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Abstract—Exposed Datapath Architectures (EDPAs) with ag-
gressively pruned data-path connectivity, where not all function
units in the design have connections to a centralized register file,
are promising solutions for energy-efficient computation. A direct
bypassing of data between function units without temporary
copies to the register file is a prime optimization for programming
such architectures. However, traditional compiler frameworks,
such as LLVM, assume function-units connect to register-files and
allocate all live variables in register-files. This leads to schedule
inefficiencies in terms of instruction-level parallelism and reg-
ister accesses in the EDPAs. To address these inefficiencies, we
propose Prebypass; a new optimization pass for EDPA compiler
backends. Experimental results on an EDPA class of architecture,
Transport-Triggered Architecture, show that Prebypass improves
the runtime, register reads, and register writes up to 16%,
26%, and 37% respectively, when the datapath is extremely
pruned. Evaluation in a 28-nm FDSOI technology reveals that
Prebypass improves the core-level Energy by 17.5% over the
current heuristic scheduler.

Index Terms—exposed datapath, TTA, LLVM, code generation.

I. INTRODUCTION

The edge computing paradigm, where small low-cost and
low-power embedded System-on-Chips (SoCs) are used for
real-time on-device signal analysis, is gaining much more
attention in the Internet-of-Things (IoT) field, especially in the
remote healthcare, sensing, and control domains. Applications
in these domains often require real-time operation and operate
on confidential (user) data with limited energy budget. In
these cases, on-device signal analysis (or edge processing)
and actuation is required. When designing application spe-
cific instruction set processors (ASIP) for such applications,
among other things, energy-efficiency, high performance and
flexibility in reprogramming are prime requirements. Exposed
datapath-architectures (EDPA) [1] are a promising solution, as
they offer very high energy efficiency without compromising
programmability.

As the name states, the EDPAs expose their datapath to the
programmer. Exposing the datapath to the programmer permits
programme-controlled register-file bypassing, referred to as
software-bypassing, of data between Function-Units (FUs) at
compile-time without the intervention of a Register-File (RF).
Therefore, their RFs and datapath can be simplified without
compromising performance. Various Coarse-Grained Recon-
figurable Architectures (CGRAs) [2], Transport Triggered Ar-
chitecture (TTAs) [3], Silicon-Hive’s DSPs, TRIPS [4], and
Explicit-SIMD [5] are examples of architectures that belong

to this category. To extract most implementation benefits from
EDPA, the datapath is typically pruned such that not all FUs
have direct connectivity to a RF. Though this simplifies the
hardware, the added additional compile-time responsibilities
of assigning operations to FUs without datapath and RF port
conflict increases compiler complexity [6], [7].

Most EDPA compilers [8]–[11] are designed with the LLVM
framework [12] such that they benefit from language support
(clang) and common optimisations for free. However, LLVM
lacks support for modelling FU port buffers and a partially
connected datapath between FUs and the RF. These limita-
tions lead to inefficiencies for EDPA targets. Specifically, the
register-allocation stage in the LLVM framework inherently
assumes that all FUs have sufficient connectivity to a RF
for operands and results, and allocates all the live variables
in the RF. This worst-case register allocation leads to high
register pressure and inefficient schedules on EDPA targets.
Furthermore, for extremely pruned datapaths, where the RF is
not reachable by all FUs, the scheduler forces data to the RF
by passing the data values through other units, which leads to
inefficient schedules. These shortcomings in existing compiler
infrastructure motivate this work.

In this work we propose a compiler optimization algorithm
for EDPA compiler targets, named Prebypass, to identify
and skip register allocation for the live variables that are
expected to be software-bypassed when scheduled. We make
the following contributions:

• A novel Prebypass algorithm for EDPA compilers to
identify and skip register allocation for the live variables
that will be software-bypassed when scheduled (Sec-
tion IV).

• Exploration of the Prebypass design parameters (node
order heuristics and prebypass region size) to identify
trade-offs in the algorithm configuration (Section VI-A).

• Evaluation of the Prebypass optimization on an EDPA
target in terms of runtime, register reads, register writes,
and core level energy for a set of common signal process-
ing kernels. Results show a decrease of energy-delay-area
product (EDAP) of up to 13% (Section VI-B).

