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warm-heartedness and kindness have made it easy to come to you with all sorts of 
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I owe my thanks to Adjunct Professor Jyrki Lötjönen who guided the practical 
research work on all four publications forming this thesis. Jyrki, I admire your dedi-
cation to this research topic; and I want to thank you for obtaining funding for and 
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and precise review of analysis results, all questions, and constructive comments on 
the article drafts were crucial for this work. 

I want to express my thanks to the members of my thesis follow-up group, Ad-
junct Professor Ilkka Korhonen and Dr. Harri Pölönen. I am grateful to Ilkka for 
being also my supervisor and guiding my PhD journey and thesis writing. My warm 
thanks to Harri for reviewing the thesis, sharing an office room with me, and having 
countless lunch and coffee breaks together. 

I am very grateful to all co-authors of the articles. Professor Wiesje van der Flier 
and Dr. Hanneke Rhodius-Meester, it was a great pleasure to collaborate with you 
in the PredictND project and your clinical expertise is very much appreciated.  
Wiesje, thank you for supervising two studies leading to two articles of this thesis. 
Hanneke, many, many thanks for your work for the two studies – this thesis project 
would have been so much more difficult without it. Professor Emerita Hilkka Soin-
inen, I want to thank you for your contributions for the “longitudinal Disease State 
Index” article. Dr. Mark Gordon and Dr. Gerald Novak, thank you for your contri-
butions to the “hippocampal atrophy” article. I want to express my gratitude to my 
(ex-)VTT colleagues, Adjunct Professor Juha Koikkalainen, Dr. Jussi Mattila, and 
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Juha Kortelainen for being awesome colleagues and for their technical work for the 
articles. Finally, I want to acknowledge all the data owners, who provided us with an 
access to their data. Possibility to use data sets from different countries made the 
articles a lot stronger. 

I am very grateful to my pre-examiners Professor Tapio Seppänen and Professor 
Mikael von und zu Fraunberg for the thorough evaluation of my thesis as well as 
their kind and constructive feedback. I also wish to thank Professor Natasha Maurits 
for agreeing to act as my opponent in the public defence of this thesis. 

I want to thank my current and former colleagues at VTT for the discussions, 
laughs, humour, and relaxing lunch and coffee breaks. It has always been easy to ask 
all kinds of questions and there has always been people willing to help. Thank you 
for the great atmosphere at the workplace.   

This work would not have been possible without funding received. I acknowledge 
the funding from the European Union Seventh Framework Programme, the Finnish 
Funding Agency for Technology and Innovation (TEKES), and the Innovative Med-
icines Initiative Joint Undertaking (IMI-JU), resources of which are composed of 
financial contribution from the European Union’s Seventh Framework Programme 
and the European Federation of Pharmaceutical Industries and Associations’ 
(EFPIA) in kind contribution. The thesis was finalized with funding from VTT 
Technical Research Centre of Finland Ltd and Tampere University. 

On a personal level, I am grateful to my family and friends. My parents, Eeva and 
Paavo, thank you for providing me with great foundations for my life. I am grateful 
for all your love and support since the childhood. My siblings Heikki, Esa, and Soile, 
thank you for all common activities and trips with you and your families during these 
years. Pedro, big thanks to you for your peer support during my PhD journey, dance 
activities, and life in general. It has been a privilege to get to know you and your 
family. Heidi, Anna, Tiina, and Kata, thank you for your company and support dur-
ing our master’s studies and afterwards. Sari, thank you for your friendship that has 
lasted since our childhood - it means a lot to me. Finally, I want to express my deep-
est and warmest gratitude to my little family. My beloved Petri, thank you for your 
love, support, and patience with this whole thing. Sharing my life and all the experi-
ences with you has been priceless. Our little Aapo, you have brought so much joy 
and love in my life. You both are my everything.  
 
Oulu, November 2022 
Hilkka Liedes 
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ABSTRACT 

Alzheimer’s disease (AD), the most common form of dementia, is a slowly progress-
ing neurodegenerative disease, which cannot be cured yet. However, certain medi-
cations and lifestyle interventions can delay progression of the disease and its symp-
toms, thereby positively influencing both quality of life of patients as well as cost-
effectiveness of healthcare. Early diagnosis of AD is important because such inter-
ventions should be started already at an early phase of the disease to have the best 
effect. However, early diagnosis is challenging because pathological changes in the 
brain occur years before the clinical symptoms become visible. In addition, the re-
search during the past years has produced information from a large number of dif-
ferent tests and biomarkers that can potentially contribute to diagnosis and progno-
sis of AD. This excessive amount of data can cause information overload for clini-
cians, thus hampering the clinicians’ decision making. Data-driven analysis and vis-
ualization methods may help with interpretation and utilization of large amounts of 
heterogeneous patient data and support the clinicians’ decision-making process. Fur-
thermore, the methods may aid in identifying suitable patients for clinical drug trials.  

The aim of the work described in this thesis was to develop and validate data-
driven methods for predicting and monitoring progression of Alzheimer’s disease at 
the different phases of the disease spectrum, starting from normal cognition and 
ending to death, using data from neuropsychological and cognitive tests, magnetic 
resonance imaging (MRI), cerebrospinal fluid samples (CSF), comorbidities, and ge-
netics (apolipoprotein E).  

The thesis consists of four original studies published as international journal ar-
ticles. The first study focused on the early phase of AD. A supervised machine learn-
ing method called Disease State Index (DSI) was utilized to predict who of the indi-
viduals with subjective cognitive decline (SCD) will progress to a more severe con-
dition, i.e., mild cognitive impairment (MCI) or dementia. The study population in-
cluded 647 subjects from three different memory clinic-based cohorts in Europe. 
When all data modalities were combined, the area under the receiver operating char-
acteristic curve (AUC) was 0.81 and balanced accuracy was 74%. Negative predictive 
value was high (93%), whereas positive predictive value was low (38%). Performance 
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of the DSI method in terms of AUC decreased by 11% when validated with an in-
dependent test set. Additional analyses suggested that several differences between 
the cohorts may explain the decrease in the performance. 

The second study focused on a more advanced disease stage. The DSI method 
was applied to longitudinal data collected from an MCI cohort of 273 subjects ob-
tained from the Alzheimer’s Disease and Neuroimaging (ADNI 1) study. Longitu-
dinal profiles of the DSI values differed between the subjects progressing to demen-
tia due to AD and subjects remaining as MCI. In addition, two subgroups were found 
in the group remaining as MCI: one group with stable DSI values over time and 
another group with increasing DSI values, suggesting the latter group may progress 
to dementia due to AD in the future. This study also extended the Disease State 
Fingerprint (DSF) data visualization method for longitudinal data. 

The third study predicted hippocampal atrophy over 24 months using baseline 
data and penalized linear regression. The cohorts consisted of subjects with normal 
cognition, MCI, and dementia due to AD and were obtained from the ADNI 1 
(n=530) and the Australian Imaging Biomarkers and Lifestyle Flagship Study of Age-
ing (AIBL, n=176) studies. The models including different data modalities per-
formed better than the models including only MRI features. However, both models 
underestimated the real change at higher atrophy rate levels, the MRI-only models 
showing a greater underestimation. When predicting dichotomized outcome, i.e., 
fast vs. slow atrophy, the models obtained a prediction accuracy of 79-87%. The 
MRI-only models performed well when evaluated with an independent validation 
cohort (AIBL).  

The last study focused on the latest phase of AD by identifying which disease-
related determinants are associated with mortality in patients with dementia due to 
AD. The cohort included 616 patients from the Amsterdam Dementia Cohort. Age- 
and sex-adjusted Cox proportional hazards models revealed that older age, male sex, 
and worse scores on cognitive functioning, as well as more severe medial temporal 
lobe and global cortical atrophy were associated with an increased risk of mortality. 
An optimal combination of variables comprised age, sex, performance on digit span 
backward test and Trail Making Test A, medial temporal lobe atrophy, and tau phos-
phorylated at threonine 181 in CSF.  

In conclusion, data-driven methods can be used for predicting and monitoring 
progression of AD from the mildest stages to the more advanced stages. Combining 
information from several data modalities provides better prediction performance 
than individual data modalities alone. The results also highlight the importance of 
the validation of the methods with independent validation cohorts. Introduction of 
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these methods to different environments and countries may require harmonization 
of patient examination methods and diagnostic criteria.  

Keywords: Alzheimer’s disease, clinical decision support, data visualization, dementia, 
machine learning, multivariable modelling, prediction, supervised learning  
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TIIVISTELMÄ 

Alzheimerin tauti, yksi yleisimmistä muistisairauksista, on hitaasti etenevä aivoja rap-
peuttava tauti, jolle ei ole vielä parantavaa hoitoa. Tietyt lääkkeet ja elämäntapainter-
ventiot voivat kuitenkin hidastaa taudin etenemistä ja lievittää sen oireita, mikä pa-
rantaa potilaiden elämänlaatua ja terveydenhuollon kustannusvaikuttavuutta. Al-
zheimerin taudin varhainen diagnostiikka on erittäin tärkeää, koska erilaiset interven-
tiot pitäisi aloittaa jo taudin varhaisessa vaiheessa, jotta niillä saataisiin aikaan paras 
mahdollinen vaikutus. Taudin varhainen diagnostiikka on kuitenkin haastavaa, koska 
muutokset aivoissa alkavat vuosia tai vuosikymmeniä ennen ensimmäisten oireiden 
ilmaantumista. Lisäksi viime vuosien tutkimus on tuottanut tietoa suuresta määrästä 
erilaisia testejä ja biomarkkereita, jotka voivat vaikuttaa taudin diagnoosiin ja prog-
noosiin. Tiedon suuri määrä saattaa aiheuttaa informaatioähkyä kliinikoille vaikeut-
taen heidän päätöksentekoaan. Datalähtöiset analytiikka- ja visualisointimenetelmät 
voivat auttaa suuren ja heterogeenisen tietomäärän tulkinnassa ja hyödyntämisessä. 
Ne voivat siten tukea kliinikkoa hänen päätöksenteossaan. Lisäksi nämä menetelmät 
voivat auttaa tunnistamaan sopivia potilaita kliinisiin lääketutkimuksiin, joiden tavoit-
teena on kehittää Alzheimerin taudin etenemistä hidastavia lääkkeitä. 

Tämän väitöskirjan tavoitteena oli kehittää datalähtöisiä menetelmiä Alzheimerin 
taudin etenemisen ennustamiseen ja seurantaan taudin eri vaiheisiin alkaen normaa-
lista kognitiosta ja edeten kuolemaan. Mallien kehittämisessä hyödynnettiin kognitii-
visten ja neuropsykologisten testien tuloksia, magneettikuvantamista (MRI), sel-
käydinnestenäytteitä, ja genetiikkaa (apolipoproteiini E). 

Väitöskirja koostuu neljästä alkuperäisestä tutkimuksesta, jotka on julkaistu kan-
sainvälisissä tieteellisissä lehdissä. Ensimmäinen osatutkimus keskittyi Alzheimerin 
taudin varhaiseen vaiheeseen. Tutkimuksessa käytettiin ohjattua koneoppimisen me-
netelmää Disease State Index (DSI, taudin tilan indeksi) ennustamaan, kenellä sub-
jektiivisesti koettu kognition heikkeneminen etenee taudin vakavampaan vaiheeseen 
eli lievään kognition heikentymiseen (mild cognitive impairment, MCI) tai dementi-
aan. Tutkimuksen aineisto koostui 647 henkilöstä kolmesta eurooppalaisesta muisti-
klinikkakohortista. Kun yhdistettiin useita eri muuttujia DSI-menetelmällä, ROC-
käyrän (engl. Receiver Operating Characteristic curve) alle jäävä pinta-ala (AUC) oli 
0.81 ja tasapainotettu tarkkuus oli 74%. Negatiivinen ennustearvo oli korkea (93%) 
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ja positiivinen ennustearvo oli matala (38%). Kun DSI-malli validoitiin erillisellä tes-
tikohortilla, mallin AUC huononi 11%. Lisäanalyysit osoittivat, että useat erot ko-
horttien välillä voivat selittää suorituskyvyn alenemista. 

Toinen osatutkimus keskittyi taudin myöhäisempään vaiheeseen. DSI-menetel-
mällä analysoitiin pitkittäistä dataa, joka koostui 273 henkilön MCI-kohortista. Ko-
hortti hankittiin Alzheimer’s Disease and Neuroimaging (ADNI 1) tietokannasta. 
DSI-arvojen muutokset ajan kuluessa olivat erilaiset niillä, joiden tauti eteni Al-
zheimerin taudin dementiaksi, ja niillä, joilla tauti pysyi MCI-vaiheessa. Lisäksi huo-
mattiin, että stabiilina pysynyt MCI-ryhmä koostui kahdesta aliryhmästä: ensimmäi-
sessä ryhmässä DSI-arvot pysyivät vakaina ja toisessa ryhmässä DSI-arvot kohosivat. 
Tämä indikoi, että toisessa ryhmässä tauti saattaa edetä dementiaksi tulevaisuudessa. 
Näiden analyysien lisäksi DSI:in oleellisesti liittyvä Disease State Fingerprint (DSF, 
taudin tilan sormenjälki) -visualisointimenetelmä laajennettiin pitkittäiselle datalle. 

Kolmas osatutkimus ennusti hippokampuksen surkastumista 24 kuukauden ai-
kana lähtötilanteen mittausten perusteella. Tutkimuskohortti koostui henkilöistä, 
joilla oli normaali kognitio, MCI tai Alzheimerin taudin dementia, ja se hankittiin 
ADNI 1 (n=530) ja Australian Imaging Biomarkers and Lifestyle Flagship Study of 
Ageing (AIBL, n=176) tutkimuksista. Useita eri datatyyppejä sisältävät mallit ennus-
tivat hippokampuksen surkastumista tarkemmin kuin pelkistä MRI-muuttujista 
koostuvat mallit. Kuitenkin molemmat mallit aliarvioivat todellista surkastumista eri-
tyisesti suuremmilla surkastumisnopeuksilla, aliarviointi oli suurempaa pelkästään 
MRI-muuttujiin perustuvilla malleilla. Kun ennustettiin kaksiluokkaista vastemuut-
tujaa, eli nopea vs. hidas surkastuminen, mallien tarkkuus oli 79-87%. MRI-mallien 
suorituskyky oli hyvä, kun testauksessa käytettiin erillistä AIBL-aineistoa. 

Viimeinen osatutkimus keskittyi Alzheimerin taudin viimeisimpiin vaiheisiin. 
Siinä tutkittiin, mitkä tautiin liittyvät tekijät ovat yhteydessä kuolleisuuteen potilailla, 
joilla oli Alzheimerin taudin dementia. Aineisto koostui 616 henkilöstä Amsterdam 
Dementia Cohort -aineistosta. Iällä ja sukupuolella vakioidun Coxin suhteellisen vaa-
ran mallin mukaan vanhempi ikä, miessukupuoli, huonommat pisteet kognitiivisessa 
toimintakyvyssä, ja aivojen kuoriosien ja mediaalisen ohimolohkon surkastuminen 
olivat yhteydessä kuolleisuuteen. Optimaalinen muuttujien yhdistelmä sisälsi iän, su-
kupuolen, tulokset kahdesta kognitiivisesta testistä (digit span backward, Trail Ma-
king Test A), mediaalisen ohimolohkon surkastumisen ja selkäydinnestenäytteestä 
mitatun kohdasta 181 (treoniini) fosforyloidun tau-proteiinin määrän.  

Yhteenvetona todetaan, että datalähtöisillä menetelmillä voidaan ennustaa ja seu-
rata Alzheimerin taudin etenemistä varhaisesta vaiheesta myöhäiseen vaiheeseen. 
Yhdistämällä useita eri datatyyppejä saadaan parempia tuloksia kuin käyttämällä vain 



x 

yhtä datatyyppiä. Tulokset korostavat myös, että datalähtöiset menetelmät on tärkeä 
arvioida erillisellä aineistolla, jota ei ole käytetty menetelmien kehittämiseen. Lisäksi 
näiden menetelmien käyttöönotto eri ympäristöissä tai maissa saattaa vaatia potilaan 
tutkimusmenetelmien ja diagnoosikriteereiden harmonisointia.  

Avainsanat: Alzheimerin tauti, datan visualisointi, dementia, ennustaminen, kliininen 
päätöksenteontuki, koneoppiminen, monimuuttujamallinnus, ohjattu oppiminen 
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1 INTRODUCTION  

1.1 Background 
Alzheimer’s disease (AD) is a neurodegenerative disease, which leads to loss of in-
dependence as it progresses towards severe dementia. Due to ageing populations all 
over the world, prevalence of AD is increasing, and AD is becoming a burden for 
healthcare systems, economies, individual patients, and their next of kin. Currently, 
there is no cure for AD and approved treatments only alleviate the symptoms and 
do not modify the disease process (Cummings et al., 2016). Cost to societies could 
be reduced considerably if the therapies would delay the onset of the disease or slow 
down its progression (Brookmeyer et al., 2007; Sloane et al., 2002). Different disease-
modifying therapies are being studied (Cummings et al., 2016, 2020) and they should 
be started as early as possible to be effective (Duara et al., 2009; Galimberti & 
Scarpini, 2011). In addition to possible drug treatment, lifestyle plays a role in de-
mentia prevention. Targeting multidomain lifestyle interventions to individuals at 
risk of dementia seems to be an effective way to prevent dementia and decline in 
cognition (Kivipelto et al., 2018; Ngandu et al., 2015). 

However, the early diagnosis of AD is challenging and there are considerable 
delays in the diagnosis. The average time from initial symptoms to diagnosis has been 
reported to be one to three years (Bond et al., 2005; Cattel et al., 2000; de Miranda 
et al., 2011; Speechly et al., 2008). Some of the reasons for the delayed diagnosis are 
related to patients or their next of kin, these include a belief that memory problems 
are part of normal ageing, stigma, fear of losing independence and competence, and 
limited access to healthcare services (Bond et al., 2005; Bradford et al., 2009; Dubois, 
Padovani, et al., 2016). Whereas others are related to healthcare professionals, these 
include lack of knowledge in identifying early symptoms of AD, primary care prac-
titioners’ lack of confidence in ability to diagnose AD, misdiagnosis and diagnostic 
uncertainty, and reluctance to disclose the diagnosis when no treatments are available 
(Bond et al., 2005; Bradford et al., 2009; Dubois, Padovani, et al., 2016). In addition, 
there are disease related factors hampering the diagnosis: pathological changes in the 
brain start years before the first clinical symptoms become visible; other dementias 
and conditions have similar and overlapping symptoms; there is no single test for 
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AD diagnosis, instead the diagnosis requires large number of different tests, like neu-
ropsychological evaluations and magnetic resonance imaging (MRI). The clinicians 
must interpret all the different test results to understand the patient’s condition and 
to choose the correct treatment. This excessive amount of data can cause infor-
mation overload, thus hampering the clinicians’ decision making. 

Clinical decision support systems (CDSSs) can help the clinicians to manage and 
interpret large volumes of data. Especially, less experienced clinicians may benefit 
more from these kinds of tools. Machine learning methods use statistics to search 
for patterns in data. They compare a patient’s measurement values to data from pre-
viously diagnosed cases and provide predictions or classifications based on the data. 
Machine learning and data visualization methods can be part of the CDSSs and sup-
port the clinicians in diagnostics so that the interventions could be started at the 
correct phase and patients would maintain their independence longer. In addition, 
the machine learning methods can potentially help in identifying suitable patients for 
clinical trials studying effects of the disease-modifying therapies. 

Many traditional and modern machine learning methods are “black boxes”, 
meaning that they take the input data and provide the prediction, but they do not 
explain why a certain result was given or what variables were the most influential. In 
medicine, machine learning methods must often be transparent to be accepted by 
healthcare professionals. One of the transparent methods is Disease State Index 
(DSI) and its visual counterpart Disease State Fingerprint (DSF), which show both 
the prediction and contribution of each variable to provide a comprehensive view of 
a patient’s condition. This thesis utilized DSI and other machine learning methods 
for developing prediction models for different phases of AD, starting from normal 
cognition and ending to death. 

1.2 Outline of the thesis 

This thesis is structured as follows. Chapter 2 describes background for this thesis. 
It starts with an overview of dementia and then focusses on characteristics and di-
agnostics of AD. It also shows a few examples of CDSSs developed for early diag-
nosis of AD and reviews the state-of-the-art of the machine learning methods ap-
plied to AD progression. Chapter 3 describes the aims of this thesis. Chapter 4 first 
presents the study populations, then it describes the utilized machine learning and 
modelling methods, and finally it depicts the used performance evaluation methods. 
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Chapter 5 presents the main results of the studies. Chapter 6 summarizes accom-
plishment of the objectives, compares the research contribution to the previous 
studies, discusses importance of the findings and limitations of the studies, and pro-
poses topics for future research. Finally, Chapter 7 concludes this thesis. 
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2 REVIEW OF THE LITERATURE 

2.1 Dementia 
Dementia is a syndrome, a group of symptoms, which can have multiple causes 
(Alzheimer’s Association, 2018). Patients with dementia experience deterioration in 
their cognitive functions, such as memory, language, learning, and problem solving, 
which result in difficulties to perform everyday activities (Alzheimer’s Association, 
2018). Due to ageing populations, dementia is a global problem. Worldwide, 46.8 
million people lived with dementia in 2015, and the number is projected to almost 
double every 20 years, reaching 131.5 million by 2050 (Prince et al., 2015). Much of 
this increase will be seen in low- and middle-income countries (LMICs). In 2015, 
58% of people with dementia lived in LMICs and 22% in Europe, whereas in 2050, 
68% live in LMICs and 14% in Europe (Prince et al., 2015). On the societal level, 
global costs of dementia have been estimated to be US$ 818 billion in 2015, which 
represents 1.1% of global gross domestic product (Prince et al., 2015). Most of the 
costs are attributed to the costs of care: 40% direct social care costs (paid and pro-
fessional home care, residential and nursing home care) and 40% unpaid informal 
care. Direct medical costs cover only 20% of the total costs (Prince et al., 2015). 

AD is the most common cause of dementia, accounting for 60-80% of the cases 
(Alzheimer’s Association, 2018). Other common forms include vascular dementia 
(VaD), Lewy body dementias, frontotemporal dementia (FTD, also known as fron-
totemporal lobar degeneration), and mixed dementia. This thesis focuses on AD 
which is presented in detail in the later chapters. Other dementias are shortly de-
scribed here. 

VaD is the second most common cause of dementia after AD (O’Brien & 
Thomas, 2015) and attributable to various cerebrovascular pathologies, e.g., infarcts 
in major or minor cerebral vessels, haemorrhages, or cerebral small vessel disease 
(Iadecola, 2013; Kalaria, 2018). Because cerebrovascular lesions are heterogeneous, 
clinical symptoms also vary, depending on location and severity of the lesions 
(Korczyn et al., 2012; O’Brien & Thomas, 2015). There can be deficits in attention, 
information processing, and executive function; neuropsychiatric symptoms, apha-
sia, parkinsonism, and gait abnormalities can also occur (Korczyn et al., 2012; 
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care. Direct medical costs cover only 20% of the total costs (Prince et al., 2015). 

AD is the most common cause of dementia, accounting for 60-80% of the cases 
(Alzheimer’s Association, 2018). Other common forms include vascular dementia 
(VaD), Lewy body dementias, frontotemporal dementia (FTD, also known as fron-
totemporal lobar degeneration), and mixed dementia. This thesis focuses on AD 
which is presented in detail in the later chapters. Other dementias are shortly de-
scribed here. 

VaD is the second most common cause of dementia after AD (O’Brien & 
Thomas, 2015) and attributable to various cerebrovascular pathologies, e.g., infarcts 
in major or minor cerebral vessels, haemorrhages, or cerebral small vessel disease 
(Iadecola, 2013; Kalaria, 2018). Because cerebrovascular lesions are heterogeneous, 
clinical symptoms also vary, depending on location and severity of the lesions 
(Korczyn et al., 2012; O’Brien & Thomas, 2015). There can be deficits in attention, 
information processing, and executive function; neuropsychiatric symptoms, apha-
sia, parkinsonism, and gait abnormalities can also occur (Korczyn et al., 2012; 
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O’Brien & Thomas, 2015). Due to the heterogeneous nature of VaD, the term vas-
cular cognitive impairment has been taken into use to cover various vascular causes, 
clinical symptoms, and severities of the condition (Iadecola, 2013; O’Brien et al., 
2003). 

Lewy body dementias are the second most common type of dementia in people 
above 65 years and they consists of dementia with Lewy bodies (DLB) and Parkin-
son’s disease dementia (PDD) (Walker et al., 2015). In both conditions, so-called 
Lewy bodies, aggregates of the protein α-synuclein, accumulate inside neurons 
(Gomperts, 2016; Jellinger & Korczyn, 2018; Walker et al., 2015). Clinical features 
of DLB and PDD include cognitive impairment, fluctuations in attention and wake-
fulness, visual hallucinations, and parkinsonism (Gomperts, 2016; Jellinger & 
Korczyn, 2018). In DLB, dementia starts before or at the same time with parkinson-
ism or motor symptoms, whereas in PDD, dementia starts after the motor symptoms 
related to Parkinson’s disease (Gomperts, 2016; Jellinger & Korczyn, 2018; Walker 
et al., 2015). However, there is a discussion ongoing whether the DLB and PDD are 
the same or completely distinct diseases (Gomperts, 2016; Jellinger & Korczyn, 
2018). 

FTD is a heterogeneous group of neurodegenerative disorders, affecting mainly 
frontal and temporal lobes of the brain; it is also a common cause of dementia in 
patients under 65 years (Bang et al., 2015; Mann & Snowden, 2017). FTD is divided 
into three clinical variants: behavioural-variant frontotemporal dementia, associated 
with early behavioural and executive deficits; primary progressive aphasia, character-
ized by deficits in speech, grammar, and word output; semantic-variant primary pro-
gressive aphasia, causing problems in semantic knowledge and naming (Bang et al., 
2015). 

Mixed dementia is a condition in which pathologies of two or more dementias 
occur at the same time (Alzheimer’s Association, 2018). The most common combi-
nation is AD together with VaD, followed by AD with DLB, and AD with VaD and 
DLB. The combination of DLB and VaD is not as common. 

2.2 Alzheimer’s disease 

AD was first discovered in 1906 by Alois Alzheimer who found specific pathological 
changes in the brain of his patient who suffered from progressive cognitive impair-
ment and other mental symptoms (Hippius & Neundörfer, 2003; Maurer et al., 
1997). After a vast amount of research, AD is nowadays known to be a progressive, 
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irreversible, neurodegenerative disease which cannot be cured yet (Alzheimer’s 
Association, 2018). As the disease progresses, patients with AD lose their independ-
ence and need more help in activities of daily living than other older people 
(Alzheimer’s Association, 2018). This affects quality of life of the patients as well as 
families and other informal caregivers. Increased care needs may cause informal care-
givers emotional stress and depression; new or worsening health problems; and fi-
nancial issues (Alzheimer’s Association, 2018). In the United States, an estimated 6.2 
million people aged 65 years and older lived with Alzheimer’s dementia in 2021 and 
more than 11 million Americans provided unpaid care for people with dementia 
(Alzheimer’s Association, 2021). 

2.3 The continuum of Alzheimer’s disease 

AD is not anymore viewed as discrete clinical stages; rather it is seen as a continuum 
with certain progressive pathological changes in the brain, related biomarker findings 
and clinical manifestations, appearing in a sequential and overlapping manner (Aisen 
et al., 2017). The continuum begins with a long preclinical phase, in which patholog-
ical changes start but no clinical symptoms are present yet. It continues to sympto-
matic phase where progressing pathological changes cause increasingly evident cog-
nitive and functional impairments. Finally, it ends to severe dementia and death. 

2.3.1 Pathological changes of the brain in Alzheimer’s disease 

The aetiology of AD is a complex process and it is not yet fully understood. Never-
theless, it is known that pathological changes in the brain can occur years or even 
decades before the first clinical symptoms appear (Alzheimer’s Association, 2018). 
The changes include 1) accumulation of extraneuronal amyloid-β (Aβ) plaques caused 
by imbalanced production and clearance of the protein Aβ; 2) accumulation of in-
traneuronal neurofibrillary tangles (NFT), composing mainly of abnormal form of the 
protein tau, tau phosphorylated at threonine 181 (p-tau); 3) progressing dysfunction 
and loss of synapses and death of neurons leading to decreased cerebral glucose 
metabolism and atrophy of the brain (Alzheimer’s Association, 2018; Raskin et al., 
2015; Serrano-Pozo et al., 2011). Accumulation of different forms of Aβ is thought 
to impair synaptic activity and cause neuronal dysfunction; NFTs disrupt the 
transport of nutrients, waste products and other organelles inside the neurons 
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(Raskin et al., 2015). Other pathological changes include inflammation, oxidative 
stress, and altered neuronal ionic homeostasis (Alzheimer’s Association, 2018; 
Raskin et al., 2015). These changes in the brain result in neurodegeneration. 

2.3.2 Biomarkers of Alzheimer’s disease 

Biomarkers of AD are associated with the pathological processes of the brain de-
scribed in the previous section. Table 1 summarizes the most studied and validated 
biomarkers, including markers measured from cerebrospinal fluid (CSF) samples, 
positron emission tomography (PET), and MRI. These biomarkers can be grouped 
into markers of Aβ accumulation, markers of tau pathology, and markers of neuro-
degeneration (Jack et al., 2016, 2018). Not all these biomarkers are sensitive to AD, 
and they can be present in other conditions as well. Vast amount of research has 
been conducted to find other potential biomarkers of AD from blood, CSF, genetics, 
and functional MRI (Dennis & Thompson, 2014; Gustaw-Rothenberg et al., 2010; 
Hampel et al., 2008; Henriksen et al., 2014; Lehmann et al., 2013; Lewczuk et al., 
2018; Shaw et al., 2007; R. Sperling & Johnson, 2013; Wolfsgruber et al., 2017). 
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Table 1. Core biomarkers of Alzheimer's disease  

Biomarker Pathology Finding in AD 

CSF    

  Aβ Aβ deposition - Decreased concentration 

  P-tau Tau pathology 
- Increased concentration 
- Associated with NFT burden 
- Fairly specific for AD 

  Total tau Neurodegeneration 
- Increased concentration 
- Elevated also in ischaemic and traumatic brain injury, Creutzfeld-

Jakob disease, and stroke  

PET scan   

  Amyloid PET Aβ deposition 
- Increased retention of amyloid tracers (11C-Pittsburgh Compound 

B, 18F ligands, such as flutemetamol, florbetaben, florbetabir) 
- The tracers bind to fibrillary, and not to soluble Aβ or diffuse 

plaques. 

  Tau PET Tau pathology 
- Increased retention of tau tracer (flortaucipir is a first-generation 

tracer; others in development) 
- New biomarker 

  FDG-PET Neurodegeneration 
- Reduced retention of 18F-fluorodeoxyglucose (FDG) 
- Measure of reduced glucose metabolism in the brain and a marker 

of synaptic dysfunction 

Structural MRI Neurodegeneration 

- Decreased volume of the brain structures 
- Atrophy of temporal lobe structures, especially hippocampus and 

entorhinal cortex 
- Volume of hippocampus decreases also in normal ageing, several 

other neurodegenerative and non-neurodegenerative diseases 
(e.g., diabetes, sleep apnoea, bipolar disorder) 

Based on (Aisen et al., 2017; Hampel et al., 2008; Jack et al., 2010, 2016, 2018; R. Sperling & Johnson, 2013). 

2.3.3 Risk factors of Alzheimer’s disease 

There are several factors modifying the risk of developing cognitive decline, AD, or 
other dementias. The most important risk factors of AD are older age, a family his-
tory of AD, and carrying apolipoprotein (APOE) ε4 gene (Alzheimer’s Association, 
2018). Carrying APOE ε2 gene, instead of ε4, is protective against AD (Alzheimer’s 
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Association, 2018). Brain health is also affected by health of heart and blood vessels 
because the brain consumes considerable amount of oxygen. Thus, healthy diet, reg-
ular physical activity, and proper management of cardiovascular risk factors, such as 
diabetes, obesity, smoking, and hypertension, are modifiable factors that can reduce 
the risk of cognitive decline and dementia (Alzheimer’s Association, 2018). Cognitive 
reserve is another factor, which partly explains why some people cope better than 
others with a certain level of pathological load in the brain (Stern, 2009). Cognitive 
reserve refers to inter-individual differences in cognitive processing or neural net-
works in the healthy brain and to ability of the brain to use alternative networks 
instead of damaged ones. Longer education, occupational attainment, and active par-
ticipation in leisure time activities increase cognitive reserve and, thus, reduce risk of 
dementia (Stern, 2012). Higher cognitive reserve may delay the onset of clinical 
symptoms of AD, but after the onset, cognitive decline can be more rapid because 
underlying pathologies are more severe than in individuals with lower cognitive re-
serve (Stern, 2012). Finally, moderate or severe traumatic brain injury increases the 
risk of dementias and the risk may be even higher in people who experience repeti-
tive traumatic brain injuries (Alzheimer’s Association, 2018).   

2.3.4 Temporal evolution of the biomarkers in Alzheimer’s disease 

Findings in AD biomarker research led to a development of a hypothetical model 
describing temporal ordering and evolution of the major AD biomarkers (Jack et al., 
2010). A few years after its publication, the model was updated on the basis of gained 
knowledge (Jack et al., 2013). The updated model is depicted in Figure 1. According 
to it, the biomarkers become abnormal in a temporally ordered manner as the disease 
progresses, and their rates of change follow a non-linear sigmoidal time course. The 
biomarkers of Aβ deposits become abnormal first and have largely plateaued by the 
time of clinical symptoms appear. They are followed by the biomarkers of tau-me-
diated neuronal injury and dysfunction, correlating with severity of the clinical symp-
toms. The last biomarkers to become abnormal are uptake of fluorodeoxyglucose 
on PET imaging (FDG-PET) and structural MRI. Accumulation of Aβ plaques is 
seen necessary but not sufficient, to produce clinical symptoms of AD. In the model, 
cognitive impairment is presented as a zone bounded by limits of low and high risk. 
This emphasizes that individuals respond to pathophysiological load of AD uniquely, 
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depending on their genetic factors, cognitive reserve, lifestyle, other brain patholo-
gies, and comorbidities. Thus, a high-risk individual can suffer from more severe 
cognitive impairment than a low-risk individual with a similar biomarker profile. 

 

Figure 1. Panels A and B: A hypothetical model describing temporal evolution of the major Alzheimer's 
disease biomarkers and cognitive impairment which is shown as a light green area bounded 
by limits for high and low risk. Panel B: Operational use of the model. The black vertical line 
denotes a given time (T) and the horizontal dashed arrows show values of each biomarker at 
time T. The grey circles highlight that patients with similar biomarker profiles at time T can 
have different levels of cognitive impairment, depending on their risk factors for AD (Jack et 
al., 2013)1. 

 
1 Reprinted from The Lancet Neurology, 12(2), Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. 

W., Aisen, P. S., Shaw, L. M., Vemuri, P., Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz, V. S., Donohue, M. 
C., & Trojanowski, J. Q., Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical 
model of dynamic biomarkers, 207-216, Copyright (2013), with permission from Elsevier. 
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2.3.5 Diagnostic guidelines for Alzheimer’s disease 

The first diagnostic guidelines for AD were developed in 1984 by the National In-
stitute of Neurological and Communicative Disorders and Stroke (NINCDS) and 
the Alzheimer’s Disease and Related Disorders Association (ADRDA) (G. 
McKhann et al., 1984). These guidelines have been updated several times by different 
work groups as the knowledge about the biomarkers of AD has evolved. It should 
be noted that most of the updated guidelines were intended only for research pur-
poses and not for diagnosis in a routine clinical setting. This section describes simi-
larities, differences, and nomenclatures of the different guidelines. 

The first guidelines by NINCDS-ADRDA covered only the dementia phase of 
AD and were based only on a clinical assessment and laboratory tests were used only 
for exclusion of other conditions (G. McKhann et al., 1984). Diagnosis of probable 
AD required a typical insidious onset of dementia with progression and without any 
other explaining systemic or brain diseases. Diagnosis of possible AD was used if 
other diseases were present and AD was considered as the most likely cause of de-
mentia or if the presentation or course of dementia was aberrant. Diagnosis of def-
inite AD required postmortem histopathological samples. 

In 2011, the National Institute on Aging-Alzheimer’s Association (NIA-AA) de-
veloped separate diagnostic guidelines for preclinical AD, mild cognitive impairment 
(MCI), and AD dementia (Albert et al., 2011; Jack et al., 2011; G. M. McKhann et 
al., 2011; R. A. Sperling et al., 2011). In addition to the clinical assessment, these 
guidelines also incorporated the biomarkers of Aβ accumulation (amyloid PET, Aβ 
in CSF) and neurodegeneration (total tau and p-tau in CSF, FDG-PET, MRI). Pre-
clinical AD is the phase were pathophysiological process of AD has begun in the 
brain but there are no or only subtle clinical symptoms that do not yet fulfil the 
criteria for MCI or AD dementia (R. A. Sperling et al., 2011). The diagnosis of pre-
clinical AD is based on abnormal findings in biomarkers of Aβ accumulation (Stage 
1); Aβ accumulation and neurodegeneration (Stage 2); Aβ accumulation, neuro-
degeneration, and subtle cognitive decline (Stage 3). MCI is a syndrome in which 
cognitive decline is greater than expected for an individual’s age and education but 
does not interfere with performance of daily activities (Gauthier et al., 2006; 
Petersen, 2009, 2016). MCI with memory complaints (amnestic MCI) is a risk factor 
for AD dementia, however, there are also other causes for MCI and not all patients 
with MCI will progress to AD dementia (Gauthier et al., 2006; Petersen, 2009, 2016). 
The NIA-AA guidelines used the term MCI due to AD to refer to the symptomatic 
predementia phase of AD (Albert et al., 2011). Similar to the NINCDS-ADRDA 
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guidelines, NIA-AA divided dementia due to AD to probable and possible (G. M. 
McKhann et al., 2011). In the diagnosis of MCI or dementia due to AD, the clinical 
assessment forms the core criteria and the biomarkers provide additional infor-
mation for definition of certainty (unlike, intermediate, high) that the underlying pa-
thology is AD (Albert et al., 2011; Jack et al., 2011; G. M. McKhann et al., 2011). If 
the biomarkers are conflicting, indeterminate, or unavailable, the diagnosis is only 
based on the clinical assessment (Albert et al., 2011; Jack et al., 2011; G. M. McKhann 
et al., 2011).  

International Working Group (IWG) is another group that has updated diagnos-
tic guidelines for AD several times (Dubois et al., 2007, 2010, 2014; Dubois, Hampel, 
et al., 2016). In their most recent guidelines, the diagnosis required evidence from 
both clinical assessment and biomarkers (Dubois et al., 2014). The biomarker evi-
dence of AD included 1) amyloid PET or 2) Aβ and total tau or p-tau in CSF or 3) 
presence of AD autosomal dominant mutation. FDG-PET or MRI were excluded 
because they might better serve in monitoring the progression of the disease. IWG 
has also recently updated their diagnostic guidelines for preclinical AD (Dubois, 
Hampel, et al., 2016). The diagnosis preclinical AD is given when the biomarkers 
of both Aβ (CSF Aβ or amyloid PET) and tau (CSF or PET tau) are beyond thresh-
old values in asymptomatic individuals. The diagnosis asymptomatic at risk for 
AD is achieved when only one of the Aβ or tau are abnormal in cognitively normal 
individuals. In addition, IWG has proposed a lexicon for AD research (Dubois et 
al., 2010). According to it, prodromal AD or predementia stage of AD is a similar 
concept as MCI due to AD in the NIA-AA guidelines and the term MCI refers to 
cases who have cognitive impairment but do not fulfil the criteria for prodromal AD, 
i.e., do not have memory symptoms or biomarkers specific for AD. In the lexicon, 
AD dementia was divided into typical AD (the most common clinical phenotype), 
atypical AD (less common and characterized clinical phenotype) and mixed AD 
(typical AD and evidence of other comorbidities).  

The last concept presented here is subjective cognitive decline (SCD) which is 
related to many different conditions (e.g. normal ageing, psychiatric and neurologic 
disorders, substance and medication use) (Jessen et al., 2014). Research criteria for 
SCD in relation to AD was proposed by Subjective Cognitive Decline Initiative 
(SCD-I) (Jessen et al., 2014). They suggested that SCD occurs at the late stage of 
preclinical AD, just before the progression to MCI/prodromal AD. The criteria for 
SCD requires 1) self-experienced persistent decline in cognitive capacity in compar-
ison to a previously normal status and unrelated to an acute event and 2) normal age-
, gender-, education-adjusted performance on standardized cognitive tests for 
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MCI/prodromal AD (Jessen et al., 2014). SCD-I presented also a SCD plus criteria, 
which lists features increasing the likelihood of preclinical AD in subjects with SCD. 
These features include subjective decline in memory, onset of SCD within the last 
five years, age at onset ≥60 years, worries associated with SCD, feelings of worse 
performance than others at the same age, confirmation of cognitive decline by an 
informant, presence of APOE ε4, and biomarker evidence of AD (Jessen et al., 
2014). 

The most recent guidelines for research published by NIA-AA in 2018 are based 
on an initial suggestion by Jack et al. (Jack et al., 2016) and they are a complete op-
posite to the first NINCDS-ADRDA guidelines (Jack et al., 2018). The guidelines 
are based only on detection of underlying AD pathology either by postmortem sam-
ples or in vivo by biomarkers. Clinical symptoms are not part of the diagnosis at all. 
NIA-AA suggested to group biomarkers into those of Aβ deposition, pathologic tau, 
and neurodegeneration, forming an AT(N) classification system. Group A bi-
omarkers include CSF Aβ42, CSF Aβ42/Aβ40 ratio, and amyloid PET; Group T bi-
omarkers include CSF p-tau or tau PET; Group (N) biomarkers include volumetric 
MRI, FDG-PET, and CSF total tau. These biomarker groups are dichotomized to 
normal(-)/abnormal(+) using threshold values. This results in eight different bi-
omarker profiles (A-T-(N)-, A+T-(N)-, A+T+(N)-, etc.). The biomarker profile is 
normal if all A, T and (N) are negative. Alzheimer’s pathologic change is found when 
only A is positive. Alzheimer’s disease is present if both A and T are positive. Profile 
A+T-(N)+ corresponds to Alzheimer’s and concomitant suspected non-Azheimer’s 
pathologic change and, finally, negative A refers to non-AD pathologic change. N is 
in the parenthesis because biomarkers of neurodegeneration are not specific to AD. 
NIA-AA also proposed a separate staging for cognitive symptoms (unim-
paired/MCI/dementia) because cognitive staging is part of many ongoing studies 
and it has been adopted by many medical practitioners. Thus, each individual has 
both a biomarker profile and a cognitive stage.  

