Manufacturing Systems: Literature Review
and Research Trend.” Journal of Manufacturing Systems 49:
93–106. September. doi:10.1016/j.jmsy.2018.09.005.

Cao, Q., F. Giustozzi, C. Zanni-Merk, F. De Beuvron Bertrand, and
C. Reich. 2019. “Smart Condition Monitoring for Industry 4.0
Manufacturing Processes: An Ontology-Based Approach.”
Cybernetics and Systems 50 (2): 82–96. doi:10.1080/
01969722.2019.1565118.

CO2PE! 2010. “CO2PE! - Taxonomy.” 2010. http://www.mech.
kuleuven.be/co2pe!/taxonomy.php

Cutting-Decelle, A. F., R. I.M. Young, J. J. Michel, R. Grangel, J. Le
Cardinal, and J. P. Bourey. 2007. “ISO 15531 MANDATE: A
Product-Process-Resource Based Approach for Managing
Modularity in Production Management.” Concurrent
Engineering Research and Applications 15 (2): 217–235.
https://doi.org/10.1177/1063293X07079329 .

Doulaverakis, C., V. Koutkias, G. Antoniou, and I. Kompatsiaris.
2017. “Applying SPARQL-Based Inference and Ontologies for
Modelling and Execution of Clinical Practice Guidelines:
A Case Study on Hypertension Management.” In
Knowledge Representation for Health Care, edited by
D. Riaño, R. Lenz, and M. Reichert. Cham: Springer.
doi:10.1007/978-3-319-55014-5_6.

Efthymiou, K., K. Sipsas, D. Mourtzis, and G. Chryssolouris. 2015.
“On Knowledge Reuse for Manufacturing Systems Design
and Planning: A Semantic Technology Approach.” CIRP
Journal of Manufacturing Science and Technology 8: 1–11.
doi:10.1016/j.cirpj.2014.10.006.

Horrocks, l., P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean. 2004. “SWRL: A Semantic Web Rule Language
Combining OWL and RuleML.” W3C Member Submission.
https://www.w3.org/Submission/SWRL/

Jardim-Goncalves, R., A. Grilo, and K. Popplewell. 2016. “Novel
Strategies for Global Manufacturing Systems
Interoperability.” Journal of Intelligent Manufacturing 27 (1):
1–9. doi:10.1007/s10845-014-0948-x.

Järvenpää, E., N. Siltala, O. Hylli, and M. Lanz. 2017. “Capability
Matchmaking Procedure to Support Rapid Configuration
and Re-Configuration of Production Systems.” Procedia
Manufacturing 11. doi:10.1016/j.promfg.2017.07.216.

Järvenpää, E., O. Hylli, N. Siltala, and M. Lanz. 2018a.
“Utilizing SPIN Rules to Infer the Parameters for
Combined Capabilities of Aggregated Manufacturing
Resources.” IFAC-Papers Online 51 (11): 84–89.
doi:10.1016/j.ifacol.2018.08.239.

Järvenpää, E., N. Siltala, O. Hylli, and M. Lanz. 2018b. “Product
Model Ontology and Its Use in Capability-Based
Matchmaking.” Procedia CIRP 72: 1094–1099. doi:10.1016/j.
procir.2018.03.211.

Järvenpää, E., N. Siltala, and O. Hylli. 2019. “Product,
Manufacturing Resource and Capability Ontologies.” http://
urn.fi/urn:nbn:fi:csc-kata20190225153111925507

Järvenpää, E., N. Siltala, O. Hylli, and M. Lanz. 2019a. “The
Development of an Ontology for Describing the
Capabilities of Manufacturing Resources.” Journal of
Intelligent Manufacturing 30 (2): 959–978. doi:10.1007/
s10845-018-1427-6.

Järvenpää, E., N. Siltala, O. Hylli, and M. Lanz. 2019b.
“Implementation of Capability Matchmaking Software
Facilitating Faster Production System Design and
Reconfiguration Planning.” Journal of Manufacturing Systems
53: 261–270. October. doi:10.1016/j.jmsy.2019.10.003.