The proposed optimization is applicable to many EDPAs,
such as CGRAs [2], that rely on an LLVM based compiler
flow [7]. In this work we use the TCE toolset, an open-
source (http://openasip.org) framework for TTA design and
compilation, to demonstrate Prebypass. We selected the TTA

http://openasip.org
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iv) TTA architecture instance

Cycle-1: IMM #10->Load.in 
Cycle-2: Load.out->MUL.1, RF.r2->MUL.2 
Cycle-3: MUL.out->RF.r3

iii) TTA schedule with software bypassing

IMM #10->Load.in 
Load.out->RF.r1 
RF.r1->MUL.1 
RF.r2->MUL.2 
MUL.out->RF.r3 

ii) Program in TTA move form

r1 = Load #10 
r3 = r1 * r2

i) Sample program

Fig. 1: Illustration of TTA programming model and architecture instance with visualization on how a program is decomposed
into datapath moves at cycle level. The moves are numbered with their corresponding execution cycle. The flow dependency
in register r1 is optimized out in the final program as a result of software bypassing.

processor as a representative EDPA class processor with an
aim to open source the Prebypass algorithm.

The remainder of this paper is organized as follows: Re-
lated works are discussed in Section II. Section III gives an
overview of the TTA processor architecture and its compiler
support. The proposed Prebypass optimization algorithm and
its results are outlined in Sections IV and VI, respectively.
Section V outlines our experimental setup. Finally, Section VII
describes future work and concludes the paper.

II. RELATED WORKS

Software bypassing is a key optimization that EDPAs rely
on for their energy efficiency benefits [13]. The TCE com-
piler [14], [15], a state-of-the-art TTA compiler to our best
knowledge, exploits bypassing opportunities primarily in the
scheduling stage. The TCE scheduler attempts to schedule the
operand and the result moves with software bypassing first.
The scheduler falls back to register access for data when by-
passing fails because of resource or dependency conflicts. The
downside of the approach is that the bypassing is an optional
optimization in the scheduling stage, and they are exploited
only when the scheduling order of the nodes enforced by the
scheduler presents an opportunity for bypassing.

The bypassing algorithms proposed for the Blocks CGRA
and various TTAs in [8], [13], [16]–[18] follow a similar
bypassing model where the scheduling stage exploits bypasses.
In [8], [13]–[18], bypassing is not actively performed, but
only when an opportunity arises. Registers are first allocated
for all live variables and their use is optimised with bypasses in
the scheduling stage. This over-allocation of physical registers
leads to increased register pressure and often introduces false
dependencies that restrict ILP in the program.

The scheduling algorithms based on integer linear pro-
gramming [19] results in aggressive bypassing since they
are immune to the scheduling order of the nodes. However,
their use is limited to very small programs because of their
extremely long scheduling time. The combined register allo-
cation and scheduling [20] is another approach that helps with
aggressive bypassing. The engineering complexity involved in
their design limits their use.

The safe-bypassing approach presented in [21] is closely
related to the proposed approach, and targets the same goal of
improving software bypassing without over-allocating registers
first. However, their resource model does not consider datapath
availability and storage buffers in the input and output ports
of the FUs. Furthermore, the approach is limited to processor
architectures with single-cycle operations and FUs with a
single output port. This restricts their use to a limited set of
processor instances. Besides that, their approach is theoretical,
and lacks implementation and validation.

III. BACKGROUND

In this section we discuss the relevant background with
respect to the TTA target (Section III-A) and the relevant
compiler concepts (Section III-B).

A. Transport-Triggered Architectures

Transport Triggered Architecture (TTA) is a class of VLIW
architecture with an exposed datapath. The TTA paradigm was
proposed as an improvement to VLIW processors that suffer
from register-file and bypass network scalability issues [3].
Like parallel operations in VLIW, the TTA instructions are
composed of parallel moves that transport data between any
two FU or RF ports in the design. TTA moves are fine-grained,
each transferring a single operand. An operation is started on
an FU when its final operand is moved to a special input port
marked as trigger-input. Since the operands can be directly
transferred between FU ports in a TTA (software bypassing),
RF access is not necessarily needed, similar to traditional
hardware bypasses in VLIW, but without complex hardware
bypassing logic. Fig. 1 depicts a sample TTA instance and
its programming model with software bypassing. Software
bypassing reduces RF dependencies in instruction scheduling.
Hence, the RF and datapath of a TTA instance can be
simplified to match the application requirements. This enables
TTA cores to be more scalable and energy-efficient compared
to their VLIW counterparts.