2.3.6 Risk factors for mortality in Alzheimer’s disease 
Dementia due to AD shortens the life expectancy of an individual, average survival 
time being 4 to 8 years after the diagnosis in patients aged 65 years and older 
(Alzheimer’s Association, 2018). However, the survival time varies considerably be-
tween individuals, some living as long as 20 years after the diagnosis. Several studies 
have investigated risk factors for mortality in AD. Older age and male gender have 
been found to associate strongly with mortality in dementia and AD (Todd et al., 
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2013). Studies assessing impact of disease severity have used several different scales 
and instruments to measure global, cognitive, and functional impairment. Global 
impairment measured with Clinical Dementia Rating (CDR) was associated with 
mortality, and studies on cognitive and functional impairment have provided con-
tradicting results (Todd et al., 2013). Diabetes mellitus, smoking, coronary heart dis-
ease, and congestive heart failure were associated with mortality in dementia, but 
meta-analysed studies included only older patients (mean age 74-87 years) (van de 
Vorst et al., 2016). A few studies have also examined associations between AD bi-
omarkers and mortality. A study on memory clinic patients found microbleeds to be 
strongly associated with mortality in AD and in the whole study population (patients 
with SCD, MCI, AD, other dementia, or other diagnosis) (Henneman, Sluimer, et 
al., 2009). White matter hyperintensities were associated to a lesser extent with mor-
tality in the whole population, but not in AD (Henneman, Sluimer, et al., 2009). 
Global cortical atrophy was associated with mortality only in the younger patients 
(<68 years) (Henneman, Sluimer, et al., 2009). Another study found frontal and me-
dial temporal atrophy to be associated with mortality in AD (Nägga et al., 2014). 
Studies on CSF biomarkers and mortality have reported mixed results. A recent study 
found CSF Aβ42 to be associated with mortality in patients with AD having abnormal 
values for all three CSF biomarkers (Aβ42, total tau, p-tau), corresponding to the 
recent AT(N) classification system (Boumenir et al., 2019). Another study found no 
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that a group with extreme CSF biomarker values had a higher mortality. However, 
this subgroup of patients was small (n=12, 8% of the study population). Degerman 
Gunnarson and co-workers (Degerman Gunnarsson et al., 2014) found that having 
CSF total tau in the highest quartile increased the risk of dying in severe dementia.  

2.4 Clinical decision support systems for dementia 

CDSSs can be defined as “software that designed to be a direct aid to clinical decision-making, 
in which the characteristics of an individual patient are matched to a computerized clinical knowledge 
base and patient-specific assessments or recommendations are then presented to the clinician or the 
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include diagnostics, assessment of risk for developing a disease or adverse event, 
prediction of treatment outcomes or hospital resource needs, planning of interven-
tions (e.g. treatment or surgery plans), monitoring a patient’s state over time, medi-
cation prescription (e.g. drug interactions, cheaper medications), providing alarms, 
following clinical guidelines, and many more (R. T. Sutton et al., 2020; Tohka & van 
Gils, 2021). The CDSSs are commonly divided into knowledge-based or non-
knowledge-based systems. The knowledge-based systems include a rule base, often 
in the form of IF-THEN statements, and the rules can be created using literature-
based, practice-based, or patient-directed evidence (R. T. Sutton et al., 2020). The 
nonknowledge-based systems utilize data-driven approaches, such as statistical pat-
tern recognition, machine learning, or artificial intelligence, which infer decisions 
from the previously measured data (R. T. Sutton et al., 2020). Following paragraphs 
present three examples of CDSSs developed for dementia.  

PredictAD software tool was designed for early diagnosis of AD. It collects rele-
vant data measured from the patients in one place, quantifies automatically MRIs, 
visualizes heterogeneous data in an understandable way, and includes machine learn-
ing methods for combining data from several data modalities and predicting AD 
progression (Antila et al., 2013; Mattila et al., 2012; Soininen et al., 2012). The Pre-
dictAD tool has later been expanded to differential diagnosis of dementia 
(Koikkalainen et al., 2016; Tolonen et al., 2018). Studies I and II in this thesis are 
closely related to this tool.  

Another example is a prototype CDSS which evaluates severity of AD on a con-
tinuous scale (Bucholc et al., 2019). The severity score is based on Kernel Ridge 
Regression of total scores from four cognitive and functional assessments, namely 
Functional Assessment Questionnaire, Alzheimer’s Disease Assessment Scale 13, 
Montreal Cognitive Assessment, and Mini-Mental State Examination. This CDSS 
presents a patient profile with relevant medical information and visualizes the sever-
ity score and the total scores of the four assessments. As it does not require inputs 
from costly biomarkers, like MRI, it can be implemented in primary care.  

The last example is Dementia Management Support System (DMSS) and its re-
vised version (DMSS-R) which assist healthcare professionals in examining patients 
with suspected dementia (Lindgren, 2008, 2011; Lindgren et al., 2002). DMSS is 
based on a set of clinical practice guidelines for dementia care. It provides interactive 
support through the diagnostic process, reminds and alerts in the case of missing or 
questionable data, and proposes suitable interventions and possible diagnoses. The 
revised version also provides more extensive support for diagnostic hypothesis gen-
eration and evaluation.  
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2.5 Development of machine learning systems 

Machine learning is a subcategory of artificial intelligence and it aims to teach com-
puters to solve problems by learning from past experiences (Goodfellow et al., 2016). 
This means that computers use statistics to search for patterns in data, instead of 
using fixed and hard-coded programs. Machine learning can be divided into super-
vised, unsupervised, and reinforcement learning. In supervised learning, both input 
and output variables are known and used for training the model, i.e., finding the 
mapping between the input and output variables. Supervised learning can further be 
divided into classification, where the output variable is categorical, and regression, 
where the output variable is continuous. In unsupervised learning, the output varia-
ble is unknown or is not available. Unsupervised learning algorithms aim to find 
clusters or groupings in data. They can also be used for dimension reduction by 
searching for the most important components that best describe the original data 
without losing too much of information (e.g., principal component analysis). Rein-
forcement learning is close to human learning which is based on interacting with an 
environment and analysing consequences of performed actions (R. S. Sutton & 
Barto, 2018). In reinforcement learning, an agent has a certain goal which it tries to 
achieve by taking actions to influence its environment (R. S. Sutton & Barto, 2018). 
For each action, the environment sends a reward or punishment to the agent, whose 
only goal is to maximize the total reward in the long run (R. S. Sutton & Barto, 2018). 
An example of reinforcement learning is AlphaZero algorithm which defeated state-
of-the-art algorithms in the games of chess, Go, and shogi (Silver et al., 2018). This 
thesis will focus on supervised learning. 

2.5.1 Design cycle of machine learning systems 

A general design cycle of a machine learning system is shown in Figure 2. Not all 
steps are present in all applications, some steps may overlap so that it is difficult to 
differentiate them, and some methods combine several steps by their design (e.g., 
deep learning methods can combine feature extraction, feature selection, and mod-
elling). The steps are iteratively repeated during the development process because 
different steps will give new insights to data and the problem at hand.  
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The first step, problem definition, defines aim of the system and things that need 
to be considered when designing such a system. Understanding of the problem usu-
ally requires domain knowledge from the experts in the area, e.g., healthcare profes-
sionals. 

The second step, data collection, is an essential step in the development. Data 
collection is often time consuming and resource intensive. Data can be collected 
from existing databases, e.g., electronic health records, population records, publicly 
available databases. If suitable data do not yet exist, a data collection study needs to 
be planned and carried out for collecting the needed input and output variables. 

The third step, data pre-processing, assures that data are ready for the later steps. 
This step may include transforming data sets collected from different sources into a 
common format, data synchronisation, harmonization of variables, and removal of 
artefacts and noise. 

In the fourth step, data exploration, summary statistics and distributions of vari-
ables are studied to get an initial understanding of the data.  

In the fifth step, feature extraction, new variables (or features) are calculated from 
images, signals, or other existing variables. Examples of new variables (features) are 
volumes of different brain structures calculated from MRI or average heart rate cal-
culated from an electrocardiograph. 

In the sixth step, feature selection, the most relevant features are selected as in-
puts for the classifier. A good feature is simple to extract, invariant to irrelevant 
changes, insensitive to noise, and discriminates well patterns into categories (Duda 
et al., 2001). Feature selection can be based on both prior knowledge and empirical 
data. 

The seventh and eighth step, model selection and model training, are closely re-
lated. Model training means teaching the model to find patterns in data, i.e., param-
eters of the model are determined using the training data. Thus, available training 
data and the problem to be solved affect which type of model will be selected.  

The last step, model evaluation, assesses performance of the model. In the eval-
uation, it is important to use an independent data set which was not utilized in the 
model training. If the model is trained and tested using the same data, there is a high 
risk that the model will overfit. This means that the model performs very well with 
the training data, but it performs poorly on new unseen cases. More complex models 
are more prone to overfitting than simpler models. Different performance evalua-
tion methods are described in the next chapter.  
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Figure 2. A general design cycle of a machine learning system (based on Duda et al. (2001) and Webb 
and Copsey (2011)) 

2.5.2 Performance evaluation of machine learning systems 

There are various methods for evaluating performance of the model. In holdout 
validation, a data set is randomly partitioned into two complementary subsets: one 
set is used for training the model and the other is used for testing. In k-fold cross-
validation (CV), the data set is randomly partitioned into k complementary subsets. 
The models are trained using the k-1 subsets and tested using the remaining subset 
not used in the training. Training and testing are repeated k times so that each subset 
is used k-1 times for training and once for testing. After running all folds, perfor-
mance metrics are then averaged over the folds. The holdout and cross-validation 
procedures can be repeated (iterated) several times to obtain robust estimates for the 
performance metrics. Partitioning into the train and test sets can be stratified, mean-
ing that each fold contains roughly equal proportions of different classes. The best 
way to estimate generalizability of the models is to train them using one cohort and 
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test them using another completely different cohort collected, e.g., in a different cen-
tre. This approach estimates how well the models generalize and perform in a dif-
ferent setting, e.g., in a different country or slightly different patient group.  

Nested CV is used for tuning hyperparameters of the model. In nested CV, the 
whole data set is first divided into cross-validation folds (outer CV), then the training 
set of a fold is further divided into cross-validation folds (inner CV). The set of 
possible hyperparameter values are evaluated in the inner CV and the values provid-
ing the best results are selected. Then the model with the selected hyperparameter 
values is applied to the whole training set of the outer CV and evaluated with the 
test set of the outer CV. Like in the regular CV, this procedure is repeated for each 
fold. 

2.5.3 Performance metrics used in the evaluation 

In classification tasks, common performance metrics are calculated from a confusion 
matrix which tabulates number of true positives (correctly classified positive cases), 
true negatives (correctly classified negative cases), false positives (negative cases mis-
classified as positive), and false negatives (positive case misclassified as negative) 
(Figure 3). Positive cases refer to diseased subjects and negative cases refer to healthy 
subjects. The performance metrics include accuracy (the number of correctly classi-
fied cases divided by the total number of cases), sensitivity or recall (number of cor-
rectly classified positive cases divided by the total number of positive cases), speci-
ficity (the number of correctly classified negative cases divided by the total number 
of negative cases), positive predictive value or precision (PPV, the number of cor-
rectly classified positive cases divided by the total number of cases classified as pos-
itive), and negative predictive value (NPV, the number of correctly classified negative 
cases divided by the total number of cases classified as negative). The accuracy is not 
an optimal measure for performance because it can provide misleading results on 
imbalanced data sets in which number of cases in each class differs greatly. Balanced 
accuracy (BACC), defined as an average of sensitivity and specificity, is a better over-
all performance measure because it takes the uneven class distribution into account. 
PPV and NPV are interesting measures for clinicians and patients, because they an-
swer the question “what is the chance to really have a disease when the classification 
result indicates the disease?” However, these measures are also affected by preva-
lence of the disease (the class distributions). When prevalence increases, PPV in-
creases as well, whereas NPV decreases. This should be taken into account when 
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interpreting and comparing accuracy, NPV, and PPV of classifiers tested with dif-
ferent datasets. Sensitivity and specificity do not depend on prevalence. All these 
measures are between 0 and 1 (or 0% and 100%), higher values indicating better 
performance. 

  Classification  

  
Positive Negative 

 

True 
class 

Positive 
Number of true posi-

tives 
(TP) 

Number of false neg-
atives 
(FN) 

Sensitivity 

= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

Negative 
Number of false pos-

itives 
(FP) 

Number of true neg-
atives 
(TN) 

Specificity 

= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
 

Positive predictive 
value 

= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

Negative predictive 
value 

= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

Accuracy 

= 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

Figure 3. Confusion matrix 

Classifiers often produce a probability as an output and above-mentioned perfor-
mance metrics are calculated by defining a threshold for probability values to classify 
cases in one of the classes. In a two-class task, sensitivity and specificity values can 
be calculated for different threshold values. A receiver operating characteristic 
(ROC) curve can then be created by plotting sensitivity against 1-specificity values. 
The ROC curve illustrates overall performance of a classifier over different thresh-
olds. A classifier, of which ROC curve goes closest to the point (0, 1), has the best 
performance. If the ROC curve is close to the diagonal line from the left bottom 
corner to the right top corner, performance of the classifier is as good as a random 
guess. The ROC curve can be used for finding an optimal threshold for the classifi-
cation. Optimality depends on whether the application needs to favour high sensi-
tivity or high specificity. The ROC curve can be summarized into one value, namely 
area under the ROC curve (AUC). AUC is an additional measure for the overall 
classification performance. AUC of one means a perfect classification and 0.5 means 
random classification. As calculation of AUC is based on the ROC curve, it summa-
rizes performance of the classifier over different classification thresholds. Whereas, 
accuracy and other performance metrics calculated from the confusion matrix, are 
related to one selected point on the ROC curve. In addition, AUC is not sensitive to 
imbalanced class distributions.  
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In regression tasks, performance of the model can be visualized by plotting the 
predicted values against the observed values. Performance can also be numerically 
summarized with correlation coefficient (Pearson or Spearman), root mean squared 
error (RMSE), mean squared error (MSE), and mean absolute error (MAE). Corre-
lation coefficients are between -1 and 1. Values close to 0 indicate no correlation and 
values close to -1 and 1 indicate strong correlation. Values close to -1 indicate strong 
opposite correlation (e.g., observed values increase and predicted values decrease). 
The correlation coefficients are problematic in performance evaluation because they 
do not reveal the actual differences between the predicted and observed values. E.g., 
correlation coefficient is one if all predicted values are systematically five points 
higher than observed values. Thus, RMSE, MSE, and MAE are better performance 
measures for regression tasks. As RMSE and MSE square the differences between 
the observed and predicted values, bigger errors have more impact on the result than 
smaller errors. MAE uses the absolute differences instead of the squared differences; 
thus, bigger errors are not emphasized, and MAE is more robust against outliers. 
RMSE and MAE have the same unit as the outcome variable, and MSE has the 
squared unit, thus, models for different outcomes cannot be compared directly using 
these measures. The correlation coefficients do not depend on the units of out-
comes.  

2.6 Machine learning in Alzheimer’s disease 

2.6.1 Typical research questions 

Machine learning has extensively been applied to AD during the past years. Typical 
research foci in this field include 1) diagnosis, i.e., classification of subjects to differ-
ent diagnostic classes (e.g., healthy controls (HC) vs. AD, HC vs. MCI, MCI vs. AD, 
HC vs. MCI vs. AD); 2) prediction of conversion from one disease stage to another, 
conversion from MCI to AD being the most common; 3) differential diagnosis of 
dementia; 4) identification of risk factors; and 5) prediction of AD progression using 
continuous cognitive scores as outcomes (Battista et al., 2020; Bratić et al., 2018; 
Fabrizio et al., 2021; Kumar et al., 2021; Rathore et al., 2017; Weiner et al., 2015, 
2017; R. Zhang et al., 2017). In addition, machine learning has been utilized for min-
ing AD literature; evaluating clinical care and use of care resources of patients with 
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AD; and investigating relationship between cognition, cognitive reserve, and AD (R. 
Zhang et al., 2017). 

2.6.2 Data sources and data modalities 

Several public and private data sources in different sizes have been utilized for ma-
chine learning in AD. According to a recent review, most of the studies included at 
most 1000 subjects (n=34), 15 studies included 1001-10000 subjects, and 12 studies 
included more than 10000 subjects (Kumar et al., 2021). 

The Alzheimer’s Disease Neuroimaging Initiative database (ADNI) is the most 
used publicly available data set (Kumar et al., 2021; Martí-Juan et al., 2020; R. Zhang 
et al., 2017). The first phase of the ADNI (ADNI 1) was a longitudinal six-year study 
aiming at testing whether a combination of clinical, cognitive, imaging, genetic, and 
biochemical biomarkers can measure progression of MCI and AD (Weiner et al., 
2010). ADNI 1 aimed to recruit approximately 800 subjects (200 HC, 400 MCI, 200 
early AD) of age 55 to 90 years at around 50 sites in the USA and Canada (Petersen 
et al., 2010; Weiner et al., 2017). ADNI 1 was followed by ADNI GO, ADNI 2, and 
ADNI 3 studies, which recruited new subjects and continued to follow some of the 
subjects from the preceding ADNI studies. ADNI has several data modalities meas-
ured longitudinally, long follow-up times, a well-organized structure, and an easy 
access, which together have promoted its wide use. Other utilized public data sets 
include, e.g., the Australian Imaging Biomarkers and Lifestyle Flagship Study of Age-
ing (AIBL), a cross-European AddNeuroMed and its curated version ANMerge, the 
Open Access Series of Imaging Studies (OASIS), the National Alzheimer’s Coordi-
nating Center (NACC), and Baltimore Longitudinal Study of Aging (BLSA) (Bratić 
et al., 2018; Kumar et al., 2021; Martí-Juan et al., 2020; D. Zhang et al., 2011). 

Typically, machine learning studies in AD have included data from the core bi-
omarkers of AD and traditional clinical assessments: neuroimaging (MRI, PET, dif-
fusion tensor imaging), neuropsychological and cognitive assessments (e.g. Mini-
Mental State Examination (MMSE), Alzheimer’s Disease Assessment Scale-cogni-
tive subscale (ADAS-cog)), genetics (e.g. APOE, family history), laboratory (e.g. 
CSF, blood plasma proteins), and demographics (Battista et al., 2020; Bratić et al., 
2018; Kumar et al., 2021; Martí-Juan et al., 2020; Rathore et al., 2017). MRI alone or 
together with other data modalities is one of the most studied data modality (Martí-
Juan et al., 2020) as it is a non-invasive method to obtain good quality images of the 



42 

AD; and investigating relationship between cognition, cognitive reserve, and AD (R. 
Zhang et al., 2017). 

2.6.2 Data sources and data modalities 

Several public and private data sources in different sizes have been utilized for ma-
chine learning in AD. According to a recent review, most of the studies included at 
most 1000 subjects (n=34), 15 studies included 1001-10000 subjects, and 12 studies 
included more than 10000 subjects (Kumar et al., 2021). 

The Alzheimer’s Disease Neuroimaging Initiative database (ADNI) is the most 
used publicly available data set (Kumar et al., 2021; Martí-Juan et al., 2020; R. Zhang 
et al., 2017). The first phase of the ADNI (ADNI 1) was a longitudinal six-year study 
aiming at testing whether a combination of clinical, cognitive, imaging, genetic, and 
biochemical biomarkers can measure progression of MCI and AD (Weiner et al., 
2010). ADNI 1 aimed to recruit approximately 800 subjects (200 HC, 400 MCI, 200 
early AD) of age 55 to 90 years at around 50 sites in the USA and Canada (Petersen 
et al., 2010; Weiner et al., 2017). ADNI 1 was followed by ADNI GO, ADNI 2, and 
ADNI 3 studies, which recruited new subjects and continued to follow some of the 
subjects from the preceding ADNI studies. ADNI has several data modalities meas-
ured longitudinally, long follow-up times, a well-organized structure, and an easy 
access, which together have promoted its wide use. Other utilized public data sets 
include, e.g., the Australian Imaging Biomarkers and Lifestyle Flagship Study of Age-
ing (AIBL), a cross-European AddNeuroMed and its curated version ANMerge, the 
Open Access Series of Imaging Studies (OASIS), the National Alzheimer’s Coordi-
nating Center (NACC), and Baltimore Longitudinal Study of Aging (BLSA) (Bratić 
et al., 2018; Kumar et al., 2021; Martí-Juan et al., 2020; D. Zhang et al., 2011). 

Typically, machine learning studies in AD have included data from the core bi-
omarkers of AD and traditional clinical assessments: neuroimaging (MRI, PET, dif-
fusion tensor imaging), neuropsychological and cognitive assessments (e.g. Mini-
Mental State Examination (MMSE), Alzheimer’s Disease Assessment Scale-cogni-
tive subscale (ADAS-cog)), genetics (e.g. APOE, family history), laboratory (e.g. 
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Juan et al., 2020) as it is a non-invasive method to obtain good quality images of the 
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brain structures that are affected already in the early phase of AD. Other data mo-
dalities have been studied less and typically with limited sample sizes. These modal-
ities include clinical notes, like discharge summaries (Kumar et al., 2021), electroen-
cephalography (EEG) (Graham et al., 2020; Tăuţan et al., 2021), handwriting 
(Graham et al., 2020; Impedovo & Pirlo, 2018), inertial and other sensors for gait 
and movement analysis (Cavedoni et al., 2020; Graham et al., 2020; Muurling et al., 
2020), voice and speech recordings (Graham et al., 2020; Tăuţan et al., 2021), web-
based cognitive testing (Meester et al., 2020), and eye movements (Tăuţan et al., 
2021). Aim of the studies on voice, eye movements, gait/movement, web-based cog-
nitive tests, and handwriting was to find non-invasive, low-cost, and easy-to-perform 
methods for early detection of AD. Another emerging field of study is applying ma-
chine learning to omics data obtained from metabolomics, genomics, proteomics, 
and transcriptomics. These new biomarkers may aid in the diagnosis of AD and re-
veal underlying factors affecting development and progression of AD (Tan et al., 
2021). This thesis will focus on the traditional data modalities. The emerging data 
modalities and their analyses are not in the scope of this review. 

2.6.3 Developed models 

As AD has been a popular application area for machine learning in recent years, 
plethora of different machine learning methods have been applied to AD to solve 
the research questions described in Chapter 2.6.1. Among the classification studies, 
support vector machine (SVM) classifier has been one of the most popular machine 
learning method, especially in the neuroimaging studies (Battista et al., 2020; Martí-
Juan et al., 2020; Rathore et al., 2017; Tăuţan et al., 2021). Other used classification 
methods include decision trees (e.g. simple decision trees, Random Forests, Ada-
Boost); Bayesian networks (e.g. Naïve Bayes, Bayesian belief networks); neural net-
works and deep learning (e.g. multilayer perceptron, convolutional and recurrent 
neural networks, autoencoders, restricted Boltzmann machines); logistic regression 
with or without regularization; DSI; and linear and quadratic discriminant analysis 
(Kumar et al., 2021; Martí-Juan et al., 2020; Tăuţan et al., 2021; Weiner et al., 2015, 
2017; R. Zhang et al., 2017).  

The studies predicting continuous cognitive scores are not as common as classi-
fication studies, nevertheless, they have utilized variety of different methods as well. 
Also in these studies, SVMs are among the most popular methods (Bucholc et al., 
2019; Huang et al., 2016; D. Zhang et al., 2012b; Zhu et al., 2016). Several studies 
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have developed or applied more complex feature extraction and prediction methods 
which consider multi-modal or longitudinal data. These include kernel ridge regres-
sion (Bucholc et al., 2019), neural networks and deep learning (radial basis function 
and convolutional neural networks) (Dong et al., 2020; Zhu et al., 2016), multi-task 
learning (D. Zhang et al., 2012a; Zhou et al., 2013), and Random Forests based non-
linear sparse regression (Huang et al., 2016). Some studies compared these methods 
to more traditional regression methods like linear (Zhu et al., 2016), lasso (Dong et 
al., 2020; Huang et al., 2016; Zhou et al., 2013), ridge (Dong et al., 2020; Huang et 
al., 2016; Zhou et al., 2013), k-nearest neighbour (Bucholc et al., 2019), decision tree 
(Zhu et al., 2016), and Gaussian process (Zhu et al., 2016). 

Risk factors for AD and its progression have commonly been identified using 
Cox proportional hazards model (Fabrizio et al., 2021; Golriz Khatami et al., 2020; 
R. Zhang et al., 2017).  

2.6.4 Performance of the models 

Direct comparison of performances of the developed models is difficult due to dif-
ferences in the selected data sets, techniques used for handling missing values, used 
validation and performance evaluation methods, and reported performance metrics 
(Martí-Juan et al., 2020; R. Zhang et al., 2017). Most studies have used cross-valida-
tion in the performance evaluation. Some studies have also assessed generalizability 
of the models using an independent validation set (Martí-Juan et al., 2020).  

2.6.4.1 Diagnosis of AD, MCI, and conversion from MCI to AD 

Main findings in this chapter were extracted from three review articles summarizing 
recent ADNI publications (Weiner et al., 2017) and machine learning results from 
neuropsychological (Battista et al., 2020) and neuroimaging data (Martí-Juan et al., 
2020). When AD has progressed to the dementia phase, cognitive symptoms and 
damage to the brain is already evident. Thus, differentiating HCs from patients with 
Alzheimer’s dementia is the easiest classification task for machine learning. Studies 
classifying HC and AD dementia using only neuropsychological data reported accu-
racies ranging from 72% to 100% (sensitivity 73-100%, specificity 77-100%, AUC 
0.79-0.98) (Battista et al., 2020). Studies using only MRI reported accuracies varying 
from 83% to 97% and studies using only FDG-PET reported accuracies from 78% 
to 93% (Martí-Juan et al., 2020; Weiner et al., 2017).  
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Other classification tasks are harder due to overlapping symptoms and biomarker 
values between the classes. Studies differentiating HC from MCI using only neuro-
psychological data reported accuracies from 60% to 98% (sensitivity 45-97%, speci-
ficity 67-100%, AUC 0.63-0.99) (Battista et al., 2020). Studies using only MRI re-
ported accuracies varying from 54% to 97% and studies using only FDG-PET re-
ported accuracies from 63% to 70% (Martí-Juan et al., 2020; Weiner et al., 2017). 
The hardest task is to predict which of the MCI cases will progress to Alzheimer’s 
dementia. This task is also limited by the availability of longitudinal data sets having 
long enough follow-up periods to detect conversions. Studies using only neuropsy-
chological data reported accuracies from 61% to 85% (sensitivity 50-91%, specificity 
48-91%, AUC 0.67-0.93) (Battista et al., 2020). Studies using only MRI reported ac-
curacies varying from 62% to 92% and studies using only FDG-PET reported accu-
racies from 63% to 81% (Martí-Juan et al., 2020; Weiner et al., 2017). 

Different data modalities provide complementary information, thus, several stud-
ies developed models combining different modalities. These multimodal models 
provided better performance than models based on a single modality. However, the 
improvements were not always substantial or statistically significant (Martí-Juan et 
al., 2020). In the classification of HC vs. AD dementia, accuracies ranged from 90% 
to 100% (sensitivity 84-100%, specificity 83-100%, AUC 0.96-0.99). Studies differ-
entiating HC from MCI reported accuracies between 74% and 100% (sensitivity 54-
100%, specificity 59-100%, AUC 0.77-0.95). In studies differentiating stable MCI 
cases from progressive MCI cases, accuracies ranged from 57% to 91% (sensitivity 
48-96%, 43-95%, AUC 0.69-0.98). In addition, incorporation of longitudinal data 
improved the performance of the models compared to the models developed using 
only cross-sectional data (Martí-Juan et al., 2020). 

2.6.4.2 Conversion from the preclinical phase to MCI or dementia 

As importance of the preclinical AD phase has been recognized during the past 
years, recent machine learning studies have also focused on the earlier phases of the 
disease. Gómez-Ramírez et al. (Gómez-Ramírez et al., 2020) searched for the most 
important self-assessed features for predicting conversion from HC to MCI in a 
large, observational, longitudinal, Spanish cohort. They utilized Random Forests 
classifier and permutation-based methods for feature selection and concluded that 
subjective cognitive decline, educational level, working experience, social life, and 
diet were among the most important features, subjective cognitive decline being the 
most important.  
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Yue et al. (Yue et al., 2021) developed a model for predicting which of the sub-
jects with SCD will progress to MCI. They conducted a feature selection from 233 
sociodemographic, health, psychological, and MRI features and fed five most im-
portant features to a cost-sensitive SVM developed for imbalanced data sets. The 
selected features were years of education, Montreal Cognitive Assessment (MoCA) 
score at baseline, stroke history, volume of left amygdala, and white matter at the 
banks of right superior temporal sulcus. Their classifier achieved accuracy of 69.7% 
(sensitivity 62.5%, specificity 73.1%, AUC 0.80). 

Liu et al. (Liu et al., 2022, 2020) proposed a joint neuroimage synthesis and rep-
resentation learning framework for predicting conversion from SCD to MCI. Their 
method consisted of 1) an image synthesis network which imputes missing images 
with synthetic images and generates multi-modal imaging features and 2) a classifi-
cation network which fuses multimodal features and performs prediction. They 
trained the model with complete MRI and PET scans from the ADNI data set and 
tested it with the Chinese Longitudinal Aging Study data set containing only MRI 
images. They reported balanced accuracy of 72.1% (sensitivity 75.0%, specificity 
69.2%, AUC 0.75). 

Partly the same research group also presented a cost-sensitive meta-learning 
framework for predicting SCD to MCI conversion using brain MRIs (Guan et al., 
2021). This meta learning framework first split training data to a meta-train and meta-
test set. The meta-test set consisted of a small sample of SCD subjects from ADNI 
and the meta-train set included other types of patients (either HC/AD or MCI) from 
ADNI. A CNN model was developed by jointly optimizing meta-train and meta-test 
losses. This approach is thought to avoid bias towards the training set (HC/AD or 
MCI) and learn domain-invariant features. They also introduced a cost-sensitive loss 
into the meta-learning process to improve sensitivity for detecting progressive SCD 
cases. This framework was finally evaluated with an independent set of 40 progres-
sive SCD cases and 73 stable SCD cases. It achieved accuracy of 59.7% (balanced 
accuracy 60.5%, sensitivity 66.4, specificity 54.6%, AUC 0.65). 

2.6.4.3 Differential diagnosis 

Classification tasks in the previous sections focused on binary classifications along 
the AD continuum. However, the real-life challenge in memory clinics is to differ-
entiate different forms of dementia from each other. Differential diagnosis in the 
memory clinics is challenged by 1) overlapping clinical features of different demen-
tias; 2) co-occurrence of different dementias; and 3) less established biomarkers for 
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dementias other than AD (Bibl et al., 2012; Karantzoulis & Galvin, 2014; Koenig et 
al., 2018).  

Koikkalainen et al. (Koikkalainen et al., 2016) and Tolonen et al. (Tolonen et al., 
2018) extended the two-class DSI classifier for a multiclass problem for differentiat-
ing subjects with SCD, dementia due to AD, VaD, FTD, and DLB in Amsterdam 
Dementia Cohort. Koikkalainen et al. (Koikkalainen et al., 2016) used only visually 
rated and automatically quantified MRI features. The automatic quantification pro-
vided better performance than visual ratings (balanced accuracy 69% vs. 52%). With 
automatic quantification, detection of VaD was the most accurate (sensitivity 96%), 
followed by SCD (sensitivity 82%), dementia due to AD (sensitivity 74%), and FTD 
(sensitivity 62%). Detection of DLB was the least accurate (sensitivity 32%). To-
lonen et al. (Tolonen et al., 2018) expanded this work by including also data from 
neuropsychological tests and CSF (Aβ42, total tau, p-tau). Addition of two other data 
modalities increased balanced accuracy to 82%. Similarly, VaD was the most accu-
rately detected (sensitivity 92%), followed by SCD (sensitivity 89%), dementia due 
to AD (sensitivity 80%), FTD (sensitivity 76%), and DLB (sensitivity 75%). Auto-
matic MRI features produced the best performing single-modality model (balanced 
accuracy 66%).  

Partly the same authors as in the two previous studies developed new atrophy 
grading and VaD grading MRI features; integrated a sparsity-based multiclass feature 
selection step; and applied the RUSBoost algorithm to handle the problem of the 
imbalanced class distribution (Tong et al., 2017). Using the same Amsterdam De-
mentia Cohort and features from MRI, CSF (Aβ42, total tau, p-tau), and age, their 
method provided the balanced accuracy of 69%. Contrary to the previous studies, 
SCD was the most accurately detected (sensitivity 82%%), followed by dementia due 
to AD (sensitivity 81%), VaD (sensitivity 74%%), and FTD (sensitivity 71%). Also 
in this study, detection of DLB was the least accurate (sensitivity 38%).  

Asanomi et al. (Asanomi et al., 2021) utilized penalized regression models (elastic 
net) with microRNA expression data to differentiate AD, VaD, DLB, normal pres-
sure hydrocephalus, and HC. Their method obtained the balanced accuracy of 37%. 
HCs were the most accurately detected (sensitivity 79%) and different dementias 
were considerably less accurately detected (sensitivities <36%). 

Bron et al. (Bron et al., 2017) incorporated features from structural MRI, arterial 
spin labelling, and diffusion tensor imaging to classify HC, AD, and FTD. They 
trained multiple two-class SVM classifiers (HC vs. AD, HC vs. FTD, AD vs. FTD) 
and combined them for multiclass classification by multiplying the posterior proba-
bilities. Their method obtained comparable accuracies for AD vs. FTD and HC vs. 
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AD vs. FTD classifications, the best accuracies being around 75% (estimated from 
a figure). Several other studies have differentiated only two dementia types from each 
other or conducted multiple two-class classifications even though they had multiclass 
data available (Canu et al., 2017; C. Davatzikos et al., 2008; Diehl et al., 2005; 
Jiménez-Huete et al., 2014; Muñoz-Ruiz et al., 2016; Perani et al., 2016). 

2.6.4.4 Prediction of continuous outcomes 

As shown above, a large number of studies have focused on predicting categorical 
outcomes, e.g., differentiating different diagnostic classes or predicting conversion 
from one disease stage to another. As progression of AD is a continuous process, 
an alternative approach is to predict continuous outcomes, e.g., future scores or 
changes in the biomarker values. Studies using continuous clinical scores as out-
comes predicted scores or changes in MMSE, ADAS-cog, Clinical Dementia Rating 
Sum of Boxes (CDR-SB), Clinical Dementia Rating Global (CDR-GLOB), and Rey 
Auditory Verbal Learning Test (RAVLT) (Bucholc et al., 2019; Huang et al., 2016; 
Weiner et al., 2017; D. Zhang et al., 2012a, 2012b; Zhou et al., 2013; Zhu et al., 2016). 
These studies also found that inclusion of multimodal or longitudinal data improved 
the performance of the models. Especially incorporation of cognitive and functional 
assessments led to better performance than inclusion of other modalities alone or 
together (Bucholc et al., 2019; Zhu et al., 2016). Populations in these studies con-
tained only HC, MCI, or AD dementia cases. Li et al. (Li et al., 2022) expanded the 
population by including also SCD cases in addition to HC and MCI cases. They 
utilized MRI features from whole brain, hippocampus, and amygdala to predict 
MMSE and MoCA scores and changes in them. Their method consisted of sparse 
coding for feature selection and proximity-based Random Forests for regression. 

2.6.4.5 Impact of deep learning 

As can be seen from the examples in the chapters above, deep learning has been 
applied to AD in recent years. Contrary to the traditional machine learning methods, 
deep learning methods do not require a separate feature extraction step before the 
classification, instead they can process and classify raw images or signals directly. 
However, deep learning methods require plenty of training data. In AD, the deep 
learning methods have improved MRI as a single data modality (Weiner et al., 2017). 
The deep learning models based only on MRI have achieved accuracies between 
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92% and 97% in HC vs. AD classification and over 80% in MCI to AD conversion. 
Nevertheless, multimodal based deep learning approaches have shown the best per-
formance (Jo et al., 2019; Weiner et al., 2017). In addition, hybrid models, which use 
deep learning for feature extraction and traditional machine learning methods for 
classification, have provided promising results with limited data sets (Jo et al., 2019). 

2.6.5 Challenges and limitations 

This section describes challenges, limitations, and issues to consider in research on 
machine learning in AD. First, there are always missing values in healthcare data sets. 
Especially in longitudinal data, not all tests and measurements are available for all 
subjects at all time points. There are several ways to overcome the problem of miss-
ing values: restricting analyses to the cases or variables that have all data available 
(complete case analysis); using existing values in variables being studied, instead of 
deleting all cases with missing values in other variables (pairwise analysis); imputing 
missing values; and utilizing methods that tolerate missing data (Acock, 2005; Kang, 
2013). 

Second, definite diagnosis of AD is based on histopathological postmortem sam-
ples. Thus, the diagnoses available are not always correct, and they may change as 
the time goes by and the patient state develops. That is why long follow-up times are 
needed to obtain as reliable diagnoses as possible. In addition, the diagnostic guide-
lines have evolved and changed over the years, which may affect results if data sets 
from different time points are used in the development and evaluation of the meth-
ods. This also hampers interpretation and comparison of the results from the past 
and present. Furthermore, different centres and countries may have different prac-
tices for the diagnostic process, e.g., the diagnosis is done by one clinician or a group 
of professionals with different backgrounds. There is also variation between the cli-
nicians in interpretation of the patient data and confidence in giving the diagnosis, 
which may lead to differing diagnoses. Especially, there might be more variation in 
the diagnosis of not so clear cases.  

Third, most of the machine learning studies in AD utilized cross-validation in 
performance evaluation, and a few studies used independent data sets for final eval-
uation. In addition, the ADNI data set was the most used data set. This limits gen-
eralizability of the developed models and increases the risk of overfitting if the mod-
els are complex, many parameters are tuned, and features selected. This also has the 
risk that the research community is overtraining their models on this one specific 
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dataset and for which only the ‘best suited’ results are published (Gencoglu et al., 
2019). 

Fourth, many machine learning methods, especially deep learning methods, are 
black boxes, meaning that they do not reveal why a certain result was given or which 
variables were the most influential ones. In addition, mathematics behind the model 
may be difficult to understand for people without knowledge on machine learning. 
This is problematic in the healthcare domain where interpretability, understandabil-
ity, and transparency of the methods is important. This requirement has led to de-
velopment of interpretable machine learning methods. The DSI method and the re-
lated DSF visualization are examples of such interpretable methods, and they are 
described in detail in Chapters 4.2.1 and 4.2.2. Qiu et al. (Qiu et al., 2020) presented 
another interpretable approach using fully convolutional network to create disease 
probability maps from brain MRI scans. The probability maps visualized AD risk in 
different brain regions and were used as inputs for multilayer perceptron for final 
classification of HC and AD cases. Das et al. (Das et al., 2019) proposed a sparse 
high-order interaction model with rejection option (SHIMR). This approach creates 
a set of simple and interpretable if-then rules. These rules are then visualized high-
lighting the variables forming each rule and the importance (weight) of each rule in 
forming an overall score. In addition, pointers show subject’s variable values and 
overall score on the scale. The rejection option of the SHIMR model declines to give 
decisions when the diagnosis is not confident enough, i.e., the result is close to the 
decision boundary. The SHIMR model was tested with plasma proteomics and CSF 
biomarkers to differentiate HC from AD cases. 
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3 AIMS OF THE STUDY  

The objective of this thesis was to develop and validate data-driven methods for 
predicting and monitoring progression of Alzheimer’s disease at the different phases 
of the disease spectrum, starting from normal cognition and ending to death, using 
data from neuropsychological and cognitive tests, MRI, CSF, comorbidities, and 
APOE. Specific aims of the thesis were: 

O1. to develop a model for predicting who of the individuals with subjective cognitive 
decline are at risk for mild cognitive impairment or dementia (Study I) 
 

O2. to develop methods for monitoring progression of disease over time in a mild cogni-
tive impairment cohort in which some progressed to dementia due to Alzheimer’s 
disease and others did not (Study II) 
 

O3. to predict atrophy of hippocampus in a population consisting of subjects with normal 
cognition, mild cognitive impairment, and dementia due to Alzheimer’s disease (Study 
III) 
 

O4. to identify which of disease-related determinants are associated with mortality in pa-
tients with dementia due to Alzheimer’s disease (Study IV) 

 
Figure 4 illustrates how the objectives link to the disease spectrum and relate to each 
other.  

 

Figure 4. Summary of the objectives 



52 

4 MATERIALS AND METHODS 

This chapter describes the materials and methods used in the four original publica-
tions. First, the study populations and available variables are presented. Then, mod-
elling and performance evaluation methods are described. 

4.1 Study populations and variables 

Table 2 summarizes the characteristics of the study populations in Studies I-IV. It 
also shows the data modalities used in the analyses. The populations and used vari-
ables are described in more detail in the following sections. 

Table 2. Summary of the study populations 
  Study I Study II Study III Study IV 
Name ADC DCN BAR ADNI 1 ADNI 1 AIBL ADC 
Location Nether-

lands 
Germany Spain USA 

Canada 
USA 

Canada 
Australia Netherlands 

Subjects 354 269 51 273 530 176 616 
Diagnosis 
at the baseline 

SCD SCD SCD MCI HC 
MCI 
AD 

HC 
MCI 
AD 

AD 

Demographics x x x x x x x 
Cognitive and neuro-
psychological tests  

x x x x x 
 

x 

CSF 
       

   Aβ x x x x x 
 

x 
   Total tau x x x x x 

 
x 

   P-tau x x x 
 

x 
 

x 
MRI 

       

   Automatic 
   features 

x x x x x x 
 

   Visual rating 
      

x 
APOE x x x x x 

 
x 

Comorbidities 
      

x 



52 

4 MATERIALS AND METHODS 

This chapter describes the materials and methods used in the four original publica-
tions. First, the study populations and available variables are presented. Then, mod-
elling and performance evaluation methods are described. 

4.1 Study populations and variables 

Table 2 summarizes the characteristics of the study populations in Studies I-IV. It 
also shows the data modalities used in the analyses. The populations and used vari-
ables are described in more detail in the following sections. 

Table 2. Summary of the study populations 
  Study I Study II Study III Study IV 
Name ADC DCN BAR ADNI 1 ADNI 1 AIBL ADC 
Location Nether-

lands 
Germany Spain USA 

Canada 
USA 

Canada 
Australia Netherlands 

Subjects 354 269 51 273 530 176 616 
Diagnosis 
at the baseline 

SCD SCD SCD MCI HC 
MCI 
AD 

HC 
MCI 
AD 

AD 

Demographics x x x x x x x 
Cognitive and neuro-
psychological tests  

x x x x x 
 

x 

CSF 
       

   Aβ x x x x x 
 

x 
   Total tau x x x x x 

 
x 

   P-tau x x x 
 

x 
 

x 
MRI 

       

   Automatic 
   features 

x x x x x x 
 

   Visual rating 
      

x 
APOE x x x x x 

 
x 

Comorbidities 
      

x 

53 

4.1.1 Prediction of progression of SCD (Study I) 

Study I was based on three memory clinic cohorts: Amsterdam Dementia Cohort 
(ADC) collected in VU Medical Center in Amsterdam (van der Flier et al., 2014), 
German Dementia Competence Network (DCN) collected in nine memory clinics 
in Germany (Kornhuber et al., 2009; Wolfsgruber et al., 2017) and a cohort collected 
in Barcelona (BAR) (Valech et al., 2015). From the three cohorts, Study I included 
in total 674 subjects with SCD, having neuropsychology at baseline available and a 
minimum follow-up of one year. The subjects were divided into two groups: stable 
SCD (SSCD), whose diagnosis stayed as SCD during the follow-up, and progressive 
SCD (PSCD), who progressed to MCI or dementia during the follow-up. In total, 
22% of the population had progressive SCD. Table 3 presents characteristics of the 
population.  

Table 3. Characteristics of the population in Study I 
  ADC DCN BAR 
  SSCD PSCD SSCD PSCD SSCD PSCD 
Subjects, n (%) 291 (82) 63 (18) 186 (69) 83 (31) 46 (90) 5 (10) 
Female, n (%) 138 (47) 26 (41) 71 (38) 34 (41) 34 (74) 4 (80) 
Age, years 61.2 ± 9.6 69.0 ± 7.1 64.5 ± 7.8 68.0 ± 8.4 64.9 ± 6.4 70.2 ± 8.3 
Education, years 13.3 ± 4.3 14.0 ± 4.4 12.5 ± 2.8 13.3 ± 3.3 10.8 ± 4.2 11.6 ± 4.3 
Follow-up, years 3.4 ± 2.2 3.8 ± 3.2 2.3 ± 0.9 1.6 ± 0.7 3.7 ± 1.8 2.8 ± 1.8 
MMSE at baseline 28.4 ± 1.7 28.0 ± 1.5 28.2 ± 1.6 27.6 ± 1.8 28.3 ± 1.5 26.8 ± 1.9 
MCI/AD dementia/other 
dementia, n 

  42/15/6   53/21/9   2/2/1 

Values are expressed as mean ± standard deviation unless otherwise stated.  
 