Järvenpää, E., N. Siltala, O. Hylli, and M. Lanz. 2021. “Capability
Matchmaking Software for Rapid Production System Design
and Reconfiguration Planning.” Procedia CIRP 97: 435–440.
doi:10.1016/j.procir.2020.05.264.

Knublauch, H. 2013. “SPIN - SPARQL Syntax.” W3C Member
Submission. https://spinrdf.org/sp.html

Knublauch, H. 2016. “The TopBraid SPIN API.” http://topbraid.
org/spin/api/

Köcher, Aljosha, Constantin Hildebrandt, , and Alexander Fay.
2020. “A Formal Capability and Skill Model for Use in Plug
and Produce Scenarios.” In 2020 25th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA). https://doi.org/10.1109/ETFA46521.
2020.9211874 .

Leitão, P., A. W. Colombo, and S. Karnouskos. 2016.
“Industrial Automation Based on Cyber-Physical Systems
Technologies: Prototype Implementations and
Challenges.” Computers in Industry 81: 11–25.
doi:10.1016/j.compind.2015.08.004.

Li, Z., W. M. W. Xiaowu Zhou, G. Huang, Z. Tian, and S. Huang.
2018. “An Ontology-Based Product Design Framework for
Manufacturability Verification and Knowledge Reuse.” The
International Journal of Advanced Manufacturing Technology
99: 2121–2135. doi:10.1007/s00170-018-2099-2.

Lohse, N., T. Maraldo, and J. Barata. 2008. “EUPASS Std-0007:
Assembling Process Ontology Specification.” EUPASS Project
Specification: 38.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 153

https://doi.org/10.1080/0951192x.2013.834467
https://jena.apache.org/
https://doi.org/10.1007/s10845-015-1063-3
https://doi.org/10.1007/s10845-015-1063-3
http://ieeexplore.ieee.org/document/5173901/
https://doi.org/10.1016/j.jmsy.2018.09.005
https://doi.org/10.1080/01969722.2019.1565118
https://doi.org/10.1080/01969722.2019.1565118
http://www.mech.kuleuven.be/co2pe!/taxonomy.php
http://www.mech.kuleuven.be/co2pe!/taxonomy.php
https://doi.org/10.1177/1063293X07079329
https://doi.org/10.1007/978-3-319-55014-5_6
https://doi.org/10.1016/j.cirpj.2014.10.006
https://www.w3.org/Submission/SWRL/
https://doi.org/10.1007/s10845-014-0948-x
https://doi.org/10.1016/j.promfg.2017.07.216
https://doi.org/10.1016/j.ifacol.2018.08.239
https://doi.org/10.1016/j.procir.2018.03.211
https://doi.org/10.1016/j.procir.2018.03.211
http://urn.fi/urn:nbn:fi:csc-kata20190225153111925507
http://urn.fi/urn:nbn:fi:csc-kata20190225153111925507
https://doi.org/10.1007/s10845-018-1427-6
https://doi.org/10.1007/s10845-018-1427-6
https://doi.org/10.1016/j.jmsy.2019.10.003
https://doi.org/10.1016/j.procir.2020.05.264
https://spinrdf.org/sp.html
http://topbraid.org/spin/api/
http://topbraid.org/spin/api/
https://doi.org/10.1109/ETFA46521.2020.9211874
https://doi.org/10.1109/ETFA46521.2020.9211874
https://doi.org/10.1016/j.compind.2015.08.004
https://doi.org/10.1007/s00170-018-2099-2

Lu, Y., H. Wang, and X. Xu. 2016. “ManuService Ontology:
A Product Data Model for Service-Oriented Business
Interactions in A Cloud Manufacturing Environment.” Journal
of Intelligent Manufacturing: 1–18. doi:10.1007/s10845-016-
1250-x.