The datapath in the TTA can be pruned in different ways,
which we refer to as a connection model. The trivial connec-
tion model is the fully connected model, where all FU and
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Fig. 2: Scheduler view of software bypassing support in TCE. The scheduling steps are colour-coded and numbered for interpretation: a)
Sample DDG for schedule. b) The scheduling starts with the critical node (step-1). The input operands are attempted with software bypassing. If bypassing succeeds (step-2), the
algorithm proceeds with the next move. Otherwise, the operand is read from RF (step-3 and 4) as a fall-back. This increases RF dependency in the schedule. c) When the FU lacks
direct connectivity to RF, the data is routed via other units (step-4) by inserting a copy operation. This delays the schedule of Ldata because of resource conflict.
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Fig. 3: Prebypass example. The scheduling steps are colour coded and
numbered for interpretation. Schedule corresponds to DDG presented in Fig. 2d. a) When
a schedule of a node fails in the bypass region, all the nodes that belong to the region
are unscheduled and rescheduled later or in a different cycle. This enforces priority for
bypassing over scheduler node ordering. b) The bypass region schedule is feasible when
the scheduler attempts to schedule the bypass region in a different order.

RF ports are connected. The directly reachable model has
at least one direct connection from each FU and RF output
to all inputs. In a fully RF connected model, all FUs have
connectivity to RFs but may miss connections between FU
ports. And finally, the disconnected RF model, where some
FUs are not directly connected to RF. The disconnected RF
models use simpler hardware, but they are difficult targets
for the compilers since they route register access of RF
disconnected FUs via other units. Efficient compiler support
for such architectures is still lacking, which restricts their use
in practice.

B. TCE Toolchain and TTA Compiler

TTA-based Co-Design Environment (TCE) is an open-
source toolset that enables the design and programming of
customised ASIPs based on TTAs. The TTA compiler that is
part of the tooling is based on the LLVM framework with TTA
target as its backend. To overcome the shortcomings of LLVM
in modelling datapath and FU ports, the backend implements
a custom scheduling pass together with its own TTA resource
model. The backend pipeline follows register-allocation first
and then scheduling since spill code insertion after scheduling
is not always possible in TTA [22], [23].

Exploiting bypass opportunities in the program is a prime
optimization that enables EDPAs to reach high energy effi-
ciency promises. In the current compiler flow, the scheduler
identifies and extracts bypassing opportunities. Fig. 2 illus-

trates the bypass optimization in the scheduler stage. The
scheduling step starts by selecting a node that is ready to be
scheduled. The nodes in the critical path on Data Dependency
Graph (DDG) are prioritised for being scheduled first since
they dominate the schedule length. As shown in Fig. 2b (step
1), the result-move of the operation is scheduled first. Then
their operand-moves are attempted to schedule with software
bypass. The scheduling process proceeds with the next step if
the software bypass succeeds (step 2 in Fig. 2b). If it fails,
because of dependency or resource conflicts, the scheduler
falls back to RF access for the operand (step 3 and 4 in
Fig. 2b). However, this register access could be avoided when
the "Add" node is prioritised to scheduled first. Furthermore,
as shown in Fig. 2c, this fall-back register read is routed via
other units when the RF is not directly reachable by the FU
where the result-move is scheduled. This occupies additional
resources and increases schedule length in the disconnected
RF architecture.

This scheduling inefficiency occurs due to two key prob-
lems. First, bypassing is not a primary optimization in the
scheduling stage and is exploited only when the node ordering
enforced by the scheduler presents a bypass opportunity.
Second, allocating registers for live variables that will be
software bypassed leads to increased register pressure and of-
ten introduces false dependencies that restrict instruction-level
parallelism (ILP) in the program. The proposed Prebypass
algorithm addresses these two shortcomings by enforcing
bypasses before register allocation.