The data used in Study I included neuropsychology, CSF, APOE, and MRI. Neu-

ropsychological functioning was evaluated using standardized tests overlapping be-
tween the three centres: MMSE, Trail Making Test A (TMT-A) and Test B (TMT-
B), and Category Fluency (animals). Episodic memory was examined with different 
tests in the different centres, thus, the tests resembling each other the most were 
selected: RAVLT in ADC, Consortium to Establish a Registry for Alzheimer’s Dis-
ease (CERAD) in DCN, and Free and Cued Selective Reminding Test (FCSRT) in 
BAR. CSF included Aβ, total tau, and p-tau. APOE status was recorded as ε4 carrier 
or non-carrier. Four features were automatically extracted from MRI scans using an 
image quantification tool: hippocampal volume, computed medial temporal lobe at-
rophy score (cMTA), computed global cortical atrophy score (cGCA), and region of 
interest (ROI) based grading. cMTA and cGCA are automatically computed versions 
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of medial temporal lobe and global cortical atrophy which are commonly rated vis-
ually by radiologists. ROI-based grading measures similarity of a ROI in an image 
from a subject being studied to corresponding ROIs in images in a reference data-
base. In this case, the ROI was centred on the hippocampus. 

4.1.2 Monitoring progression of MCI (Study II) 

Data utilized in Study II were obtained from the publicly available ADNI 1 study 
(see details in Section 2.6.2). Study II included 289 subjects with MCI having at least 
24 months of follow-up data available. The subjects were classified into two groups: 
a stable MCI (SMCI), whose diagnosis stayed as MCI during the follow-up, and a 
progressive MCI (PMCI), whose diagnosis changed from MCI to AD during the 
follow-up. Table 4 presents characteristics of the two subject groups. 

Table 4. Characteristics of the population in Study II 
  SMCI PMCI 
Subjects, n (%) 149 (51.6) 140 (48.4) 
Gender, n (%) 

  

   Male 51 (34.2) 55 (39.3) 
   Female 98 (65.8) 85 (60.7) 
Age, years 75.1 ± 7.4 75.4 ± 6.7 
Education, years 15.9 ± 3.0 15.6 ± 3.0 

Values are expressed as mean ± standard deviation unless otherwise stated.  
 

The data utilized in Study II comprised neuropsychology, CSF, APOE, and MRI. 
Neuropsychology included MMSE, ADAS-cog, clock draw and copy, Logical 
Memory I and II, RAVLT, Digit Span Forward and Backword, Category Fluency, 
TMT-A, TMT-B, Digit Symbol Substitution Test, Boston Naming Test, and Amer-
ican National Adult Reading Test. CSF consisted of Aβ and total tau, and APOE 
was recorded as a type of alleles (ε2, ε3, or ε4). MRI included 14 features measuring 
volumes of different brain regions. The features were provided to the ADNI site by 
Anders Dale Lab (University of California). A detailed list of the MRI features can 
be found in Supplementary Material of Publication II. 
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4.1.3 Prediction of hippocampal atrophy (Study III) 

Data for Study III were obtained from the ADNI 1 and AIBL databases. ADNI 1 
was already described in Section 2.6.2, thus, only AIBL is shortly described here. 
AIBL aimed at discovering biomarkers, cognitive characteristics, and health and life-
style factors affecting development of symptomatic AD (Ellis et al., 2009; Fowler et 
al., 2021). It started in 2006 and recruited 1 112 subjects (HC, MCI, dementia due to 
AD) of at least 60 years (Ellis et al., 2009; Fowler et al., 2021). The subjects have 
been followed for 126 months at 18 months intervals (Fowler et al., 2021). The study 
is conducted in Perth in Western Australia and Melbourne in Victoria (Ellis et al., 
2009; Fowler et al., 2021). The data from the AIBL participants having ADNI-com-
pliant PET and MRI, are available through the ADNI website. This population con-
sists of about 25% of the full AIBL cohort.    

Study III consisted of ADNI 1 and AIBL subjects having both baseline and fol-
low-up MRI available (24-month MRI in ADNI 1, 18-month MRI in AIBL). Four 
sets of analyses were conducted for development and validation of the models. Anal-
ysis 1 included the full set of variables described later in this chapter. As only a subset 
of subjects had CSF biomarkers available, the population in Analysis 1 was restricted 
to those having the CSF biomarkers. Analysis 2-4 included only MRI features. In 
Analysis 2, the models were trained using all subjects with both baseline and follow-
up MRI, but for the comparison purposes, the results were only shown for the same 
subjects as in Analysis 1. Analysis 3 included all subjects with baseline and follow-up 
MRI. In Analysis 4, the models were trained using ADNI 1 and tested using AIBL. 
All data modalities were not available in AIBL, thus the models including the full set 
of variables could not be evaluated on the independent test data. Table 5 presents 
characteristics of the populations in these different analyses.  
  



56 

Table 5. Characteristics of the population in Study III 
  ADNI 1   AIBL 
  Analysis 1 & 2 Analysis 3 Analysis 4 
Subjects, n 281 530 176 
Age, years 75.1 ± 6.7 75.4 ± 6.5 71.9 ± 7.2 
Gender, n (%)       
   Male 167 (59.4) 309 (58.3) 88 (50.0) 
   Female 114 (40.6) 221 (41.7) 88 (50.0) 
MMSE at baseline 26.8 ± 2.6 27.0 ± 2.6 27.8 ± 2.9 
Diagnosis, n (%)       
   HC 75 (26.7) 151 (28.5) 119 (67.6) 
   SMCI 61 (21.7) 118 (22.3) 12 (6.8) 
   PMCI 64 (22.8) 118 (22.3) 6 (3.4) 
   AD 63 (22.4) 109 (20.6) 21 (11.9) 
   Unknown 18 (6.4) 34 (6.4) 18 (10.2) 

Values are expressed as mean ± standard deviation unless otherwise stated.  
 

Study III included similar data to Study II: neuropsychology, CSF, APOE, and 
MRI. Neuropsychology comprised MMSE, ADAS-cog, Clinical Dementia Rating 
(CDR), clock draw and copy, RAVLT, Digit Span Forward and Backward, Category 
Fluency, TMT-A, TMT-B, Digit Symbol Substitution Test, Boston Naming Test, 
and American National Adult Reading Test. CSF consisted of Aβ, total tau, and p-
tau, and APOE was recorded as a type of alleles (ε2, ε3, or ε4). Volumes of different 
brain regions were extracted from the MRI using volumetric segmentation (Lötjönen 
et al., 2010), tensor-based morphometry (TBM) (Koikkalainen et al., 2011), and 
voxel-based morphometry (VBM) (Ashburner & Friston, 2000). Rate of hippocam-
pal atrophy was computed using a method called extended boundary shift integral 
(Lötjönen et al., 2014). ADNI 1 had follow-up MRI available at months 12 and 24 
and AIBL at month 18. Atrophy rate in AIBL was multiplied by the factor of 2/3 to 
make it consistent with the annual atrophy rate at month 24 in ADNI 1. All MRI 
features are listed in Supplementary Material of Publication III. 

4.1.4 Factors associated with mortality in AD (Study IV) 

As Study I, Study IV also utilized the ADC (van der Flier et al., 2014), from which 
616 subjects with dementia due to AD were selected for the analyses. Inclusion cri-
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teria were as follows: a baseline visit between years 2000 and 2014, neuropsycholog-
ical test battery available at the baseline, MMSE score ≥16, and a minimum follow-
up of 2 years. Information on deaths were obtained from the Dutch Municipal Reg-
ister. Table 6 presents characteristics of the selected subjects.  

Table 6. Characteristics of the population in Study IV 
  Alive Died 
Subjects, n (%) 403 (65) 213 (35) 
Female, n (%) 218 (54) 91 (43) 
Age, years 66 ± 7 69 ± 9 
Education, years 11 ± 3 11 ± 3 
MMSE at baseline 22 ± 3 22 ± 3 
Follow-up, years 5.3 ± 1.8 4.3 ± 2.1 

Values are expressed as mean ± standard deviation unless otherwise stated.  
 

Study IV contained variables describing demographics, medical history, neuro-
psychology, CSF, and MRI. Demographics included gender, age, years of education, 
years of complaints, APOE ε4 status (carrier, non-carrier), and activities of daily liv-
ing. Medical history was recorded and defined using number of medications, smok-
ing status, and presence (yes/no) of hypertension, hypercholesterolemia, diabetes 
mellitus, and cardiovascular disease. Neuropsychology was assessed utilizing MMSE, 
Digit Span Forward and Backward, Visual Association Test (VAT), RAVLT, TMT-
A, TMT-B, and Category Fluency (animals). CSF consisted of Aβ, total tau, and p-
tau. MRI scans were visually rated by trained assessors and afterwards evaluated in a 
consensus meeting with an experienced neuroradiologist. Visual ratings included me-
dial temporal lobe atrophy (MTA, range 0-4), global cortical atrophy (GCA, range 0-
3), parietal atrophy (PA, range 0-3, average over the left and right), white matter 
hyperintensities (WMH, range 0-4), presence of lacunes, presence of infarcts, and 
number of microbleeds (categorized to 0, 1-2, ≥3). 

4.2 Modelling methods 

4.2.1 Disease State Index 

Study I and Study II utilized the DSI method for predicting and monitoring disease 
progression. DSI is a supervised machine learning method, combining information 
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in several features to quantify the state of a disease in a patient. A DSI value for a 
subject is computed by comparing the subject’s measurement values to data meas-
ured from known healthy (control) and diseased cases. DSI provides as an output a 
numeric value between [0, 1], higher values indicating greater similarity of the subject 
to the diseased cases on the basis of the measured data. Thus, higher values denote 
more advanced disease state.  

The DSI computations are based on the differences in the probability density 
functions (PDFs) of measurement values between the healthy and diseased popula-
tions (e.g., healthy and AD). Two distinct values are defined using the PDFs: fitness 
and relevance. The fitness value is in the range [0, 1] and it evaluates similarity of the 
subject’s measurement value to these two groups. It is defined as a likelihood of the 
measured value belonging to the diseased group: 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥) = 𝐹𝐹𝐹𝐹(𝑥𝑥)
𝐹𝐹𝐹𝐹(𝑥𝑥) + 𝐹𝐹𝑇𝑇(𝑥𝑥) , (1) 

where FN(x) is the false negative error rate and FP(x) the false positive error rate in 
the training data when using subject’s measurement value x as a classification thresh-
old.  

Some features are better in the discrimination of the two groups than other fea-
tures. In the DSI, this is taken into account with the relevance value. The relevance 
measures the feature’s ability to separate the two groups from each other. Like the 
fitness values, the relevance values are also in the range [0, 1], with increasing values 
indicating a better discrimination ability. The relevance is zero if the PDFs overlap 
entirely (poor discrimination) and one if there is no overlap (perfect discrimination). 
The relevance is computed as 

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 1. (2) 

A composite DSI value, combining several features, is computed as a weighted 
average where the fitness values are weighted according to their relevance: 

 
𝐷𝐷𝐷𝐷𝐷𝐷 =

∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ×  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  . 

(3) 

These computations (fitness, relevance, averaging) can be performed several times 
recursively to obtain a hierarchy of the DSI values to describe how different features 
contribute to the overall result. This hierarchy can be visualised with DSF, which is 
described in the next section. More details on the DSI computations can be found 
in a publication by Mattila and co-workers (Mattila et al., 2011).  

Study I utilized the DSI method for predicting which of the subjects with SCD 
progressed to MCI or dementia. The subjects who did not progress were regarded 
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as a control population and the subjects who progressed were regarded as a diseased 
population in the DSI computations.  

In Study II, the DSI values were calculated at different time points for the popu-
lation consisting of subjects with SMCI or PMCI. As the patients entered the study 
at the different phases of the disease, the time stamps of their visits were first syn-
chronized. For the PMCI cases, the moment of receiving the AD diagnosis was set 
as a time point zero (Z). Whereas for the SMCI cases, the last available time point 
until month 36 was set as the Z. The preceding time points were labelled as Z-6, Z-
12, etc. Longitudinal behaviour of the DSI values was studied by performing linear 
least mean square (LMS) regression of the DSI values over the synchronized time 
points for each subject separately. Trend parameters of the regression (slope, inter-
cept) were compared between the SMCI and PMCI groups to study whether the DSI 
values reflected the progression of the disease over time. 

4.2.2 Disease State Fingerprint 

DSF provides a visual representation of patient data and the hierarchy of the DSI 
values, summarizing how different features contribute to the total DSI value. An 
example DSF is shown in Figure 5. DSF is composed of a tree structure with nodes 
in different sizes and colours. The size of the node is determined by the relevance 
value: the bigger the node, the more important the feature. Sibling nodes of the tree 
are sorted in decreasing order by their relevance values. The colour of the node re-
flects the DSI value: shades of red refer to higher DSI values (similarity to diseased 
cases) and shades of blue refer to lower DSI values (similarity to control cases). Leaf 
nodes show the individual features. Numbers in the parentheses show the DSI value. 
Grouping of the features into different categories (e.g., neuropsychological or MRI) 
is defined by the user. In Study I, the DSF methodology was utilized for visualizing 
data from a single time point (baseline). In Study II, the DSF was extended for vis-
ualizing data from multiple time points to allow follow-up of the disease progression.  
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Figure 5. An example of a Disease State Fingerprint visualization. 

4.2.3 Naïve Bayes 

Study I compared performance of the DSI method to the Naïve Bayes (NB) classifier 
in prediction of progression of SCD to MCI or dementia. The NB classifier is a 
traditional classifier, which is based on Bayes’ rule defined as 

 𝑠𝑠(𝜔𝜔𝑘𝑘|𝑥𝑥) = 𝑠𝑠(𝑥𝑥|𝜔𝜔𝑘𝑘)𝑇𝑇(𝜔𝜔𝑘𝑘)
𝑠𝑠(𝑥𝑥) , (4) 

where ωk is the kth class and x is the feature vector describing the object to be clas-
sified (Duda et al., 2001; Tohka & van Gils, 2021; Webb & Copsey, 2011). The poste-
rior probability p(ωk|x) is the probability of the class ωk to be the correct class for the 
object given the feature vector x describing the object. The class conditional PDF 
p(x|ωk) defines the PDF of the feature vector x given the class ωk. The prior probability 
P(ωk) of the class ωk is percentage of the of all objects belonging to the class ωk. The 
function p(x) is defined as 



60 

 

Figure 5. An example of a Disease State Fingerprint visualization. 

4.2.3 Naïve Bayes 

Study I compared performance of the DSI method to the Naïve Bayes (NB) classifier 
in prediction of progression of SCD to MCI or dementia. The NB classifier is a 
traditional classifier, which is based on Bayes’ rule defined as 

 𝑠𝑠(𝜔𝜔𝑘𝑘|𝑥𝑥) = 𝑠𝑠(𝑥𝑥|𝜔𝜔𝑘𝑘)𝑇𝑇(𝜔𝜔𝑘𝑘)
𝑠𝑠(𝑥𝑥) , (4) 

where ωk is the kth class and x is the feature vector describing the object to be clas-
sified (Duda et al., 2001; Tohka & van Gils, 2021; Webb & Copsey, 2011). The poste-
rior probability p(ωk|x) is the probability of the class ωk to be the correct class for the 
object given the feature vector x describing the object. The class conditional PDF 
p(x|ωk) defines the PDF of the feature vector x given the class ωk. The prior probability 
P(ωk) of the class ωk is percentage of the of all objects belonging to the class ωk. The 
function p(x) is defined as 

61 

 
𝑠𝑠(𝑥𝑥) = ∑ 𝑠𝑠(𝑥𝑥|𝜔𝜔𝑘𝑘)𝑇𝑇(𝜔𝜔𝑘𝑘)

𝐶𝐶

𝑗𝑗=1
. 

(5) 

The function p(x) is same for all classes and can be seen as a scaling factor which 
guarantees that the posterior probabilities sum to one. As the Bayes classifier selects 
the class that has the greatest posterior probability, p(x) can be dropped from Eq. 4. 
Thus, the Bayes classifier is defined by the class conditional PDFs p(x|ωk) and prior 
probabilities P(ωk). The class conditional PDFs can be estimated using parametric 
methods, which assume PDFs to have a certain parametric form (e.g., Gaussian dis-
tribution), or non-parametric methods, which do not make any assumptions about 
the form of the PDFs (e.g., Parzen window). The NB classifier is based on a naïve 
assumption that features are statistically independent given the class to which the 
feature vector belongs. In Study I, the class conditional PDFs of continuous varia-
bles were estimated with Gaussian distribution:  

 
𝐹𝐹(𝑥𝑥;  µ, 𝜎𝜎2) = 1

√2𝜋𝜋𝜎𝜎2
exp (−

(𝑥𝑥 −  µ)2

2𝜎𝜎2 ), 
(6) 

where x is a value of the feature, µ is mean of the feature and σ2 is variance of the 
feature (Webb & Copsey, 2011). When applying Bayes’ rule to categorical data, the 
PDFs are replaced by probabilities. In Study I, the class conditional probabilities of 
categorical variables were estimated using additive smoothing:  
 

 𝑇𝑇(𝑥𝑥 = 𝐿𝐿|𝜔𝜔𝑘𝑘) = 1 + 𝑓𝑓𝐿𝐿𝐿𝐿
𝑓𝑓𝑙𝑙 + 𝑓𝑓𝑘𝑘

, (7) 

where L is a category of the feature, nLk is the number of occurrences of category L 
in class ωk, nl is the total number of categories, nk is the total number cases in class 
ωk (Manning et al., 2008; MathWorks, 2021). Additive smoothing solves the zero 
frequency problem which arises when a certain category is present in the test data 
but not in the training data (Manning et al., 2008). Finally, the NB classifier chooses 
the class that maximises the product of the prior probability and class conditional 
probability densities (or probabilities) of the individual features:  

 
𝑠̂𝑠 = max 

𝑘𝑘=1,…,𝐶𝐶
𝑇𝑇(𝜔𝜔𝑘𝑘) ∏ 𝑠𝑠(𝑥𝑥𝑚𝑚|𝜔𝜔𝑘𝑘)

𝐷𝐷

𝑚𝑚=1
, 

(8) 

where D is the total number of features. For continuous features, p(xm|ωk) is the 
class conditional Gaussian PDF. For categorical features, p(xm|ωk) is the class con-
ditional probability. 
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4.2.4 Random Forests 

Study I also compared performance of the DSI method to Random Forests (RF) 
classifier. The RF classifier is an ensemble classifier which trains several decision 
trees and the final classification is based on majority voting of the trees. Each indi-
vidual tree is grown by 1) drawing a bootstrap sample of size n by sampling with 
replacement from the training data of size n; 2) selecting m features at random from 
the bootstrap sample (m<<number of input features); 3) picking the best split on 
the m features for splitting the node of the tree; 4) splitting the node into two daugh-
ter nodes on the basis of the best split; 5) growing the tree to the largest extent 
possible without any pruning (Breiman, 2001; Hastie et al., 2009). The RF classifiers 
do not require performance evaluation with a separate test set or cross-validation as 
the bootstrap method utilises about two-thirds of the cases for growing of the tree 
and excludes the remaining one-third, called the out-of-bag sample, which is used 
for calculation of the error estimate (Breiman, 2001; Hastie et al., 2009). 

4.2.5 Regularized regression 

Study III predicted change in hippocampal volume during 24 months using baseline 
data. Regression was chosen as a modelling method because hippocampal volume is 
a continuous variable. When the number of features is large, the normal LMS regres-
sion is not practical because it includes all features into the model. Instead, regular-
ized regression was chosen since it includes penalty term, constraining the size of the 
estimated coefficients. Thus, regularized regression sets some of the coefficients to 
zero, which leads in practice to features selection. Study III utilized regularized re-
gression with the elastic net regularization defined as 

 
min
𝛽𝛽0,𝛽𝛽

( 1
2𝐹𝐹 ∑(𝑠𝑠𝑖𝑖 − 𝛽𝛽0 − 𝑥𝑥𝑖𝑖

𝑇𝑇𝛽𝛽)2 + 𝜆𝜆𝑇𝑇𝛼𝛼(
𝑁𝑁

𝑖𝑖=1
𝛽𝛽)), 

(9) 

where  
 

𝑇𝑇𝛼𝛼(𝛽𝛽) =  (1 − 𝛼𝛼)
2 ‖𝛽𝛽‖2

2 + 𝛼𝛼‖𝛽𝛽‖1 = ∑ (1 − 𝛼𝛼)
2 𝛽𝛽𝑗𝑗

2
𝐷𝐷

𝑗𝑗=1
+ 𝛼𝛼|𝛽𝛽𝑗𝑗|, 

(10) 

where β0 is intercept, β is a vector of regression coefficients, N is number of subjects, 
yi is the response (observed outcome) of the subject i, xi is the vector including pre-
dictor data for the subject i, λ is a positive regularization parameter (higher λ, less 
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non-zero coefficients), α defines the weight of L1 and L2 norms, D is the number 
of predictors in the model (Friedman et al., 2010; Zou & Hastie, 2005). The param-
eter α can have values between zero and one. When α is close to zero, the model 
approaches the ridge regression, emphasizing the L2 norm. When α is one, the model 
represents the lasso regression, involving the L1 norm. For other values of α, the 
penalty term interpolates between the L1 and squared L2 norms of β. In Study III, 
α was set to 0.5 and 1.0. 

4.2.6 Least absolute deviation regression 

A drawback of the LMS regression is its sensitivity to outlying observations. A more 
robust method towards the outlying observations is the least absolute deviation 
(LAD) regression. Instead of minimizing the sum of squared residuals as in the LMS 
regression, the LAD regression minimizes the sum of absolute values of the residu-
als:  

 
min
𝛽𝛽0,𝛽𝛽

(∑|𝑠𝑠𝑖𝑖 − 𝛽𝛽0 − 𝑥𝑥𝑖𝑖
𝑇𝑇𝛽𝛽|

𝑁𝑁

𝑖𝑖=1
), 

(11) 

where β0 is intercept, β is a vector of regression coefficients, N is number of subjects, 
yi is the response (observed outcome) of the subject i, xi is a vector including predic-
tor data for the subject i (Dasgupta & Mishra, 2004; Dielman, 2005). In addition to 
the regularized LMS regression, Study III utilized the LAD regression. As LAD does 
not include regularization or feature selection, the regularized LMS regression was 
performed first and then features with non-zero coefficients were fed into the LAD 
regression.  

4.2.7 Cox proportional hazards model 

Study IV used Cox proportional hazards (CPH) model to evaluate associations be-
tween different predictors and mortality. As opposite to LMS regression, the CPH 
model takes both time to an event (e.g. death) and predictors into account. The CPH 
model is written as 

 
ℎ(𝑓𝑓) = ℎ0(𝑓𝑓) × exp (∑ 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖

𝐷𝐷

𝑖𝑖=1
) ,  

(12) 
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where t is time to an event, h(t) is the hazard function at time t, h0(t) is the baseline 
hazard, xi is a predictor i, bi is a coefficient of the predictor i, and D is the number 
of predictors (Bradburn et al., 2003). The hazard function measures probability of a 
subject to experience the event at time t. The baseline hazard is the value of the 
hazard when all predictor values are equal to zero. It is estimated non-parametrically, 
thus, survival times are not assumed to follow any particular statistical distribution. 
The terms exp(bi) are called hazard ratios (HR) and they measure the impact of the 
predictor. HR above one indicates positive association between the predictor and 
event: when the value of the predictor increases, the hazard of the event increases 
also. HR below one indicates negative association: when the value of the predictor 
increases, the hazard of the event decreases. HR of one indicates no association.  

In addition to investigating associations of individual predictors with mortality, 
Study IV also searched for an optimal combination of predictors. For this, a multi-
variable model was constructed using forward selection. The forward selection starts 
with an empty model and adds in predictors with the lowest p-value one by one until 
p<0.10. The predictors were added only if the overall model improved.  

4.3 Performance evaluation 

Table 7 summarizes all modelling and performance evaluation methods used in Stud-
ies I-IV. Study I focused on predicting who of the subjects with SCD will progress 
to MCI or dementia. The developed models were trained and internally evaluated 
using the ADC cohort and 10 iterations of stratified 3-fold CV. External evaluation 
was performed by training the models with the whole ADC cohort and testing them 
with the pooled DCN and BAR cohorts. To understand reasons for decreased per-
formance in the external validation, the evaluation was repeated by performing CV 
in the pooled DCN and BAR cohorts and using the ADC cohort as an independent 
test set. Study I compared performance of the DSI classifiers to the NB and RF 
classifiers. As classifiers like NB and RF may perform poorly on imbalanced class 
distributions, 1) the original data set was used as such, and 2) the number of pro-
gressors was increased to match the number of stable cases by duplicating randomly 
selected progressors and adding them to data set. Some of the patients in ADC were 
scanned with 1.0 T MRI devices and others with 1.5 T or 3.0 T devices. To reduce 
heterogeneity caused by the different field strengths, the MRI features of the patients 
scanned with the 1.0 T devices were excluded in the training phase. Testing was 
performed using MRI features from all field strengths and only >1.0 T.  
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Study II investigated longitudinal behaviour of the DSI values in subjects with 
stable or progressive MCI. The DSI values were calculated using stratified 10-fold 
CV. The training set contained data from the baseline for SMCI cases and data at 
the time of conversion for the PMCI cases. The test sets included data from all avail-
able visits of the remaining cases. This selection of the training data sets the dynamic 
range of the DSI method between the SMCI cases at the baseline and early AD. To 
have complete data sets at each visit, missing values were imputed with the patient’s 
previous available value. This may lead to conservative disease progression estimates 
for some patients. 

Study III comprised four sets of analyses described in Section 4.1.3. Prediction 
performance of the models in Analyses 1-3 was evaluated using the ADNI 1 cohort 
and the nested CV. In the nested CV, the outer CV was the 10-fold CV, stratified 
according to four diagnostic classes (HC, SMCI, PMCI, AD). The inner CV defined 
the optimal value for the regularization parameter λ in the stratified 5-fold CV. In 
Analysis 4, generalizability of the models was evaluated by training the models with 
the ADNI 1 data and testing them with the independent test data from the AIBL 
study. Performance was measured with RMSE and Spearman correlation coefficient. 
In addition, the continuous outcome was dichotomized to evaluate how well the 
models predict which of the subjects have fast or slow rate of hippocampal atrophy. 
The threshold for dichotomization was set to the middle point between the average 
atrophy rates for HC and AD. The number of cases in each diagnostic class was 
almost equal in ADNI 1, whereas AIBL included nearly six times more HCs than 
subjects with AD. The imbalance was taken into account by randomly selecting 20 
HCs with all subjects in other diagnostic classes and then calculating the perfor-
mance metrics. Number of 20 was chosen because it was close to the number of AD 
cases in AIBL. This process was iterated 20 times. Missing values in the predictor 
variables were imputed with the medians, which should only have a minor effect on 
the results because more than 99% of the variables had at most three missing values 
in the different analysis sets. 

Study IV utilized the CPH models to evaluate associations of baseline variables 
with mortality. The strength of the associations was measured with HRs and accom-
panying 95% confidence intervals (CI). Thus, Study IV did not include cross-valida-
tion or other performance evaluation methods. Missing values were imputed using 
multiple imputation, which estimated the missing values on the basis of other avail-
able baseline variables in 15 imputation cycles.  
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Table 7. Summary of the modelling and performance evaluation methods 
 

Study I Study II  Study III Study IV 
Model DSI/DSF 

RF 
NB 

Linear LMS regres-
sion of the DSI values 
over time 

Model 1: regularized 
LMS regression 
 
Model 2: feature se-
lection with regular-
ized LMS regression 
and modelling with 
LAD regression  

Cox proportional haz-
ards model 
 
Strengths of associa-
tions evaluated with 
HRs and 95% CI 

Validation 10 iterations of strati-
fied 3-fold CV in ADC 
 
Training with ADC 
and testing with the 
pooled DCN and BAR  
 
10 iterations of strati-
fied 3-fold CV in the 
pooled DCN and BAR 
 
Training with the 
pooled DCN and BAR 
and testing with ADC 

Stratified 10-fold CV Nested CV in ADNI 1: 
Outer CV: Stratified 
10-fold CV 
Inner CV: stratified 5-
fold CV for defining 
the parameter λ 
 
Training with ADNI 1 
and testing with AIBL 

NA 

Perfor-
mance 
metrics 

AUC 
BACC 
Sensitivity 
Specificity 
NPV 
PPV 

AUC 
Accuracy 
Sensitivity 
Specificity 

Continuous outcome: 
RMSE 
Spearman correlation 
coefficient 
 
Dichotomized out-
come:  
Accuracy 
Sensitivity 
Specificity 
NPV 
PPV 

NA 
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5 RESULTS 

5.1 Prediction of progression of SCD (Study I) 

Table 8 shows performance of the classifiers to predict conversion from SCD to 
MCI or dementia using CV in the ADC cohort. When using only one data modality, 
the CSF-based DSI classifier had the highest AUC and BACC, followed by de-
mographics- and MRI-based classifiers. When all data modalities were used together, 
the performance of the DSI classifier improved (AUC 0.81, BACC 74%). The results 
of the classifiers including MRI features were separately shown for all field strengths 
and field strengths of >1T. When using only MRI features, the >1T results had 
somewhat higher AUC and BACC and considerably higher specificity, whereas all 
field strengths had higher sensitivity. When all data modalities were used together, 
other features compensated the differences caused by the different field strengths. 
AUC and BACC between the different field strengths were now similar and speci-
ficity for all field strengths improved. Sensitivity for >1T improved also, but it was 
still somewhat lower than for all field strengths. All single- and multimodality DSI 
classifiers had high NPV (>88%) and low PPV (<38%). These analyses were re-
peated for predicting conversion to MCI or dementia due to AD (excluding other 
dementias, n=16) and results were comparable (results not shown here).  

Table 8 also presents performance of the DSI classifier for a subgroup of patients 
having extreme DSI values calculated using all features. The subgroup consisting of 
patients with DSI < 0.3 or DSI > 0.7 included almost half of the population. For 
this subgroup, all performance measures improved when compared to the whole 
population. NPV was especially high (97%), whereas PPV was only modest (51%).  

Finally, Table 8 shows performance of the NB and RF classifiers using all data 
modalities together and all field strengths. When the original data set was used as 
such, both NB and RF performed somewhat worse than DSI. When the number of 
progressors was increased by randomly duplicating progressive cases, NB provided 
comparable results to DSI and RF still performed somewhat worse. The differences 
between NPV and PPV provided by NB and RF were smaller than provided by DSI. 

Table 9 shows performance of the classifiers when evaluated using the independ-
ent test set consisting of the pooled DCN and BAR cohorts. The best performing 
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data modality was MRI (AUC 0.77, BACC 67%). Performance of CSF decreased, 
but only 40% of the test population had CSF available. This is considerably smaller 
proportion than in the ADC cohort, in which 64% of the population had CSF. Per-
formance obtained using all features decreased in the independent test set compared 
to the cross-validated results on the ADC cohort (AUC 0.72, BACC 65%, NPV 
84%). To understand reasons for the decrease, the performance evaluation process 
was repeated other way around, i.e., using the pooled data from DCN and BAR as 
the training set and the ADC data as the test set. The same decrease was seen in the 
cross-validated results on the pooled BAR and DCN cohorts using all features (AUC 
0.73, BACC 68%). When the ADC cohort was used as the independent test set, 
performance was as good as the cross-validated result on the ADC data (all features 
and all field strengths: AUC 0.79, BACC 73%; all features and MRI >1T: AUC 0.81, 
BACC 73%). Same decrease in the performance was also seen in the NB and RF 
classifiers. The lower performance may be attributable to the several differences be-
tween the cohorts: 1) CSF, which was the best performing data modality in the ADC 
cohort, was available only in the small proportion of subjects in DCN and BAR; 2) 
different criteria for MCI diagnosis (Petersen criteria in ADC and BAR, Jak-Bondi 
criteria in DCN); 3) differences in the baseline characteristics (patients in ADC were 
younger, patients in BAR were more often female and had less education); 4) differ-
ences in the follow-up durations and progression rates (longer follow-up time in 
ADC, more progression in the pooled DCN and BAR); 5) different memory tests 
were used in the cohorts; 6) APOE genotype was determined using different meth-
ods; 7) CSF samples from ADC and BAR were analysed in the same laboratory, 
whereas DCN used a different laboratory.  

Figure 6 presents examples of the DSF visualizations for three patients. Patient 
A has a total DSI value of 0.20 and almost all boxes in the DSF are blue, indicating 
that the patient is not likely to progress and can be reassured. This patient remained 
stable during a 3-year follow-up. Patient B has a total DSI of 0.83, mainly caused by 
the patient’s values on MRI and CSF (shown as red boxes in the DSF). This suggests 
that risk of progression is increased, and follow-up should be considered. This pa-
tient progressed to MCI after three years. Patient C has a total DSI of 0.47 and boxes 
in the DSF have different shades of red and blue. This indicates inconclusive results 
and reliable prognosis cannot be made. This patient remained stable during a 4-year 
follow-up.  
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to the cross-validated results on the ADC cohort (AUC 0.72, BACC 65%, NPV 
84%). To understand reasons for the decrease, the performance evaluation process 
was repeated other way around, i.e., using the pooled data from DCN and BAR as 
the training set and the ADC data as the test set. The same decrease was seen in the 
cross-validated results on the pooled BAR and DCN cohorts using all features (AUC 
0.73, BACC 68%). When the ADC cohort was used as the independent test set, 
performance was as good as the cross-validated result on the ADC data (all features 
and all field strengths: AUC 0.79, BACC 73%; all features and MRI >1T: AUC 0.81, 
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criteria in DCN); 3) differences in the baseline characteristics (patients in ADC were 
younger, patients in BAR were more often female and had less education); 4) differ-
ences in the follow-up durations and progression rates (longer follow-up time in 
ADC, more progression in the pooled DCN and BAR); 5) different memory tests 
were used in the cohorts; 6) APOE genotype was determined using different meth-
ods; 7) CSF samples from ADC and BAR were analysed in the same laboratory, 
whereas DCN used a different laboratory.  
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that the patient is not likely to progress and can be reassured. This patient remained 
stable during a 3-year follow-up. Patient B has a total DSI of 0.83, mainly caused by 
the patient’s values on MRI and CSF (shown as red boxes in the DSF). This suggests 
that risk of progression is increased, and follow-up should be considered. This pa-
tient progressed to MCI after three years. Patient C has a total DSI of 0.47 and boxes 
in the DSF have different shades of red and blue. This indicates inconclusive results 
and reliable prognosis cannot be made. This patient remained stable during a 4-year 
follow-up.  
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5.2 Monitoring progression of MCI (Study II) 

Table 10 shows that longitudinal behaviour of the DSI values differed between the 
SMCI and PMCI groups. The PMCI cases had five times higher slopes and almost 
three times higher intercepts than the SMCI cases. The slopes of the SMCI cases 
were studied in more detail, and it was found that the SMCI group consisted of two 
subgroups: one group having lower slopes and another group having higher slopes 
which overlap with the slopes of the PMCI group (Figure 7). Table 11 shows classi-
fication performance of the regression parameters to differentiate the SMCI and 
PMCI cases. The best AUCs and classification accuracies were achieved when all 
data modalities were included, however, the increases were not always statistically 
significant.  

The DSF visualization is an integral part of the DSI method. Figure 8 presents 
the DSF developed for longitudinal data. The data in the topmost panel is from a 
stable MCI patient. The DSI values and slope are low, indicating a stable disease 
status in this patient. The DSI values in the middle panel increase, indicating that the 
disease is progressing. MRI values of this patient show similarity to AD already from 
the beginning (boxes being red at all time points) and results from neuropsychology 
start pointing towards AD at the later phase (box colour changing from blue to red). 
This patient also remained stable during the 3-year follow-up. The data in the last 
panel is from a progressive MCI patient. The DSI values are high, and the slope is 
somewhat increasing, indicating that the markers of AD are present already at the 
beginning and the disease progresses over time. 

Table 10. Regression parameters of longitudinal DSI values calculated using all variables 
 SMCI PMCI 
Slope* 0.002 (0.000, 0.006) + 0.010 (0.005, 0.015) + 
Intercept* 0.295 (0.139, 0.621) + 0.754 (0.626, 0.860) + 
Number of points in regression 7 (7, 7) 5 (3, 5) 

Values are median (25th percentile, 75th percentile). * statistically significant difference between SMCI and PMCI 
(p<0.0005, Mann-Whitney U test); + statistically significant difference from zero (p<0.0005, one-sample Wilcoxon signed 
rank test). 
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Figure 7. Histograms of the slopes for the SMCI (blue) and PMCI (red) cases. There appears to be two 
distinct subgroups in the SMCI group. Solid lines show a mixture distribution of two normal 
curves fitted to the slopes of the SMCI cases. The areas of the histograms are scaled to one. 
(SD: standard deviation, Q1: 25th quartile, Q3: 75th quartile). 

Table 11. Classification performance of the regression parameters of the longitudinal DSI values 
obtained using different data modalities 

 AUC Accuracy (%) Sensitivity (%) Specificity (%) 
Slope     
  All features 0.823 76.9±8.8 82.2±13.7 73.0±15.0 
  MMSE 0.771 71.8±7.6 55.5±15.5 86.5±5.5 
  ADAS-cog 0.768 68.7±10.2* 51.1±19.2 83.6±10.2 
  NeuroBat 0.766 69.2±5.8 60.2±13.2 76.9±15.3 
  MRI 0.710 66.8±8.1* 49.5±14.4 80.6±14.7 
Intercept     
  All features 0.808 74.6±8.7 75.1±17.4 74.4±12.2 
  MMSE 0.790 72.0±5.0 84.2±11.6 61.5±11.6 
  ADAS-cog 0.803 74.9±8.8 74.4±15.6 75.7±10.5 
  NeuroBat 0.793 66.9±6.1 74.4±21.7 61.0±14.0 
  MRI 0.696 60.4±8.9* 55.6±16.2 63.9±16.2 

Values are mean ± standard deviation from the 10-fold CV, except for AUC. * statistically significant difference to the 
accuracy obtained using all features (Mann-Whitney U test or Student’s t-test with Bonferroni correction). 
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Figure 8. Visualizations for multimodal longitudinal data from three patients. Left panel: Longitudinal 
DSF showing on the rows the DSI values of individual tests at different time points. Right panel: 
The dashed line with white circles present regression line of the total DSI values over time for 
a patient, the black squares show the total DSI values of the patient, the horizontal line 
indicates a threshold were accuracy of 85% is achieved, and the vertical line shows the current 
age of the patient. 
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5.3 Prediction of hippocampal atrophy (Study III) 

The results in Figure 9 and Table 12 show that the models including data from dif-
ferent modalities, like neuropsychological tests, MRI, CSF, and APOE, performed 
better than the models including only the MRI features. The full models had smaller 
RMSEs and higher correlation coefficients than the MRI-only models. Both models 
underestimated the real change at higher atrophy rate levels, the MRI-only models 
showing a greater underestimation (Figure 9). 

Table 13 presents the performance of the models to predict dichotomized out-
come, i.e., which of the subjects will have a fast rate of hippocampal atrophy. The 
accuracy was reasonable in all analyses (79-87%). The models including only MRI 
features had lower sensitivities than specificities. This is an expected result because 
the MRI-only models underestimated the higher atrophy rate levels. 

In an attempt to improve the MRI-only models, the quadratic terms were added 
to the models. However, the changes in the performance were only minor and addi-
tion of the quadratic terms did not alleviate the problem of underestimation (results 
not shown here). 
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pocampal atrophy rates and underpredict the high hippocampal atrophy rates. There 
were only minor differences between the models including both L1 and L2 norms 
(α=0.5) and the models including only the L1 norm (α=1.0). Thus, the detailed re-
sults for the L1 norm are not shown here. 
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Table 12. Performance of the models to predict annual hippocampal atrophy rate (models with L1 and 
L2 norms in the regularization) 

Model #Features RMSE (%) Spearman rho 
Analysis 1: full model + cross-validation with ADNI 1 (N=281) 

LMS 27 ± 2 1.79 ± 0.30** 0.78 ± 0.06 

LAD 27 ± 2 1.76 ± 0.34* 0.76 ± 0.09 

Analysis 2: MRI-only model + cross-validation with ADNI 1 (N=281) 

LMS 18 ± 4 2.06 ± 0.35 0.72 ± 0.09 

LAD 18 ± 4 1.93 ± 0.44 0.72 ± 0.08 

Analysis 3: MRI-only model + cross-validation with ADNI 1 (N=530) 

LMS 18 ± 4 2.11 ± 0.33 0.68 ± 0.07 

LAD 18 ± 4 2.07 ± 0.38 0.68 ± 0.08 

Analysis 4: MRI-only model + validation with AIBL (N=176) 

LMS 22 1.71 ± 0.06 0.71 ± 0.04 

LAD 22 1.66 ± 0.07 0.71 ± 0.03 
Values are mean ± standard deviation from the 10-fold CV (Analysis 1-3) or mean ± standard deviation over the repeated 
random selection of 20 HCs with all subjects in other diagnostic classes (to account for the imbalanced class distribution 
in AIBL, Analysis 4). * and **: p-value <0.01 and <0.05, respectively, when compared to the corresponding model in 
Analysis 2 (Wilcoxon signed rank test). 

Table 13. Performance of the models to predict annual hippocampal atrophy rate, dichotomized to fast 
vs. slow (models with L1 and L2 norms in the regularization) 

Model Accuracy Sensitivity Specificity PPV NPV 

Analysis 1: full model + cross-validation with ADNI 1 (N=281) 

LMS 0.84 ± 0.08 0.85 ± 0.14 0.84 ± 0.07 0.77 ± 0.10 0.89 ± 0.11 

LAD 0.83 ± 0.08 0.84 ± 0.14 0.83 ± 0.07 0.75 ± 0.11 0.88 ± 0.11 

Analysis 2: MRI-only model + cross-validation with ADNI 1 (N=281) 

LMS 0.82 ± 0.10 0.77 ± 0.13 0.85 ± 0.09 0.78 ± 0.13 0.84 ± 0.12 

LAD 0.82 ± 0.08 0.78 ± 0.10 0.85 ± 0.10 0.79 ± 0.11 0.85 ± 0.08 

Analysis 3: MRI-only model + cross-validation with ADNI 1 (N=530) 

LMS 0.79 ± 0.06 0.73 ± 0.12 0.82 ± 0.06 0.71 ± 0.09 0.83 ± 0.09 

LAD 0.79 ± 0.04 0.73 ± 0.09 0.83 ± 0.08 0.72 ± 0.10 0.84 ± 0.06 

Analysis 4: MRI-only model + validation with AIBL (N=176) 

LMS 0.87 ± 0.01 0.72 ± 0.01 0.97 ± 0.01 0.94 ± 0.02 0.84 ± 0.01 

LAD 0.87 ± 0.01 0.72 ± 0.01 0.97 ± 0.01 0.93 ± 0.02 0.84 ± 0.02 
Values are mean ± standard deviation from the stratified 10-fold CV (Analysis 1-3) or mean ± standard deviation over the 
repeated random selection of 20 HCs with all subjects in other diagnostic classes (to account for imbalanced class distri-
bution in AIBL, Analysis 4). 
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The main difference between the L1 and the combination of L1 and L2 norms 
was that the use of L1 and L2 norms was less stringent regularization, thus, allowing 
more features to be included into the models. Features selected in all CV folds can 
be considered the most robust. In total, 19 features from all data modalities were 
selected in all folds when both L1 and L2 norms were used, whereas only 5 features 
were selected when the L1 norm was used. The L1 and L2 norms selected recalls of 
words (delayed recall (ball) from MMSE, word recall and delayed word recall from 
ADAS-cog, and trials 3 and 4 from RAVLT), orientation and modified total score 
from ADAS-cog; CSF Aβ and p-tau; presence of APOE ε4; and volumes of hippo-
campus, inferior lateral ventricles, and amygdala calculated with different methods. 
The L1 norm selected modified total score of ADAS-cog, presence of APOE ε4, 
volume of left hippocampus, volume of right inferior lateral ventricle, and volume 
of left hippocampus from TBM. Table 14 presents selected features when the MRI-
only models were trained with ADNI 1 and tested with AIBL. The combination of 
L1 and L2 norms and the L1 norm alone selected almost the same features. In total, 
12 features described volumes of hippocampus, inferior lateral ventricles, and amyg-
dala. 