Lu, Y., and X. Xu. 2017. “A Semantic Web-Based Framework for
Service Composition in A Cloud Manufacturing
Environment.” Journal of Manufacturing Systems 42: 69–81.
doi:10.1016/j.jmsy.2016.11.004.

Lu, Y., and X. Xu. 2018. “Resource Virtualization: A Core
Technology for Developing Cyber-Physical Production
Systems.” Journal of Manufacturing Systems 47: 128–140.
April. doi:10.1016/j.jmsy.2018.05.003.

Luo, Y., L. Zhang, F. Tao, L. Ren, Y. Liu, and Z. Zhang. 2013.
“A Modeling and Description Method of Multidimensional
Information for Manufacturing Capability in Cloud
Manufacturing System.” International Journal of Advanced
Manufacturing Technology 69 (5–8): 961–975. doi:10.1007/
s00170-013-5076-9.

Maleki, E., F. Belkadi, N. Boli, B. Jan Van Der Zwaag, K. Alexopoulos,
S. Koukas, M. Marin-perianu, and A. Bernard. 2018. “Ontology-
Based Framework Enabling Smart Product-Service Systems:
Application of Sensing Systems for Machine Health
Monitoring.” IEEE Internet of Things Journal 5 (6): 4496–4505.

Meditskos, G., S. Dasiopoulou, V. Efstathiou, and I. Kompatsiaris.
2013. “SP-ACT: A Hybrid Framework for Complex Activity
Recognition Combining OWL and SPARQL Rules.” In IEEE
Workshop on Context Modeling and Reasoning 2013, 25–30.
doi:10.1109/PerComW.2013.6529451.

Nahavandi, S. 2019. “Industry 5.0 - A Human-Centric Solution.”
Sustainability 11 (16): 4371. doi:10.3390/su11164371.

The OWL Working Group. 2004. “OWL Web Ontology Language
Overview.” W3C Recommendation. https://www.w3.org/TR/
owl-features/

Pfrommer, J., D. Stogl, K. Aleksandrov, V. Schubert, and B. Hein.
2014. “Modelling and Orchestration of Service-Based
Manufacturing Systems via Skills.” In Proceedings of the
2014 IEEE Emerging Technology and Factory Automation
(ETFA), 1–4. doi:10.1109/ETFA.2014.7005285.

Pintzos, G., M. Matsas, and G. Chryssolouris. 2012. “Defining
Manufacturing Performance Indicators Using Semantic
Ontology Representation.” Procedia CIRP 3: 8–13.
doi:10.1016/j.procir.2012.07.003.

Rampersad, H.K. 1994. Integrated and Simultaneous Design for
Robotic Assembly. Chichester: John Wiley & Sons Ltd 212
0471954667.

Siltala, N., E. Järvenpää, and M. Lanz. 2018. “Value Proposition
of a Resource Description Concept in a Production

Automation Domain.” Procedia CIRP 72: 1106–1111.
doi:10.1016/j.procir.2018.03.154.

Siltala, N., E. Järvenpää, and M. Lanz. 2019a. “A Method to
Evaluate Interface Compatibility during Production System
Design and Reconfiguration.” Procedia CIRP 81: 282–287.
doi:10.1016/j.procir.2019.03.049.

Siltala, N., E. Järvenpää, and M. Lanz. 2019b. “Creating Resource
Combinations Based on Formally Described Hardware
Interfaces.” IFIP Advances in Information and
Communication Technology 530: 29–39. doi:10.1007/978-
3-030-05931-6_3.

Siltala, N., E. Järvenpää, and M. Lanz. 2021. “Resource Interface
Matchmaking as a Part of Automatic Capability Matchmaking.”
IFIP Advances in Information and Communication Technology
51–62. doi:10.1007/978-3-030-72632-4_4.

Sirin, E., B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. 2007.
“Pellet: A Practical OWL-DL Reasoner.” Journal of Web
Semantics 5 (2): 51–53. doi:10.1016/j.websem.2007.03.004.