IV. PREBYPASS OPTIMIZATION

The goal of the Prebypass optimization is to improve
bypassing capabilities of the post-RA scheduling model, where
register allocation precedes the scheduling stage, without
increasing the complexity of the EDPA scheduler. This is
realised by implementing a pre-register allocation optimization
pass that identifies the operand moves that should be bypassed
when scheduled. The bypass candidates are identified using
DDG analysis at the basic block level for a producer-consumer
relation, and cross-checking target resource model for the
availability of FU and datapath for software-bypassing the
edge.
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Algorithm 1 Prebypass Algorithm
1: procedure PREBYPASS(MachineBasicBlock mbb)
2: ddg ← buildDDG(mbb)
3: cand← ddg.bypassCandidates()
4: queue← sort(cand,#orderingAlgorithm)
5: for n ∈ queue do
6: dist← distance(n.source, n.destination)
7: if dist≤TH1 & machineHasResource(n) then
8: Prebypass(n)
9: if !deadlockFree(mbb) ||

10: bypassRegionSize(n) > TH1 then
11: revertBypass(n)
12: else
13: addRegisterAlloctionConstraints(n)

1TH - User defined threshold.

After identifying the bypass candidates, i.e, virtual regis-
ters holding live-variables, the algorithm marks them as pre-
bypassed registers. The proceeding register allocation stage
then skips register allocation for them. This reduces the
number of physical register allocations and the accompa-
nying Write-after-Read (WaR) and Write-after-Write (WaW)
dependencies. Finally, Prebypass hints the scheduler about
the bypass opportunities. The scheduler then prioritises the
Prebypass nodes over its node ordering heuristics to exploit
bypasses that scheduler bypasses fail to detect. The proposed
Prebypass optimization complements the existing scheduler
bypass in improving bypassing capabilities of the compiler.

The rest of the section presents the extensions added to
the current TTA compiler to support scheduling with pre-
bypassing. Section IV-A presents the extension added to
the scheduling stage. A model for pre-bypassing without
introducing cyclic dependencies in the DDG is discussed in
Section IV-B. Finally, Section IV-C presents the implemented
Prebypass algorithm.

A. Scheduling with Prebypass

Prebypass forces flow dependencies, so called Read-after-
Writes (RaW), to be a software bypass. The flow dependency
is a producer to consumer relation in the data dependency,
where the data produced by producer p is consumed by c.
For an efficient schedule, the cycle in which the producer
of the flow dependency can be scheduled is cycle(p) =
cycle(c)−Latency(p). Scheduling p later leads to longer re-
source occupancy and inefficient schedules. Scheduling earlier
violates the RaW dependency. Hence, it is logical to schedule
the pre-bypassed nodes in their optimal cycles. We implement

a new scheduling model to achieve this with a more scalable
solution by: a) Grouping the pre-bypassed nodes to form a
cluster named bypass regions, and b) Scheduling the nodes
in the bypass regions together. When the nodes are scheduled
together, they can be placed at their optimal flow dependency
cycle.

Fig. 3 explains the scheduling model for sample DDG
with pre-bypassed nodes. The scheduling process starts with
forming bypass regions by clustering the pre-bypass edges
as shown in Fig. 2d. The scheduling heuristics then selects
operations with its default critical path first node ordering
and attempts to schedule the result move, followed by input
operands with priority to the pre-bypassed operands. When
scheduling pre-bypassed operands, the scheduler attempts to
enforce software bypassing for the move as shown Fig. 3a. The
heuristics proceed with the next operation when the schedule
succeeds for all moves of the selected operation. Otherwise,
scheduled moves of the selected operation are unscheduled.
If the operation belongs to the bypass region, then all moves
that belong to the region are unscheduled and scheduling is
re-attempted in an earlier cycle or with a different operation,
as shown in Fig. 3b. This ensures that the bypass regions are
scheduled together for an efficient schedule.

B. Dependence Conflicts and Live-range Extension Problem

The bypass regions are individually scheduled to obtain
resource and runtime efficient schedules. However, this con-
straint leads to schedule deadlocks when there is a cyclic
dependency between the bypass region and the regular node.
The main source of this dependency is the register allocation
stage which follows the Prebypass optimization. Physical
registers are typically reused for holding live variables. This
introduces false dependencies (like WaR) in the schedule.
An example instance of this is given in Fig. 4c. The false
dependency from physical register reuse is addressed in our
work by constraining the register allocator from reusing the
same physical registers for problematic edges in the DDG. For
the example in Fig. 4a, by enforcing the register allocator to
assign independent registers for vreg1, vreg2, and vreg4, the
deadlock from false dependency can be avoided. The resulting
DDG with register allocator constraint is given in Fig. 4d.