Table 14. Selected MRI features when the models were trained with the ADNI 1 cohort and tested with 
the AIBL cohort (Analysis 4) 

Variable L1 + L2 (α = 0.5) L1 (α = 1.0) 
Volume of left hippocampus x x 
Volume of right hippocampus x x 
Volume of left amygdala x x 
Volume of right amygdala x 

 

Volume of left inferior lateral ventricle x x 
Volume of right inferior lateral ventricle x x 
Volume of left medial orbital gyrus x x 
TBM: right amygdala x x 
TBM: left amygdala x 

 

TBM: left cerebellum exterior x x 
TBM: left hippocampus x x 
TBM: right inferior lateral ventricle x x 
TBM: right entorhinal area x x 
TBM: left middle temporal gyrus x x 
TBM: right precuneus x x 
TBM: right parahippocampal gyrus x x 
VBM: global x x 
VBM: left hippocampus x x 
VBM: left inferior lateral ventricle x x 
VBM: cerebellar vermal lobules VI-VII x x 
VBM: left inferior temporal gyrus x x 
VBM: left lingual gyrus x 

 

VBM: right parahippocampal gyrus 
 

x 
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5.4 Factors associated with mortality in AD (Study IV) 

Table 15 presents associations of baseline variables with mortality, reported as HRs. 
All continuous variables were z-scored to allow comparison of results from different 
tests. Thus, the HRs should be interpreted in relation to standard deviations (i.e., the 
change in the risk of death if a value of a variable increases by one standard devia-
tion). As male sex and older age were associated with an increased risk of mortality, 
the CPH models were adjusted for them. After the adjustment, older age, male sex, 
worse performance on MMSE, digit span backward, VAT naming, TMT-A, TMT-
B, RAVLT immediate recall, and category fluency, as well as more severe MTA and 
GCA evaluated from MRI were associated with an increased risk of mortality. After 
additional adjustment for MMSE score and duration of complaints, associations re-
mained between mortality and MMSE, digit span forward, TMT-A, TMT-B, and 
GCA. No associations were found between mortality and years of education, activi-
ties of daily living, duration of complaints, comorbidities, number of medications, 
and smoking (results not shown here). The optimal combination of variables, de-
fined by forward selection, comprised age (HR 1.31, 95% CI 1.12-1.54, p=0.001), 
male sex (HR 1.67, 95% CI 1.26-2.21, p<0.001), digit span backward (HR 1.22, 95% 
CI 1.03-1.43, p=0.018), TMT-A (HR 1.22, 95% CI 1.06-1.41, p= 0.005), MTA (HR 
1.18, 95% CI 1.01-1.38, p=0.038), and CSF p-tau (HR 1.15, 95% CI 1.00-1.32, 
p=0.058). Results on data without imputation were comparable with these results. 
Kaplan-Meier survival curves for these variables are shown in Figure 10.  
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Table 15. Associations between baseline variables and mortality 
 

Model 1: adjusted for age and sex Model 2: adjusted for age, sex, 
MMSE, and duration of complaints 

 
HR (95% CI) p-value HR (95% CI) p-value 

Demographics 
    

  Age 1.29 (1.12-1.48) <0.001 1.33 (1.15-1.53) <0.001 
  Male sex 1.60 (1.22-2.11) 0.001 1.79 (1.35-2.37) <0.001 
Cognitive tests 

    

  MMSEa 1.23 (1.07-1.42) 0.005 1.25 (1.08-1.44) 0.003 
  Digit span forwarda 1.10 (0.95-1.26) 0.207 1.03 (0.89-1.20) 0.651 
  Digit span backwarda 1.31 (1.13-1.52) <0.001 1.24 (1.06-1.46) 0.009 
  VAT naminga 1.14 (1.01-1.30) 0.042 1.11 (0.97-1.27) 0.136 
  VAT memorya 1.07 (0.93-1.23) 0.360 1.02 (0.88-1.19) 0.790 
  TMT-A 1.29 (1.14-1.47) <0.001 1.23 (1.08-1.41) 0.003 
  TMT-B 1.28 (1.13-1.45) <0.001 1.21 (1.06-1.40) 0.005 
  RAVLT, immediate recalla 1.19 (1.02-1.38) 0.025 1.11 (0.95-1.30) 0.193 
  RAVLT, delayed recalla 0.96 (0.83-1.10) 0.507 0.90 (0.78-1.04) 0.154 
  Category fluencya 1.17 (1.01-1.36) 0.041 1.10 (0.94-1.29) 0.243 
MRI 

    

  MTA 1.18 (1.02-1.37) 0.030 1.15 (0.98-1.34) 0.081 
  PA 1.10 (0.95-1.28) 0.192 1.12 (0.96-1.29) 0.143 
  GCA 1.18 (1.01-1.37) 0.037 1.17 (1.00-1.36) 0.044 
  WMH 1.07 (0.92-1.25) 0.364 1.05 (0.90-1.22) 0.518 
  Lacunes present 1.10 (0.73-1.66) 0.634 1.17 (0.76-1.79) 0.485 
Microbleed categories 

    

  Microbleeds, 1-2 0.72 (0.43-1.19) 0.195 0.69 (0.42-1.16) 0.163 
  Microbleeds, ≥3 1.03 (0.76-1.40) 0.840 1.01 (0.74-1.37) 0.956 
  Infarcts present 1.15 (0.64-2.05) 0.641 1.11 (0.60-2.05) 0.727 
CSF 

    

  Aβ 1.02 (0.87-1.18) 0.850 0.99 (0.86-1.16) 0.943 
  total tau 1.09 (0.94-1.27) 0.275 1.07 (0.92-1.26) 0.369 
  p-tau 1.09 (0.94-1.26) 0.242 1.08 (0.93-1.26) 0.316 
APOE ε4 carrier 1.11 (0.95-1.29) 0.204 1.09 (0.94-1.26) 0.278 

All continuous variables were z-scored. a Scores were inverted (multiplied by -1) as originally lower scores indicated worse 
performance. 
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Figure 10. Kaplan-Meier curves for the optimal set of variables from forward selection. All except sex 
stratified in tertiles. The curves were plotted using raw data, without imputation. 
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6 DISCUSSION 

6.1 Accomplishment of the objectives 

The objective of this thesis was to develop and validate data-driven methods for 
predicting and monitoring progression of Alzheimer’s disease at the different phases 
of the disease spectrum, starting from normal cognition and ending to death, using 
data from neuropsychological and cognitive tests, MRI, CSF, comorbidities, and 
APOE. Accomplishment of the specific objectives are discussed below. 

The first objective was to develop a model for predicting who of the individuals with SCD are at 
risk for MCI or dementia. 

This objective was accomplished by utilizing the DSI classifier and the large cohort 
of 674 subjects from three memory clinics in Europe for development and evalua-
tion of the models. In the cohort, 22% of the SCD cases progressed to MCI or 
dementia during an average follow-up time of almost three years. The DSI classifier 
combining all available data modalities (demographics, APOE, neuropsychology, 
CSF, and MRI) obtained the best performance; the cross-validated BACC was 74%. 
All single- and multimodality classifiers had high NPV (>88%) and low PPV 
(<38%).  

Almost half of the patients had an extreme DSI value (DSI < 0.3 or DSI > 0.7). 
In this subgroup, all performance measures were better when compared to the whole 
population. NPV was especially high (97%), meaning that progression in the patients 
with DSI < 0.3 is not probable and they could be reassured with good confidence. 
Whereas PPV was only modest (51%), meaning that the progressors cannot be iden-
tified as accurately, but a risk for progression is increased in patients with DSI > 0.7 
and they might need more intensive follow-up. 

When the models were validated with the independent test set, their performance 
decreased considerably (e.g., AUC decreased 11%). Additional analyses suggested 
that the DSI method itself did not worsen the generalizability of the models, instead, 
several differences between the cohorts caused the lower performance. In addition 



82 

6 DISCUSSION 

6.1 Accomplishment of the objectives 

The objective of this thesis was to develop and validate data-driven methods for 
predicting and monitoring progression of Alzheimer’s disease at the different phases 
of the disease spectrum, starting from normal cognition and ending to death, using 
data from neuropsychological and cognitive tests, MRI, CSF, comorbidities, and 
APOE. Accomplishment of the specific objectives are discussed below. 

The first objective was to develop a model for predicting who of the individuals with SCD are at 
risk for MCI or dementia. 

This objective was accomplished by utilizing the DSI classifier and the large cohort 
of 674 subjects from three memory clinics in Europe for development and evalua-
tion of the models. In the cohort, 22% of the SCD cases progressed to MCI or 
dementia during an average follow-up time of almost three years. The DSI classifier 
combining all available data modalities (demographics, APOE, neuropsychology, 
CSF, and MRI) obtained the best performance; the cross-validated BACC was 74%. 
All single- and multimodality classifiers had high NPV (>88%) and low PPV 
(<38%).  

Almost half of the patients had an extreme DSI value (DSI < 0.3 or DSI > 0.7). 
In this subgroup, all performance measures were better when compared to the whole 
population. NPV was especially high (97%), meaning that progression in the patients 
with DSI < 0.3 is not probable and they could be reassured with good confidence. 
Whereas PPV was only modest (51%), meaning that the progressors cannot be iden-
tified as accurately, but a risk for progression is increased in patients with DSI > 0.7 
and they might need more intensive follow-up. 

When the models were validated with the independent test set, their performance 
decreased considerably (e.g., AUC decreased 11%). Additional analyses suggested 
that the DSI method itself did not worsen the generalizability of the models, instead, 
several differences between the cohorts caused the lower performance. In addition 

83 

to the DSI classifier, the NB and RF classifiers were used as reference methods and 
their performance was somewhat worse or corresponding. 
 
The second objective was to develop methods for monitoring progression of disease over time in an 
MCI cohort in which some progressed to dementia due to AD and others did not. 

This objective was accomplished by applying the DSI method to longitudinal data 
collected from an MCI cohort obtained from the ADNI 1 study. Longitudinal be-
haviour of the DSI values was assessed with linear regression of the DSI values over 
time. Longitudinal profiles of the DSI values differed between the SMCI and PMCI 
cases. The PMCI cases had five times higher slopes and almost three times higher 
intercepts than the SMCI cases, indicating that the PMCI cases had a more advanced 
disease state already at the beginning and a faster progression over time. In addition, 
two subgroups were found in the stable MCI group: one group with stable DSI val-
ues over time and another group with increasing DSI values. It was suggested that 
the group with lower slopes would have a truly stable disease status and the group 
with the higher slopes would progress to dementia if the follow-up time was longer. 
Other studies have also found that SMCI group is a heterogenous group with some 
subjects showing similarity to AD (Cui et al., 2011; Christos Davatzikos et al., 2011). 
This study also extended the DSF data visualization method for longitudinal data. 

 
The third objective was to predict atrophy of hippocampus in a population consisting of subjects with 
normal cognition, MCI, and dementia due to AD. 

This objective was accomplished by using the regularized linear regression and data 
from baseline to predict hippocampal atrophy over 24 months in subjects with nor-
mal cognition, MCI, or dementia due to AD. The multimodality models including 
neuropsychological and cognitive assessments, CSF, MRI features, and APOE per-
formed better than the single-modality MRI models. The LAD models performed 
better than the LMS models, which is expected because the LAD models are less 
sensitive to outliers. The MRI models performed well when evaluated with an inde-
pendent validation cohort. 

All models underestimated the real change at the higher atrophy rate levels, the 
MRI models showing a greater underestimation. Addition of quadratic terms to the 
models did not alleviate the underestimation. This suggests that there might be other 
underlying factors which could explain the higher atrophy rates and were not in-
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cluded in this study. E.g., cardiovascular disease, cardiac arrest, diabetes, hyperten-
sion, obstructive sleep apnoea, vitamin B12 deficiency, and head trauma have been 
associated with hippocampal atrophy (Fotuhi et al., 2012). 

The most selected features for predicting hippocampal atrophy included word 
recall tasks, orientation and modified total score from the ADAS-cog, Aβ, p-tau, 
presence of APOE ε4, and MRI features describing hippocampus, inferior lateral 
ventricles, and amygdala. Many of the selected MRI features describe brain regions 
that are part of the medial temporal lobe which is affected in AD (Fox & Schott, 
2004; Frisoni et al., 2010). 

 
The fourth objective was to identify which of disease-related determinants are associated with mor-
tality in patients with dementia due to AD. 

This objective was accomplished by using the CPH model and a memory clinic co-
hort consisting of subjects with mild to moderate dementia due to AD. In this rela-
tively young population (average age 67 years), 35% of the subjects died on average 
5 years after the diagnosis. After adjustment for age and sex, older age, male sex, and 
worse scores on cognitive functioning, as well as more severe MTA and GCA were 
associated with an increased risk of mortality. An optimal combination of variables 
comprised age, sex, performance on digit span backward test and Trail Making Test 
A, MTA, and CSF p-tau. 

6.2 Comparison to prior work 

By the time of the publication (2018), Study I was among the first studies applying 
machine learning for predicting progression from SCD to MCI or dementia. The 
DSI models obtained comparable or even better performance than other developed 
models (Gómez-Ramírez et al., 2020; Guan et al., 2021; Liu et al., 2022, 2020; Yue 
et al., 2021). The other models were based on quite complex algorithms which may 
be difficult to understand for the clinicians. Especially, models based on neural net-
works have limited interpretability, whereas the DSI model and accompanied DSF 
visualisation are transparent and understandable for people who are not familiar with 
data science or machine learning, such as many clinicians. In fact, a group of clini-
cians was involved in the design of the DSI and DSF methods and interpretability 
was one of the key requirements. This may increase acceptability by the clinicians 
and thus increase uptake of these kinds of models into clinical practice. The strength 
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be difficult to understand for the clinicians. Especially, models based on neural net-
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visualisation are transparent and understandable for people who are not familiar with 
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was one of the key requirements. This may increase acceptability by the clinicians 
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of Study I was the large sample size and validation of the models with the independ-
ent validation cohort. The proper validation highlighted the differences between the 
cohorts. Heterogeneity of the SCD cohorts is a known issue and the field is working 
towards harmonized research methods (Jessen et al., 2014; Molinuevo et al., 2017). 
Birkenbihl and colleagues (Birkenbihl et al., 2022) also observed clear differences in 
disease progression patterns between six well-known AD cohorts and found that 
data-driven models learn cohort-specific patterns, which limits generalizability of the 
models and underlines the need for validation with independent validation cohorts. 
Our cohorts were collected from the memory clinics where the data are incomplete 
and diverse, which is often the case in the real-life clinical practice. The developed 
models were able to provide reasonable predictions with these kinds of data. Valida-
tion with the independent cohorts and use of incomplete heterogenous data in-
creased credibility of the models. 

Study II investigated evolution of the DSI values over time. Other approaches 
for monitoring AD progression have also been proposed. Escudero and co-workers 
(Escudero et al., 2012) defined profiles of the disease and normality by applying k-
means clustering to variables from the hypothetical model of AD progression (Jack 
et al., 2010, 2013). A subject’s similarity to the profile of the disease was evaluated 
by calculating a so-called Bioindex, a continuous measure between [0, 1]. The Bioin-
dex is based on normalized distances between the subject’s data and the centroids of 
the profiles. To study progression of the Bioindices over time, Escudero and col-
leagues (Escudero et al., 2012) fitted a sigmoid function to each individuals’ Bioin-
dices. Similar to Study II, they also found that the PMCI cases had steeper progres-
sion towards AD than the SMCI cases. Other researchers have presented a different 
approach for modelling progression of AD. They fitted mathematical models with 
covariates to longitudinal ADAS-cog scores (Ito et al., 2011; Raket, 2020; Samtani et 
al., 2012). Samtani and colleagues (Samtani et al., 2012) restricted the analysis on 
patients with dementia due to AD and found that baseline disease status was affected 
by years since the onset of AD and baseline hippocampal and ventricular volumes. 
Progression rate was affected by baseline measures of age, total cholesterol, TMT-B 
score, current ADAS-cog score as well as APOE ε4 genotype. Ito and co-workers 
(Ito et al., 2011) utilized a wider population including HCs and patients with MCI or 
dementia due to AD. They found that rate of progression was influenced by the 
baseline disease severity, age, gender, and APOE ε4 genotype. Raket (Raket, 2020) 
utilized non-linear mixed effects models to model disease stage, baseline cognition, 
and the patients’ individual changes in cognitive ability. Since the subjects entered 
the study at the different phases of the disease, the model was used to estimate a 
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common disease timeline, i.e., predicted disease time, which was used for aligning 
patient measurements. The predicted disease time was shown to better capture pat-
terns of variation over time in other clinical and biomarker variables, e.g., in CDR-
SB, FDG-PET, and hippocampal volume, than a conventional approach of creating 
separate trajectories for each diagnostic group. This model has later been extended 
to model disease progression using longitudinal measurements of three different 
clinical scores (ADAS-cog, MMSE, CDR-SB) simultaneously as outcomes (Kühnel 
et al., 2021).  

Several studies in the field have predicted progression from one disease stage to 
another, e.g., from MCI to dementia due to AD. Study III used an alternative ap-
proach by predicting atrophy of the hippocampus over the 24 months. Hippocampal 
atrophy was chosen as an outcome because it is one of the well-known AD bi-
omarkers. Other studies have used scores from the cognitive tests as outcomes 
(Bucholc et al., 2019; Huang et al., 2016; Weiner et al., 2017; D. Zhang et al., 2012a, 
2012b; Zhou et al., 2013; Zhu et al., 2016). However, we decided to focus on hippo-
campal atrophy because it occurs relatively early on the disease spectrum, whereas 
changes in the cognitive test scores occur only in the later phases of the disease. In 
addition, the cognitive tests may include day-to-day variation due to various reasons, 
e.g., fatigue or alertness of the subject. Instead of using machine learning methods, 
other studies have utilized traditional statistical methods to search for factors that 
are associated with the hippocampal atrophy. They found similar variables as in 
Study III to be associated with the atrophy. Van de Pol and colleagues (van de Pol 
et al., 2007) found that older age, poorer general condition, APOE ε4, and baseline 
hippocampal volume were associated with higher rates of hippocampal atrophy in 
an MCI cohort with two years of follow-up. Henneman and co-workers (Henneman, 
Vrenken, et al., 2009) found CSF p-tau levels, baseline memory function, and visual 
rating of medial temporal lobe atrophy to be associated with hippocampal atrophy 
rate when corrected for age and gender. Similarly, Stricker and colleagues (Stricker 
et al., 2012) found baseline CSF Aβ and p-tau to be associated with hippocampal 
atrophy rate. A recent study on plasma biomarkers found that baseline plasma levels 
of tau phosphorylated at threonine 217 (p-tau217) and neurofilament light were in-
dependent predictors of longitudinal trajectories of hippocampal atrophy in a popu-
lation consisting of HCs and subjects with SCD or MCI (Pereira et al., 2021). The 
study also found P-tau217 to be an independent predictor of temporal cortical thin-
ning. Vuoksimaa and colleagues (Vuoksimaa et al., 2020) found that an MCI popu-
lation with impaired performance on RAVLT had steeper descending trajectories of 
hippocampal and entorhinal cortical volumes over a period of 6-36 months than 
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HCs. Whereas MCI cases with normal performance on RAVLT had similar trajec-
tories compared to HCs. The results were concordant when the analysis was re-
stricted to the individuals with above average hippocampal or entorhinal cortex vol-
umes at baseline. Also in Study III, RAVLT was among the most selected variables. 
Regarding prediction of atrophy in other brain regions than the hippocampus, par-
ticipants of the TADPOLE machine learning challenge developed models for pre-
dicting future ADAS-cog scores and total ventricular volume (Marinescu et al., 
2019). For the total ventricular volume, a model based on disease progression mod-
els and spline regression was the best with the mean absolute error of 0.41%. Inter-
estingly, prediction of ADAS-cog was a more challenging problem as none of the 
methods was superior to the reference method based on linear mixed effects model. 

Other studies on mortality mainly focused on older patients or more advanced 
dementia. The population in Study IV was relatively young and had mild to moderate 
dementia. Like earlier studies (Todd et al., 2013), Study IV found older age and male 
sex to be associated with mortality in AD. Cognitive impairment was evaluated using 
various instruments in other studies and the results were contradicting. Some studies 
found an association between mortality and rate of cognitive decline (Hui et al., 2003; 
Wilson et al., 2006). Study IV consistently found tests in the executive domain and, 
to a lesser degree, memory to be associated with mortality. The MRI results partly 
agreed and partly disagreed with findings from Hennemann and colleagues 
(Henneman, Sluimer, et al., 2009). In both studies, WMH were not associated with 
mortality in AD after adjustment for age and sex. Study IV found MTA and GCA 
to be associated with mortality, whereas Henneman and co-workers found no such 
associations in the AD population. However, they found GCA to be associated with 
mortality in younger patients (<68 years) when using the whole population (SCD, 
MCI, AD, other dementia, other diagnosis) and adjusting for sex and diagnosis. They 
also consistently found microbleeds to be associated with mortality, whereas Study 
IV found no such association. Nägga and colleagues (Nägga et al., 2014) also found 
MTA to associated with mortality in AD. Regarding CSF, other studies have found 
contradicting results (Boumenir et al., 2019; Degerman Gunnarsson et al., 2014; 
Nägga et al., 2014). Study IV follows this contradiction as CSF p-tau was included 
into the optimal combination of several variables but none of the CSF biomarkers 
were individually associated with mortality. Study IV found no associations between 
co-morbidities and mortality, whereas other studies found associations (van de Vorst 
et al., 2016). However, populations were older in those studies. Mank and co-workers 
(Mank et al., 2022) developed mortality prediction models for the AD continuum 
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from SCD to dementia due to AD. A multivariable model for SCD and MCI in-
cluded age, sex, Neuropsychiatric Inventory, Charlson Comorbidity Index, GCA, 
MTA, CSF Aβ42, and CSF p-tau. A multivariable model for patients with dementia 
due to AD included slightly different predictors: age, sex, MMSE, Neuropsychiatric 
Inventory, GCA, and WMH. Discriminative performance was higher in patients with 
SCD or MCI than in patients with dementia due to AD, which the authors discussed 
to possibly be due to a smaller and younger cohort with a lower burden of morbidity 
when compared to other studies. Deardorff and colleagues (Deardorff et al., 2022) 
also searched for an optimal combination of variables for prediction of mortality 
from the pool of demographics, behavioural and health factors, functional measures, 
and chronic conditions in community-dwelling adults with dementia. Unlike Study 
IV, their study did not include MRI or CSF measurements. Their final model in-
cluded age, sex, body mass index, smoking status, activities of daily living depend-
ency count, instrumental activities of daily living difficulty count, difficulty walking 
several blocks, participation in vigorous physical activity, and chronic conditions 
(cancer, heart disease, diabetes, lung disease). Finally, Study IV had the following 
strengths: 1) broad range of determinants were investigated; 2) all patients were as-
sessed using the same harmonized diagnostic protocol and they received similar 
treatment and disease management; and 3) follow-up times were relatively long.  

6.3 Impact of the research in its field 

Impact for science: In terms of clinical impact, the developed prediction models in-
creased understanding of the progression of AD; they revealed which factors were 
relevant for the progression in the different phases of the disease; and they found 
subgroups of patients with different disease progression profiles within the SMCI 
group. In terms of technical impact, this thesis showed in practice importance of the 
independent validation cohorts and heterogeneity of the SCD cohorts. Future stud-
ies need to consider these factors. 

Impact for society: The developed prediction models may enable earlier diagnosis of 
AD so that the future treatment options can be started at the correct phase. Thus, 
patients would maintain their independence and ability to function longer. This 
would reduce costs to societies considerably due to reduced need for intensive nurs-
ing at the late stage of the disease. For example, it has been modelled that delaying 
the onset of AD by an average of 2 years would reduce worldwide prevalence of AD 
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in 2050 by 22.8 million cases (22%), of which 10.5 million cases (46%) would be in 
the late stage of the disease and need intensive nursing (Brookmeyer et al., 2007). 
Even a one-year delay in both disease onset and progression would decrease world-
wide prevalence of AD by 9.2 million cases (9%), majority of these cases having the 
late-stage disease (8.7 million, 95%). Another study estimated that delaying the onset 
of the disease by one or five years would decrease population aged ≥70 years with 
AD in the United States in 2050 by 1.3 and 3.7 million cases (14% and 41%), respec-
tively (Zissimopoulos et al., 2014). This study also estimated that without any dis-
ease-modifying treatments, total costs of AD to the economy of the United States 
would be $1.5 trillion in 2050 (in 2010 dollars). A delay of one or five years in the 
onset of the disease would reduce the costs by 15% and 40%, respectively. Another 
estimation showed that if a treatment delaying the onset of AD by five years became 
available in 2025, total costs of AD in the United State in 2050 would decrease by 
33% from $1.101 trillion to $734 billion (in 2015 dollars) (Alzheimer’s Association, 
2015).  

Impact for companies: The developed models may interest pharmaceutical companies 
as the models can potentially help in selecting suitable patient groups for clinical 
trials which investigate effects of disease-modifying therapies. E.g., the EMIF pro-
ject, in which the Study III was conducted, included pharmaceutical companies like 
Janssen Pharmaceutica NV, Boehringer-Ingelheim International GmbH, Pfizer, and 
GlaxoSmithKline Research and Development Ltd. The models could also benefit 
medical technology companies, as they could be integrated as part of their existing 
products. One example of such collaboration is an integration of Quantib® Brain, 
which is a medical image analysis software, with a platform of GE Healthcare2. This 
kind of integration of new tools into existing and familiar products can improve 
acceptance of the new tools as the healthcare professionals do not need to learn yet 
another system. Finally, all four studies presented in this thesis were conducted in 
close collaboration with researchers, who founded a company called Combinostics 
Oy. Combinostics Oy offers a CDSS for diagnosis and management of different 
dementias. The DSI and DSF methods are key elements of their CDSS. Studies I 
and II in this thesis have thus contributed to the scientific foundation and credibility 
of this CDSS. 

Scientifically proven effectiveness of CDSSs is very important for convincing in-
vestors, regulatory agencies, and customers, and finally for actual deployment in 
healthcare. Effectiveness of the CDSSs in AD can be evaluated with various metrics 

 
2 https://www.quantib.com/solutions/partnerships/quantib-brain, accessed on 4.12.2022 
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and the selection of the metrics depends on the precise use-case. The CDSSs need 
to demonstrate an adequate prediction performance when compared to diagnoses 
or prognoses given based on the current diagnostic guidelines. This reference has its 
known limitations, but it is the best available knowledge at the moment. Other met-
rics for the effectiveness can be evaluated in studies where clinicians assess their 
patients (or patients’ data) with and without a CDSS. These metrics could include 
prediction accuracy of the clinicians, consistency of the predictions between the dif-
ferent clinicians, i.e., inter-rater agreement, clinicians’ confidence in their own pre-
dictions, clinician’s confidence in the prediction provided by the CDSS, time taken 
to review a patient’s data, and a delay between the first visit to a memory clinic and 
a moment of receiving the most definitive diagnosis. In the case of selecting patients 
for clinical trials, the number of the participants required for a study could be used 
as the evaluation metric. 

Impact for healthcare professionals: The DSI method and accompanying DSF visualiza-
tions have been integrated as part of the PredictAD and PredictND CDSSs. These 
CDSSs can help clinicians in the diagnostic work: it has been shown that the use of 
the PredictAD tool improved clinicians’ confidence in making a diagnostic classifi-
cation, accuracy of the diagnosis, and inter-rater agreement when compared to pre-
senting all data on paper charts (Simonsen et al., 2013). The PredictND tool, which 
was developed for differential diagnostics of dementia, also improved clinicians’ con-
fidence in the diagnosis (Bruun et al., 2019). Furthermore, adding the tool to the 
diagnostic evaluation affected diagnostic decision making by changing the diagnosis 
of 13% of all the cases when compared to the diagnosis given without the tool 
(Bruun et al., 2019). However, the changes did not lead to statistically significant 
improvements in the prediction accuracy (Bruun et al., 2019). The DSI and the DSF 
methods may also enhance collaboration and communication between the 
healthcare professionals as well as communication between the healthcare profes-
sional and their patients resulting in improved care. 

Impact for patients and their next of kin: It is important for the patients and their next of 
kin to receive correct diagnosis as early as possible to understand the reason for the 
symptoms, to obtain correct care and support, and to become accustomed living 
with the disease. Better communication with the healthcare professionals can im-
prove the patients’ understanding of the disease, which may motivate the patients 
for lifestyle changes if needed. In addition, the future treatments can be started at 
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the correct phase. All this can prolong the independent living with the disease which 
is important for the patients. 

6.4 Limitations of the studies 

The main limitation of all four studies was that the diagnoses of the patients were 
based on the clinical evaluation; and they were not confirmed with the ‘ultimate di-
agnosis’, which would be postmortem histological samples taken from the brain. 
However, collecting the histological samples would require a very long follow-up 
study because AD progresses slowly over the years and decades. The accuracy of the 
clinical AD diagnosis is known to be limited and the diagnoses are often delayed. 
Beach et al. (Beach et al., 2012) reported that sensitivity of the clinical AD diagnosis 
was 70.9–87.3% and specificity was 44.3–70.8%, depending on the used clinical and 
pathological criteria. In addition, Studies I-III were limited by the relatively short 
follow-up times, Study IV had a somewhat longer follow-up (4.3 years and 5.3 years 
among the patients who died and stayed alive, respectively). If the follow-up times 
were longer, the more patients might have progressed to more advanced stages and 
the diagnoses might be more accurate. 

In Study I, an additional limitation was that we decided to include diagnostic tests 
and features which were already familiar to the clinicians or were found to be relevant 
in other studies. By extracting a larger number of MRI features and performing fea-
ture selection to find an optimal set of features might have improved the perfor-
mance of the models. 

In Study II, we utilized linear regression to model evolution of the DSI values 
over time because of its simplicity and paucity of the data. Some PMCI cases had 
only a few DSI values available because of their fast conversion to dementia due to 
AD and synchronization of the time stamps. More complex models might be more 
suitable for AD progression if the follow-up times are longer. E.g., Jack et al. (Jack 
et al., 2010, 2013) proposed AD biomarkers to have a sigmoidal shape; Caroli et al. 
(Caroli et al., 2010) found that for most biomarkers, except FDG-PET, the sigmoidal 
model fitted better than the linear model; and similarly Mouiha and Duchesne 
(Mouiha et al., 2012) found non-linear models to fit better than linear models to 
biomarkers other than FDG-PET. Another limitation is that we utilized data only 
from the ADNI 1 database. As was shown in Study I, it would be important to 
explore evolution of the DSI values in other cohorts as well.  
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In Study III, we were only able to assess the generalizability of the models includ-
ing solely the MRI features because the independent validation cohort did not con-
tain all the needed variables for the full models. In addition, the number of subjects 
with MCI or dementia due to AD was rather low in the validation cohort. It would 
be important to further validate the full and MRI models with additional cohorts 
including more subjects with MCI or dementia due to AD. This is especially im-
portant, because our models underestimated the real change at the higher atrophy 
rate levels. Furthermore, ADNI 1 had follow-up visits at months 12 and 24 whereas 
AIBL had them only at month 18. We had to scale the atrophy rate over 18 months 
in AIBL to correspond to atrophy rate over one year in ADNI 1. We used linear 
scaling which can be assumed to be valid due to such a short time interval when 
compared to the whole timeline of the disease. Finally, the hippocampus is also af-
fected by conditions other than AD, e.g., normal ageing, diabetes, and sleep apnoea. 
Thus, if these kinds of models are taken into use in practice, e.g., when selecting 
suitable patients into the clinical trials of disease-modifying therapies, other AD bi-
omarkers should also be taken into account simultaneously.  

In Study IV, the generalizability of the results was limited by the population which 
was obtained from a tertiary memory clinic. Additionally, we also had limited infor-
mation regarding medications. We only had medication use at the baseline and we 
did not have information about the use of cholinesterase inhibitors after the diagno-
sis. Some studies have shown cholinesterase inhibitors to increase survival, others 
have found no such effect, or the effect was found only in older patients (Lopez et 
al., 2009; Nordström et al., 2013; Rountree et al., 2012; Wattmo et al., 2015; Xu et 
al., 2021). Furthermore, we could not investigate the association between antipsy-
chotics use and mortality because only a small number of subjects were on antipsy-
chotics in our population. 

6.5 Future work 

Based on this thesis, there are various directions for the future work. In the follow-
ing, the future work is described from a wide perspective on AD. Firstly, the DSI 
method and the DSF visualization have further development needs. The current 
version of the DSI method is purely for classification and it does not take time to 
event into account like the CPH model does. Other machine learning methods have 
already been adapted for survival data (Wang et al., 2019) and it would be interesting 
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to modify the DSI and DSF accordingly. The current version of the DSI also as-
sumes that the feature values either increase or decrease as the pathology progresses. 
It does not take into account the possibility that both decreased and increased values 
can be pathological, e.g., too low or too high blood pressure values can indicate 
health problems. This development need was already mentioned in the thesis of Jussi 
Mattila (Mattila, 2014), but the work on this is still unfinished. Furthermore, the 
multiclass DSI has already been developed and there is an initial version of the mul-
ticlass DSF (Tolonen et al., 2018). Currently, there is work on-going on developing 
alternative visualisation options for the multiclass DSF that would be simple to in-
terpret and understand.  

Secondly, Study I showed that there were significant differences between the 
SCD cohorts which hampered generalization of the models. Research and clinical 
work would benefit from the harmonisation of the patient assessment protocols, 
diagnostic criteria, different tests and devices used. Understandably, this would be a 
lot of work and still some local variation might be needed from the practical view-
point. 

Thirdly, Study III has several development needs. The models should be further 
validated with additional cohorts with the full set of variables and a greater number 
of patients with MCI or dementia. As hippocampal atrophy is also affected by other 
diseases and conditions than AD, addition of variables describing co-morbidities or 
lifestyle might improve performance of the models, especially at the higher atrophy 
rate levels. Furthermore, as hippocampal atrophy is not specific only for AD, alter-
native outcomes for the prediction of state of AD pathology should be considered. 
Prediction of ATN biomarker status (Jack et al., 2016), which takes amyloid load, 
tau pathology, and neurodegeneration simultaneously into account, would be an in-
teresting approach.  

Fourthly, development of machine learning methods requires data and quality of 
data (e.g., volume, representativeness, goodness of features) is a key determinant for 
the goodness of the models. As AD develops gradually over the years, collecting new 
cohorts for answering new research questions requires time and money. Biobanks, 
hospital data lakes, and electronic health records provide an alternative data source 
to prospective research cohorts. An example study on the use of the real-world data 
is the Pharmacogenomics of Antithrombotic Drugs (PreMed) study which com-
bined data from the Finnish biobanks and various health registries, including demo-
graphic, genomic, health encounter, drug dispensation, patient record, and labora-
tory data (Lähteenmäki et al., 2021, 2022; Vuorinen et al., 2021). Similar approach 
could be utilized to study AD and dementia related research questions (e.g., other 
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predictors of AD, effects of co-morbidities and medications, genetics, use of 
healthcare resources). These data sources could also serve as independent validation 
data sets. Research cohorts typically have well-defined study protocols with certain 
eligibility criteria, fixed follow-up intervals, and selected patient assessments. Real-
world data from the clinics is much more heterogenous and often incomplete. If the 
machine learning models are taken into use in a real healthcare environment, it would 
be important to test their performance and generalizability with not so optimal and 
heterogenous data. 

Fifthly, lots of different machine learning methods have been applied to AD to 
predict various outcomes, however, only few of them have been deployed in the 
healthcare environment in practice, e.g., tools from the companies like Combinostics 
Oy3, icometrix4,  IXICO plc5, and Quantib B. V.6. The questions are how to bridge 
the gap between the machine learning research in AD and actual implementation 
and deployment of the methods in clinics; how to integrate machine learning meth-
ods as part of the hospital information systems and as part of the professionals’ 
workflows; and what kinds of barriers and enablers there are for the deployment. 

Sixthly, there is a need for low-cost, less invasive, and accurate screening tools 
for early detection and monitoring of AD. Currently used and well-established cog-
nitive tests, such as MMSE, are less effective in detecting AD in its earliest stages. 
Lately, advances in development of sensitive assays have paved the way for blood-
based biomarkers to become a reality in detection and monitoring of AD (Teunissen 
et al., 2022). However, there are still various clinical, technical, regulatory, and ethical 
issues to be solved before the blood-based biomarkers are used in practice, e.g., per-
formance in the real-world and in different settings; cost-effectiveness; integration 
in clinical guidelines, in-vitro-diagnostic assay development, validation, and certifi-
cation (Teunissen et al., 2022). Another interesting field is digital biomarkers for de-
tection and monitoring of AD. Digital biomarkers are extracted from data collected 
with mobile, wearable, and environmental devices, such as smart phones, rings, 
watches; sensor patches; sensors integrated to the clothes; cameras and infra-red 
motion sensors. These biomarkers have been less studied than traditional cognitive 
and imaging biomarkers. There is a need for larger sample sizes, inclusion of patients 
from the different phases of the disease spectrum, longitudinal data, and validation 
of the methods with independent test sets. 

 
3 https://www.combinostics.com/, accessed on 4.12.2022 
4 https://www.icometrix.com/, accessed on 4.12.2022 
5 https://www.ixico.com/, accessed on 4.12.2022 
6 https://www.quantib.com/, accessed on 4.12.2022 
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Finally, as lifestyle plays an important role in preventing and delaying AD, an 
evident question is how to motivate people to acquire and maintain healthy lifestyle 
throughout their lives? This is not an easy question because, after a vast amount of 
research on lifestyle interventions for other diseases and information sharing for the 
public, increasing obesity rates, lack of physical activity, and sedentarism are still 
global health issues. Multidomain lifestyle interventions for AD have shown their 
effectiveness (Kivipelto et al., 2018; Ngandu et al., 2015), however, providing exten-
sive face-to-face lifestyle counselling for individuals or groups through healthcare 
professionals becomes easily too expensive when targeted for larger populations. 
Digital tools offer potentially cost-effective and scalable ways to deliver lifestyle in-
terventions and a few tools have already been developed for AD and related demen-
tias (Bott et al., 2019). Typically, digital lifestyle interventions suffer from high attri-
tion and drop-out rates (Eysenbach, 2005). Thus, it is important to study factors 
affecting adherence to the digital lifestyle interventions in order to design effective 
interventions and to select the right intervention for the right people. Both statistical 
and machine learning methods can be utilized for this task. Most of the adherence 
studies on mobile health apps targeting prevention and management of noncom-
municable diseases had a pilot character with short study durations (Jakob et al., 
2022). In addition, there is a scarcity of studies regarding adherence to digital lifestyle 
interventions for dementia prevention (Jakob et al., 2022). 
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7 CONCLUSIONS 

This thesis presented four studies on development and validation of the data-driven 
methods for predicting and monitoring progression of AD at the different phases of 
the disease spectrum. The data were obtained from publicly available databases (US, 
Australia) and from non-public cohorts (the Netherlands, Germany, Spain). The data 
included neuropsychological and cognitive tests, MRI, CSF, comorbidities, and 
APOE. The main findings of the thesis can be summarized as follows: 

• The developed models provide valid means to predict and follow progression of 
AD from the mildest stages to the more advanced stages. 

• The models based on several different data modalities obtained better prediction 
performance than the models based on the single data modality. 

• It is extremely important to evaluate generalizability of the models with independ-
ent validation cohorts. 

• Harmonization of patient assessment methods, diagnostic criteria, tests, and de-
vices may be needed if these methods are introduced to different settings and 
countries.  

Research contribution presented in the thesis is scientifically novel as 1) by the time 
of its publication (2018), Study I was among the first studies utilizing machine learn-
ing for predicting progression of the disease in the SCD population; 2) Study II ex-
tended the DSF visualization from a single time point to longitudinal data and in-
vestigated evolution of the DSI values over time; 3) Study III utilized hippocampal 
atrophy, an established biomarker of AD pathology, as a continuous outcome 
whereas most other studies had focussed on continuous scores from cognitive and 
neuropsychological tests; 4) Study IV extended the knowledge on determinants of 
mortality in AD in younger patients with mild to moderate AD, for whom there is 
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paucity of data. The developed models may aid in the early diagnosis of AD, selec-
tion of suitable patients for trials investigating disease-modifying therapies, and fol-
low-up of the disease progression over time. 
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them are “worried well”, yet a small proportion of these
patients is likely to suffer from preclinical Alzheimer’s
disease (AD) [2,3]. For both the patient and the clinician,
it is important to know who will progress to mild cognitive
impairment (MCI) or dementia and who will remain stable
[2,4,5].

At this point, cerebrospinal fluid (CSF) and magnetic
resonance imagining (MRI) markers, and to a lesser
extent cognitive tests, are associated with decline in SCD
[3,6–13]. These findings have been translated into the
“SCD plus”—criteria that have been developed to identify
individuals who are more likely to harbor preclinical AD
[2,14]. Translation to clinical practice is hampered because
a set of recommendations for what the diagnostic workup
and follow-up for patients with SCD should look like is
currently lacking [15,16].

Clinical decision support systems based on modern
machine-learning technologies are being developed to
support clinicians to integrate multiple determinants in daily
practice [17]. We have previously developed the Disease
State Index (DSI) classifier, which is a technology that
integrates patient data from multiple modalities to support
the clinician in decision-making [18]. In previous studies,
we showed that the DSI can distinguish different types of
dementia and discriminate between stable and progressive
MCI patients [18–21].

In this study, we aimed to investigate and validate in
independent cohorts the prognostic ability of the DSI
classifier to identify patients with SCD at risk for
progression, by combining and visualizing all available
data on baseline characteristics, neuropsychology, CSF
biomarkers, and automated MRI features.
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2. Methods

2.1. Patients

We included 674 patients with SCD with baseline
neuropsychology available and a minimal follow-up of
1 year, from three different memory clinic-based cohorts:
354 from the Amsterdam Dementia Cohort (ADC) from
the VU Medical Center [22–24], 51 from Barcelona [25],
and 269 from the German Dementia Competence Network
(DCN), consisting of nine memory clinics [26,27]. We
used the ADC cohort to develop and internally validate
our model and the pooled data of the Barcelona and DCN
cohorts to externally validate our model. The study was
approved by the local medical ethical committees. All
patients provided written informed consent for their
clinical data to be used for research purposes.