SPIN Working Group. 2017. “SPIN - SPARQL Inferencing
Notation.” https://spinrdf.org/

Sun, W., Q.-Y. Ma, and T.-Y. Gao. 2009. “An Ontology-Based
Manufacturing Design System.” Information Technology
Journal 8 (5): 643–656. doi:10.3923/itj.2009.643.656.

Sure, Y., S. Staab, and R. Studer. 2009. “Ontology Engineering
Methodology.” In Handbook on Ontologies. 2nd ed., edited by
S. Staab and R. Studer, Heidelberg: Springer Berlin. 135–152.

Thoben, K.-D., S. Wiesner, and T. Wuest. 2017. “‘Industrie 4.0’
and Smart Manufacturing – A Review of Research Issues
and Application Examples.” International Journal of
Automation Technology 11 (1): 4–16. doi:10.20965/
ijat.2017.p0004.

Tolio T, Ceglarek D, ElMaraghy H, Fischer A, Hu S, Laperrière L,
Newman S and Váncza J. 2010. SPECIES—Co-evolution of
products, processes and production systems. CIRP Annals 59
(2): 672–693. doi:10.1016/j.cirp.2010.05.008

W3C SPARQL Working Group. 2013. “SPARQL 1.1 Query
Language.” W3C Recommendation. https://www.w3.org/TR/
sparql11-query/

Wilson, H. J., and R. D. Paul. 2018. “Collaborative Intelligence:
Humans and AI are Joining Forces.” Harvard Business Review,
July–August.

Yahya, M., J. G. Breslin, and M. Intizar Ali. 2021. “Semantic Web
and Knowledge Graphs for Industry 4.0.” Applied Sciences
11 (11): 5110. doi:10.3390/app11115110.

Yuan, M., K. Deng, and W. A. Chaovalitwongse. 2017.
“Manufacturing Resource Modeling for Cloud
Manufacturing.” International Journal of Intelligent Systems
32 (4): 414–436. doi:10.1002/int.21867.

154 E. JÄRVENPÄÄ ET AL.

https://doi.org/10.1007/s10845-016-1250-x
https://doi.org/10.1007/s10845-016-1250-x
https://doi.org/10.1016/j.jmsy.2016.11.004
https://doi.org/10.1016/j.jmsy.2018.05.003
https://doi.org/10.1007/s00170-013-5076-9
https://doi.org/10.1007/s00170-013-5076-9
https://doi.org/10.1109/PerComW.2013.6529451
https://doi.org/10.3390/su11164371
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-features/
https://doi.org/10.1109/ETFA.2014.7005285
https://doi.org/10.1016/j.procir.2012.07.003
https://doi.org/10.1016/j.procir.2018.03.154
https://doi.org/10.1016/j.procir.2019.03.049
https://doi.org/10.1007/978-3-030-05931-6_3
https://doi.org/10.1007/978-3-030-05931-6_3
https://doi.org/10.1007/978-3-030-72632-4_4
https://doi.org/10.1016/j.websem.2007.03.004
https://spinrdf.org/
https://doi.org/10.3923/itj.2009.643.656
https://doi.org/10.20965/ijat.2017.p0004
https://doi.org/10.20965/ijat.2017.p0004
https://doi.org/10.1016/j.cirp.2010.05.008
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.3390/app11115110
https://doi.org/10.1002/int.21867

	Abstract
	1. Introduction
	2. Background and limitations of existing approaches
	3. Capability matchmaking and involved information models
	3.1. Aims and scope of capability matchmaking
	3.2. Involved information models

	4. Capability matchmaking procedure and rules
	4.1. Matchmaking procedure
	4.2. Rule implementation
	4.2.1. Resource combination generation
	4.2.2. Product requirement – resource capability matchmaking
	4.2.2.1. Find capability name-level matches
	4.2.2.2. Find parameter-level matches

	5. Software architecture for the matchmaking
	6. Use case and validation
	6.1. Example scenario of capability matchmaking
	6.2. Validation
	6.3. Performance evaluation

	7. Discussion
	8. Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