In the LLVM framework, this can be achieved by extending
the live range of the conflicting nodes to overlap with each
other. In some cases, this approach increases register pressure
of the code block, which may result in an inefficient schedule.
In our example (Fig. 4d), the register need increased from two
registers to three. Our observations of this effect on real bench-
mark kernels are presented in Section VI-A. Furthermore,
other optimizations such Phi-elimination and loop invariant
code movement may also introduce dependencies due to code
movement. Avoiding nodes such as Phi and Copy nodes,
whose behaviour is not determined before register allocation,
when selecting pre-bypassing candidates solves this issue.
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Inner-loop DDG
Kernel Description Node

count
Nodes in

critical path
DDG

width/height
dotp Dot product unrolled 8x 49 12 16/12
fir Fully unrolled 8-tap FIR 35 15 9/12

gemm Mat-Mul without unroll 8 5 4/5
iir Fully unrolled 3rd order IIR 129 24 24/18

latsynth Lattice synthesis 39 15 13/7
projection Sums each row/column 24 6 7/6

conv 3x3 convolution unrolled to
kernel width

33 11 24/18

TABLE I: Benchmark characteristics.

C. Prebypass Algorithm

The pseudocode presented in Algorithm 1 summarises the
Prebypass algorithm. The algorithm operates at the basic-
block level and has two main design parameters, 1) Node
ordering, the order in which the edges are bypassed, and 2)
Bypass region size, a limit on maximum number of bypassed
edges in a Prebypass cluster. The Prebypass work alongside
the TCE scheduler bypasses. Hence, pre-bypassing the nodes
that are trivial to the scheduler bypassing is unnecessary and
prioritising the nodes that are non-critical to the schedule
leaves sub-optimal performance. On the other hand, including
too many edges in the bypass region may cause a poor
schedule since it delays the schedule of other nodes in the basic
block. When restricted too much, schedule critical nodes loose
pre-bypass opportunity. Therefore, the choice of node ordering
and bypass region size plays a vital role in the Prebypass
design. The results of these two parameter explorations are
presented in Section VI-A.

The Prebypass algorithm starts with building of DDG for
the basic block. Then, it identifies the pre-bypass candidate by
filtering out the nodes that might expand in a later stage of
the compiler pipeline. The filtered candidates are then sorted
with a defined node-ordering algorithm and are attempted to
pre-bypass one by one.

In the pre-bypassing loop, the distance between the producer
and consumer node is verified to be within the threshold.
The LLVM arranges the instructions inside the basic blocks
for optimal register live-range. The pre-bypass extends the
live range of the producer and consumer operands to avoid

deadlocks from false dependencies (Section IV-B). Hence, pre-
bypassing nodes that are far apart in DDG leads to high-
register pressure and possibly more false dependencies for
other nodes in the basic block. If they are within the threshold,
pre-bypass is attempted if the machine resources are available
for bypassing the edge. The machine resource check validates
the availability of sufficient FUs resources for computation, FU
port buffers to hold operands and results, and connectivity in
the datapath for bypassing. After bypassing, deadlock checks
are performed and bypass region size is verified to be within
the defined threshold. The register allocation constraints are
added to the edge if the checks pass, otherwise, pre-bypass is
reverted and the algorithm continues with the next candidate.

V. EXPERIMENTAL SETUP

In order the evaluate the impact of the proposed pre-
bypass optimizations, as proposed in Section IV, we have
implemented the algorithms with LLVM 13.0 in the TCE
framework [9]. We consider seven benchmarks (see Table I) of
representative loop-oriented signal processing and deep learn-
ing kernels in our evaluation. We carefully chose the bench-
marks to cover the different basic block properties encountered
in practical applications. Specifically, the number of nodes in
the basic-block (basic-block size), nodes in the critical path,
and data-dependency characteristics (DDG height/width) are
used to derive the benchmark set.