2.2. Clinical assessment

All patients went to the memory clinics seeking medical
help. At baseline, they received a standardized and
multidisciplinary work-up, including medical history
and neuropsychological examination. CSF and MRI were
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ollow-up took place by routine clinical visits, in
ical and neuropsychological examinations were
As outcome measure, we defined clinical
as conversion to MCI, AD, or another type of
s diagnosed at follow-up. Time to follow-up
as time in years from baseline SCD diagnosis

ion or, if stable, time to most recent follow-up
ADC and Barcelona cohort, MCI was diagnosed
en’s criteria; in addition, all patients fulfilled the
l criteria of the NIA-AA for MCI [28,29]. In
patients met the Jak and Bondi criteria [30].

re diagnosed with probable AD using the criteria
DS-ADRDA in all centers; all patients also met

t & Disease Monitoring 10 (2018) 726-736 727
sychological tests

e functions were assessed with a standardized
, and we selected those tests that overlapped
three centers. We used the Mini–Mental State

n for global cognitive functioning [33]. For
executive functioning, we used Trail Making
MT-A) and Test B (TMT-B), and also for
language, category fluency (animals) [34,35].
c memory, we included the tests that resembled
most. In ADC, the Rey Auditory Verbal

ask (RAVLT) immediate and delayed recall
ed [36]. In the Barcelona cohort, the Free and
tive Reminding Test (FSCRT) immediate and
l recall were used [37]. In DCN, the Consortium
a Registry for Alzheimer’s Disease word list

and delayed recall were used [38]. To pool the
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tion can be found in Supplementary Fig. A1).
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Table 1

Baseline characteristics according to outcome at follow-up for the separate centers

Variable

ADC Barcelona DCN

n

Stable SCD,

n 5 291

Progressive SCD,

n 5 63 n

Stable SCD,

n 5 46

Progressive SCD,

n 5 5 n

Stable SCD,

n 5 186

Progressive SCD,

n 5 83

Demographics

Female, n (%)* 354 138 (47) 26 (41) 51 34 (74) 4 (80) 269 71 (38) 34 (41)

Age in years 354 61.2 ± 9.6 69.0 ± 7.1 51 64.9 6 6.4 70.2 6 8.3 269 64.5 ± 7.8 68.0 ± 8.4

Education in years 354 13.3 6 4.3 14.0 6 4.4 51 10.8 6 4.2 11.6 6 4.3 269 12.5 ± 2.8 13.3 ± 3.3

Follow-up in years 354 3.4 ± 2.2 3.8 ± 3.2 51 3.7 6 1.8 2.8 6 1.8 269 2.3 ± 0.9 1.6 ± 0.7

MCI/AD/non-AD, n 42/15/6 2/2/1 53/21/9

APOE status

APOE ε4 carrier, n (%)* 317 92 (35) 27 (54) 49 10 (22) 2 (50) 226 56 (35) 32 (47)

Neuropsychology

MMSE 351 28.4 6 1.7 28.0 6 1.5 51 28.3 ± 1.5 26.8 ± 1.9 265 28.2 ± 1.6 27.6 ± 1.8

Memory, immediate recall 304 41 ± 9 37 ± 8 51 42 6 5 38 6 6 269 20 ± 3 18 ± 4

Memory, delayed recall 303 8 ± 3 6 ± 3 51 14 ± 6 13 ± 2 269 7 ± 2 5 ± 2

TMT-A, seconds 318 40 6 19 44 6 14 50 44 6 16 47 6 18 264 42 ± 15 51 ± 20

TMT-B, seconds 318 97 ± 51 113 ± 48 50 135 6 87 163 6 103 264 102 ± 41 127 ± 52

Category fluency 312 22 ± 6 21 ± 5 51 21 6 5 17 6 4 269 21 ± 5 20 ± 5

MRI

Hippocampal volume, mL 332 7.96 ± 0.83 7.49 ± 0.81 49 8.20 6 0.80 7.77 6 1.12 93 7.92 ± 0.84 7.19 ± 1.12

cMTA 332 0.37 ± 0.46 0.54 ± 0.54 49 0.22 6 0.43 0.40 6 0.54 93 0.54 ± 0.53 1.08 ± 0.86

cGCA 332 0.75 6 0.65 0.87 6 0.62 49 0.10 6 0.24 0.22 6 0.36 93 0.49 ± 0.64 1.17 ± 0.90

Grading 332 0.22 ± 0.19 0.36 ± 0.22 49 0.09 6 0.12 0.23 6 0.22 93 0.21 ± 0.23 0.44 ± 0.32

CSF

Ab42, pg/mL 227 875 ± 235 638 ± 279 41 771 6 221 637 6 194 87 846 ± 300 670 ± 305

Total tau, pg/mL 227 266 ± 146 456 ± 370 41 333 ± 227 645 ± 694 87 286 ± 152 454 ± 281

p-tau, pg/mL 227 46 ± 18 65 ± 34 41 55 6 28 83 6 65 87 48 ± 20 63 ± 35

Abbreviations: SCD, subjective cognitive decline; ADC, Amsterdam Dementia Cohort; DCN, Dementia Competence Network; AD, dementia due to

Alzheimer’s disease; FTD, frontotemporal dementia; VaD, vascular dementia; DLB, Lewy body dementia; MMSE, Mini–Mental State Examination;

RAVLT, Rey Auditory Verbal Learning Task; FSCRT, Free and Cued Selective Reminding Test; CERAD, Consortium to Establish a Registry for Alzheimer’s

Disease; TMT, Trail Making Test; cGCA, computed cortical atrophy score, estimated using gray matter concentration; cMTA, computed medial temporal lobe

atrophy score, (left1 right)/2, derived from volumes of hippocampus and lateral ventricles; Ab42, amyloid-b 1-42; p-tau, tau phosphorylated at threonine 181.

NOTE. Follow-up in years: time to conversion toMCI/dementia or follow-up time for nonconverters. Non-AD cases consisted of (1) ADC: 3 FTD and 3 VaD;

(2) Barcelona: 1 DLB; and (3) DCN: 1 FTD, 1 VaD, 3 DLB, and 4 nonspecified dementia.

NOTE.Memory, immediate recall: data on immediate recall using RAVLT (ADC), FSCRT (Barcelona), and CERAD (DCN); memory, delayed recall: data on

delayed recall using RAVLT (ADC), FSCRT (Barcelona), and CERAD (DCN); hippocampal volume: left plus right hippocampus (in mL), normalized for head

size and gender; grading: computed using a region of interest around the hippocampus, describing the intensity similarity of test image and training set images.

NOTE. Raw data are presented as mean 6 SD or n (%). Group differences per center according to outcomes were calculated using Student’s t-test for

continuous variables. Bold represents P values , .05.

*For categorical variables, the chi-square test was used.
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computed global cortical atrophy (cGCA) score, and region-
of-interest (ROI)–based grading. They were derived as
follows: first, whole-brain segmentation into 136 structures
was performed using multi-atlas segmentation method [39].
From these structures, total (left 1 right) hippocampal
volume was used in the classification. In addition, cMTA
score was derived from the volumes of the hippocampus
and inferior lateral ventricles [40]. Similarly, cGCA score
was estimated using voxel-based morphometry [40]. Finally,
the ROI-based grading method measures the similarity of the
patient image to patient images from a certain diagnostic
group. In practice, an ROI from the patient is represented as
a linear combination of the corresponding ROIs from a data-
base of reference images. As each reference image contains
also information about the patient’s diagnostic label, the
grading feature is defined as the share of the weights from
images with a certain diagnostic label. In this work, we
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2.6. APOE genotyping

In ADC (n 5 317), the apolipoprotein E (APOE)
genotype was determined with the LightCycler APOE
mutation detection method (Roche diagnostics GmbH,
Mannheim, Germany). In Barcelona (n 5 49), the APOE
genotype was determined with PCR amplification and
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Sanger sequencing (ThermoFisher, USA). In DCN
(n 5 226), leukocyte DNA was isolated with the Qiagen

the training
T. In
nces
ion fr
emen
manc
the
ivity,
sitive
sults b
s typ
city.
I or
ing o
ding

Exte
exter
nseen
stand
nden
g the
rcelo
te va

Com
lier
rison
ne-lea
mpari
class

ther

inve
enter
i-squa
Arm

cant.
AB
Work

sults

aseli

er a
d clin
1). P
nt AP
Isolation Kit (Qiagen, Hilden, Germany). Patients were
dichotomized into APOE ε4 carriers (heterozygous and
homozygous) and noncarriers.

2.7. Disease State Index

For classifying patients at risk of progression or not, we
used a modification of the PredictND tool that was
previously developed in the European FP7 project
PredictND (www.predictnd.eu). The tool is based on the
DSI classifier [17]. When presented with a new patient, the
DSI estimates the similarity of measurement values from
this patient to observed values from reference patients with
and without a certain medical condition, in this case
similarity to patients with stable SCD and patients
progressing to MCI or dementia [17]. Similarity is estimated
in the following way: (1) Each measurement value of an
individual person is compared with the reference data using
a fitness function defined as f(x) 5 FN(x)/(FN(x)1FP(x)),
where FN is the false-negative error rate, and FP is the
false-positive error rate in the reference data when using
the individual’s measurement value x as a cutoff value in
classification. (2) The “relevance” of each determinant is
defined as sensitivity 1 specificity 2 1. (3) Finally, a
composite DSI is defined as a weighted average of fitness
values: DSI 5 S (relevance , fitness)/S relevance. DSI is
a continuous value between zero and one, reflecting how
similar an individual is to patients who have previously
progressed. A cutoff value of 0.5 is used to classify
whether an individual patient is more likely to remain stable
(DSI , 0.5) or progress to MCI or dementia (DSI � 0.5) at
follow-up. In addition, we studied whether the performance
is improved for a subset of patients with high (DSI. 0.7 and
DSI . 0.8) or low (DSI , 0.3 and DSI , 0.2) DSI values.
This could enable detecting patients with very low risk or
very high risk of progression for clinical counseling. The
classifier also provides a visual representation of how
different features contribute to the DSI in a so-called
disease state fingerprint (see Fig. 2, for details). As the
DSI combines multiple independent classifiers (fitness
functions), there is no need to impute data or exclude cases
with incomplete data. More mathematical details can be
found in the study by Mattila et al. [17].

2.7.1. Development and internal validation
We developed the model on the ADC data and internally

validated this model on the same cohort using 10 iterations
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The DSI analysis was performed using
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Fig. 1. The visualization of group-wise volume differences between stable subjective cognitive decline (SCD) and progressive SCD groups. The map visualizes

the relative volume difference:
Vp2Vs

0:5!ðVp1VsÞ, where Vp andVs are themean volumes for progressive and stable groups, respectively. Blue indicates the structures on

MRI that were larger in the progressive group, and red indicates the structures that were smaller.
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volumes and more abnormal CSF biomarkers. Patients in
ADC were younger as compared with Barcelona and
DCN. Patients in Barcelona were more often female, had
less education, and showed less progression as compared
with ADC and DCN. Duration of follow-up was longest in
Barcelona and shortest in DCN. There were no
differences in percentage of APOE ε4 carriers and baseline
Mini–Mental State Examination across the centers.

3.2. Development and internal validation of the model
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ving high or lowDSI values, to aid the clinician
nterpret the DSI values. We observed extreme
that is, below 0.3 or above 0.7, in 48 6 6% of
. When DSI , 0.3, NPV was 97.0 6 2.6,
at the probability of progression is very low in
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Fig. 2. Examples of DSI fingerprints: patient A and patient C remained stable, and patient B progressed toMCI. The DSI fingerprint combines all data available

from one patient and displays it in a visually attractive format to the clinician. The DSI value is presented both numerically and visually with color. The color

changes from blue to red when DSI increases from zero (high similarity to the stable group) to one (high similarity to the progressive group). The relevance is

visualized by the size of the box. The larger the box, the better the specific marker discriminates the stable and progressive SCD patients. Abbreviations:

MMSE, Mini–Mental State Examination; TMT, Trail Making Test; cGCA: computed cortical atrophy score, estimated using gray matter concentration;

cMTA, computed medial temporal lobe atrophy score, (left 1 right)/2, derived from volumes of hippocampus and lateral ventricles; Amyloid b, amyloid-b

1–42; Phosphorylated tau, tau phosphorylated at threonine 181; DSI, Disease State Index.
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this subset and the clinician could reassure these patients
with high confidence. For comparison, if NPV is computed
for all patients without using any prediction model, it is
82.0 [291/(291 1 63)], showing that DSI can clearly help
in stratifying patients. When DSI . 0.7, PPV was not very
high, only 50.8 6 12.9. Although the progression of an
individual cannot be predicted accurately even in this
subgroup, the risk of conversion is clearly elevated. The
risk ratio is 2.8 in this subgroup compared with the whole
patient population meaning that the clinician might start
applying more rigorous follow-up and lifestyle intervention
measures to these patients. This means that for roughly half
of SCD patients, the DSI could have practical use to aid in
individualized prognosis.

Fig. 2 shows the DSI fingerprints for three example
patients to illustrate how the tool integrates and visualizes
available data. Patient A is a 60-year-old female, with a
DSI of 0.20, meaning the clinician can reassure her with
high accuracy. Nearly all the boxes in the fingerprint are
blue, which fits with the good outcome in this patient; she
remained stable during three years of follow-up. Patient B
is a 74-year-old female with a DSI value of 0.83, mainly
attributable to her values on MRI and CSF (visible as red
boxes). This implies her risk of progression is clearly
elevated, and follow-up should be discussed. This patient
progressed to MCI after 3 years. Patient C is a 66-year-old
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Supplementary Table A3). Even when we devel-
del in Barcelona and DCN cohorts, performance
ter in ADC (balanced accuracy 73.3, NPV 92.4).

rison to other machine-learning algorithms
onding to and the Random Forest classifier lower
as obtained by the DSI classifier (Supplementary



T
ab
le

2

P
er
fo
rm

an
ce

o
f
D
S
I
to

p
re
d
ic
t
co
nv
er
si
o
n
to

M
C
I
o
r
an
y
ty
p
e
o
f
d
em

en
ti
a
in

th
e
A
D
C
co
h
o
rt
,
fo
r
th
e
to
ta
l
co
h
o
rt
an
d
fo
r
p
at
ie
n
ts
w
it
h
ex
tr
em

e
D
S
I
va
lu
es

V
ar
ia
b
le

%
S
ta
b
le

S
C
D
,
n

P
ro
g
re
ss
iv
e

S
C
D
,
n

A
U
C

B
al
an
ce
d

ac
cu
ra
cy

S
en
si
ti
v
it
y

S
p
ec
ifi
ci
ty

P
P
V

N
P
V

D
em

o
g
ra
p
h
ic
s

2
9
1

6
3

0
.7
4
6

0
.0
4

6
6
.0

6
5
.0

6
6
.0

6
1
1
.7

6
5
.9

6
6
.1

2
9
.7

6
3
.8

9
0
.1

6
2
.8

A
P
O
E

2
6
7

5
0

0
.6
0
6

0
.0
5

5
9
.7

6
4
.9

5
3
.9

6
8
.4

6
5
.5

6
4
.5

2
2
.7

6
4
.4

8
8
.4

6
2
.4

N
eu
ro
p
sy
ch
o
lo
g
y

2
9
0

6
2

0
.6
9
6

0
.0
6

6
2
.7

6
4
.4

6
1
.6

6
1
0
.8

6
4
.3

6
5
.3

2
6
.9

6
3
.3

8
8
.7

6
2
.4

C
S
F

1
9
4

3
3

0
.7
7
6

0
.0
7

6
9
.9

6
5
.0

6
6
.1

6
1
1
.3

7
3
.6

6
6
.5

3
0
.3

6
5
.8

9
2
.8

6
2
.6

M
R
I
(1

T
,
1
.5

T
,
3
T
)

2
7
7

5
5

0
.6
8
6

0
.0
5

6
1
.4

6
4
.3

8
0
.1

6
1
0
.1

4
2
.8

6
6
.8

2
1
.8

6
2
.5

9
1
.9

6
3
.5

M
R
I
(.

1
T
)

1
2
3

2
5

0
.7
3
6

0
.0
9

6
9
.1

6
7
.8

6
4
.9

6
1
5
.2

7
3
.3

6
7
.6

3
3
.6

6
9
.6

9
1
.3

6
4
.0

D
em

o
g
ra
p
h
ic
s
1

A
P
O
E
1

N
eu
ro
p
sy
ch
o
lo
g
y
1

C
S
F
1

M
R
I
(1

T
,
1
.5

T
,
3
T
)

2
9
1

6
3

0
.8
0
6

0
.0
5

7
4
.0

6
4
.2

8
2
.9

6
8
.4

6
5
.1

6
5
.8

3
4
.2

6
3
.8

9
4
.7

6
2
.4

D
em

o
g
ra
p
h
ic
s
1

A
P
O
E
1

N
eu
ro
p
sy
ch
o
lo
g
y
1

C
S
F
1

M
R
I
(.

1
T
)

2
9
1

6
3

0
.8
1
6

0
.0
6

7
4
.1

6
5
.8

7
5
.7

6
1
1
.2

7
2
.6

6
4
.8

3
7
.7

6
5
.5

9
3
.3

6
2
.8

D
S
I
,

0
.2

o
r
D
S
I
.

0
.8

D
em

og
ra
p
h
ic
s
1

A
P
O
E
1

N
eu
ro
p
sy
ch
o
lo
g
y
1

C
S
F
1

M
R
I
(1

T
,
1
.5

T
,
3
T
)

1
4
6

4
1
2
6

5
5
6

2
0
.8
1
6

0
.1
0

8
3
.3

6
7
.4

9
8
.9

6
4
.2

6
7
.7

6
1
3
.6

5
9
.0

6
1
7
.4

9
9
.4

6
2
.3

D
em

og
ra
p
h
ic
s
1

A
P
O
E
1

N
eu
ro
p
sy
ch
o
lo
g
y
1

C
S
F
1

M
R
I
(.

1
T
)

2
1
6

6
2
0
6

8
5
6

2
0
.8
3
6

0
.1
1

8
4
.1

6
9
.6

8
5
.4

6
1
7
.6

8
2
.8

6
7
.1

5
6
.2

6
1
7
.1

9
6
.3

6
4
.6

D
S
I
,

0
.3

o
r
D
S
I
.

0
.7

D
em

og
ra
p
h
ic
s
1

A
P
O
E
1

N
eu
ro
p
sy
ch
o
lo
g
y
1

C
S
F
1

M
R
I
(1

T
,
1
.5

T
,
3
T
)

3
7
6

6
3
4
6

7
1
0
6

3
0
.8
4
6

0
.0
6

8
0
.7

6
6
.0

8
9
.6

6
1
1
.4

7
1
.8

6
9
.4

4
7
.8

6
1
0
.9

9
6
.8

6
3
.0

D
em

og
ra
p
h
ic
s
1

A
P
O
E
1

N
eu
ro
p
sy
ch
o
lo
g
y
1

C
S
F
1

M
R
I
(.

1
T
)

4
8
6

6
4
7
6

7
9
6

3
0
.8
4
6

0
.0
9

8
4
.1

6
7
.3

8
4
.9

6
1
4
.2

8
3
.3

6
5
.5

5
0
.8

6
1
2
.9

9
7
.0

6
2
.6

A
b
b
re
v
ia
ti
o
n
s:
A
U
C
,
ar
ea

u
n
d
er

th
e
re
ce
iv
er

o
p
er
at
in
g
ch
ar
ac
te
ri
st
ic
cu
rv
e;
S
C
D
,
su
b
je
ct
iv
e
co
g
n
it
iv
e
d
ec
li
n
e;
P
P
V
,
p
o
si
ti
ve

p
re
d
ic
ti
ve

va
lu
e;
N
P
V
,
n
eg
at
iv
e
p
re
d
ic
ti
ve

va
lu
e;
A
P
O
E
,
ap
o
li
p
op
ro
te
in

E
;
D
S
I,

D
is
ea
se

S
ta
te

In
d
ex
.

N
O
T
E
.F
o
r
th
e
ex
tr
em

e
D
S
I
va
lu
es
,n
:n
u
m
b
er
o
f
p
at
ie
n
ts
in
a
cr
o
ss
-v
al
id
at
io
n
fo
ld
h
av
in
g
th
e
D
S
I
va
lu
e
in
th
e
g
iv
en

ra
ng
e;
%
:
p
er
ce
n
ta
g
e
o
f
p
at
ie
n
ts
in
a
te
st
se
t
(n

5
1
1
8
)
o
f
a
cr
o
ss
-v
al
id
at
io
n
fo
ld
h
av
in
g
th
e

D
S
I
va
lu
e
in

th
e
g
iv
en

ra
ng
e.
V
al
u
es

ar
e
p
re
se
n
te
d
as

m
ea
n
6

st
an
da
rd

d
ev
ia
ti
o
n
ov
er

1
0
it
er
at
io
n
s
o
f
th
re
e-
fo
ld

cr
os
s-
va
li
d
at
io
n
.

T
ab
le

3

E
x
te
rn
al
va
li
d
at
io
n
:P

er
fo
rm

an
ce

o
f
D
S
I
to
p
re
d
ic
tc
o
nv
er
si
o
n
to
M
C
I
o
r
an
y
ty
p
e
o
f
d
em

en
ti
a
w
h
en

te
st
ed

in
th
e
p
o
o
le
d
d
at
a
o
f
B
ar
ce
lo
n
a
an
d
D
C
N
co
h
o
rt
s,
fo
r
th
e
to
ta
lc
oh
o
rt
an
d
fo
r
p
at
ie
n
ts
w
it
h
ex
tr
em

e
va
lu
es

V
ar
ia
b
le

%
S
ta
b
le

S
C
D
,
n

P
ro
g
re
ss
iv
e
S
C
D
,
n

A
U
C

B
al
an
ce
d
ac
cu
ra
cy

S
en
si
ti
v
it
y

S
p
ec
ifi
ci
ty

P
P
V

N
P
V

D
em

o
g
ra
p
h
ic
s

2
3
2

8
8

0
.6
3

5
7
.8

6
1
.4

5
4
.3

3
3
.8

7
8
.8

A
P
O
E

2
0
3

7
2

0
.5
7

5
7
.4

4
7
.2

6
7
.5

3
4
.0

7
8
.3

N
eu
ro
p
sy
ch
o
lo
g
y

2
3
2

8
8

0
.6
9

6
3
.9

6
3
.6

6
4
.2

4
0
.3

8
2
.3

C
S
F

9
0

3
9

0
.6
9

6
1
.7

5
9
.0

6
4
.4

4
1
.8

7
8
.4

M
R
I

1
0
0

4
2

0
.7
7

6
7
.4

7
3
.8

6
1
.0

4
4
.3

8
4
.7

D
em

o
g
ra
p
h
ic
s
1

A
P
O
E
1

N
eu
ro
p
sy
ch
o
lo
g
y
1

C
S
F
1

M
R
I

2
3
2

8
8

0
.7
2

6
5
.1

6
8
.2

6
2
.1

4
0
.5

8
3
.7

D
S
I
,

0
.2

o
r
D
S
I
.

0
.8

D
em

og
ra
p
h
ic
s
1

A
P
O
E
1

N
eu
ro
p
sy
ch
o
lo
g
y
1

C
S
F
1

M
R
I

2
1

3
8

3
0

0
.8
1

7
8
.5

8
3
.3

7
3
.7

7
1
.4

8
4
.8

D
S
I
,

0
.3

o
r
D
S
I
.

0
.7

D
em

og
ra
p
h
ic
s
1

A
P
O
E
1

N
eu
ro
p
sy
ch
o
lo
g
y
1

C
S
F
1

M
R
I

4
5

9
4

5
0

0
.7
9

7
4
.2

7
6
.0

7
2
.3

5
9
.4

8
5
.0

A
b
b
re
v
ia
ti
o
n
s:
A
U
C
:
ar
ea

u
n
d
er
th
e
re
ce
iv
er
o
p
er
at
in
g
ch
ar
ac
te
ri
st
ic
cu
rv
e;
P
P
V
,p
o
si
ti
ve

p
re
d
ic
ti
ve

va
lu
e;
N
P
V
,n
eg
at
iv
e
p
re
d
ic
ti
ve

va
lu
e;
A
P
O
E
,a
p
o
li
p
o
p
ro
te
in
E
;
D
S
I,
D
is
ea
se

S
ta
te
In
d
ex
;
S
C
D
,s
u
b
je
ct
iv
e

co
g
n
it
iv
e
d
ec
li
n
e.

N
O
T
E
.
F
o
r
th
e
ex
tr
em

e
D
S
I
va
lu
es
,
n
:
n
u
m
b
er

o
f
p
at
ie
n
ts
h
av
in
g
th
e
D
S
I
va
lu
e
in

th
e
g
iv
en

ra
n
g
e;

%
:
p
er
ce
n
ta
g
e
o
f
p
at
ie
n
ts
h
av
in
g
th
e
D
S
I
va
lu
e
in

th
e
g
iv
en

ra
n
g
e.
V
al
u
es

ar
e
p
re
se
n
te
d
as

m
ea
n.

H.F.M. Rhodius-Meester et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 10 (2018) 726-736732



e in
ssion
ed t
er al
es ena
the i
19].
e stre
t in
bility
tion.
ere o
nfirm
typica
se we
port
an de
weve
sed. I
on cl
e cha
d the t
Bar

al. Th
we tr
erfor
erform
CN
rs g
by h
s can
tients
eferra
e, (
and (
field
tant h
orki
. No
ly pe
w th
start
el th
patie
en th
nces
ssion
CI, w
28,30
CN w
-up d
d pro
tients
d be
nces
we se

essmen
4. Discussion

In this large memory clinic study, we found that after an
average follow-up of almost 3 years, 22% of the individuals
with SCD showed clinical progression to MCI or dementia.
The DSI classifier combining cognitive test results,
automated MRI features, and CSF biomarkers accurately
classified 74% of the patients, with especially high NPV.
Nearly half of the patients had a clearly positive or negative
DSI of ,0.3 or .0.7, where balanced accuracy was as high
as 84%.

Although many individuals with SCD may indeed be
“worried well,” a minority visits the memory clinic because
they actually experience cognitive decline, which the
clinician is not yet able to verify. We show that a
computer-aided decision tool could support clinicians in
identifying that minority of individuals who are at high
risk of clinical progression. Moreover, for a larger group
of individuals, reassurance can be even more explicit,
backed up by negative findings on a combination of
diagnostic tests. For daily clinical routine, this could imply
a paradigm shift; it is current practice to reassure patients
with SCD but not disclose results of their particular
diagnostic tests. Our results provide support for the notion,
however, that we approach an era of personalized
medicine, where individuals’ results on diagnostic tests
can be used to obtain individualized predictions. Our
classifier may aid in providing prognosis or decide to
follow up individuals at increased risk for progression.
On further scrutinizing the data, we observed that
performance was particularly good for roughly half of the
population, with a high or low DSI (,0.3 or .0.7), while
prognostic performance was suboptimal for those with a
medium DSI (0.4-0.6) (data not shown). Yet, overall
NPV was very high, reaching up to 97.0 for the cases
with DSI , 0.3. This implies that patients with a DSI
, 0.3 can be reassured and do not need follow-up. For
patients with a DSI . 0.7, a certain prognosis cannot be
made, but the risk of clinical progression is clearly elevated
and follow-up is warranted. The fingerprint could further
aid in this interpretation by visualizing how each of the
determinants contributed to the prognosis. Of note, in the
present study, we focused on patients who present to a
memory clinic with the clinical question whether they
have an underlying neurodegenerative disease. In further
work, tools like this could also be used for screening
patients at risk in the general population, for example, by
using blood-based biomarkers [47].

The overall balanced accuracy of the DSI was highest
when we combined all different data sources. The
discriminative effect of MRI and CSF biomarkers are in
line with the additive model, indicating patients with SCD
at risk of progression already have more AD-like biomarkers
at baseline [48]. Also, neuropsychological assessment at
baseline improved the performance of the DSI. It is
conceivable that even within normal boundaries, a slight
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cognitive performance is associated with
, which is particularly appreciated when
ogether with data from other sources. The
so provided fully automatically computed MRI
bling the clinician to extract more information
mages than when using visual interpretation

ngth of this study was the large size of the
which the model was developed, and the
of two independent cohorts for external

All patients underwent thorough examination
nly included if cognitive complaints could not
ed by cognitive testing. We used data that
l of memory clinics, varied and incomplete.
aimed to develop a tool that should be able

clinicians in daily practice, it is essential the
al with missing data.
r, several potential limitations also need to be
n general, when developing prediction models
assifiers, comparing training and testing results
llenging for several reasons. In this study we
ool on the ADC data and found that on validation
celona and DCN data, performance was less
is might indicate that generalizability is limited.
ained the tool in the Barcelona and DCN data and
med external validation in ADC, we still found
ance was better in ADC than in the Barcelona
data. This suggests that not the model itself
eneralizability, but the lower performance is
eterogeneity in cohorts. Overall, the following
affect generalizability of prediction models:
in different memory clinics are different (i.e.,
l and definition of SCD), (2) heterogeneity in
3) patient measurements are done in different
4) prediction models are not able to generalize.
of SCD, heterogeneity between cohorts is an
urdle [2,5,49]. The field is acknowledging this
ng toward more harmonization of research
netheless, it is of the utmost importance to
rform studies on multiple data sets, both to get
e differences and how this influences results,
harmonizing and bridging data. In this study,

ere are several important cohort differences:
nts showed substantial baseline differences
e three memory clinic cohorts. We found
regarding progression rates and definition of
; ADC and Barcelona used the Petersen criteria
hereas DCN used the Jak-Bondi criteria for
]. Also those who remained stable in Barcelona
ere older than those in ADC. Second, although
uration in VUmc was longer, more patients
gression in Barcelona 1 DCN. Third, although
underwent a harmonized work-up, the work-up
tween the centers. We tried to eliminate these
as much as possible. For the neuropsychology
lected tests that overlapped or resembled each
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other. Also, CSF analyses of ADC, DCN, and Barcelona
were performed in the two laboratories, as part of the
Euro-SCD collaboration, minimizing, but not excluding,
interlaboratory variability. MRI scans were acquired on
systems with different field strengths, yet the automatic
analyses of these scans were all performed by the same
software [19]. However, 1.0 T images have worse gray
matter–white matter contrast than 1.5 T and 3.0 T images.
Consequently, we decided to use only 1.5 Tand 3.0 T images
in training to have a robust classifier and then reported the
results separately for different field strengths to demonstrate
the differences between 1.0 T and .1.0 T images with
roughly similar performance. In this study, we did not
perform feature selection and choose a set of features
maximizing prediction accuracy. We included diagnostics
tests and features that are either familiar to clinicians or
which we found to be good features in other studies. Had
we used an optimal set of features, this would probably
increase the performance of our model, at the risk of
overfitting.

In conclusion, this study shows that it is feasible to extract
and combine information from routine diagnostic tests into a
measure that can be used within a clinical decision support
system, supporting clinicians to identify individuals at risk
of progression who need follow-up and individuals who
are likely to remain stable and can be reassured and
discharged. This implies that it is possible to think about a
personalized medicine approach, also in patients with
SCD. Recent research has shown that patients would like
to be actively involved in decisions about prognostic testing,
but they feel they often lack important information on the
implication of the tests [15,50]. Tools such as the DSI
classifier can provide a first step in taking personalized
medicine in SCD to a next level.
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RESEARCH IN CONTEXT

1. Systematic review: An increasing number of studies
focus on biomarkers that can help identifying pa-
tients with subjective cognitive decline (SCD) at
risk of progression. Translation to clinical practice
is hampered because it remains unclear what the
diagnostic workup and follow-up for SCD should
look like and what results should be disclosed in
daily practice. We cited relevant citations.

2. Interpretation: We used a clinical decision support
system to identify patients with SCD at risk for pro-
gression. Clinical decision support systems can
weigh and combine different diagnostic tests; this
multivariate model showed especially a high nega-
tive predictive value, meaning the classifier identified
patients who will remain stable and can thus be reas-
sured.

3. Future directions: Clinical decision support systems
could be useful to aid clinicians in interpreting diag-
nostic test results and discuss results of these tests
with patients with SCD. To take diagnosis and prog-
nosis in SCD to the next level, further knowledge on
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APPENDIX – Supplemental data 

Table A.1 Baseline differences in automatic MRI features according to outcome, for ADC 
subjects only, stratifying for field strength.  
 

n  Stable 
SCD 

 Progr 
SCD 

 p-value 

Total hippocampus volume, all MRI 332  7.96± 0.83  7.49± 0.81  0.000 

Total hippocampus volume, >1T MRI 148  8.19± 0.83  7.67± 0.87  0.005 

Total hippocampus volume, 1T MRI 184  7.78± 0.78  7.34± 0.73  0.005 

        

cMTA, all MRI 332  0.37± 0.46  0.54± 0.54  0.020 

cMTA, >1T MRI 148  0.30± 0.44  0.50± 0.54  0.047 

cMTA, 1T MRI 184  0.43± 0.47  0.56± 0.55  0.163 

        

cGCA, all MRI 332  0.75± 0.65  0.87± 0.62  0.222 

cGCA, >1T MRI 148  0.31± 0.55  0.67± 0.73  0.006 

cGCA, 1T MRI 184  1.10± 0.50  1.04± 0.47  0.493 

        

Grading, all MRI 332  0.22± 0.19  0.36± 0.22  0.000 

Grading, >1T MRI 148  0.13± 0.16  0.31± 0.22  0.000 

Grading, 1T MRI 184  0.29± 0.19  0.41± 0.21  0.002 

>1T: using only 1.5T and 3T images; 1T: using only 1T images; hippocampal volume: in millilitres (ml) left plus 
right hippocampus, normalized for head size and gender; cMTA: computed medial temporal lobe atrophy 
score, (left+right)/2, derived from volumes of hippocampus and lateral ventricles; cGCA: computed cortical 
atrophy score, estimated using grey matter concentration; grading: computed using a region of interest around 
the hippocampus, describing the intensity similarity of test image and training set images.  

Raw data are presented as mean ± SD. Group differences were calculated using Student’s t test.
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Appendix Comparison to other machine learning algorithms 

Earlier studies have performed comprehensive comparisons between the DSI classifier and  

other machine learning algorithms [1-3]. These studies showed that the DSI is not always the 

best classifier for different datasets, but gives robustly good results. Furthermore the DSI has 

several benefits: 1) it has a graphical counterpart which makes interpretation of results to 

clinicians more transparent, 2) it tolerates missing data (no imputation needed), 3) is not just 

a dichotomous classifier but gives also information about the confidence of the classification 

and 4) it is not very prone to overlearning as no high-dimensional decision boundaries are 

defined (classifier defined independently for each feature).  

In this study we compared the DSI classifier to Naïve Bayes (NB) and Random Forest 

(RF)classifiers. We repeated the analyses described in section 2.7.1 and 2.7.2, now using the 

NB and RF classifiers. First, we applied cross-validation on the ADC data and, subsequently, 

trained the model on ADC data and tested it on the pooled Barcelona and DCN data, taking 

conversion to MCI or dementia as our outcome measure. Many classifiers, like NB and RF, do 

not perform well when the class distributions are imbalanced, i.e. the number of positive 

cases differs greatly from the number of negative cases. In our data, the number of stable 

SCD subjects was greater than the number of progressors, thus, we 1) used the original data 

sets as such, and 2) increased the number of progressors to match the number of stable 

cases by adding data from randomly selected progressors multiple times.       

Overall, performance of the NB classifier was corresponding and the RF classifier 

considerable worse than the DSI classifier. Details can be found in table A.4. 

[1] Mattila J, Koikkalainen J, Virkki A, Simonsen A, van GM, Waldemar G, et al. A disease 
state fingerprint for evaluation of Alzheimer's disease. J Alzheimers Dis. 2011;27:163-76. 
[2] Mattila J, Koikkalainen J, Virkki A, van GM, Lotjonen J. Design and application of a generic 
clinical decision support system for multiscale data. IEEE Trans Biomed Eng. 2012;59:234-40. 
[3] Tolonen A, F. M. Rhodius-Meester H, Bruun M, Koikkalainen J, Barkhof F, Lemstra A, et al. 
Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index 
Classifier. Front Aging Neurosci. 2018;10:111. 
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Figure A.1 Distribution of raw and normalized (z-scored) memory tests, with accompanying 
two- sample Kolmogorov-Smirnov test. 
 

 
RAVLT: Rey auditory verbal learning task, CERAD: Consortium to Establish a Registry for 
Alzheimer’s Disease, FSCRT: Free and Cued Selective Reminding test.  
 
Two-sample Kolmogorov-Smirnov test p-value 

Raw scores Normalized 

RAVLT Immediate Recall CERAD Immediate Recall <0.00001  0.152 

RAVLT Immediate Recall FCSRT Immediate Recall <0.00001  0.153 

CERAD Immediate Recall FCSRT Immediate Recall <0.00001  0.050 

RAVLT Delayed Recall CERAD Delayed Recall <0.00001  0.001 

RAVLT Delayed Recall FCSRT Delayed Recall <0.00001  0.035 

CERAD Delayed Recall FCSRT Delayed Recall <0.00001  0.015 
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Figure A.2 Schematic representation of the ROI-based grading method.  
 

 
 
AD: Alzheimer’s disease, CN: controls, FTD: frontotemporal lobe dementia, DLB: Lewy body 
dementia. 
 
ROI-based grading method measures the similarity of the ROI (red boxes) from the patient 
being studied to corresponding ROIs from reference data cases.  
The ROI of the patient is represented by a linear combination of ROIs from the reference 
data. The index is the share of the weights for a certain diagnostics group.  
 
Details about the method can be found from: Tong T, Wolz R, Coupe P, Hajnal JV, Rueckert D. 
Segmentation of MR images via discriminative dictionary learning and sparse coding: 
application to hippocampus labeling. Neuroimage. 2013;76:11-23.  
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Abstract. Several neuropsychological tests and biomarkers of Alzheimer’s disease (AD) have been validated and their evolution
over time has been explored. In this study, multiple heterogeneous predictors of AD were combined using a supervised learning
method called Disease State Index (DSI). The behavior of DSI values over time was examined to study disease progression
quantitatively in amild cognitive impairment (MCI) cohort. TheDSImethodwas applied to longitudinal data from140MCI cases
that progressed toAD and 149MCI cases that did not progress toADduring the follow-up. The data included neuropsychological
tests, brain volumes from magnetic resonance imaging, cerebrospinal fluid samples, and apolipoprotein E from the Alzheimer’s
Disease Neuroimaging Initiative database. Linear regression of the longitudinal DSI values (including the DSI value at the point
of MCI to AD conversion) was performed for each subject having at least three DSI values available (147 non-converters, 126
converters). Converters had five times higher slopes and almost three times higher intercepts than non-converters. Two subgroups
were found in the group of non-converters: one group with stable DSI values over time and another group with clearly increasing
DSI values suggesting possible progression to AD in the future. The regression parameters differentiated between the converters
and the non-converters with classification accuracy of 76.9% for the slopes and 74.6% for the intercepts. In conclusion, this
study demonstrated that quantifying longitudinal patient data using the DSI method provides valid information for follow-up of
disease progression and support for decision making.

Keywords: Alzheimer’s disease, biomarkers, data mining, decision support techniques, early diagnosis, mild cognitive
impairment

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenera-
tive disease that develops gradually over the years
and finally results in loss of cognitive function and
dementia [1]. Mild cognitive impairment (MCI) is

∗Correspondence to: Hilkka Runtti, VTT Technical Research
Centre of Finland, P.O. Box 1300, FIN-33101 Tampere, Finland.
Tel.: +358 40 152 6627; Fax: +358 20 722 3499; E-mail: hilkka.
runtti@vtt.fi.

an intermediate state between normal cognition and
dementia. Patients with MCI have cognitive problems
that are not normal for their age and do not yet interfere
with their daily activities [2–4].MCIwithmemorydys-
function is a risk factor for AD, however, not all MCI
patients will progress to AD [2, 3].
There is no cure for AD, but it has been modeled

that delaying the onset of the disease would reduce
its prevalence considerably, and slowing down its pro-
gression would allowmore cases to remain as mild AD
instead of progressing tomoderate or severe ADwhich
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causes huge costs to society [5]. Different treatments
to modify disease progression have been studied [6, 7]
and it has been shown that they should be started as
early as possible to be effective [7, 8]. To make ear-
lier AD diagnosis and interventions feasible, different
neuropsychological tests and biomarkers from labora-
tory tests and imaging have been studied extensively
[9–12].

In 2010, Jack et al. [13] proposed a model describ-
ing temporal evolution of major AD biomarkers. The
model was recently updated on the basis of gained
knowledge, and according to it, different biomark-
ers of AD become abnormal in a certain temporal
order and their longitudinal behavior is non-linear
[14]. Biomarkers measuring deposition of amyloid-
� plaques become abnormal first, years before the
clinical symptoms appear. They are followed by indi-
cators of neurodegeneration, and the last biomarkers
to become abnormal are structural changes visible
in magnetic resonance imaging (MRI) and changes
in cerebral metabolism revealed by fluorodeoxyglu-
cose positron emission tomography (FDG-PET). The
updated model also takes into account that the sever-
ity of cognitive impairment due to pathophysiological
load of AD is individual depending on, e.g., genetics,
lifestyle, and other brain diseases.

New guidelines, incorporating both cognitive
assessment and biomarkers for diagnosing different
stages of AD, were recently published as a result of
these research findings [15–18]. They state that the
detection of preclinical stages of AD in research sub-
jects should be based on biomarkers and that MCI
and AD are diagnosed using clinical and cognitive
evaluation and biomarkers can provide complementary
information.

All the different tests and investigations done in
modern diagnostics produce large amounts of data that
clinicians need to explore carefully. Assessing the het-
erogeneous data and measuring longitudinal changes
in them may be difficult. Several studies have success-
fully combined multimodal data to classify subjects
into classes of healthy, MCI, or AD using established
classification methods, e.g., logistic regression or sup-
port vector machines [19–24]. There also exists a
statistical Disease State Index (DSI) method which
estimates the state of a patient in the continuum from
healthy to disease on the basis of measured data. The
DSI method has been developed and extensively stud-
ied by most of the authors of this manuscript. Mattila
et al. [22] demonstrated that it discriminated well
between healthy cases, MCI cases that do not con-
vert to AD, MCI cases that convert to AD, and AD

cases.A recent study, also byMattila et al. [25], showed
that approximately half of theMCI patients who devel-
oped into AD could have been classified with a high
accuracy already a year before receiving the clinical
diagnoses using theDSI.However, it has not been stud-
ied yet how DSI values develop over time in subjects
with MCI.

DSI values can be visualized with a Disease State
Fingerprint (DSF) technique which shows how results
from different tests contribute to the disease state of a
patient. The DSF allows rapid interpretation of large
amounts of patient data and helps clinicians to discern
relevant information from irrelevant [22]. Until now,
only data from a single time point have been visualized
using the DSF.

The objective of this work was to study disease
progression quantitatively using heterogeneous longi-
tudinal data in an MCI cohort. First, it was studied
whether it is possible to discern significant trends in
the severity of AD as reflected by the DSI and whether
subjects that convert from MCI to AD have a differ-
ent longitudinal DSI behavior than subjects that do not
convert. Second, classification of MCI subjects to con-
verters and non-converters on the basis of the trend
parameters from longitudinal DSI values was tested.
Third, to facilitate interpretation of data, the DSF visu-
alization was developed further for the presentation of
longitudinal data.

MATERIALS AND METHODS

Study population

Data used in the analyses were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [26]. ADNI is a 5-year study aiming at devel-
oping and testing methods for acquiring and analyzing
biological markers that measure the progression of
MCI and AD [27]. ADNI was launched in 2004, and
approximately 800 subjects of age 50 to 90 years
have been recruited at around 50 sites in the United
States and Canada. The enrolled subjects included 200
healthy elderly controls, 400 subjects with MCI, and
200 subjects with early AD. The subjects underwent
cognitive assessment, neuropsychological testing, and
MRI at intervals of six or twelvemonths for two to four
years. Other tests, such as FDG-PET and blood and
cerebrospinal fluid samples (CSF), were performed
less frequently [28].

In the present study, MCI cases with at least 24
months of follow-up data were included. The selected
MCI cases were divided into two groups: a stable
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Table 1
Demographics of the study population at the baseline

Stable MCI Progressive MCI p

Subjects 149 (51.6%) 140 (48.4%)
Gender 0.373
Female 51 (34.2%) 55 (39.3%)
Male 98 (65.8%) 85 (60.7%)

Age (years) 75.1± 7.4 75.4± 6.7 0.916
Education (years) 15.9± 3.0 15.6± 3.0 0.239

Data presented as number of subjects (percentage of subjects %)
or mean± standard deviation. p: Group differences were examined
using appropriate tests based on whether their distribution was nor-
mal or not as determined by the Kolmogorov-Smirnov test: Pearson
χ2 test (gender) and Mann-Whitney U test (age and education).

MCI group (SMCI, n= 149), who did not obtain the
diagnosis ofADduring the follow-upperiod, and a pro-
gressiveMCI group (PMCI, n= 140), whose diagnosis
changed from MCI to AD during the follow-up. Sub-
jects whose diagnosis changed fromMCI to healthy or
fromMCI to AD and then back to MCI were excluded
from the study. Demographics of these two groups are
presented in Table 1.

The data were downloaded from the ADNI web-
site (http://adni.loni.ucla.edu) in September 2011. The
data used in the analyses comprised Mini-Mental
State Examination (MMSE), Alzheimer’s Disease
Assessment Scale-cognitive subscale (ADAS), Neu-
ropsychological Battery (NeuroBat), brain volume
measures based on MRI, amyloid-� and total tau in
CSF, and apolipoprotein E (APOE). Details of the
included variables are presented in the Supplemen-
tary Material. MRI brain volume measures provided
to ADNI by Anders Dale Lab (University of Califor-
nia, SanDiego) were used. They performed volumetric
segmentation ofMRIwith the FreeSurfer image analy-
sis suite, which is documented and freely available for
download online (http://surfer.nmr.mgh.harvard.edu/).
Technical details of the segmentation are described in
[29].

Diagnosis of MCI and AD in the ADNI is based
on evaluation of memory, cognition, and functional
performance (memory complaints by a subject or a
study partner, Logical Memory II, MMSE, and Clin-
ical Dementia Rating) [28]. In addition, diagnosis of
probable AD requires fulfillment of the AD criteria
defined by the NINCDS-ADRDA (the National Insti-
tute of Neurological and Communicative Disorders
and Stroke and the Alzheimer’s Disease and Related
Disorders Association) [30, 31]. Although the diagno-
sis is partly based on MMSE and Logical Memory II,
they were included in the data analyses in this study
because 1)MMSE is widely used making it interesting

in clinical sense, 2) the diagnosis is not based only on
the MMSE and Logical Memory II, and 3) the ADNI
criteria to decide between MCI versus AD does allow
overlap in MMSE score and Logical Memory II score.

Variables summarizing the tests, e.g., total MMSE
score and ADAS 13 point total, were excluded as
independent variables from the analysis because the
subscores and the individual items contain the same
information as the total scores. Justification for the use
of individual items instead of total scores is that some
items may differentiate between SMCI and PMCI
cases better than others and part of the available infor-
mation is lost if only the total scores are used. For
example, Llano et al. [32] weighted individual items
of ADAS with coefficients derived using data-driven
approach and constructed a new composite ADAS
score. Their composite score differentiated normal
controls, MCI, and AD cases better than the ADAS
total score and the composite score also predicted con-
version toADslightly better than theADAS total score.

Disease State Index

The DSI is a statistical method for deriving a scalar
value that estimates the state of a disease in a patient
[22]. The DSI method is based on the computation of
two different values: DSI values and relevance values.
The DSI value of an individual variable is computed
by comparing a measurement value from a patient
to the distributions of known healthy and diseased
cases using a so-called fitness function. DSI values are
between zero and one, with higher values indicating
that the patient fits better to the disease than to the con-
trol population on the basis of the measured data. The
relevance value describes how well the variable differ-
entiates between the knownhealthy and diseased cases.
In other words, relevance is a measure of the differ-
ences in the data measured from healthy and diseased
cases. Relevance values, like the DSI values, are also
between zero and one, with higher values represent-
ing better discrimination. A composite DSI combining
different variables is computed as a weighted arith-
metic mean of the individual DSI values weighted by
the relevance values. This averaging is done several
times recursively to yield a hierarchy of DSI values
that reveals the overall position or rank in relation to
the disease, i.e., quantifies the progression of a disease
based on available patient data. In this work, the study
population consisted of SMCIs as control cases and
PMCIs as disease cases.

The DSI method is robust against overfitting by its
design. Estimation of the DSI and relevance values

http://adni.loni.ucla.edu
http://surfer.nmr.mgh.harvard.edu/


52 H. Runtti et al. / Longitudinal Disease State Index

Table 2
Number of available patient visits at different time points

Baseline Month 6 Month 12 Month 18 Month 24 Month 30 Month 36 Month 42 Month 48

Total 289 287 287 279 281 0 233 0 51
SMCI 149 148 147 143 142 0 121 0 19
PMCI 140 139 140 136 139 0 112 0 32

SMCI, stable mild cognitive impairment; PMCI, progressive mild cognitive impairment.

for individual variables is done independently from
other variables, thus, there is no over-dimensionality
at the variable level because only two parameters are
estimated for each variable (the DSI value and the rele-
vance value). In addition, weighting of features and the
use of the hierarchy lead in practice to feature selection.
As a result, any few values alone will not determine
the resulting composite DSI value, but it is an amal-
gam of all relevant data sources. Mathematical details
of the computation of the DSI and relevance values are
explained in [22].
The DSI values can be calculated on the basis of a

single variable or multiple variables together. In this
study, it was investigated whether combining different
datamodalities would yield better results than utilizing
data from a single modality alone. Thus, DSI val-
ues were calculated using two different approaches:
1) using all available variables together (MMSE,
ADAS, NeuroBat, MRI, CSF, and APOE) and 2)
using data from individual data modalities indepen-
dently (MMSE,ADAS,NeuroBat, andMRI). CSFwas
measured less frequently so it was not analyzed indi-
vidually and neither was APOE genetics, which do not
change with disease progression. For the calculation of
the DSI values, subjects were divided into ten training
and test sets for stratified 10-fold cross-validation in
which each fold contains the same proportions of class
labels. The training data used for building the model
of AD progression included actual measurement val-
ues fromSMCI baseline visits and actual measurement
values from the time of receiving AD diagnosis for
PMCI cases. This kind of selection of training data sets
the dynamic range of the DSI method between SMCIs
at the baseline and early AD, i.e., the dynamic range
of the DSI method was optimized for the purposes of
the study and clinical problem at the hand. The test
sets included data from the complete series of visits
of the remaining SMCI and PMCI cases. The number
of patient visits available at the different time points
is shown in Table 2. Missing values in the raw data
(e.g., a missing result in MMSE) were replaced with
the values from the patient’s previous available visit.
This allowed having complete data sets for the analy-
sis at each patient visit. Although using previous data

can result in slightly outdated data and conservative
disease progression estimates for some patient visits,
that data were known to have been available at those
time points.

Disease State Fingerprint

The DSF is a method for visualizing the patient data
and the hierarchy of theDSI values [22]. Example visu-
alizations are shown in the left panel of Fig. 1. DSF
consists of a tree with nodes of different sizes and col-
ors. The size of the node indicates the relevance value,
i.e., howwell a variable or a test differentiates between
SMCI and PMCI, and color indicates the DSI value.
HigherDSI values refer to PMCI and result in shades of
red. Lower values represent SMCI and result in shades
of blue. In this study, the progression of AD was visu-
alized using the DSF technique extended with support
for longitudinal data.

Synchronization of the time stamps

The initial visits of MCI patients to a memory clinic
occurred in different phases of the disease. For exam-
ple, some PMCI cases converted from MCI to AD at
follow-up month 6 and others at month 36. To take this
into account, the time stamps of the patient visits were
synchronized. The moment of receiving AD diagno-
sis was set as the zero time point (Z) of PMCIs. For
SMCIs, the last available time point up to month 36
was set as their Z. The time points preceding the zero
point were labeled as Z-6, Z-12, etc. DSI values from
Z-42 and Z-48 months were excluded from the analy-
sis because they contained only a few cases. Thus, DSI
values computed from visit data at Z, Z-6, Z-12, Z-18,
Z-24, Z-30, and Z-36monthswere used in the analysis.
Only those subjects who had at least three DSI values
available in all approaches (DSI calculated using all
variables, MMSE, ADAS, NeuroBat, or MRI), were
included for further analysis. The purpose was to per-
form linear regression (see below) and using only two
points would have yielded in perfect regression, mak-
ing the comparison of goodness of fit values between
the different datasets unfair. The number of available
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Fig. 1. Visualizations of three sets of longitudinal patient data. Left panel: Disease State Fingerprints (DSF) in which Disease State Index (DSI)
values of the individual tests at different time points are shown on the rows. Total DSI values (the topmost rows of the DSFs) combines the
results from the individual tests. Sizes of the boxes indicate how well the variable discriminates between the stable (SMCI) and progressive
(PMCI) mild cognitive impairment cases. Color indicates to which group the data fits the best. Blue corresponds to SMCI and red to PMCI. Right
panel: linear regression of the total DSI values (red dashed line with white circles). Black squares present the total DSI values of a patient. The
horizontal lines indicate a threshold where the classification accuracy of 85% is achieved. The vertical line shows the current age of a patient.
Data from two SMCI cases are presented in the topmost panels and data from a PMCI case is presented in the lowest panel.
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Table 3
Number of Disease State Index values of the SMCI and PMCI cases
at synchronized time points. The last available time point up tomonth
36 was selected as the zero time point (Z) of SMCI. The moment of
receiving Alzheimer’s disease diagnosis was set as the Z of PMCI.

The time points preceding the Z were labeled as Z-6 etc

Z-36 Z-30 Z-24 Z-18 Z-12 Z-6 Z

SMCI 147 147 147 147 147 147 147
PMCI 29 29 64 90 126 126 126

SMCI, stable mild cognitive impairment; PMCI, progressive mild
cognitive impairment. The number of SMCI cases stays the same
because the visit Z-36 is their baseline visit and any missing values
have been replaced with the values from the previous available visit.
The number of PMCI cases changes over time because some have
converted in an early phase of the study. Only the cases having at
least three available DSI values were included.

DSI values of the included SMCI and PMCI cases at
the synchronized time points is presented in Table 3.

Modeling progression of AD

In this work, it was assumed that the change of the
DSI values over time, and thus the progression of AD,
can be modeled linearly:

DSI = a ∗ t + b (1)

where a is the slope of regression (rate of change
for DSI values), b is the intercept of regression (DSI
value at the time point zero), and t is time measured
in months. A linear model was selected because it is
the simplest method to model the progression of AD
and it is also the simplest to interpret. Another reason
was that due to the synchronization of the time stamps
some subjects had only fewDSI values available for the
regression. Thus, there were not enough data points for
more complicatedmodels. The third reason supporting
the linear model was that the follow-up times were rel-
atively short compared with the time span of disease
progression in AD in overall. Linear regression was
performed for each subject separately to model each
individual’s disease progression.

Differentiation using the trend parameters

Classification of subjects as SMCI or PMCI cases
on the basis of their regression parameters (slope,
intercept) was studied as follows. First, optimal clas-
sification thresholds for the regression parameters
were defined on the basis of the receiver operat-
ing characteristic (ROC) curves. Then, the regression
parameters were compared to the threshold value and
if it was exceeded the subject was classified as PMCI.
Otherwise he or she was classified as SMCI. The

thresholds and classification performance measures
(classification accuracy, sensitivity, and specificity)
were calculated using the stratified 10-fold cross-
validation.

Statistical methods

Normality of the continuous demographic variables
was studied using Kolmogorov-Smirnov test. Group
differences in demographics between SMCI and PMCI
groups were examined using non-parametric Mann-
Whitney U test for continuous variables and Pearson
χ2 test for categorical variables.
Linear regression was performed using the longi-

tudinal DSI values which were derived using 1) all
available variables together (total) and 2) data from
individual tests separately. Goodness of fit of the lin-
ear regression using 1) and 2) was compared using
R2, adjusted R2, and mean square errors. Residuals of
the regression were also examined using histograms
and by plotting residuals versus predicted values. The
regression parameters of the SMCI and PMCI groups
were compared to zero using one-sample Wilcoxon
Signed Rank test and the differences between the
groups were studied using Mann-Whitney U test.
Normality of the regression parameters was studied

using histograms. On the basis of the initial histogram
analysis, it appeared that the slopes of the SMCI group
may have a bimodal distribution. Fits of unimodal
and bimodal distributions were compared and details
of these analyses are explained in the Supplementary
Material.
Subjects were classified as SMCIs or PMCIs on

the basis of their regression parameters. Classification
performance was measured using the area under the
ROC curve (AUC), classification accuracies, sensitiv-
ities, and specificities. To study whether using all data
modalities together would yield in significantly greater
classification performance than using only a single data
modality, classification accuracies of the individual
tests were compared to the classification accuracies
derived using all data. Thus, four comparisons with
both the slopes and the intercepts (total-MMSE, total-
ADAS, total-NeuroBat, total-MRI) were performed.
The classification accuracies of the slopes and the
intercepts derived using all data were also compared.
Paired samples t-test was used if the classification
accuracies were normally distributed according to
Kolmogorov-Smirnov test, otherwise, related-samples
Wilcoxon Signed Rank test was performed. In all anal-
yses, p< 0.05 was considered significant. In pairwise
comparisons of classification accuracies, Bonferroni
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Table 4
Goodness of fit for the linear regression of longitudinal Disease State

Index values derived using different data modalities

Dataset R2 Adjusted R2 Mean square error

Total 0.553± 0.289 0.422± 0.369 0.006± 0.008
MMSE 0.364± 0.295 0.172± 0.390 0.014± 0.016
ADAS 0.388± 0.298 0.196± 0.413 0.024± 0.026
NeuroBat 0.475± 0.318 0.315± 0.426 0.005± 0.004
MRI 0.721± 0.259 0.642± 0.321 0.001± 0.001

Total, All available variables included when calculating DSI val-
ues; MMSE, Mini-Mental State Examination; ADAS, Alzheimer’s
DiseaseAssessment Scale-cognitive subscale; NeuroBat, Neuropsy-
chological Battery; MRI, brain volumes derived from magnetic
resonance imaging. The values are mean± standard deviation
because the linear regression was performed for each subject inde-
pendently.

correction was applied and p< 0.0056 was considered
significant (number of comparisons was nine).
All analyseswere performed inMatlabR2012a (The

Mathworks, Natick, MA) and IBM SPSS Statistics 19
(IBM, Armonk, NY). Visualizations were processed
in GNU Image Manipulation Program 2.0 (GIMP 2.0,
freely available at http://www.gimp.org/).

RESULTS

Modeling progression of AD

Goodness of fit for linear regression of the longitudi-
nal DSI values is shown in Table 4. On the basis of R2,
adjusted R2, and mean square error, the linear associa-
tionwas the strongestwhenDSI valueswere calculated
using onlyMRI-derived volumes. The linear model fit-
ted the second best when all available variables were
used together. The longitudinal DSI values derived on
the basis of cognitive and neuropsychological tests had
the smallest association values. Plots of residuals ver-
sus predicted values supported the interpretation that
the DSI values calculated on the basis of ADAS and
MMSE were the least linear over time: points in the
plots were not as randomly distributed as they were
when the DSI values were based on all available data,
MRI, or NeuroBat (results not shown here).
The linear regressionof theDSI values over timewas

performed for each subject independently. Medians of
the regression parameters for SMCI and PMCI groups
are shown in Table 5. The slopes and the intercepts of
both groups were higher than zero (p< 0.0005). There
were also clear differences between the two groups:
PMCIs had five times higher slopes and almost three
times higher intercepts than SMCIs (p< 0.0005).
The distributions of the slopes of both groups

are presented in Fig. 2. On the basis of the visual

Table 5
Regression parameters of longitudinal Disease State Index values

for SMCI and PMCI groups

SMCI PMCI

Slope∗ 0.002 (0.000, 0.006)+ 0.010 (0.005, 0.015)+
Intercept∗ 0.295 (0.139, 0.621)+ 0.754 (0.626, 0.860)+
n 7 (7; 7) 5 (3; 5)

Values are median (25th percentile, 75th percentile). SMCI, sta-
ble mild cognitive impairment; PMCI, progressive mild cognitive
impairment, n, number of points in the regression, ∗statistically
significant difference between the groups (Mann-Whitney U
test, p< 0.0005), +significantly different from zero (one-sample
Wilcoxon Signed Rank test, p< 0.0005). Disease State Index values
were derived using all variables together.

inspection, the SMCI curve deviated from a Gaussian
distribution containing also cases with higher slopes.
Therefore, a hypothesis was put forth that the SMCI
group actually contained two subgroups: onewith truly
stable DSI values and one with non-stable DSI values
having signs of disease progression. A mixture distri-
bution of two normal curves was fitted to the slopes of
the SMCIs. The fits of unimodal and bimodal distri-
butions were compared, and the results and estimated
parameters are shown in the Supplementary Material.
The results showed that the bimodal distribution fitted
better to the slopes of the SMCIs than the unimodal
distribution supporting the idea that two subgroups do
exist within the SMCI group.

Visualizing progression of AD

In Fig. 1, the progression of AD is visualized using
the DSF and the regression line of the DSI values.
Most of the nodes in the DSF of a clear SMCI case
are blue indicating that the patient data remained con-
stantly unlike the data of thosewithAD.Also, the slope
and the intercept of the regression line have low val-
ues (Fig. 1, topmost panel). On the contrary, almost all
nodes of a clear PMCI case are red, indicating strong
resemblance to previously diagnosed AD cases, and
the slope and the intercept are higher as well (Fig. 1,
lowest panel). A SMCI case with clearly increasing
DSI values and the DSF changing from blue to red
is also shown (Fig. 3, mid-panel). This case belongs
to the subgroup of SMCI cases with non-stable DSI
values in Fig. 2.

Differentiation using the trend parameters

MCI cases were classified as SMCI or PMCI using
the regression parameters of the longitudinal DSI val-
ues, and the classification performance results are

http://www.gimp.org/
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Fig. 2. Histograms of the slopes for stable (SMCI, blue) and progres-
sive (PMCI, red) mild cognitive impairment cases. There appears to
be two separate subgroups in the SMCI group.Amixture distribution
of two normal curves fitted to the slopes of SMCIs is also shown. The
areas of the histograms are scaled to one. (SD= standard deviation,
Q1 = 25th quartile, Q3 = 75th quartile).

Fig. 3. Receiver operating characteristic curves of the slope (solid
line) and the intercept (dashed line). Regression parameters were
defined using total Disease State Index values over time.

presented in Table 6. AUCs were the highest when all
available variables were used in the analysis (total).
Classification accuracies were normally distributed,
except for the slopes derived using NeuroBat. The

Table 6
Classification performance of the regression parameters of the lon-
gitudinal Disease State Index values derived using different datasets

AUC (%)Accuracy (%)Sensitivity (%)Specificity (%)

Slope
Total 82.3 76.9± 8.8 82.2± 13.7 73.0± 15.0
MMSE 77.1 71.8± 7.6 55.5± 15.5 86.5± 5.5
ADAS 76.8 68.7± 10.2 51.1± 19.2 83.6± 10.2
NeuroBat 76.6 69.2± 5.8 60.2± 13.2 76.9± 15.3
MRI 71.0 66.8± 8.1 49.5± 14.4 80.6± 14.7

Intercept
Total 80.8 74.6± 8.7 75.1± 17.4 74.4± 12.2
MMSE 79.0 72.0± 5.0 84.2± 11.6 61.5± 11.6
ADAS 80.3 74.9± 8.8 74.4± 15.6 75.7± 10.5
NeuroBat 79.3 66.9± 6.1 74.4± 21.7 61.0± 14.0
MRI 69.6 60.4± 8.9 55.6± 16.2 63.9± 16.2

Results are mean± standard deviation from the stratified 10-fold
cross-validation, except for the AUC. Total, all available variables
includedwhen calculatingDisease State Index values;MMSE,Mini-
Mental State Examination;ADAS,Alzheimer’sDiseaseAssessment
Scale-cognitive subscale; NeuroBat, Neuropsychological Battery;
MRI, brain volumes derived from magnetic resonance imaging;
AUC, area under the receiver operating characteristic curve.

classification accuracy of the slopes (total) was sig-
nificantly higher than the classification accuracies of
the slopes derived using ADAS or MRI (p= 0.001
for total-ADAS and p= 0.005 for total-MRI compar-
isons). The classification accuracy of the intercepts
(total)was significantly higher than classification accu-
racy of the MRI-derived intercepts (p= 0.004). Other
pairwise comparisons of the slopes and the inter-
cepts were not statistically significant (all p> 0.01,
Bonferroni-corrected significance level was 0.0056).
The classification accuracies of the slopes (total) and
the intercepts (total) were very similar (76.9% and
74.6%, respectively, p= 0.309). ROC curves of the
slopes (total) and the intercepts (total) are presented
in Fig. 3.

DISCUSSION

Quantification of disease progression from MCI to
AD was studied by applying the DSI method to het-
erogeneous longitudinal patient data and analyzing the
behavior of the DSI values over time in subjects with
MCI. Trend parameters of the longitudinal DSI values
were obtained from regression and ability of them to
differentiate between the groups of stable and progres-
sive MCI was also studied.
In this study, it was assumed that the behavior of

the longitudinal DSI values can be modeled linearly.
The linear association was the strongest when the
DSI values were based only on MRI features. Behav-
ior of the total DSI values was not as linear because
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neuropsychological tests were included and their tem-
poral behavior was the least linear. The linear model
may not necessarily be the best model for progression
of AD but it was selected because of simplicity and
due to paucity of data. Some subjects with PMCI had
only a few DSI values available for the regression due
to synchronization of the time stamps.
Jack and his colleagues [13] proposed that changes

in biomarkers over time would be sigmoidal and
biomarkers would become abnormal in a certain tem-
poral order. These assumptions gained support in
several studies and they still are core components of
the recently revised model [14]. Caroli et al. [33] pro-
vided the first evidence supporting the first version of
the model. They compared the fit of linear and sig-
moidal model and concluded that the sigmoidal model
fitted better for hippocampal volume, and amyloid-�
and total-tau in CSF. The linear model fitted better
for FDG-PET data. Instead of real longitudinal data,
Caroli et al. [33] used data from healthy controls,
PMCIs, and early and late ADs at the baseline to
reflect the progression of AD. Mouiha and Duchesne
[34] used the same kind of cross-sectional setting to
study the relationship between biomarkers and dis-
ease severity. They fitted six different models (linear,
quadratic, robust quadratic, local quadratic regression,
penalized B-spline, and sigmoid) to baseline data from
healthy controls, PMCI, andAD cases [34]. According
to them, amyloid-� had a piece-wise quadratic rela-
tionship, hippocampal volume and CSF measures of
phosphorylated tau and total tau were best modeled
with penalized B-splines, and linear model was the
best fit for FDG-PET [34].
The results in this study show that the change of DSI

values over time as reflected by the slope of the linear
regression equation is clearly different in the SMCI
and PMCI groups. The slope of PMCI cases was five
times higher than the slope of SMCI cases. When the
slopes of SMCI cases were studied more thoroughly, it
was noticed that there were two different subgroups in
the SMCI group: a groupwith lower slopes and another
groupwith higher slopes that overlapwith the slopes of
the PMCI cases. It is expected that the peakwith higher
slopes represents MCIs that would convert to AD or
other dementia later if the follow-up was continued.
Davatzikos et al. [20] and Cui et al. [19] also found in
their studies that subjects in the SMCI group did not
have uniform results. Some SMCI cases had markers
similar to AD, suggesting that they may convert to AD
in the future [19, 20].
Samtani et al. [35] modeled a subject’s rate of dis-

ease progression using a logistic model with several

covariates. Severity of the disease was measured using
ADAS and the analysis was restricted to an AD pop-
ulation [35]. Another approach for modeling disease
progression was presented by Escudero et al. [36].
They found profiles of disease and normality using an
unsupervised learning method (k-means clustering).
Escudero et al. [36] calculated a so-called Bioindex
that describes a subject’s degree of membership to the
profile of disease on the basis of measured data. To
study evolution of Bioindeces over time, a sigmoid
function was fitted to the Bioindex values at differ-
ent time points. They used the same approach as here
and fitted an individual function to the Bioindeces of
each subject and studied evolution of Bioindeces in
the groups of SMCI and PMCI. As in this study, they
found that converters had steeper progression towards
AD than non-converters. However, Escudero et al. [36]
did not take into account that MCI patients arrived in
the study at different phases of the disease, and they
did not synchronize the time stamps as we did.
Patient visits in this study were synchronized

according to the time of receiving AD diagnosis.
Using thismethod, the accuracy of the synchronization
depends on the accuracy of the actual AD diagnoses.
Also, data points of the SMCI cases are not synchro-
nized because they do not have an AD diagnosis.
Jedynak et al. [37] and Yang et al. [38] proposed more
sophisticated methods for synchronization. Jedynak et
al. [37] used multiple biomarkers to create a disease
progression score, which set the subjects on the same
timeline [37]. Biomarkers were assumed to follow a
sigmoidal function when constructing the disease pro-
gression score [37]. Yang et al. [38] modeled evolution
ofADAS13 score over timewith an exponentialmodel
and then defined the start of the cognitive decline using
the model. Other biomarkers were then synchronized
using the estimated period of cognitive decline. After
the synchronization, evolution of biomarkers over time
and relations between them were clearer and they sup-
ported themodel presented by Jack et al. [13, 14, 38]. In
the approach presented in [38], one needs to define an
accurate model for the progression of ADAS 13 score
over time, and the accuracy of the synchronization
depends on the suitability of the model.
The dynamic range for the DSI depends on training

sets used. In this study, the DSI values were calculated
on the basis of data from SMCI cases at baseline and
PMCI cases at the point of conversion to AD. Thus,
the dynamic range lies between MCI and early AD.
Using the same model of disease progression to study
healthy controls and late AD groups would saturate
DSI values close to zero and one, respectively. On the
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other hand, if the training set consisted of PMCI and
AD groups, the DSI would characterize changes at the
later phase of the disease. Thus, if different training
sets are used, the longitudinal behavior of the DSI val-
ues can be somewhat different. As another example, if
training set included healthy and AD cases, slopes of
the SMCI and PMCI groups should be closer to each
other than they are in this study.
Training data for this study was selected from SMCI

cases at the baseline andPMCIcases at the point of con-
version because the initial purpose for the proposed
method is in early diagnosis of AD. The main use
case for the method is a situation where a subject with
memory complaints arrives at a clinic. After some tests
have been administered, computer-based decision sup-
port tools could help in objective assessment of patient
data and possibly provide help for earlier diagnosis of
AD. If the diagnosis cannot be made at the baseline,
longitudinal quantification of progressing disease state
provides additional information to base the diagnosis
on. By selecting SMCI cases at the baseline and PMCI
cases at themoment of receiving diagnosis as the train-
ing set, the system is optimized to detect earlyADcases
from an MCI population referred to a memory clinic.
The DSI method is currently incorporated in a deci-
sion support tool that will be used in pilot studies and
the training set used in the tool comprises SMCI and
PMCI cases, similar to this study. When studies with
other purposes (e.g., focus on conversion from normal
cognition toMCI) are done in the future, then the prac-
tical issues of selecting the most appropriate training
population will be addressed.
Recently, several studies have predicted the con-

version from MCI to AD by combining multiple
data modalities and identifying converters and non-
converters on the basis of the data [19–23]. In these
studies, multimodal data were combined using logis-
tic regression [21, 22], the DSI method [22], support
vector machine classifiers [19, 22, 23, 39], and a Naive
Bayes classifier [22]. In [19, 20, 22, 40], it was found
that combination of multimodal data resulted in bet-
ter classification performance than the use of a single
modality of data, e.g., using only neuropsychological
tests. However, those studies did not report whether the
differences were statistically significant. Ewers et al.
[21] found that increasing number of variables in the
model from one to four increased the classification
accuracy, but the increase was not significant accord-
ing to the 95% confidence intervals. Cui et al. [39] also
combined different data modalities for predicting con-
version from normal cognition to MCI. They reported
that combination of neuropsychological test scores and

MRI features resulted in significantly higher classifi-
cation accuracy for the predictions than using either of
the data modalities alone. Results from our study are in
line with the previous research findings. Combination
of all available data resulted in higher classification
accuracies and AUCs than using only a single modal-
ity of data and increases in classification accuracies
were not always statistically significant. To account for
multiple comparisons, we used Bonferroni correction
which is known to be a rather conservative method.
However, in many comparisons, p-values were higher
than 0.05.
It is worth noting that the calculation of the lin-

ear regression included DSI values from the point of
conversion for PMCI cases. Thus, the classification
performance measures presented here do not describe
the ability of the trend parameters to predict conversion
from MCI to AD. However, they demonstrate that the
trend parameters of the DSI values are clearly different
between the groups of SMCI and PMCI. Prediction of
MCI to AD conversionwith the DSImethod using data
from the ADNI database has already been studied in
[22] and [25].
One interesting finding was that the MRI-derived

longitudinal DSI values had the strongest linear asso-
ciation but the regression parameters of theMRI-based
DSI values performed the worst in the classification.
One explanation could be that changes related to nor-
mal aging in the brain may interfere with the results.
For example, Koikkalainen et al. [41] removed effects
of age and other confounding factors by dividing
patients into subgroups and using linear regression.
These procedures improved classification accuracies
in their study. Another explanation could be that MRI
may be a better indicator of the rate of disease progres-
sion than of the disease stage. Stronger linearity of the
MRI-derived DSI over time might also be caused by
the fact that MRI measures are not as prone to daily
variations as neuropsychological tests may be.
Missing values were imputed with the values from

the previous available visit. This approach resulted in
slightly outdated data for some patient visits and biased
the results towards non-progression. This approach
was chosen so that all data used in the analyses really
were available from a patient at the specific moments.
This would not be the case, e.g., if missing values were
replaced with the next available values or using other
more complex imputationmethods. Replacingmissing
values with next available values would have biased
results toward progression to some extent and there
would still have been missing values because some
patients did not have any values available beyond the
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last time point. If the missing values had not been
imputed at all, the DSI values at different time points
would have been calculated using different variables
for each visit and this would have hindered the inter-
pretation of the longitudinal results.

The study had some limitations. The final diagnoses
for the subjectswere determined on the basis of clinical
evaluation and they were not verified with postmortem
histological samples taken from the brain. Also, the
study period of 48 months is relatively short. Thus,
some subjects diagnosed currently as stable MCI may
convert to AD later. This study utilized longitudinal
data from a period of 2–4 years. In clinics, where the
patients are diagnosed, there may not be data from
such a long period available. Less longitudinal data
will probably produce more variation in the slopes
and the intercepts of the regression equation. On the
other hand, this study suggests that quantifying lon-
gitudinal patient data using the DSI method provides
valid information for decision support and is a valid
methodology to follow-up a patient’s condition in a
quantitative manner.

In conclusion, this study demonstrates that combin-
ing sparse and heterogeneous datawith theDSImethod
can be used for deriving a quantitative measure related
to early AD progression. Significant trends were found
in longitudinal DSI values: rate of change of DSI val-
ues was five times higher in the PMCI group than in the
SMCI group. Classification of the subjects as convert-
ers and non-converters on the basis of the regression
parameters (the slope and the intercept) also showed
that SMCI and PMCI cases can be differentiated on the
basis of the trend parameters.
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Supplementary Material 

Materials and Methods 

Selection of variables 

Supplementary Table 1 shows the variables included in the analysis. Details of the data 

collection protocols in the ADNI are presented in [1]. 

Supplementary Table 1. Variables used in the analysis 
Data modality Number of items 
Mini-Mental State Examination (MMSE) 

All items, except total score 30 
Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS) 

All items, except total score 13 
Neuropsychological Battery (NeuroBat) 

Clock Drawing Test (all items) 5 
Clock Copying Test (all items) 5 
Logical Memory Test I and II (all items) 3 
Auditory Verbal Learning Test (trials I-V, and list B) 12 
Digit Span Test (all items) 4 
Category Fluency Test (all items) 6 
Trail Making Test (all items) 6 
Digit Symbol Substitution Test (all items) 1 
Boston Naming Test (all items) 6 
Auditory Verbal Learning Test Delayed 30 Minutes (all items) 4 
American National Adult Reading Test (all items) 1 

Brain volumes from magnetic resonance imaging (MRI) 
Summary measure of total brain parenchyma 1 
Total volume of ventricles 1 
Volumes of left and right inferior lateral ventricles 2 
Volumes of left and right hippocampi 2 
Volumes of left and right middle temporal lobes 2 
Volumes of left and right inferior temporal lobes 2 
Volumes of left and right fusiform gyri 2 
Volumes of left and right entorhinal cortices 2 

Cerebrospinal fluid samples (CSF) 
Concentration of amyloid-β 1 
Concentration of total tau 1 

Apolipoprotein E (APOE) 
Type of allele 1 (either ε2, ε3, or ε4) 1 



 

 

  Type of allele 2 (either ε2, ε3, or ε4) 1 
Total number of items 114 

 

Examination of the distribution of the regression slopes 

 Distributions of the slopes from the linear regression of longitudinal Disease State Index 

values were studied using histograms. On the basis of the histograms, it appeared that the slopes 

of the stable mild cognitive impairment group may have a bimodal distribution. The expectation 

maximization (EM) algorithm was used to fit only one Gaussian and a mixture of two Gaussians 

to the histogram of the slopes. The likelihood ratio test (LRT) was used to test whether the 

unimodal or bimodal distribution fits better to the data. LRT is defined as 

ܴܶܮ  ൌ  െ2݈݊ ൬
0ܮ
1ܮ
൰ ൌ െ2ሺ݈݊ሺ0ܮሻ െ ݈݊ሺ1ܮሻሻ,  ( 1 ) 

where ln is natural logarithm, L0 is likelihood of the unimodal model, and L1 is likelihood of the 

bimodal model. The EM algorithm produced the values of ln(L0) and ln(L1). According to 

simulations done by McLachlan [2], LRT follows the χ2 distribution with six degrees of freedom 

when variances of the two normal components in the mixture model are unequal. Thus in this 

study, six degrees of freedom were used when deciding p-values. If the p-value is below 0.05, 

unimodal model is rejected and the bimodal model is selected.  

 Akaike and Bayesian information criteria (AIC and BIC, respectively) were also used for 

studying the fits of the unimodal and the bimodal distributions. AIC and BIC are methods for 

comparing fits of a set of models to data. Both methods penalize for increasing the number of 

estimated parameters, BIC applying a larger penalty term than AIC. The model with the lowest 

AIC or BIC value is preferred. 



 

 

Results 

 The fits of unimodal and bimodal distributions were compared and the results and estimated 

parameters are shown in Supplementary Table 2. On the basis of AIC, BIC, and LRT, the 

bimodal distribution fitted better to the slopes of SMCIs than the unimodal distribution. 

 

 

Supplementary Table 2. Parameter estimates of the unimodal and bimodal Gaussian fit of the 
regression slopes of the stable mild cognitive impairment group 
 Parameter 

estimates 
LL AIC BIC LRT p 

Unimodal normal model  600.6 -1197.3 -1191.3   
 (mean ± SD) 0.003 ± 0.004      
Bimodal normal model  628.8 -1247.7 -1232.7 56.4 <0.0005
 First mode (mean ± SD) 0.000 ± 0.001      
 Second mode (mean ± SD) 0.005 ± 0.004      
 Percent in the first mode 59.0 %      
LL, log-likelihood; AIC, Akaike information criterion; BIC, Bayesian information criterion; 
LRT, likelihood ratio test as defined by Eq. 1; p, p-value determined on the basis of LRT and six 
degrees of freedom 
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Abstract.
Backgro nd: Hippocampal atrophy (HA) is one of the biomarkers for Alzheimer’s disease (AD).
Objective: To identify the best biomarkers and develop models for prediction of HA over 24 months using baseline data.
Methods: The study included healthy elderly controls, subjects with mild cognitive impairment, and subjects with AD,
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI 1) and the Australian Imaging Biomarkers and
Lifestyle Flagship Study of Ageing (AIBL) databases. Predictor variables included cognitive and neuropsychological tests,
amyloid-�, tau, and p-tau from cerebrospinal fluid samples, apolipoprotein E, and features extracted from magnetic resonance
images (MRI). Least-mean-squares regression with elastic net regularization and least absolute deviation regression models
were tested using cross-validation in ADNI 1. The generalizability of the models including only MRI features was evaluated
by training the models with ADNI 1 and testing them with AIBL. The models including the full set of variables were not
evaluated with AIBL because not all needed variables were available in it.
Res lts: The models including the full set of variables performed better than the models including only MRI features
(root-mean-square error (RMSE) 1.76–1.82 versus 1.93–2.08). The MRI-only models performed well when applied to the
independent validation cohort (RMSE 1.66–1.71). In the prediction of dichotomized HA (fast versus slow), the models
achieved a reasonable prediction accuracy (0.79–0.87).
Concl sions: These models can potentially help identifying subjects predicted to have a faster HA rate. This can help in
selection of suitable patients into clinical trials testing disease-modifying drugs for AD.

Keywords: Alzheimer’s disease, atrophy, decision support techniques, disease progression, hippocampus, magnetic resonance
imaging, regression analysis, statistical models
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
cause of dementia in elderly people and its preva-
lence is increasing. It has been estimated that 5.4
million Americans have AD in 2016 and the num-
ber would increase to 8.4 million by 2030 [1]. Brain
pathologies related to AD start to develop already
years before the first symptoms appear. AD is char-
acterized by accumulation of extracellular amyloid
plaques and intracellular neurofibrillary tangles, neu-
ronal and synaptic loss, and finally atrophy of the
brain [2]. The hippocampus is one of the brain regions
affected in AD [3]. On the basis of a meta-analysis,
the annualized rate of hippocampal atrophy is 1.4%
in normal aging, but in AD atrophy is considerably
faster with the annualized rate of 4.7% [4].

Prediction of progression in AD is of great interest
for clinicians, patients, and researchers. One measure
of progression is the conversion from one stage of dis-
ease to another, e.g., from mild cognitive impairment
(MCI) to dementia. In several studies, hippocampal
volume or grading of hippocampal atrophy has been
used as a predictor for MCI to AD conversion. These
models included, e.g., logistic regression [5–8], sup-
port vector machines [7, 9, 10], Naı̈ve Bayes classifier
[7], random forest classifier [11, 12], linear discrim-
inant classifier [13], and Disease State Index [7]. In
addition, hippocampal volume has been used in pre-
diction of time to conversion using Cox proportional
hazards model [5]. These models predicted discrete
disease stages, i.e., whether a subject developed AD
or not. However, progression of AD is a continu-
ous process and predicting only the conversion is a
simplification of the problem.

An alternative method for prediction of discrete
disease stages is to predict future scores or change
over time in relevant biomarkers. Changes (or future
values) in Mini-Mental State Examination (MMSE)
and Alzheimer’s Disease Assessment Scale – cogni-
tive subscale (ADAS-cog) have been predicted using
only baseline data [14–18] or combination of base-
line and longitudinal data [10, 19]. Change (or future
score) of Clinical Dementia Rating – Sum of Boxes
and Global Score have been predicted using several
different biomarkers [16, 19, 20].

Performance of cognitive tests may be influenced
by a number of factors, including changes in mood,
alertness, and fatigue. Moreover, the greatest rate of
change in cognitive tests occurs relatively late in the
evolution of AD [21]. Because changes in brain struc-
tures appear before memory deficits [21], we studied

the progression of disease by predicting change in
hippocampal volume over time. We selected to focus
on hippocampal volume because 1) it is the best estab-
lished structural biomarker of AD, especially in the
early diagnosis [22, 23]; 2) it has already been utilized
in clinical trials in AD; 3) it has been qualified for
patient enrichment in pre-dementia trials by the Euro-
pean Medicines Agency [24] and the Food and Drug
Administration has issued a Letter of Support for the
same purpose [25]. By developing prediction models
for change in hippocampal volume, we might be able
to identify subjects at the time of a single baseline
study as at risk of more rapid atrophy rate and faster
progression of the disease. This information could
be useful, e.g., in selection of suitable patients for
clinical trials of potential disease-modifying drugs.

The objective of this study was to develop a
multivariate model for predicting hippocampal atro-
phy rate at month 24 using data measured at the
baseline. First, models with a full set of variables
including cognitive and neuropsychological tests,
cerebrospinal fluid samples (CSF), genetic informa-
tion, and features extracted from magnetic resonance
imaging (MRI) were developed and evaluated. Sec-
ond, the performance of models including only MRI
features was compared to the models including the
full set of variables using the same subjects who
had all variables available. Development of the mod-
els with only MRI data is beneficial because not
all variables are always available, and different neu-
ropsychological tests can be used in different centers.
Third, performance of the models including only MRI
features was evaluated with a larger population hav-
ing MRI, regardless of availability of other variables.
Finally, the models including only MRI features were
evaluated using an independent validation data set.
The models with the full set of variables could not
be evaluated with the independent cohort due to the
limited availability of the needed data modalities in
the validation data set.

MATERIALS AND METHODS

Study population

ADNI 1
Data used in the analyses were obtained from the

Alzheimer’s Disease Neuroimaging Initiative, ADNI
1 database (http://adni.loni.usc.edu). The ADNI 1
was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael Weiner. ADNI
1 aimed at testing whether a combination of imaging,

http://adni.loni.usc.edu
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biological markers, and clinical and neuropsycholog-
ical assessments can measure the progression of MCI
and AD. ADNI 1 has been followed by ADNI GO,
ADNI 2, and ADNI 3 studies, in which new sub-
jects were recruited and follow-up of a group of the
already included subjects was continued. Up-to-date
information about all ADNI studies can be found at
http://www.adni-info.org.

Approximately 800 subjects of age 50 to 90 years
have been recruited at around 50 sites in the United
States and Canada into ADNI 1. The goal of the
ADNI 1 was to recruit 200 healthy elderly con-
trols (NC), 400 subjects with MCI, and 200 subjects
with early AD. The subjects underwent cognitive
assessment, neuropsychological testing, and 1.5 T
MRI at intervals of six or twelve months for two
to four years. Other tests, such as fluorodeoxyglu-
cose positron emission tomography (FDG-PET), 3 T
MRI, and blood and CSF sampling, were performed
less frequently or only in a portion of the subjects
[26]. The data were downloaded from the ADNI web
site on 22 August in 2014.

AIBL
The purpose of the Australian Imaging Biomark-

ers and Lifestyle Flagship Study of Ageing (AIBL)
was to discover biomarkers, cognitive characteristics,
and health and lifestyle factors that affect develop-
ment of symptomatic AD. The study was launched in
2006 and it has collected longitudinal data for over 4.5
years. Its aim was to recruit at least 1000 participants
of at least 60 years. The subjects consisted of healthy
volunteers, subjects with MCI, and subjects with AD.
Data were collected in Perth in Western Australia
and Melbourne in Victoria (http://aibl.csiro.au). Data
were collected by the AIBL study group. AIBL study
methodology has been reported previously [27].

AIBL has a collaborative agreement with the
US-based Alzheimer’s Association (http://www.aibl.
csiro.au/adni/index.html). Thus, data of the AIBL
subjects having PET and MRI are available through

the same technical infrastructure as ADNI. AIBL
subjects with MRI and PET data constitute about
25% of the full AIBL cohort. Some of the
oldest baseline AIBL data were acquired with-
out ADNI-compliant MRI sequences and these
data have not been provided to the ADNI portal
(http://www.aibl.csiro.au/adni/imaging.html). AIBL
data were downloaded from the ADNI web site on
27 November 2014.