We consider three TTA cores with a varying number of RF
ports and connectivity restrictions. The first core implements
a traditional VLIW connectivity, where a dedicated RF port
and a bus are assigned for each FU port in the design. Besides
that, the connectivity model implements maximum bypassing

Node ordering (% difference over baseline)
Benchmark Metric A B C D E F G H I

dotp
reg-reads 50.0 57.6 42.3 42.3 42.3 38.4 38.4 42.3 53.8
reg-writes 52.9 58.7 64.6 64.6 47.0 35.2 41.1 64.6 47.0
runtime 24.2 26.9 10.8 8.1 16.2 16.2 16.2 8.1 24.2

fir
reg-reads 50.0 50.0 45.5 54.5 50.0 45.5 45.5 54.5 63.6
reg-writes 68.7 68.7 62.5 68.7 68.7 62.5 62.5 68.7 68.7
runtime 41.0 41.0 38.5 33.3 41.0 38.5 38.5 30.8 38.5

gemm
reg-reads 24.0 24.0 12.0 12.0 24.0 24.0 12.0 12.0 24.0
reg-writes 38.2 37.9 19.1 19.1 19.1 37.9 19.1 19.1 37.9
runtime 17.4 8.6 8.7 8.7 8.7 8.6 8.7 8.7 17.4

iir
reg-reads 6.7 6.7 -4.2 -3.4 -2.5 -2.5 -4.2 -5.9 8.4
reg-writes 3.7 3.7 -11.0 -6.1 -9.8 -9.8 -11.0 -9.8 6.1
runtime 3.9 3.9 -7.1 -7.9 -0.8 -0.8 -7.1 -3.1 3.1

latsynth
reg-reads -3.7 -3.7 3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7
reg-writes 0.0 0.0 9.4 0.0 0.0 0.0 0.0 0.0 9.4
runtime 8.5 8.5 4.2 8.5 8.5 8.5 8.5 8.5 4.2

projection
reg-reads 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9
reg-writes 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3
runtime 20.8 20.8 20.8 11.9 20.8 20.8 20.8 11.9 11.9

conv
reg-reads 28.2 28.2 9.4 33.0 28.2 28.2 28.2 28.2 28.2
reg-writes 30.4 30.4 15.2 38.0 38.0 38.0 30.4 38.0 30.4
runtime 3.3 3.3 -3.3 0.0 3.3 3.3 3.3 3.3 3.3

Node orderings

A: criticalMulti_criticalSingle_Multi_Single, E: criticalMulti_criticalSingle
B: criticalSingle_criticalMulti_Single_Multi, F: criticalSingle_criticalMulti
C: criticalMulti_Multi, G: criticalMulti, H: criticalSingle,
D:criticalSingle_Single, I: randem_order_1000samples

TABLE II: Comparison of different node ordering in terms of
register-reads, register-writes, and runtime on a restricted-TTA with
RF size of 16 (i.e 16x32-bit registers). To eliminate the influence
of bypass region size, we compiled each benchmark with different
bypass region sizes and selected the best runtime among them. The
green and red colour code highlights the max performance gains
and all the worsening, respectively.
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support, where any FU can read the output of any other FU
to mimic a realistic VLIW processor model. This enables this
architecture to be free from connectivity or register-file port
restrictions. Fig. 5 depicts the considered VLIW-TTA core.

We constrained the register-file ports in the VLIW connec-
tivity to two read and one write port to derive the second
configuration, named a register-port constrained TTA (rc-TTA).
Finally, a TTA with disconnected RF connectivity, a restricted-
TTA, is formed by pruning the connectivity network of rc-
TTA. A greedy iterative connection pruner is used to prune
connections in all buses with minimal impact on execution
time. Fig. 1 (iv) shows the resultant restricted-TTA from the
connection pruner.

For accurate area, energy, and runtime estimations, the cores
are synthesized (using Cadence Genus) in a commercial 28-
nm FD-SOI (Fully Depleted Silicon On Insulator) technology
(SS corner), using a 12-track RVT standard cell library and
Foundry SRAM memories. Power analysis is performed using
back-annotated post-synthesis netlist simulations under typical
operation conditions (25°C, 0.9 V, 800 MHz).

VI. RESULTS

Explorations of the two Prebypass design parameters
namely, a) Node ordering heuristics, and b) Bypass region size,
are presented first in Section VI-A. Using the identified design
parameter values, the Prebypass optimization is evaluated in
Section VI-B.

A. Prebypass Design Parameter Exploration

The nodes in the DDG can either be a critical node that
belongs to a critical path or a regular node. Nodes can be
further distinguished based on the number of operands as
single- or multi-operand nodes. This classification allows for
different node orderings. To understand the trade-offs, the
performance of these ordering is compared in terms of register-
reads, register-write, and runtime for restricted-TTA. Table II
summarises these results.

Pre-bypassing critical nodes: Pre-bypassing critical nodes
of a basic block (orderings G, H, E and F in Table II) is a
logical choice. However, the number of candidates available

for bypassing is very limited in these orderings which leads
to sub-optimal benefits for most benchmarks. The orderings
C and D consider the entire node set in a basic block, and
selects either single- or multi-operand nodes and prioritises
critical nodes in the set. Depending on the ratio of the single-
to multi-operand nodes, each benchmark favours one or the
other order. However, the overall performance remains sub-
optimal. The iir benchmark has a very high ILP, less number
of critical nodes, and equal mix of single- and multi-operand
nodes. Hence, the ILP dominates the critical path influence in
the schedule. Therefore, pre-bypassing critical or single/multi-
operand nodes restricts the bypassing opportunities of regular
nodes and ILP, which results in more register accesses and an
increase in runtime.

Aggressive Pre-bypassing: The orderings A and B, where
all nodes are considered for pre-bypassing with critical path
sorted manner, benefit the entire benchmark set and yields
the best results. This is because the ordering presents more
pre-bypass candidates, and hence the basic block is pre-
bypassed aggressively. Prioritizing single- or multi-operand
nodes did not influence the results, since aggressive bypassing
improved the schedule of all the nodes in the basic blocks.
The gemm kernel runtime is an outlier to this. The bypass
regions formed when multi-operands are prioritised (ordering
A) favour the scheduling node selection heuristics and the
scheduler bypassing. Therefore, the scheduler was able to
achieve a spatial layout in the schedule with optimal runtime.

Bypass region size: Fig. 6 presents the effect of region
size on different node orderings. When only single-operand
nodes are considered for pre-bypassing (ordering D and H),
the pre-bypassing opportunities are limited. The pre-bypassing
opportunity saturates at bypass region with size one. Hence,
increasing the region size beyond one has no effect on
the performance. When multi-operand nodes are prioritised
(orderings C, E, and G), the register pressure increases
proportionally to the bypass region size. Hence, going for
a higher bypass region size leads to fewer benefits. When
single- and multi-operand nodes are mixed (orderings A, B,
and F ), the performance gain improves until bypass region
size two and then decreases for higher region sizes. When the
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region size is high, bypass regions occupy larger regions in the
schedule. This worsens the schedule of the nodes outside of
the bypass region. Therefore, a combination of bypass region
size two with node ordering A achieves the best result for our
benchmark set.

Fig. 7 presents the effect of pre-bypass region size under
register pressure. We consider the restricted-TTA core with a
varying number of RF sizes. Irrespective of the register pres-
sure, the bypass region size two is optimal for the considered
benchmarks. A larger bypass region size reduces performance,
due to an increase in register pressure. The live-range exten-
sion from pre-bypass leads to more false dependencies and
possibly creates spill code during register allocation.

B. Evaluation of Prebypass Optimization

This section presents the evaluation of Prebypass optimiza-
tion on the three TTA architectures detailed in Section V. The
VLIW-TTA is used as a baseline for our analysis. Fig. 7 (right)
and Fig. 8 present the runtime, register-read, and register-write
benefit of Prebypass optimization over the baseline for the
selected architectures. The bypass region size is set to two
and node ordering algorithm A is selected for the analysis.
The existing scheduler bypassing of the TCE compiler [14] is
enabled in both baseline and pre-bypass versions.

For the VLIW-TTA there are no RF port and connectivity
restrictions. As such, the scheduler can reach its best schedule
for the FUs in this model. Enabling Prebypass often makes it
worse, since the bypass parameters (node ordering and region
size) are tuned for restricted-TTA. Hence, forcing the pre-
bypass harms most benchmarks. Re-tuning the Prebypass
parameters helps these cases, but we did not endeavour it
since our focus is restricted-TTA. Hence, the average runtime,
reg-reads, and register-writes increases by 5%, 8%, and 2%
respectively. When the register file ports are constrained to
two reads and one write port in rc-TTA, the kernels dotp,
fir, latsynth, and conv retain their performance since they
are not constrained by RF bandwidth. The runtime of gemm,
iir, and projection kernels increases on the rc-TTA, while
their register access remains the same. This indicates a RF
bandwidth bottleneck for these kernels. Pre-bypassing has the
same effect as VLIW-TTA, and average runtime and register-
reads increases by up to 3.5% when pre-bypass is enforced.