Predictor variables and included subjects
In order to develop and validate the models for

prediction of hippocampal atrophy rate, four sets
of analyses were conducted, and they are sum-
marized in Table 1. Analysis 1 included the full
set of variables: cognitive and neuropsychological
tests (MMSE, ADAS-cog, Clinical Dementia Rating
(CDR), clock draw and clock copy, Auditory Verbal
Learning Test (AVLT), Digit Span, Category Fluency
Test, Trail Making Test, Digit Symbol Substitution
Test, Boston Naming Test, Auditory Verbal Learn-
ing Test Delayed 30 Minutes, American National
Adult Reading Test), apolipoprotein E (APOE), CSF
(tau, p-tau, amyloid-�), and features extracted from
MRI (explained in the section Cross-sectional image
quantification). Only a subset of subjects in ADNI
1 had CSF biomarkers available, thus, this analysis
was restricted to the subjects having CSF biomarkers
at the baseline and MRI at the baseline and month
24 (N = 281). Availability of other variables did not
affect the inclusion of a subject into the analysis,
meaning that the subject was included even if she/he
had missing values in other variables. Purpose of
the Analysis 2 was to compare the models includ-
ing only MRI features to the models including the
full set of variables. Thus, it included only MRI fea-
tures as predictors and contained ADNI 1 subjects
with baseline and 24-month MRI, regardless of avail-
ability of CSF biomarkers (N = 530). In order to get
comparable results with Analysis 1, this population
was divided into cross-validation folds and the results

Table 1
Summary of the analyses

Analysis 1 Analysis 2 Analysis 3 Analysis 4

Data ADNI 1 ADNI 1 ADNI 1 ADNI 1, AIBL
Predictors Cognitive tests,

neuropsychological tests,
CSF, APOE, MRI

MRI MRI MRI

Validation 10-fold cross-validation 10-fold cross-validation 10-fold cross- Train: ADNI 1
using 530 subjects validation Test: AIBL

Number of subjects 281 Results are shown for 530 ADNI 1 = 530
281 subjects AIBL = 176

http://www.adni-info.org
http://aibl.csiro.au
http://www.aibl.csiro.au/adni/index.html
http://www.aibl.csiro.au/adni/imaging.html
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were calculated using the same subjects as in Anal-
ysis 1 (N = 281). Analysis 3 was otherwise similar
to Analysis 2, but the results were calculated using
all 530 subjects. Analysis 4 evaluated generalizabil-
ity of the MRI-only models with an independent test
data. The models were trained using the same ADNI
1 population as in Analysis 3 and tested using the
AIBL population having the baseline and 18-month
MRI available (N = 176). Evaluation with AIBL was
done only for the MRI-only models because the full
set of all variables was not available in AIBL.

All predictor variables are listed in Supplementary
Table 1. The full set included in total 534 variables,
of which 422 were MRI features. Missing values in
the predictor variables were imputed with the medi-
ans. The effect of imputation on the results should be
subtle, as 99.1%, 99.8%, and 100% of the variables
had at most three missing values in Analysis 1 and 2,
Analysis 3, and Analysis 4, respectively. This study
did not include amyloid PET or FDG-PET because
they were performed only in a subset of patients and a
requirement to have all data modalities (baseline and
follow-up MRI, CSF, and PET) available would have
substantially reduced the number of eligible subjects.

In this study, subjects were considered as NC,
stable MCI (SMCI), or AD if their diagnosis
stayed as NC, MCI, or AD, respectively, for 36
months. If the diagnosis changed from MCI to
AD during 36 months, a subject was considered

as progressive MCI (PMCI). If diagnoses changed
otherwise than from MCI to AD (e.g., NC −→ AD
or NC −→ MCI −→ NC), the diagnosis was labeled
as unknown. The subjects with unknown diagnoses
were also included into the analyses. A limit of 36
months was selected because it was the latest time
point on which diagnoses were available in both
ADNI 1 and AIBL.

Table 2 shows demographics of the study pop-
ulations in the different analyses. No statistically
significant differences were observed in any demo-
graphic variables between 281 subjects in Analysis
1 and 2 and 530 subjects in Analysis 3. The sub-
jects in ADNI 1 were older, had lower MMSE total
score and lower hippocampal volume at the baseline
than the subjects in AIBL. ADNI 1 included more
males than females whereas AIBL had equal amount
of both genders. Proportions of the subjects in the
different diagnostic classes were not equal between
ADNI 1 and AIBL: the number of subjects in each
diagnostic class was roughly equal in ADNI 1 while
the majority of the subjects were healthy controls in
AIBL (approximately 10% were subjects with MCI,
and 12% were subjects with AD). Amyloid positivity
was defined on the basis of amyloid-� levels, using a
threshold of 192 pg/ml [28]. In Analysis 1 and 2, 69%
of the subjects were amyloid positive. Due to lack of
CSF samples, amyloid positivity is not reported for
Analysis 3 and 4. However, the proportion of amyloid

Table 2
Demographics of the study population at the baseline

ADNI 1 AIBL p p p
Analysis 1&2 Analysis 3 Analysis 4 Analysis 1&2 Analysis 1&2 Analysis 3

versus 3 versus 4 versus 4

N 281 530 176
Age (y) 75.1 ± 6.7 75.4 ± 6.5 71.9 ± 7.2 0.633 <0.0001 <0.0001
Gender 0.756 0.048 0.054

Male 167 (59) 309 (58) 88 (50)
Female 114 (41) 221 (42) 88 (50)

MMSE 26.8 ± 2.6 27.0 ± 2.6 27.8 ± 2.9 0.268 <0.0001 <0.0001
HC (mm3) 3826 ± 659 3837 ± 676 4185 ± 582 0.985 <0.0001 <0.0001
Diagnosis 0.968 <0.0001 <0.0001

NC 75 (27) 151 (28) 119 (68)
SMCI 61 (22) 118 (22) 12 (7)
PMCI 64 (23) 118 (22) 6 (3)
AD 63 (22) 109 (21) 21 (12)
Unknown 18 (6) 34 (6) 18 (10)

A� 169 ± 56 NA NA
A�+ 193 (69) NA NA

N, number of subjects; MMSE, total score of Mini-Mental State Examination; HC, hippocampal volume
(left + right); NC, healthy elderly control; SMCI, stable mild cognitive impairment; PMCI, progressive mild cog-
nitive impairment; AD, Alzheimer’s disease; Unknown, diagnosis changed otherwise than from MCI to AD; A�,
amyloid-�; A�+, number of amyloid positive subjects, i.e., subjects whose amyloid-� was below 192 pg/ml [28];
NA, not available due to lack of cerebrospinal fluid samples. Values are expressed as mean ± standard deviation
or as count (percentage).
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positive subjects in AIBL has been reported else-
where: Villemagne et al. [29] reported that 26% of
NC, 67% of MCI and 95% of AD cases were amy-
loid positives; corresponding numbers from Rowe
et al. [30] were 33%, 68%, and 98%. These num-
bers were based on standardized uptake value ratio
of 11C-Pittsburgh Compound B in PET imaging.
Demographics stratified by the diagnostic classes are
presented in Supplementary Table 2.

Cross-sectional image quantification

This section describes calculation of MRI fea-
tures used as predictors in the modelling. Volumetry,
tensor-based morphometry (TBM), and voxel-based
morphometry (VBM) were used to extract the fea-
tures from the baseline MRI [31]. Even though these
features correlate with each other, all of them were
included because they provide complementary infor-
mation on brain health. In addition, the selected
prediction methods perform feature selection which
will reduce the number of features (see the section
Modelling methods).

Volumetry
The volumetric features were calculated using the

multi-atlas segmentation method extended by the
expectation maximization classification [32]. Seg-
mentation was performed using the Neuromorpho-
metrics atlases (http://www.neuromorphometrics.
com/), including altogether 139 brain regions. Fig-
ure 1 shows an example of the segmentation. Volume
of hippocampus was also computed using another
atlas from ADNI [32].

Tensor-based morphometry
In TBM, a reference image is registered to the

patient image. When the reference image is regis-
tered similarly to images from different individuals,
the local volume changes can be compared across
different groups of individuals, e.g., patients with
AD and healthy controls. For example, the size of
the lateral ventricles tends to increase in AD which
can be observed by the local volume increase in
that area when compared with healthy controls. In
this study, TBM features were computed by inte-
grating the local volume changes over the regions
of interests obtained in volumetric segmentation (see
the section Volumetry and Supplementary Table 1).
The method presented by Koikkalainen et al. [33]
was used.

Voxel-based morphometry
While TBM measures the local volume changes,

VBM quantifies the local concentration of the gray
matter (GM) after accounting for global differences in
anatomy by registering a patient image to a reference
image [34]. As in TBM, the process was performed
on images from a high number of individuals and the
VBM features were obtained by integrating the local
concentrations over the regions of interest from the
volumetric segmentation (see the section Volumetry
and Supplementary Table 1).

Longitudinal image quantification

This section describes calculation of the observed
change in total hippocampal volume (average atro-
phy over the left and right) which was used as
a reference value in the prediction. Change in

Fig. 1. Example of the brain structure segmentation where each segmented brain structure region is shown in different colors. (Color figure
available in the online version).

http://www.neuromorphometrics.com/
http://www.neuromorphometrics.com/
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the hippocampal volume was estimated using the
extended boundary shift integral (eBSI) method
[35]. Longitudinal eBSI was used instead of the
cross-sectional volumetric method described in the
section Volumetry. The longitudinal method uti-
lizes several images from different time points
simultaneously in the calculation of atrophy rate,
whereas images from different time points are pro-
cessed separately in the cross-sectional analysis.
Longitudinal methods provide typically more accu-
rate measures of atrophy rate than cross-sectional
methods.

The original BSI method is a semi-automatic
approach which estimates the loss of GM either
locally or globally in the border of CSF and GM
[36]. The atrophy rate is computed by integrating the
intensity differences between baseline and follow-up
images in a certain boundary region. The extended
version of the BSI used in this study integrates over
tissue or structure probabilities instead of integrating
over intensity changes as is done in the original BSI
[35].

ADNI 1 included follow-up MRI at months 12, 24,
and at the later time points and AIBL at month 18. The
annual atrophy rate was calculated from 24-month
images using ADNI 1 and from 18-month images
using AIBL. Atrophy rate in AIBL was multiplied
by the factor of 2/3 to make it correspond with the
annual atrophy rate in ADNI 1.

Modelling methods

Two models were used in this study to predict
hippocampal atrophy rate on the basis of the data
measured at the baseline: 1) regularized least mean
square regression with the elastic net regularization
and 2) least absolute deviation regression with reg-
ularized least mean square regression as a feature
selection method.

Regularized least mean square regression
The normal linear least mean square regres-

sion (LMS) includes all variables in the model,
which is not very practical when the number of
predictor variables is high. An alternative for nor-
mal LMS regression is the regularized least mean
square regression with the elastic net regularization
defined as

min
β0, β

(
1

2N

N∑
i = 1

(
yi − β0 − xT

i β
)2 + λPα (β)

)
, (1)

where

Pα (β) = (1 − α)

2
‖β‖2

2 + α‖β‖1 =
p∑

j = 1

(1 − α)

2
β2

j + α
∣∣βj

∣∣, (2)

where �0 is intercept, � is vector of regression coef-
ficients, N is number of subjects, yi is the response
(observed outcome) of the subject i, xi is the vector
including predictor data for the subject i, λ is a pos-
itive regularization parameter, � has values between
0 and 1 defining the weight of L1 and L2 norms, p is
the number of predictors in the model [37, 38].

Regularized LMS regression with elastic net regu-
larization includes a penalty term P(�) that constrains
the size of the estimated regression coefficients, thus,
it sets some of the regression coefficients to zero lead-
ing in practice to feature selection. The penalty term
includes both L1 and L2 norms of the regression coef-
ficients. When the parameter � has a value of one,
the L1 norm is used and elastic net is the same as
lasso regularized regression. When the parameter �
is close to zero, the L2 norm is emphasized and the
model approaches ridge regression. For other values
of �, the penalty term is a weighted combination of
L1 and squared L2 norms. Regularization parame-
ter λ defines the amount of regularization. When λ

increases, the number of non-zero regression coeffi-
cients decreases. An optimal value for λ was defined
using the nested cross-validation, i.e., the training
population was further divided into five folds and
cross-validation was performed over these folds. The
largest λ providing the mean squared error (MSE)
within one standard error of the minimum MSE was
selected. Once the λ was selected, the whole train-
ing population of the fold was used to define optimal
regression coefficients.

Least absolute deviation regression
Least absolute deviation regression (LAD) is an

alternative method for the least mean square regres-
sion [39]. It minimizes the absolute values of the
residuals defined as

min
β0, β

(
N∑

i = 1

∣∣yi − β0 − xT
i β

∣∣) , (3)

where �0 is intercept, � is vector of regression coef-
ficients, N is number of subjects, yi is the response
(observed outcome) of the subject i, xi is the vector
including predictor data for the subject i.
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LAD is more robust against outliers in the data
than the LMS regression. Feature selection is not
embedded in the LAD regression. In this work, fea-
tures having non-zero coefficients in the regularized
LMS regression with the elastic net regularization
were selected into the LAD.

Effect of nuisance variables
The nuisance variables affect the analysis results,

but they are not of primary interest as classi-
fication features. Demographics like age, gender,
education, and weight have been shown to interact
with neuropsychological assessments and biomark-
ers [40–42]. Age and gender were available both in
ADNI 1 and AIBL studies, thus, their effect on pre-
dictors was removed using the method described by
Koikkalainen et al. [43]. The method is based on
the data variability in the population of healthy con-
trols because data from this group should not contain
any disease-related variability. First, linear absolute
deviation regression between the predictor and the
nuisance variables was performed in healthy controls
of the training population. Then, corrected values for
other subjects were calculated using the regression
coefficients:

ccorr = corig −(
β0 + βage × age + βgender × gender

)
, (4)

where ccorr is the corrected value of the predictor,
corig is the original value of the predictor, b0 is the
intercept of the regression between the predictor and
nuisance features, and �age, �gender, are regression
coefficients for age and gender, respectively.

Performance evaluation
In Analysis 1, 2, and 3, prediction performance of

the regularized LMS regression and LAD regression
models was evaluated using the 10-fold cross valida-
tion stratified according to the diagnostic classes of
NC, SMCI, PMCI, and AD. Stratified means that the
proportions of the diagnostic classes were roughly
equal in each cross-validation fold. In Analysis 4,
generalizability of the models was studied with inde-
pendent validation data by training the models with
the whole ADNI 1 cohort and testing them with the
AIBL cohort. Root-mean-square errors (RMSE) and
Spearman correlation coefficients were used as per-
formance measures. In addition, it was studied how
well the models predict which of the subjects have
fast or slow rate of hippocampal atrophy, i.e., sub-
jects whose atrophy rate is less or more than a certain

limit. One option to define the limit is to use mid-
dle point between the average atrophy rate in NC and
AD. Instead of using the atrophy rates for NC and
AD from Barnes et al. [4], averages were calculated
in cross-validation using our study population. Accu-
racy, sensitivity, specificity, positive predictive value,
and negative predictive value were reported from this
analysis. Performance and validity of the models was
visually inspected by plotting observed versus pre-
dicted hippocampal atrophy rates. Residuals of the
models were also studied. Wilcoxon singed-rank test
was used to study whether the differences in RMSEs
and Spearman correlation coefficients were statisti-
cally significant between the full models (Analysis
1) and MRI-only models (Analysis 2).

In ADNI 1, the number of cases in each diagnos-
tic group was roughly equal while AIBL contained
nearly six times more healthy controls than subjects
with AD (Table 2). This has implications especially
for calculation of the correlation coefficient. The
imbalance was taken into account by choosing ran-
domly 20 healthy controls with all subjects in other
diagnostic groups and then calculating the perfor-
mance measures. This number was selected because
it was close to the number of AD cases in the AIBL
(N = 21). This process was repeated 20 times.

Other statistical tests
Demographics of the study populations in the dif-

ferent analyses were compared using Mann-Whitney
U test (continuous variables) or Chi-squared test (cat-
egorical variables). Hippocampal atrophy rates in
the different diagnostic classes was compared using
Kruskal-Wallis test with Dunn’s post hoc test. In all
analyses, significance threshold was set at 0.05. The
analyses were performed in MATLAB R2015b (The
MathWorks, Inc., Natick, MA, USA) or in IBM SPSS
Statistics version 22 (IBM, Armonk, NY, USA).

RESULTS

Distribution of changes in hippocampal volumes

Figure 2 and Table 3 show distributions of annual
hippocampal atrophy rates in the different diagnostic
classes. In all analyses of ADNI 1, NCs had smaller
annual atrophy rates than subjects in other classes
(p < 0.0005), also SMCIs had smaller annual atrophy
rates than PMCIs or ADs (p < 0.0005). There were no
statistically significant differences between PMCIs
and ADs (p = 0.329 in Analysis 1 & 2, p = 0.068
in Analysis 3). Also in AIBL, NCs had smaller
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Fig. 2. Distribution of annual decrease in the hippocampal volume in the different subject groups. Analysis 1 & 2 included ADNI 1 subjects
with CSF available. Analysis 3 included ADNI 1 subjects with baseline and follow-up MRI, regardless of availability of CSF. Analysis 4
included AIBL subjects. NC, normal control; SMCI, stable mild cognitive impairment; PMCI, progressive mild cognitive impairment; AD,
Alzheimer’s disease.

Table 3
Summary of annual decrease (unit [%]) of the hippocampal volume in different subject groups

ADNI 1 AIBL
Analysis 1 & 2 Analysis 3 Analysis 4

NC 1.06 ± 0.87b,c,d 1.17 ± 1.11b,c,d 0.77 ± 1.09b,c,d

SMCI 2.58 ± 2.02a,c,d 2.47 ± 2.30a,c,d 2.47 ± 1.93a

PMCI 4.63 ± 2.55a,b 4.43 ± 2.36a,b 3.10 ± 1.38a

AD 6.06 ± 3.08a,b 5.84 ± 2.97a,b 5.35 ± 1.70a

Analysis 1 included cognitive and neuropsychological tests, CSF, APOE, and MRI; Analysis 2, 3,
and 4 included only MRI. NC, normal control; SMCI, stable mild cognitive impairment; PMCI,
progressive mild cognitive impairment; AD, Alzheimer’s disease; a,b,c,dsignificantly (p < 0.05)
different from NC, SMCI, PMCI, AD, respectively. Values are expressed as mean ± standard
deviation.

annual atrophy rate than subjects in other three
classes (p = 0.017 in comparison to SMCI, p = 0.020
to PMCI, p < 0.0005 to AD). There were no statis-
tically significant differences between other classes.
The mean annual atrophy rates follow the numbers
reported in a meta-analysis for normal aging and
Alzheimer’s disease: 1.4 % and 4.7 %, respectively
[4]. Absolute loss of hippocampal volume is shown
in Supplementary Table 3.

Prediction performance

Table 4 shows RMSEs and Spearman correlation
coefficients of the models. Figure 3 presents scat-
ter plots of the observed and predicted hippocampal
atrophy rates for the models with both L1 and L2
norms. Corresponding plots with only L1 norm are
presented in Supplementary Figure 1. As expected,
the models including cognitive and neuropsycholog-
ical tests, CSF, APOE, and MRI as input variables
performed better than the models including only
MRI features: RMSEs were smaller and correlation
coefficients were higher (all p < 0.05). The predicted

atrophy rates also corresponded better to the observed
atrophy rates in the full model than in the MRI-only
model. Especially, at the higher atrophy rate levels,
the MRI-only models seemed to underestimate the
real change to a greater degree than the full model,
which also showed some underestimation (Fig. 3).

Table 5 presents the performance of the models to
predict which of the subjects have fast or slow rate of
hippocampal atrophy. The limit for the fast atrophy
rate was set to average of atrophy rates in NC and AD
using our study population. In all analyses, the accu-
racy was reasonable (0.79–0.87). The models with the
full set of variables provided similar accuracy, sensi-
tivity, and specificity values. The MRI-only models
had lower sensitivities than specificities, which is in
line with the result that the MRI-only models under-
estimated the real atrophy rate.

In an attempt to enhance the MRI-only models,
quadratic terms were added to these models; however,
the changes in the performance were subtle (results
not shown here). Furthermore, addition of quadratic
terms did not reduce the problem of underestima-
tion at the higher atrophy rates. Thus, it was decided
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Fig. 3. Observed and predicted annual hippocampal atrophy rates for the LMS (top row) and LAD (bottom row) models with the L1 + L2
norm in the regularization. LMS, least mean square regression; LAD, least absolute deviation regression; NC, normal control; SMCI, stable
mild cognitive impairment; PMCI, progressive mild cognitive impairment; AD, Alzheimer’s disease; Unknown, diagnosis of the subject
changed otherwise than from MCI to AD. (Color figure available in the online version).

Table 4
Prediction performance of the models

Model Feature selection � #Features RMSE [%] Spearman rho p

Analysis 1: full model + cross-validation with ADNI 1 (N = 281)
LMS L1 + L2 0.5 27 (2) 1.79 (0.30)∗∗ 0.78 (0.06)∗∗ <0.0001 (0.0001)
LMS L1 1.0 16 (4) 1.82 (0.30)∗∗ 0.77 (0.07)∗ <0.0001 (0.0001)
LAD L1 + L2 0.5 27 (2) 1.76 (0.34)∗ 0.76 (0.09)∗ 0.0001 (0.0001)
LAD L1 1.0 16 (4) 1.76 (0.33)∗ 0.77 (0.09)∗∗ 0.0001 (0.0002)

Analysis 2: MRI-only model + cross-validation with ADNI 1 (N = 281)
LMS L1 + L2 0.5 18 (4) 2.06 (0.35) 0.72 (0.09) 0.0005 (0.0014)
LMS L1 1.0 10 (2) 2.08 (0.36) 0.72 (0.09) 0.0004 (0.0008)
LAD L1 + L2 0.5 18 (4) 1.93 (0.44) 0.72 (0.08) 0.0003 (0.0006)
LAD L1 1.0 10 (2) 1.93 (0.40) 0.71 (0.09) 0.0005 (0.0012)

Analysis 3: MRI-only model + cross-validation with ADNI 1 (N = 530)
LMS L1 + L2 0.5 18 (4) 2.11 (0.33) 0.68 (0.07) <0.0001 (<0.0001)
LMS L1 1.0 10 (2) 2.12 (0.33) 0.68 (0.08) <0.0001 (<0.0001)
LAD L1 + L2 0.5 18 (4) 2.07 (0.38) 0.68 (0.08) <0.0001 (<0.0001)
LAD L1 1.0 10 (2) 2.06 (0.34) 0.67 (0.07) <0.0001 (<0.0001)

Analysis 4: MRI-only model + validation with AIBL (N = 176)
LMS L1 + L2 0.5 22 1.71 (0.06) 0.71 (0.04) <0.0001 (<0.0001)
LMS L1 1.0 20 1.71 (0.07) 0.69 (0.04) <0.0001 (<0.0001)
LAD L1 + L2 0.5 22 1.66 (0.07) 0.71 (0.03) <0.0001 (<0.0001)
LAD L1 1.0 20 1.67 (0.07) 0.71 (0.03) <0.0001 (<0.0001)

LMS, least mean square regression; LAD, least absolute deviation regression: L1, L1 norm used in the regularization; L1 + L2, L1 and
L2 norms used in the regularization; �, parameter for controlling weights of L1 and L2 norms in the regularization; RMSE, root mean
square error; p, p-value of Spearman correlation coefficient (rho). For ADNI 1, values are presented as mean (standard deviation) over
cross-validation folds. Imbalance in the number of subjects in the different diagnostic groups in AIBL was accounted by randomly selecting
20 healthy controls together with all subjects from other groups. This was repeated multiple times and values are presented as mean (standard
deviation) over these iterations. ∗ and ∗∗: p-value <0.05 and <0.01, respectively, when compared to the corresponding model in Analysis 2
(Wilcoxon signed-rank test).
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Table 5
Performance of the models to predict rate of hippocampal atrophy, dichotomized as fast or slow

Model Feature selection � Accuracy Sensitivity Specificity PPV NPV

Analysis 1: full model + cross-validation with ADNI 1 (N = 281)
LMS L1 + L2 0.5 0.84 (0.08) 0.85 (0.14) 0.84 (0.07) 0.77 (0.10) 0.89 (0.11)
LMS L1 1.0 0.83 (0.06) 0.82 (0.14) 0.85 (0.07) 0.78 (0.10) 0.88 (0.10)
LAD L1 + L2 0.5 0.83 (0.08) 0.84 (0.14) 0.83 (0.07) 0.75 (0.11) 0.88 (0.11)
LAD L1 1.0 0.83 (0.08) 0.85 (0.15) 0.83 (0.08) 0.76 (0.12) 0.89 (0.11)

Analysis 2: RI-only model + cross-validation with ADNI 1 (N = 281)
LMS L1 + L2 0.5 0.82 (0.10) 0.77 (0.13) 0.85 (0.09) 0.78 (0.13) 0.84 (0.12)
LMS L1 1.0 0.82 (0.06) 0.79 (0.13) 0.84 (0.08) 0.77 (0.10) 0.85 (0.11)
LAD L1 + L2 0.5 0.82 (0.08) 0.78 (0.10) 0.85 (0.10) 0.79 (0.11) 0.85 (0.08)
LAD L1 1.0 0.82 (0.10) 0.76 (0.14) 0.86 (0.10) 0.79 (0.13) 0.84 (0.12)

Analysis 3: MRI-only model + cross-validation with ADNI 1 (N = 530)
LMS L1 + L2 0.5 0.79 (0.06) 0.73 (0.12) 0.82 (0.06) 0.71 (0.09) 0.83 (0.09)
LMS L1 1.0 0.79 (0.05) 0.73 (0.11) 0.82 (0.06) 0.71 (0.09) 0.83 (0.08)
LAD L1 + L2 0.5 0.79 (0.04) 0.73 (0.09) 0.83 (0.08) 0.72 (0.10) 0.84 (0.06)
LAD L1 1.0 0.79 (0.06) 0.71 (0.12) 0.83 (0.07) 0.72 (0.09) 0.83 (0.08)

Analysis 4: MRI-only model + validation with AIBL (N = 176)
LMS L1 + L2 0.5 0.87 (0.01) 0.72 (0.01) 0.97 (0.01) 0.94 (0.02) 0.84 (0.01)
LMS L1 1.0 0.85 (0.02) 0.69 (0.01) 0.97 (0.02) 0.93 (0.04) 0.82 (0.02)
LAD L1 + L2 0.5 0.87 (0.01) 0.72 (0.01) 0.97 (0.01) 0.93 (0.02) 0.84 (0.02)
LAD L1 1.0 0.86 (0.01) 0.76 (0.01) 0.93 (0.01) 0.87 (0.02) 0.85 (0.01)

The limit for fast hippocampal atrophy was based on the mean of NC and AD. The limit was on average 3.6 in Analysis 1 and 3.5 in rest
of the analyses. PPV, positive predictive value; NPV, negative predictive value; LMS, least mean square regression; LAD, least absolute
deviation regression: L1, L1 norm used in the regularization; L1 + L2, L1 and L2 norms used in the regularization; �, parameter for controlling
weights of L1 and L2 norms in the regularization. For ADNI 1, values are presented as mean (standard deviation) over cross-validation folds.
Imbalance in the number of subjects in the different diagnostic groups in AIBL was accounted by randomly selecting 20 healthy controls
together with all subjects from other groups. This was repeated multiple times and the values are presented as mean (standard deviation)
over these iterations for AIBL.

to move forward with the simpler models with only
linear terms.

In addition, we re-ran the analyses using only neu-
ropsychological and cognitive tests, CSF, and APOE,
excluding the MRI features, to evaluate their effect on
the results. These non-MRI models performed worse
than the full or MRI-only models. Their RMSEs were
2.18–2.24, Spearman rhos were 0.68–0.71, and accu-
racies in the prediction of fast atrophy rate were
0.79–0.81 (results not shown in the tables or figures).
This is a result that can be reasonably expected, as
the atrophy of the brain usually begins before perfor-
mance in neuropsychological and cognitive testing
deteriorates.

The MRI-only models generalized well across the
independent validation cohort. RMSEs were smaller
in validation with AIBL than in other three analy-
ses (Table 4). Accuracies for predicting fast atrophy
rate were also higher in AIBL than in ADNI 1; how-
ever, this was mostly due to the high specificity values
(Table 5).

The LMS models performed worse than LAD
models in all analyses. This can clearly be seen
in Fig. 3. The predicted atrophy rates of the LAD

models corresponded better to the observed atrophy
rates. The LMS models seemed to overpredict change
in subjects with low hippocampal atrophy rates and
underpredict at high rates. There was only a minor
difference between the LAD models including both
L1 and L2 norms and the models including only L1
norm.

Selected variables

Linear regression with elastic net regularization
works as a feature selection method because it sets
some of the regression coefficients to zero. Table 6
presents variables selected into the models in Anal-
ysis 1 including the full set of variables. In total, 19
variables were selected in all cross-validation folds
when both L1 and L2 norms were used in the reg-
ularization. Recalls of words (delayed recall from
MMSE, word recall and delayed word recall from
ADAS-cog, and trials 3 and 4 from AVLT), ori-
entation and modified total score from ADAS-cog
were selected from the neuropsychological and cog-
nitive tests. Amyloid-�, p-tau, and presence of APOE
�4 were also selected. Volumes of hippocampus,
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Table 6
Variables selected by the feature selection in Analysis 1, showing only the variables selected at least in five folds

L1 + L2 (� = 0.5) N L1 (� = 1.0) N

MMSE: delayed recall ball 10 ADAS-cog: modified total score 10
ADAS-cog: Q1 word recall 10 APOE: presence of �4 10
ADAS-cog: Q4 delayed word recall 10 Volume of left hippocampus 10
ADAS-cog: Q7 orientation 10 Volume of right inferior lateral ventricle 10
ADAS: modified total score 10 TBM: left hippocampus 10
AVLT: trial 3 total 10 CSF: p-tau 9
AVLT: trial 4 total 10 VBM: left hippocampus 9
CSF: amyloid beta 10 VBM: left inferior lateral ventricle 9
CSF: p-tau 10 MMSE: delayed recall ball 8
APOE: presence of �4 10 Volume of left inferior lateral ventricle 8
Volume of left hippocampus 10 CSF: amyloid beta 7
Volume of right hippocampus 10 ADAS-cog: Q7 orientation 6
Volume of left inferior lateral ventricle 10 Volume of right hippocampus 6
Volume of right inferior lateral ventricle 10 VBM: global 6
TBM: left hippocampus 10 ADAS-cog: Q1 word recall 5
TBM: right inferior lateral ventricle 10 AVLT: trial 4 total 5
VBM: left amygdala 10 TBM: right inferior lateral ventricle 5
VBM: left hippocampus 10
VBM: left inferior lateral ventricle 10
MMSE: total score 9
CDR: sum of boxes 9
TBM: left amygdala 8
VBM: global 8
CDR: home and hobbies 7
AVLT: trial 5 total 6
ADAS-cog: Q8 word recognition 5
CSF: tau 5

L1 + L2, L1 and L2 norms used in the regularization; L1, L1 norm used in the regularization; �, parameter for
controlling weights of L1 and L2 norms; N, number of times a variable was selected in different cross-validation
folds; MMSE, Mini-Mental State Examination; ADAS-cog, Alzheimer’s Disease Assessment Scale – cognitive
subscale; CDR, Clinical Dementia Rating; AVLT, Auditory Verbal Learning Test; CSF, cerebrospinal fluid; APOE,
apolipoprotein E; VBM, voxel-based morphometry; TBM, tensor-based morphometry.

inferior lateral ventricles, and amygdala calculated
using different methods were selected from the pool
of MRI features. Other variables were selected less
frequently. When the L1 norm was used in the reg-
ularization, fewer variables were selected and they
included partly the same variables as in L1 + L2
regularization. Modified total score of ADAS-cog,
presence of APOE �4, hippocampus, and inferior
lateral ventricles were selected in all folds.

Table 7 shows variables selected into the MRI-
only models when the models were trained with the
whole ADNI 1 population and tested with AIBL.
When L1 and L2 norms were used in the regu-
larization, 22 features were selected. In total 12
features described volumes of hippocampus, infe-
rior lateral ventricles, and amygdala calculated using
different methods. The rest of the selected fea-
tures described other brain areas. The regularization
with L1 norm selected 20 features and all of them,
except the right parahippocampal gyrus from VBM,
were the same as in the regularization with L1 and
L2 norms.

DISCUSSION

Atrophy of the hippocampus is one of the
biomarkers for AD [3]. In this study, we developed
multivariate models for prediction of hippocampal
atrophy at month 24 using variables measured at
the baseline. The models were based on regularized
least mean square regression and least absolute devia-
tion regression. Performance of the models including
variables from different data modalities, like neu-
ropsychological and cognitive tests, CSF biomarkers,
MRI features, and APOE, was compared to the mod-
els including only MRI features. Performance of the
MRI-only models was also evaluated using an inde-
pendent validation data set.

The models comprising different data modalities
performed better than the MRI-only models, which
show that additional variables contribute relevant
information for prediction of hippocampal atrophy
rate. Unfortunately, the analysis of the full models
included only about half of the subjects from the
MRI-only analysis, because CSF was measured only
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Table 7
Variables selected by the feature selection in Analysis 4

L1 + L2 (� = 0.5) L1 (� = 1.0)

Volume of left hippocampus Volume of left hippocampus
Volume of right hippocampus Volume of right hippocampus
Volume of left amygdala Volume of left amygdala
Volume of right amygdala Volume of left inferior lateral ventricle
Volume of left inferior lateral ventricle Volume of right inferior lateral ventricle
Volume of right inferior lateral ventricle Volume of left medial orbital gyrus
Volume of left medial orbital gyrus TBM: right amygdala
TBM: left amygdala TBM: left cerebellum exterior
TBM: right amygdala TBM: left hippocampus
TBM: left cerebellum exterior TBM: right inferior lateral ventricle
TBM: left hippocampus TBM: right entorhinal area
TBM: right inferior lateral ventricle TBM: left middle temporal gyrus
TBM: right entorhinal area TBM: right precuneus
TBM: left middle temporal gyrus TBM: right parahippocampal gyrus
TBM: right precuneus VBM: global
TBM: right parahippocampal gyrus VBM: left hippocampus
VBM: global VBM: left inferior lateral ventricle
VBM: left hippocampus VBM: cerebellar vermal lobules VI-VII
VBM: left inferior lateral ventricle VBM: left inferior temporal gyrus
VBM: cerebellar vermal lobules VI-VII VBM: right parahippocampal gyrus
VBM: left inferior temporal gyrus
VBM: left lingual gyrus

L1 + L2, L1 and L2 norms used in the regularization; L1, L1 norm used in the regularization;
�, parameter for controlling weights of L1 and L2 norms; VBM, voxel-based morphometry;
TBM, tensor-based morphometry.

in a sub-group of the patients in ADNI 1. Others have
predicted progression of AD by predicting conver-
sion from MCI to AD. Nonetheless, in those studies
combination of several data modalities provided bet-
ter prediction performance [5–7, 9]. Ewers et al. [8]
found that models with multiple variables performed
better than single marker models, but the improve-
ment was not statistically significant. In the study
conducted by Gray et al. [11], models with mul-
timodality data performed significantly better than
models including only features from CSF, genetic
tests, or FDG-PET, but no statistically significant dif-
ference was found between the MRI-only model and
the combined model.

In all analyses, LAD models performed better than
LMS models. This is quite expected because LAD
models are known to be less sensitive to outliers
than LMS models. This suggests that our data con-
tained some outlying values. The difference between
regression with both L1 and L2 norms (elastic net)
and regression with only L1 norm (lasso) was only
minor in this study. Zou and Hastie [37] have demon-
strated that an elastic net often outperformed lasso
with simulated and real world data. Lasso is a more
stringent regularization technique than elastic net: it
selects only one variable from the group of correlating
variables and it does not care which one is selected,

whereas elastic net can select groups of correlating
variables [37].

Variables selected in all cross-validation folds can
be considered the most robust variables for the pre-
diction of hippocampal atrophy rate in this study.
These variables included information from almost
all data modalities: word recall tasks, orientation and
total scores from ADAS-cog, CSF amyloid-� and p-
tau, MRI features describing hippocampus, inferior
lateral ventricles, and amygdala. In the case of the
MRI-only models, many of the selected brain regions
are part of the medial temporal lobe which is known
to be affected in AD [44, 45]. Similar variables have
been associated with hippocampal atrophy in other
studies using different approaches. van de Pol et al.
[46] studied a MCI cohort with two years of follow-
up. They divided the cohort into tertiles based on
annualized hippocampal atrophy rate (absent, mod-
erate, and severe) and found that older age, poorer
general cognition measured with ADAS-cog version
for MCI, APOE �4 prevalence, and hippocampal vol-
umes at baseline were associated with accelerated
hippocampal atrophy rate. Gender, episodic mem-
ory, executive functioning, vascular risk factors, and
MRI features including whole brain volume, white
matter hyperintensities, and lacunes did not differ
between the three atrophy rate groups. Henneman
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et al. [47] used stepwise linear regression to pre-
dict hippocampal atrophy rate and they found that
CSF p-tau levels, baseline memory function mea-
sured with Visual Association Test, and visual rating
of medial temporal lobe atrophy were associated with
hippocampal atrophy rate when corrected for age and
gender. Stricker et al. [48] used linear mixed effects
model and found also that baseline p-tau and amyloid-
� were associated with hippocampal atrophy rate over
time. It was difficult to compare the performance
of our model to the performance of the other mod-
els predicting hippocampal atrophy rate, since they
did not report RMSE values, correlation coefficients,
accuracies, sensitivities, or specificities.

Our models underestimated the real change in
hippocampal volume at the higher atrophy rate
levels, especially the MRI-only models. We tried
to improve the MRI-only models with addition
of quadratic terms, but this did not alleviate the
problem. Most probably there are other underlying
factors that were not included in the current analysis
and could explain higher atrophy rates of the
subjects. For example, following clinical conditions
have been associated with hippocampal atrophy and
were not taken into account in our study: cardio-
vascular disease, cardiac arrest, atrial fibrillation,
diabetes, hypertension, obesity, obstructive sleep
apnea, vitamin B12 deficiency, mood disorders,
post-traumatic stress disorder, and head trauma [49].
Inclusion of variables describing aforementioned
conditions might improve our models.

The hippocampus is not the only brain region being
affected in AD. It is part of the medial temporal lobe,
which is affected already at an early phase of the dis-
ease. Later in MCI, the disease proceeds to the basal
temporal lobe and paralimbic cortical areas, such as
the posterior cingulate gyrus and precuneus, and at
the onset of dementia, it spreads to the multimodal
association neocortices [50]. Even though the dis-
ease progresses to different parts of the brain, the
hippocampus and amygdala show the fastest atrophy
rates at all stages of the disease from normal cog-
nition to MCI and AD [51, 52]. Prediction models
aiming to predict disease progression at later phases
of the disease could predict, e.g., atrophy rate of the
whole brain or posterior cingulate. It would also be
interesting to see whether the models developed using
our approach for other brain regions would underes-
timate the change at the higher atrophy rate levels
as our current models for hippocampal atrophy did.
However, the significance of atrophy in other brain
regions is not as well established as is the significance

of hippocampal atrophy, e.g., a recent review [53]
concluded that hippocampal atrophy is closely related
to episodic memory performance and further studies
are needed to verify an association between volumes
of other brain regions, like posterior cingulate gyrus
or precuneus, and memory performance.

The MRI-only model generalized well across
cohorts. Interestingly, validation of the MRI-only
model with the independent validation data from
AIBL study provided higher correlation values
between the observed and predicted atrophy rates
than cross-validation with ADNI 1. One explanation
for this is that the proportion of subjects with MCI or
AD was considerably lower in AIBL than in ADNI 1.
In addition, we were not able to evaluate the full mod-
els with the independent cohort because the AIBL
did not include all relevant variables. These are lim-
itations in our study and it would be important to
validate the models with another cohort with full set
of variables and more subjects with MCI and AD.
ADNI 2 might be an appropriate option to try.

Another limitation of our study is that ADNI 1 had
follow-up data at months 12 and 24 but AIBL had
it only at month 18. Because of the time difference,
atrophy rate over 18 months in AIBL was scaled to
correspond to atrophy rate over one year in ADNI
1. In scaling, we assumed that the change would be
linear. Jack et al. [54] proposed that change in hip-
pocampal volume over time would have a sigmoidal
shape. However, the time difference in this study is
so small compared to the whole time spectrum of the
disease that the linear scaling can be assumed to be
valid.

The third limitation in our approach is that hip-
pocampal atrophy is not only related to AD, but
it can be affected by other neurodegenerative dis-
eases. In addition, a proportion of healthy or MCI
subjects show hippocampal atrophy but they do not
develop AD (e.g., suspected non-Alzheimer patho-
physiology). However, it would be interesting to see
whether our model is able to predict hippocampal
atrophy rate in patients with other biomarker data
consistent with the AD pathophysiological process,
e.g., PET or CSF evidence of cerebral amyloid bur-
den. Thus, this might be extended to preclinical AD,
a group of special interest in clinical trials, aiming to
study whether an intervention at this early phase of
the disease would provide cure or delay progression
to more severe stages.

In conclusion, hippocampal atrophy rate at 24
months was predicted using multivariate regularized
regression models with data measured at baseline.
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The models with cognitive and neuropsychological
test results, CSF biomarkers, APOE, and features
extracted from MRI performed better than models
including only MRI features. The models underes-
timated the real change at higher atrophy rates. The
MRI-only models generalized well across cohorts.
However, it would be beneficial to validate the mod-
els with other cohorts with full set of variables and
including more patients with MCI and AD. These
kinds of models can potentially help in selection of
suitable patients into clinical trials aiming to test
disease-modifying drugs for AD, e.g., by helping
to find subjects predicted to have a faster rate of
hippocampal atrophy and, thus, higher likelihood of
progressing to AD.
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DW, Friend SH, Fröhlich H, Gan J, St George-Hyslop P,
Ghosh SS, Glaab E, Green RC, Guan Y, Hong M-Y, Huang
C, Hwang J, Ibrahim J, Inglese P, Iyappan A, Jiang Q,
Katsumata Y, Kauwe JSK, Klein A, Kong D, Krause R,
Lalonde E, Lauria M, Lee E, Lin X, Liu Z, Livingstone J,

Logsdon BA, Lovestone S, Ma T, Malhotra A, Mangravite
LM, Maxwell TJ, Merrill E, Nagorski J, Namasivayam A,
Narayan M, Naz M, Newhouse SJ, Norman TC, Nurtdinov
RN, Oyang Y-J, Pawitan Y, Peng S, Peters MA, Piccolo
SR, Praveen P, Priami C, Sabelnykova VY, Senger P, Shen
X, Simmons A, Sotiras A, Stolovitzky G, Tangaro S, Tateo
A, Tung Y-A, Tustison NJ, Varol E, Vradenburg G, Weiner
MW, Xiao G, Xie L, Xie Y, Xu J, Yang H, Zhan X, Zhou
Y, Zhu F, Zhu H, Zhu S (2016) Crowdsourced estimation
of cognitive decline and resilience in Alzheimer’s disease.
Alzheimers Dement 12, 645-653.

[18] Zhu F, Panwar B, Dodge HH, Li H, Hampstead BM, Albin
RL, Paulson HL, Guan Y (2016) COMPASS: A computa-
tional model to predict changes in MMSE scores 24-months
after initial assessment of Alzheimer’s disease. Sci Rep 6,
34567.

[19] Huang L, Jin Y, Gao Y, Thung K-H, Shen D, the Alzheimer’s
Disease Neuroimaging Initiative (2016) Longitudinal clin-
ical score prediction in Alzheimer’s disease with soft-split
sparse regression based random forest. Neurobiol Aging 46,
180-191.

[20] Samtani MN, Raghavan N, Novak G, Nandy P, Narayan
VA, the Alzheimer’s Disease Neuroimaging Initiative
(2014) Disease progression model for Clinical Demen-
tia Rating-Sum of Boxes in mild cognitive impairment
and Alzheimer’s subjects from the Alzheimer’s Disease
Neuroimaging Initiative. Neuropsychiatr Dis Treat 10,
929-952.