Pruning connections in the architecture leads to a significant
increase in runtime for all benchmarks because of, 1) when
FUs are not directly connected to RF, the FUs access the
register via other units, which increases schedule length. 2)
Schedule length increases when connectivity in the datapath is
not favouring the application requirements. Prebypass recov-



Max % difference
Core Config. Freq. over baseline over VLIW-TTA

(MHz) Energy EDAP Energy Area EDAP
VLIW-TTA baseline [14] 800 - - - - -

+ prebypass 800 3.1 3.1 3.1 - 3.1
rc-TTA baseline [14] 800 - - -0.3 -14.4 -14.6

+ prebypass 800 1.44 1.44 1.18 -14.4 -13.4
restricted-TTA baseline [14] 800 - - 15.6 -34.7 -24.5

+ prebypass 800 -17.5 -17.5 -4.7 -34.7 -37.8

TABLE III: Energy, Delay, and Area estimations of VLIW-TTA, rc-
TTA, and restricted-TTA cores (with RF size of 16)

ers the negative impact of connectivity restrictions completely
in dotp. gemm and projection kernels by eliminating copy
nodes in the schedule. In the restricted-TTA architecture only
nodes that match the data-path connectivity are schedulable
at the earliest cycle. Therefore, a node that fits in the earliest
cycle is chosen for scheduling. In the fir benchmark, this
ordering favours the architecture connectivity model and hence
it results in a better schedule than the baseline model. The
conv, latsynth, and iir kernels have the least favourable
connections. Hence, pre-bypassing reduces runtime, reg-reads,
and register-writes up to by 14.3%, 28.6%, and 39.5% respec-
tively in this connectivity model. Even though pre-bypassing
improves their runtime and register accesses, their performance
is behind the baseline by 20%. We observed negligible compile
time implications when Prebypass is used in the compiler
pipeline. This observation emphasizes the scalability of the
Prebypass algorithm.

Table III presents the Energy, Delay, and Area estimations
of VLIW-TTA, rc-TTA, and restricted-TTA cores from post-
synthesis netlist simulations. For the considered architecture,
the register file and datapath are not on the critical path, which
explains the equivalent maximum clock frequency between
all architectures. The VLIW-TTA architecture occupies the
maximum area because of the datapath and RF complexity.
The area footprint improves by 14% when the RF ports are
pruned in rc-TTA. This improves the Energy, Delay, and Area
Product (EDAP) of rc-TTA up to 14.6%. When pre-bypassing
is enforced on VLIW-TTA and rc-TTA, the runtime increases
and this directly translates to an EDAP increase. Pruning the
datapath on top of the RF port constraint increases the energy
per kernel by 15.6% because of the longer runtime and unnec-
essary copy nodes in the schedule. However, the pre-bypassing
improves runtime by up to 14.3%. Together with simplified
hardware, the restricted-TTA architecture achieves EDAP gains
of up to 37.8% over VLIW-TTA for our benchmarks.

VII. CONCLUSION

We presented a novel Prebypass optimization for EDAP
architectures to expose more software-bypassing opportunities
to the compiler. The optimization improves the scheduling
quality in pruned datapaths where not all FUs are connected
to a single centralized RF. Compared to the state-of-the-art
TTA compiler that optimizes software-bypassing after register
allocation, adding the Prebypass optimization improves the
average runtime, register reads, and register writes by 16 %,
26 %, and 37 %, respectively. Evaluation in a 28-nm FDSOI

technology indicates that pruning the number of RF ports leads
to a 14.4 % area improvement without a significant impact on
schedule quality. Pruning the data-path further improves the
area reduction from 14.4 % to 34.7 %, at the cost of an average
15.6 % energy increase due to inefficient bypassing support
in the compiler. The Prebypass optimization exposes more
bypass opportunities to the compiler, and improves the average
energy from +15.6 % to -4.7 %, highlighting the importance of
prebypass on heavily pruned datapaths. In the future, we aim
to integrate node ordering and bypass region size selection
logic inside the algorithm and extend the scope to SIMD and
highly parallel architectures with more FUs.
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