[21] Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner
MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand
SD, Lesnick TG, Pankratz VS, Donohue MC, Tro-
janowski JQ (2013) Tracking pathophysiological processes
in Alzheimer’s disease: An updated hypothetical model of
dynamic biomarkers. Lancet Neurol 12, 207-216.

[22] Hampel H, Bürger K, Teipel SJ, Bokde ALW, Zetterberg H,
Blennow K (2008) Core candidate neurochemical and imag-
ing biomarkers of Alzheimer’s disease. Alzheimers Dement
4, 38-48.

[23] Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J,
Herholz K, Bokde ALW, Jessen F, Hoessler YC, Sanhai WR,
Zetterberg H, Woodcock J, Blennow K (2010) Biomarkers
for Alzheimer’s disease: Academic, industry and regulatory
perspectives. Nat Rev Drug Discov 9, 560-574.

[24] European Medicines Agency (2011) Qualification opinion
of low hippocampal volume (atrophy) by MRI for use
in clinical trials for regulatory purpose - in pre-dementia
stage of Alzheimer’s disease, https://www.ema.europa.eu/
documents/regulatory-procedural-guideline/qualification-
opinion-low-hippocampal-volume-atrophy-magnetic-reso
nance-imaging-use-clinical-trials en.pdf, Accessed 25
January 2019.

[25] Food and Drug Administration (2015) Biomarker Let-
ter of Support, https://www.fda.gov/downloads/Drugs/
DevelopmentApprovalProcess/DrugDevelopmentToolsQua
lificationProgram/BiomarkerQualificationProgram/UCM60
5354.pdf, Accessed 25 January 2019.

[26] Alzheimer’s Disease Neuroimaging Initiative (2006)
ADNI 1 Procedures Manual, http://adni.loni.usc.edu/wp-
content/uploads/2010/09/ADNI GeneralProceduresManual
.pdf, Accessed 12 June 2018.

[27] Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hud-
son P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P,
Masters C, Milner A, Pike K, Rowe C, Savage G, Szoeke
C, Taddei K, Villemagne V, Woodward M, Ames D, AIBL
Research Group (2009) The Australian Imaging, Biomark-

https://www.ema.europa.eu/documents/regulatory-procedural-guideline/qualification-opinion-low-hippocampal-volume-atrophy-magnetic-resonance-imaging-use-clinical-trials_en.pdf
https://www.ema.europa.eu/documents/regulatory-procedural-guideline/qualification-opinion-low-hippocampal-volume-atrophy-magnetic-resonance-imaging-use-clinical-trials_en.pdf
https://www.ema.europa.eu/documents/regulatory-procedural-guideline/qualification-opinion-low-hippocampal-volume-atrophy-magnetic-resonance-imaging-use-clinical-trials_en.pdf
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/BiomarkerQualificationProgram/UCM605354.pdf
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/BiomarkerQualificationProgram/UCM605354.pdf
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/BiomarkerQualificationProgram/UCM605354.pdf
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/BiomarkerQualificationProgram/UCM605354.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf


1468 H. Liedes et al. / Prediction of Hippocampal Atrophy in AD

ers and Lifestyle (AIBL) study of aging: Methodology and
baseline characteristics of 1112 individuals recruited for a
longitudinal study of Alzheimer’s disease. Int Psychogeriatr
21, 672-687.

[28] Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM,
Aisen PS, Petersen RC, Blennow K, Soares H, Simon A,
Lewczuk P, Dean R, Siemers E, Potter W, Lee VM-Y,
Trojanowski JQ, Alzheimer’s Disease Neuroimaging Ini-
tiative (2009) Cerebrospinal fluid biomarker signature in
Alzheimer’s disease neuroimaging initiative subjects. Ann
Neurol 65, 403-413.

[29] Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA,
Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff P,
Ames D, Rowe CC, Masters CL (2013) Amyloid � deposi-
tion, neurodegeneration, and cognitive decline in sporadic
Alzheimer’s disease: A prospective cohort study. Lancet
Neurol 12, 357-367.

[30] Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE,
Jones G, Fripp J, Tochon-Danguy H, Morandeau L, O’Keefe
G, Price R, Raniga P, Robins P, Acosta O, Lenzo N, Szoeke
C, Salvado O, Head R, Martins R, Masters CL, Ames D,
Villemagne VL (2010) Amyloid imaging results from the
Australian Imaging, Biomarkers and Lifestyle (AIBL) study
of aging. Neurobiol Aging 31, 1275-1283.

[31] Koikkalainen J, Rhodius-Meester H, Tolonen A, Barkhof
F, Tijms B, Lemstra AW, Tong T, Guerrero R, Schuh A,
Ledig C, Rueckert D, Soininen H, Remes AM, Waldemar
G, Hasselbalch S, Mecocci P, van der Flier W, Lötjönen J
(2016) Differential diagnosis of neurodegenerative diseases
using structural MRI data. Neuroimage Clin 11, 435-449.

[32] Lötjönen JM, Wolz R, Koikkalainen JR, Thurfjell L, Walde-
mar G, Soininen H, Rueckert D, the Alzheimer’s Disease
Neuroimaging Initiative (2010) Fast and robust multi-atlas
segmentation of brain magnetic resonance images. Neu-
roimage 49, 2352-2365.

[33] Koikkalainen J, Lötjönen J, Thurfjell L, Rueckert D,
Waldemar G, Soininen H, the Alzheimer’s Disease Neu-
roimaging Initiative (2011) Multi-template tensor-based
morphometry: Application to analysis of Alzheimer’s dis-
ease. Neuroimage 56, 1134-1144.

[34] Ashburner J, Friston KJ (2000) Voxel-based
morphometry—the methods. Neuroimage 11, 805-821.

[35] Lötjönen J, Ledig C, Koikkalainen J, Wolz R, Thurfjell
L, Soininen H, Ourselin S, Rueckert D, the Alzheimer’s
Disease Neuroimaging Initiative (2014) Extended boundary
shift integral. In 2014 IEEE 11th International Symposium
on Biomedical Imaging (ISBI) IEEE, Beijing, pp. 854-857.

[36] Freeborough PA, Fox NC (1997) The boundary shift inte-
gral: An accurate and robust measure of cerebral volume
changes from registered repeat MRI. IEEE Trans Med Imag-
ing 16, 623-629.

[37] Zou H, Hastie T (2005) Regularization and variable selec-
tion via the elastic net. J R Stat Soc Ser B Stat Methodol 67,
301-320.

[38] Friedman J, Hastie T, Tibshirani R (2010) Regularization
paths for generalized linear models via coordinate descent.
J Stat Softw 33, 1-22.

[39] Dasgupta M, Mishra SK (2004) Least absolute devia-
tion estimation of linear econometric models: A literature
review, University Library of Munich, Germany.

[40] Beckett LA, Harvey DJ, Gamst A, Donohue M, Kornak
J, Zhang H, Kuo JH, Alzheimer’s Disease Neuroimaging

Initiative (2010) The Alzheimer’s Disease Neuroimaging
Initiative: Annual change in biomarkers and clinical out-
comes. Alzheimers Dement 6, 257-264.

[41] Cronk BB, Johnson DK, Burns JM, Alzheimer’s Disease
Neuroimaging Initiative (2010) Body mass index and cog-
nitive decline in mild cognitive impairment. Alzheimer Dis
Assoc Disord 24, 126-130.

[42] Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy
LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2009)
One-year brain atrophy evident in healthy aging. J Neurosci
29, 15223-15231.

[43] Koikkalainen J, Pölönen H, Mattila J, van Gils M, Soini-
nen H, Lötjönen J, the Alzheimer’s Disease Neuroimaging
Initiative (2012) Improved classification of Alzheimer’s dis-
ease data via removal of nuisance variability. PLoS One 7,
e31112.

[44] Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM
(2010) The clinical use of structural MRI in Alzheimer
disease. Nat Rev Neurol 6, 67-77.

[45] Fox NC, Schott JM (2004) Imaging cerebral atrophy: Nor-
mal ageing to Alzheimer’s disease. Lancet 363, 392-394.

[46] van de Pol LA, van der Flier WM, Korf ESC, Fox NC,
Barkhof F, Scheltens P (2007) Baseline predictors of rates
of hippocampal atrophy in mild cognitive impairment. Neu-
rology 69, 1491-1497.

[47] Henneman WJP, Vrenken H, Barnes J, Sluimer IC, Ver-
wey NA, Blankenstein MA, Klein M, Fox NC, Scheltens
P, Barkhof F, van der Flier WM (2009) Baseline CSF p-
tau levels independently predict progression of hippocampal
atrophy in Alzheimer disease. Neurology 73, 935-940.

[48] Stricker NH, Dodge HH, Dowling NM, Han SD, Erosheva
EA, Jagust WJ, the Alzheimer’s Disease Neuroimaging Ini-
tiative (2012) CSF biomarker associations with change in
hippocampal volume and precuneus thickness: Implications
for the Alzheimer’s pathological cascade. Brain Imaging
Behav 6, 599-609.

[49] Fotuhi M, Do D, Jack C (2012) Modifiable factors that alter
the size of the hippocampus with ageing. Nat Rev Neurol 8,
189-202.

[50] Vemuri P, Jack CR (2010) Role of structural MRI in
Alzheimer’s disease. Alzheimers Res Ther 2, 23.

[51] McDonald CR, McEvoy LK, Gharapetian L, Fennema-
Notestine C, Hagler DJ, Holland D, Koyama A, Brewer
JB, Dale AM, Alzheimer’s Disease Neuroimaging Initiative
(2009) Regional rates of neocortical atrophy from normal
aging to early Alzheimer disease. Neurology 73, 457-465.

[52] Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy
LK, Hagler DJ, Holland D, Brewer JB, Dale AM,
Alzheimer’s Disease Neuroimaging Initiative Neuroimag-
ing (2010) CSF biomarkers in prediction of cerebral
and clinical change in mild cognitive impairment and
Alzheimer’s disease. J Neurosci 30, 2088-2101.

[53] Bayram E, Caldwell JZK, Banks SJ (2018) Current under-
standing of magnetic resonance imaging biomarkers and
memory in Alzheimer’s disease. Alzheimers Dement (N Y)
4, 395-413.

[54] Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS,
Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypo-
thetical model of dynamic biomarkers of the Alzheimer’s
pathological cascade. Lancet Neurol 9, 119-128.



1 
 

SUPPLEMENTARY MATERIAL 

Supplementary Table 1 lists all variables used as predictors. Analysis 1 included all variables and 

Analysis 2, Analysis 3 and Analysis 4 included only MRI features. Supplementary Table 2 presents 

demographics of the study populations separately for each diagnostic class. Supplementary Table 

3 shows absolute loss of hippocampal volume between the baseline and 24-month follow-up. 

Supplementary Figure 1 presents the observed and predicted hippocampal atrophy rate for the 

different models when only L1 norm was used in the regularization. 

Supplementary Table 1. Predictor variables 

Cognitive and neuropsychological Items N 
Mini-Mental State Examination All items + total score 31 
Alzheimer’s Disease Assessment Scale – 
cognitive subscale All items + modified total score 14 

Clinical Dementia Rating All items + global score + total score 8 
Clock draw All items + total score 6 
Clock Copy All items + total score 6 
Auditory Verbal Learning Test Trials I-VI + List B (total score, intrusions) 14 
Digit Span Forward + Backward (total score, length) 4 

Category Fluency Test Animals + Vegetables (total score, perseverations, 
intrusions) 6 

Trail Making Test Part A + Part B 6 
Digit Symbol Substitution All items 1 
Boston Naming Test All items 6 
Auditory Verbal Learning Test Delayed 
Recall Delayed recall + Recognition 4 

American National Adult Reading Test All items 1 
Cerebrospinal fluid sample   

Amyloid-β  

Tau  

P-tau  

Genetic   

APOE: type of allele 1 (ε2, ε3, or ε4) as dummy coded variables  

APOE: type of allele 2 (ε2, ε3, or ε4) as dummy coded variables  

MRI: volumetry of hippocampus using an atlas from ADNI [32]    



2 
 

Right Hippocampus   

Left Hippocampus   

MRI: volumetry, tensor-based morphometry, and voxel-based morphometry for the 
following brain regions from the Neuromorphometrics atlas  

Global Right Lingual Gyrus  

3rd Ventricle Left Lingual Gyrus  

4th Ventricle Right Lateral Orbital Gyrus  

5th Ventricle Left Lateral Orbital Gyrus  

Right Accumbens Area Right Middle Cingulate Gyrus  

Left Accumbens Area Left Middle Cingulate Gyrus  

Right Amygdala Right Medial Frontal Cortex  

Left Amygdala Left Medial Frontal Cortex  

Brain Stem Right Middle Frontal Gyrus  

Right Caudate Left Middle Frontal Gyrus  

Left Caudate Right Middle Occipital Gyrus  

Right Cerebellum Exterior Left Middle Occipital Gyrus  

Left Cerebellum Exterior Right Medial Orbital Gyrus  

Right Cerebellum White Matter Left Medial Orbital Gyrus  

Left Cerebellum White Matter Right Postcentral Gyrus Medial Segment  

Right Cerebral Exterior Left Postcentral Gyrus Medial Segment  

Left Cerebral Exterior Right Precentral Gyrus Medial Segment  

Right Cerebral White Matter Left Precentral Gyrus Medial Segment  

Left Cerebral White Matter Right Superior Frontal Gyrus Medial Segment  

CSF Left Superior Frontal Gyrus Medial Segment  

Right Hippocampus Right Middle Temporal Gyrus  

Left Hippocampus Left Middle Temporal Gyrus  

Right Inferior Lateral Ventricle Right Occipital Pole  

Left Inferior Lateral Ventricle Left Occipital Pole  

Right Lateral Ventricle Right Occipital Fusiform Gyrus  

Left Lateral Ventricle Left Occipital Fusiform Gyrus  

Right Pallidum Right Opercular Part of the Inferior Frontal Gyrus 
Left Pallidum Left Opercular Part of the Inferior Frontal Gyrus  

Right Putamen Right Orbital Part of the Inferior Frontal Gyrus  

Left Putamen Left Orbital Part of the Inferior Frontal Gyrus  

Right Thalamus Proper Right Posterior Cingulate Gyrus  

Left Thalamus Proper Left Posterior Cingulate Gyrus  

Right Ventral DC Right Precuneus  

Left Ventral DC Left Precuneus  

Right Vessel Right Parahippocampal Gyrus  

Left Vessel Left Parahippocampal Gyrus  

Optic Chiasm Right Posterior Insula  
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Cerebellar Vermal Lobules|I-V Left Posterior Insula  

Cerebellar Vermal Lobules|VI-VII Right Parietal Operculum  

Cerebellar Vermal Lobules|VIII-X Left Parietal Operculum  

Right Basal Forebrain Right Postcentral Gyrus  

Left Basal Forebrain Left Postcentral Gyrus  

Right Anterior Cingulate Gyrus Right Posterior Orbital Gyrus  

Left Anterior Cingulate Gyrus Left Posterior Orbital Gyrus  

Right Anterior Insula Right Planum Polare  

Left Anterior Insula Left Planum Polare  

Right Anterior Orbital Gyrus Right Precentral Gyrus  

Left Anterior Orbital Gyrus Left Precentral Gyrus  

Right Angular Gyrus Right Planum Temporale  

Left Angular Gyrus Left Planum Temporale  

Right Calcarine Cortex Right Subcallosal Area  

Left Calcarine Cortex Left Subcallosal Area  

Right Central Operculum Right Superior Frontal Gyrus  

Left Central Operculum Left Superior Frontal Gyrus  

Right Cuneus Right Supplementary Motor Cortex  

Left Cuneus Left Supplementary Motor Cortex  

Right Entorhinal Area Right Supramarginal Gyrus  

Left Entorhinal Area Left Supramarginal Gyrus  

Right Frontal Operculum Right Superior Occipital Gyrus  

Left Frontal Operculum Left Superior Occipital Gyrus  

Right Frontal Pole Right Superior Parietal Lobule  

Left Frontal Pole Left Superior Parietal Lobule|  

Right Fusiform Gyrus Right Superior Temporal Gyrus  

Left Fusiform Gyrus Left Superior Temporal Gyrus  

Right Gyrus Rectus Right Temporal Pole  

Left Gyrus Rectus Left Temporal Pole  

Right Inferior Occipital Gyrus Right Triangular Part of the Inferior Frontal Gyrus 
Left Inferior Occipital Gyrus Left Triangular Part of the Inferior Frontal Gyrus  

Right Inferior Temporal Gyrus Right Transverse Temporal Gyrus  

Left Inferior Temporal Gyrus Left Transverse Temporal Gyrus  
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Supplementary Table 3. Absolute loss of hippocampal volume [mm3] between the baseline and 24-month follow-

up 

  Analysis 1 & 2 Analysis 3 Analysis 4 

NC 88 ± 71  95 ± 84 64 ± 89 

SMCI 190 ± 144 181 ± 163 186 ± 143 

PMCI 316 ± 178 305 ± 161 214 ± 98 

AD 384 ± 197 369 ± 183 380 ± 138 
NC: healthy elderly control; SMCI: stable mild cognitive impairment; PMCI: progressive mild cognitive impairment; 

AD: Alzheimer’s disease; Unknown: diagnosis changed otherwise than from MCI to AD. 
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Supplementary Figure 1. Observed and predicted annual hippocampal atrophy rate for the models with L1 

norms in the regularization. LMS: least mean square regression; LAD: least absolute deviation regression; NC: 

normal control; SMCI: stable mild cognitive impairment; PMCI: progressive mild cognitive impairment; AD: 

Alzheimer’s disease; Unknown: diagnosis of the subject changed otherwise than from MCI to AD. 
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bstract

ackground: Survival after dementia diagnosis varies considerably. Previous studies were focused mainly on factors
elated to demographics and comorbidity rather than on Alzheimer’s disease (AD)-related determinants. We set out
o answer the question whether markers with proven diagnostic value also have prognostic value. We aimed to
dentify disease-related determinants associated with mortality in patients with AD.

ethods: We included 616 patients (50% female; age 67 ± 8 years; mean Mini Mental State Examination score 22
3) with dementia due to AD from the Amsterdam Dementia Cohort. Information on mortality was obtained from

he Dutch Municipal Register. We used age- and sex-adjusted Cox proportional hazards analysis to study associations of
aseline demographics, comorbidity, neuropsychology, magnetic resonance imaging (MRI) (medial temporal lobe, global
ortical and parietal atrophy, and measures of small vessel disease), and cerebrospinal fluid (CSF) (β-amyloid 1–42, total
au, and tau phosphorylated at threonine 181 [p-tau]) with mortality (outcome). In addition, we built a multivariate
odel using forward selection.
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k factors such as hypertension and diabetes mellitus
ve been identified as determinants of mortality, but only
studies of older patients with dementia [11–15]. Few
dies have been focused on AD-specific factors, such as
rebrospinal fluid (CSF) and magnetic resonance imaging
RI) markers. More severe neuronal degeneration, as
flected by a high total tau (tau) concentration and
ole-brain atrophy, has been suggested as a determinant
mortality [12, 16–18]. In one study, microbleeds were
sociated with mortality in AD, and white matter hyper-
tensities (WMH) were associated with mortality in all-
use dementia [12].
Researchers in previous studies tended to evaluate only
few prognostic factors per study and included mainly
tients aged 75 years and older, who are at risk of mor-
ity owing to their advanced age even without a
mentia diagnosis [3, 19]. Prognostic factors may be
fferent for patients with early-onset AD, who are youn-
r and have less comorbidity but are prone to a more
gressive disease course [10, 20–22]. We aimed to in-
stigate the prognostic value of baseline clinical data,
cluding demographics, comorbidity, neuropsychology,
d CSF and MRI biomarkers, as determinants of mor-
ity in dementia due to AD.

ethods
tients
this longitudinal study, we included 616 patients with a
seline diagnosis of dementia due to AD from a memory
nic-based cohort (the Amsterdam Dementia Cohort)
o had a baseline visit between 2000 and 2014 [23]. Sub-
ts were selected if a neuropsychological test battery was
ailable at baseline, with a baseline Mini Mental State
amination (MMSE) score ≥ 16 and a minimum follow-
of 2 years. At baseline, patients received a standardized
d multidisciplinary workup, including medical history;
ysical, neurological, and neuropsychological examina-
ns; MRI; laboratory tests; and lumbar puncture for CSF
easurements. Years of education and self-reported dur-
on of complaints were recorded. For the assessment of
tivities of daily living, we used the Disability Assessment
r Dementia (DAD) [24]. We included all data that were
llected within 6 months of baseline diagnosis. Diagnoses
re made in a multidisciplinary consensus meeting. Pa-
nts were diagnosed with probable AD using the criteria
the National Institute of Neurological and Communica-
e Disorders and Stroke/Alzheimer’s Disease and Related
sorders Association; all patients also met the core clin-
l criteria of the National Institute on Aging-Alzheimer’s
sociation for AD dementia [25, 26].
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esterolemia and/or use of cholesterol-
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f antidiabetic drugs), and cardiovascular
st one of the following: history of coron-
ase, heart failure, heart disease, peripheral
ase, stroke, and/or transient ischemic
ermore, we dichotomized smoking status
d versus current or history of smoking)
he medications used per patient.

gical tests
ction was assessed at baseline with a stan-
battery in which the MMSE was used for
ive functioning [27]. For memory, the
ation Test (VAT) and the Rey Auditory
ng Task (RAVLT) were included [28, 29].
ental speed and attention, we used Trail

A (TMT-A) and the forward condition of
. Trail Making Test B (TMT-B) and the
ioning [30, 31]. Language and executive
ere tested by category fluency (animals)
data ranged from n = 19 (3%) (digit span
= 67 (11%) (RAVLT, delayed recall).

e scanned as part of clinical workup
ardized protocol on a 1.0-, 1.5-, or 3.0-T
ans were visually rated by trained raters
ntly evaluated in a consensus meeting
erienced neuroradiologist [23]. Visual
dial temporal lobe atrophy (MTA) was
ing coronal T1-weighted images on a 5-
cale from the average score of the left
es [33]. Global cortical atrophy (GCA)
visually on axial fluid-attenuated inver-
(FLAIR) images (range of scores 0–3)
atrophy was rated using T1-weighted
eighted images viewed in sagittal, axial,
lanes by computing an average score of
ight sides (range 0–3) [35]. WMH were
l FLAIR images using a four-step scale
[36]. Lacunes were defined as deep
mm) with CSF-like signals on all se-

were dichotomized as present or absent.
were defined as small, round foci of
ignal up to 10 mm in brain parenchyma
hted gradient echo images. The total
icrobleeds was counted and divided into
ies: zero, one or two, and three or more
MRI data were available for 485 (79%)
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F analyses were performed at the Neurochemistry
boratory at the Department of Clinical Chemistry of
e VUmc. CSF was obtained by lumbar puncture be-
een the L3-L4 or L4-L5 intervertebral space by using
25-gauge needle and collected into polypropylene
bes. Within 2 h, the CSF was centrifuged at 1800 × g
r 10 minutes at 4 °C, transferred to new polypropylene
bes, and stored at −20 °C until biomarker analysis
ithin 2 months). β-Amyloid 1–42 (Aβ42), tau, and tau
osphorylated at threonine 181 (p-tau) were measured
th commercially available enzyme-linked immuno-
rbent assays (Innotest; Fujirebio, Ghent, Belgium) [37].
F data were available for 466 (76%) subjects.

OE genotyping
A was isolated from 10 ml of ethylenediaminetetraace-
acid blood. Apolipoprotein E (APOE) genotype was de-
mined using the LightCycler APOE mutation detection
ethod (Roche Diagnostics GmbH, Mannheim, Germany).
cording to APOE ε4 allele status, patients were dichoto-
ized into carriers (hetero- and homozygous) and noncar-
rs. APOE status was available for 562 (91%) subjects.

tcome measure
r each patient, we obtained information on all-cause

follow-up
baseline A
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Statistical a
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ortality (died yes/no with a date of death) from the
tch municipal population register. This register was
arched on 19 October 2016. Causes of death cannot be
termined from this municipal registry. We defined

into account
the 15 impu
adjusted (mod
and adjusted

ble 1 Baseline characteristics of patients with Alzheimer’s disease according to ou

No. of patients Alive (n = 403)

mographics

Female sex, n (%) 616 218 (54)

Age, years 616 66 ± 7

APOE ε4 carrier, n (%) 562 250 (67)

Years of education 616 11 ± 3

Years of complaints 611 3.2 ± 2.6

Years to outcome 616 5.3 ± 1.8

Activities of daily living (DAD) 372 83 ± 17

dical history

Smoking, n (%) 599 185 (47)

Hypertension, n (%) 616 127 (32)

Hypercholesterolemia, n (%) 616 103 (26)

Diabetes mellitus, n (%) 616 31 (8)

Cardiovascular disease, n (%) 616 71 (18)

No. of medications 616 2.0 ± 2.0

reviations: APOE Apolipoprotein E, DAD Disability Assessment for Dementia (range 0–100)
rs to outcome: in case of alive, follow-up duration; in case of died, duration to death
ta are presented as mean ± SD unless otherwise specified. Group differences were calculated using
iables, the chi-square test was used
ration as the time between the date of
diagnosis and the date of death or, if
the date of baseline AD diagnosis and

016.

yses
alyses were performed using IBM SPSS
sion 22 software (IBM, Armonk, NY,
.05 was considered significant. Baseline
were compared using parametric and

c tests when appropriate. We used pat-
to explore the amount and randomness
ata. Because missing data were at ran-
t completely at random, we imputed all
imputed using multiple imputation, in
ssing values were estimated on the basis
lable baseline variables in 15 imputation

omparison of results on different tests
s, all continuous variables were standard-
res. All neuropsychological tests, except
MT-B, as well as CSF Aβ42, were inverted
−1 × z-score, with the result being that a
implied more advanced disease. We used
nal hazards models to assess associations
aseline determinants and mortality, taking

Page 3 of 10
time to death, using the pooled results of
tations. Each measure was assessed un-
el 1), adjusted for age and sex (model 2),
additionally for MMSE and duration of

tcome

Died (n = 213) p Value

91 (43) 0.007

69 ± 9 0.000

119 (63) 0.280

11 ± 3 0.675

2.8 ± 2.0 0.066

4.3 ± 2.1 0.000

82 ± 17 0.450

98 (49) 0.640

77 (36) 0.245

46 (22) 0.275

15 (7) 0.770

53 (25) 0.032

2.4 ± 2.1 0.062

Student’s t test for continuous variables. For categorical
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ase-specific characteristics at baseline, according to

No. of
patients

Alive
(n = 403)

Died
(n = 213)

p Value

616 22 ± 3 22 ± 3 0.480

orward 597 11 ± 3 11 ± 3 0.908

ackward 593 7 ± 3 6 ± 2 0.154

576 11 ± 1 11 ± 2 0.194

y 579 6 ± 4 6 ± 4 0.641

nds 581 81 ± 62 92 ± 64 0.046

nds 581 299 ± 235 329 ± 215 0.079

ediate recall 551 23 ± 7 22 ± 8 0.026

yed recall 549 2 ± 2 2 ± 2 0.391

ency 563 13 ± 5 13 ± 6 0.325

484 1.2 ± 0.8 1.6 ± 0.9 0.000

470 1.2 ± 0.8 1.3 ± 0.8 0.185

482 1.0 ± 0.6 1.2 ± 0.7 0.004

485 1.0 ± 0.8 1.1 ± 0.9 0.152

sent, n (%) 483 20 (6) 16 (9) 0.262

by category, 393 0.064

eeds 181 (75) 112 (74)

bleeds 41 (17) 17 (11)

bleeds 20 (8) 22 (15)

ent, n (%) 482 3 (1) 4 (2) 0.257

466 525 ± 172 490 ± 173 0.037

460 662 ± 340 695 ± 434 0.374

l 463 83 ± 33 91 ± 45 0.031

MSE Mini Mental State Examination (score range 0–30), Digit
d backward (range 0–21), VAT Visual Association Test (naming
mory range 0–12), TMT Trail Making Test (no range), RAVLT Rey
Learning Task (immediate recall range 0–60, delayed recall
A Medial temporal lobe atrophy (range 0–4; average score of
des), PA Parietal atrophy (range 0–3; average score of left and
Global cortical atrophy (range 0–3), WMH White matter
(range 0–3), Aβ42 β-Amyloid 1–42, p-tau Tau phosphorylated
1, MRI Magnetic resonance imaging, CSF Cerebrospinal fluid
ted as mean ± SD unless otherwise specified. Group differences
using Student’s t test for continuous variables. For categorical
i-square test was used

Rh Page 4 of 10
mplaints as a proxy of disease severity (model 3). Ef-
t modification, using interaction terms for each vari-
le with *age and *sex, was not found. Subsequently,
aimed to select the optimal combination of determi-

nts by constructing a multivariate model using for-
rd selection. The model was built by assessing all
riables and consecutively selecting the variable with
e lowest p value in a stepwise manner until p was <
0. In case of several variables with the same lowest p
lue, we calculated the Wald statistics and selected the
riable with the highest Wald value. Variables were
ded only when the overall model improved, as evalu-
d using the −2 log-likelihood ratio. In an additional
t of analyses, we performed similar analyses based on
nimputed data, and the results were comparable (see
ditional file 1: Table S1 and S2). Finally, we created
plan-Meier curves for each of the variables selected
forward selection. Because all variables except for sex
re continuous values, we used tertiles for the survival
rves. Data are represented as HRs with accompanying
% CIs.

sults
ble 1 presents the baseline characteristics of the
tients. After a follow-up of 4.9 ± 2.0 years, 213(35%)
tients had died (duration baseline AD diagnosis to
ath 4.3 ± 2.1 years) and 403(65%) patients were alive
llow-up duration 5.3 ± 1.8 years) on the 19th October
16. Patients who had died were more often male, older
d more often had cardiovascular disease. There was
difference in self-reported duration of complaints or

ars or activities of daily living (as measured with the
D.

Patients who had died performed worse at baseline on
T-A and RAVLT immediate recall, but MMSE scores

d performance on the other cognitive tests were simi-
. In addition, these patients’ biomarkers were indica-
e of more severe AD pathology, with a higher MTA
d GCA, lower Aβ42, and higher p-tau values (Table 2).
We used Cox proportional hazards models to evaluate
sociations between the individual determinants and
ortality, taking into account time to death (Tables 3
d 4). Male sex and older age were associated with an
creased risk of mortality. After adjustment for age and
x, worse performance on MMSE, digit span backward,
T naming, TMT-A, TMT-B, and RAVLT immediate
call and category fluency were associated with an in-
eased risk of mortality. In addition, more severe MTA
d GCA seen on MRI scans were associated with an in-
eased risk of mortality. Duration of complaints, activ-
es of daily living (as measured with the DAD), years of
ucation, APOE ε4 presence, comorbidity, MRI mea-
res of small vessel disease, and CSF biomarkers were
t associated with mortality. When we adjusted

additionally
proxy for
model 2,
mortality.
Next, we

determinan
ward select
CI 1.12–1.5
1.26–2.21,

Table 2 Dise
outcome

Cognitive tests

MMSE

Digit span f

Digit span b

VAT naming

VAT memor

TMT-A, seco

TMT-B, seco

RAVLT, imm

RAVLT, dela

Category flu

MRI

MTA

PA

GCA

WMH

Lacunes pre

Microbleeds
n (%)

0 microbl

1–2 micro

≥ 3 micro

Infarcts pres

CSF

Aβ42, pg/ml

tau, pg/ml

p-tau, pg/m

Abbreviations: M
span forward an
range 0–12, me
Auditory Verbal
range 0–15), MT
left and right si
right sides), GCA
hyperintensities
at threonine 18
Data are presen
were calculated
variables, the ch

odius-Meester et al. Alzheimer's Research & Therapy  (2018) 10:23 
r MMSE and duration of complaints as a
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ed to identify the optimal combination of
in a multivariate model. With use of for-
, the model included age (HR 1.31, 95%
p = 0.001), male sex (HR 1.67, 95% CI
= 0.000), digit span backward (HR 1.22,
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Table 3 Cox proportional hazards models used to evaluate influence of baseline characteristics and medical history on survival

Model 1 unadjusted Model 2 adjusted for age
and sex

Model 3: model 2 plus MMSE
and duration of complaints

HR (95% CI) p value HR (95% CI) p Value HR (95% CI) p Value

Demographics

Male sexa 1.57 (1.20–2.07) 0.001 1.60 (1.22–2.11) 0.001 1.79 (1.35–2.37) 0.000

Age 1.27 (1.11–1.46) 0.001 1.29 (1.12–1.48) 0.000 1.33 (1.15–1.53) 0.000

Years of education 0.99 (0.86–1.13) 0.844 0.97 (0.84–1.11) 0.636 1.0 (0.90–11.9) 0.671

Years of complaints 0.88 (0.76–1.03) 0.107 0.88 (0.76–1.03) 0.103 0.87 (0.74–1.01) 0.060

APOE ε4 carriera 0.79 (0.59–1.06) 0.114 0.81 (0.61–1.09) 0.163 0.81 (0.60–1.09) 0.170

Activities of daily living (DAD)b 1.13 (0.97–1.31) 0.124 1.11 (0.95–1.29) 0.204 1.09 (0.94–1.26) 0.278

Medical history

Smoking presenta 1.18 (0.89–1.55) 0.250 1.09 (0.82–1.45) 0.541 1.12 (0.85–1.49) 0.419

Hypertension presenta 1.24 (0.94–1.64) 0.130 1.11 (0.83–1.49) 0.467 1.10 (0.82–1.47) 0.528

Hypercholesterolemia presenta 0.86 (0.62–1.19) 0.861 0.73 (0.52–1.01) 0.059 0.75 (0.54–1.05) 0.091

Diabetes mellitus presenta 0.72 (0.43–1.22) 0.228 0.62 (0.37–1.06) 0.079 0.65 (0.40–1.05) 0.108

Cardiovascular disease presenta 1.35 (0.99–1.84) 0.060 1.07 (0.77–1.48) 0.700 1.09 (0.78–1.51) 0.625

)

Abb tate
Da ous
for
a D
b B
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% CI 1.03–1.43, p = 0.018), TMT-A (HR 1.22, 95%
1.06–1.41, p = 0.005), MTA (HR 1.18, 95% CI
1–1.38, p = 0.038), and CSF p-tau (HR 1.15, 95%
1.00–1.32, p = 0.058). Survival curves for these

riables are shown in Fig. 1. Of note, because < 50%
our subjects had died, median survival time can
ly be estimated from these curves.

scussion
r main finding is that despite their relatively young
e, roughly one of three patients with AD had died with
mean of 5 years after diagnosis. Predisposing factors
r an increased risk of mortality were older age, male
x, more severe executive dysfunction, presence of
TA, and higher p-tau in CSF, indicative of more severe
pathology. By contrast, duration of complaints, level

activities of daily living, APOE ε4 status, and comor-
ity were not related to mortality.
In our relatively young population (average age 67 ± 8
ars) derived from a tertiary memory clinic cohort with
ild to moderate dementia (all with MMSE scores > 16;
erage MMSE score 22), 35% of the patients had died
thin 5 years after receiving their baseline diagnosis.
is mortality rate is considerably higher than that of
e general Dutch population [19]. Previous studies de-
ribed slightly higher mortality rates, but most studies
cluded patients older than 75 years of age or with
vere dementia with MMSE scores < 20 [38–40]. Only
few studies have been focused on mortality in young

patients wit
parable mo
former stud
also focused
of mortality
In additio

are known
general po
MTA, and
disease, to
duration of
ity, indicat
aggressive
with this no
line in the
those who
remained a
ology have
when asses
38, 39]. In
executive d
terminants
finding is th
greater risk
cations. Als
ator for o
delayed rec
tients [44].
for delayed

No. of medications 1.17 (1.03–1.33) 0.017 1.08 (0.95–1.24

reviations: APOE Apolipoprotein E, DAD Disability Assessment for Dementia, MMSE Mini Mental S
ta are presented as HR (95% CI) using pooled data of 15 imputations per SD increase for continu
mortality
ichotomous variable
ecause a lower score indicates worse performance, these scores were inverted
AD or less affected patients, showing com-
ality rates [38, 41–43]. Extending these
s, we evaluated not only comorbidity but
n disease-specific markers as determinants

to male sex and older age, both of which
terminants of mortality in AD and in the
lation, we found executive dysfunction,
her p-tau in CSF, all reflecting more severe
determinants of mortality. Self-reported
mplaints was not associated with mortal-
that the patients who died had more

her than more advanced disease. In line
n, there was hardly any difference at base-
everity of cognitive impairment between
d within the study period and those who
. Previous studies focused on neuropsych-
own mainly an association with mortality
g decline over time but not at baseline [5,
r study, we consistently found tests in the
ain and, to a lesser degree, memory as de-
mortality. A potential explanation for this
subjects with executive dysfunction are at
dependency, increasing the risk of compli-
the executive domain seems to be a medi-
r cognitive domains, whereas tests for
were already at floor level in many pa-

his latter finding could explain why tests
call showed no association with survival.

0.251 1.11 (0.97–1.28) 0.125

Examination
variables or for the presence of the dichotomous variable
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Table 4 Cox proportional hazards models used to evaluate influence of cognitive performance, magnetic resonance imaging, and
cerebrospinal fluid at baseline on survival

Model 1 unadjusted Model 2 adjusted for age
and sex

Model 3: model 2 plus MMSE
and duration of complaints

HR (95% CI) p Value HR (95% CI) p Value HR (95% CI) p Value

Cognitive tests

MMSEa 1.11 (0.97–1.28) 0.131 1.23 (1.07–1.42) 0.005 1.25 (1.08–1.44) 0.003

Digit span forwarda 1.07 (0.93–1.23) 0.362 1.10 (0.95–1.26) 0.207 1.03 (0.89–1.20) 0.651

Digit span backwarda 1.21 (1.05–1.40) 0.008 1.31 (1.13–1.52) 0.000 1.24 (1.06–1.46) 0.009

VAT naminga 1.15 (1.01–1.31) 0.037 1.14 (1.01–1.30) 0.042 1.11 (0.97–1.27) 0.136

VAT memorya 1.01 (0.88–1.15) 0.937 1.07 (0.93–1.23) 0.360 1.02 (0.88–1.19) 0.790

TMT-A 1.21 (1.07–1.37) 0.003 1.29 (1.14–1.47) 0.000 1.23 (1.08–1.41) 0.003

TMT-B 1.19 (1.05–1.35) 0.006 1.28 (1.13–1.45) 0.000 1.21 (1.06–1.40) 0.005

RAVLT, immediate recalla 1.23 (1.06–1.43) 0.008 1.19 (1.02–1.38) 0.025 1.11 (0.95–1.30) 0.193

RAVLT, delayed recalla 0.96 (0.84–1.10) 0.533 0.96 (0.83–1.10) 0.507 0.90 (0.78–1.04) 0.154

Category fluencya 1.17 (1.02–1.37) 0.045 1.17 (1.01–1.36) 0.041 1.10 (0.94–1.29) 0.243

MRI

MTA 1.26 (1.10–1.44) 0.001 1.18 (1.02–1.37) 0.030 1.15 (0.98–1.34) 0.081

PA 1.12 (0.97–1.30) 0.113 1.10 (0.95–1.28) 0.192 1.12 (0.96–1.29) 0.143

GCA 1.21 (1.05–1.40) 0.008 1.18 (1.01–1.37) 0.037 1.17 (1.00–1.36) 0.044

WMH 1.16 (1.01–1.33) 0.041 1.07 (0.92–1.25) 0.364 1.05 (0.90–1.22) 0.518

Lacunes presentb 1.15 (0.77–1.71) 0.505 1.10 (0.73–1.66) 0.634 1.17 (0.76–1.79) 0.485

Microbleed categories

Microbleeds, 1–2 0.82 (0.49–1.37) 0.450 0.72 (0.43–1.19) 0.195 0.69 (0.42–1.16) 0.163

Microbleeds, ≥ 3 1.09 (0.80–1.47) 0.598 1.03 (0.76–1.40) 0.840 1.01 (0.74–1.37) 0.956

Infarcts presentb 1.11 (0.63–2.00) 0.710 1.15 (0.64–2.05) 0.641 1.11 (0.60–2.05) 0.727

CSF

Aβ42a 0.98 (0.84–1.14) 0.765 1.02 (0.87–1.18) 0.850 0.99 (0.86–1.16) 0.943

tau 1.05 (0.91–1.22) 0.504 1.09 (0.94–1.27) 0.275 1.07 (0.92–1.26) 0.369

p-tau 1.06 (0.92–1.23) 0.426 1.09 (0.94–1.26) 0.242 1.08 (0.93–1.26) 0.316

Abbreviations: MMSE Mini Mental State Examination, VAT Visual Association Test, TMT Trail Making Test, RAVLT Rey Auditory Verbal Learning Task, MRI Magnetic
resonance imaging, MTA Medial temporal lobe atrophy, PA Parietal atrophy, GCA Global cortical atrophy, WMH White matter hyperintensities score 3, CSF
Cerebrospinal fluid, Aβ42 β-Amyloid 1–42, p-tau Tau phosphorylated at threonine 181
Data are presented as HR (95% CI) using pooled data of 15 imputations per SD increase for continuous variables or for the presence of the dichotomous variable
for
a B
b D
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To our knowledge in only two other studies have re-
archers assessed associations of MRI atrophy markers
th mortality, with findings that global atrophy, but not
TA, was associated with mortality in dementia [12,
]. An association of MTA and mortality in AD was
und in a study conducted with computed tomographic
ans [45]. In our univariate models, we found more se-
re MTA and global atrophy associated with increased
k of death; in the multivariate forward selection
odel, GCA was not included. Atrophy is seen on MRI
ans as a marker of downstream neuronal degeneration
5]. In this study, other markers of neurodegeneration,
ch as p-tau in CSF, were also included in our multi-
riate forward selection model, which confirms the

results of t
in AD [16,
largely to a
in the adju
been found
the relative
In line w

with higher
that women
to more ea
and hence
women mo
widowed, l
We did not

mortality
ecause a lower score indicates worse performance, these scores were inverted
ichotomous variable
few studies addressing CSF and mortality
]. The effect of WMH seems attributable
, because the prognostic value disappeared
d models. This is different from what has
fore and could potentially be explained by
oung age of our sample [12].
previous studies, male sex was associated
ortality in AD [3]. It has been suggested
resent earlier in their disease course owing
y noticed impairment in household tasks,
ey have a longer survival time [3]. Also,
often lived alone and were more frequently
ing to impairment being noticed earlier.
nd an association with level of activities of



Fig. 1 Kaplan-Meier curve, according to variables from forward selection model: age, sex, TMT-A, digit span backward, MTA, and p-tau (all except
sex stratified in tertiles). Legend: Note: digit span backward: range 0-21, TMT: trail making test (no range), MTA: medial temporal lobe atrophy
ranging 0-4 (average score of left and right side), p-tau: tau phosphorylated at threonine 181. Survival curves were calculated using raw data,
without imputation
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ily living (as measured by the DAD). We believe this
possibly most relevant in more advanced disease
ges and not in our cohort, where activities of daily liv-
g were only mildly impaired in most patients [41, 46].
ally, and contrary to our expectations, we could not
nfirm smoking, comorbidity, or number of medica-
ns as predisposing factors for an increased risk of
ortality. Previous studies have shown an association of
rdiovascular risk factors with mortality, but these stud-
were focused mostly on older populations that are by
finition at higher risk of both cardiovascular disease
d mortality [11, 13–15, 46]. Also, a higher level of co-
orbidity has previously been shown to relate to sur-
al time [14, 15], but again in older populations; in our
esent study, we used number of medications as a
oxy of level of comorbidity and found no association
3]. Our study shows that the AD process itself, as
flected by neuropsychology as well as MRI and CSF
markers, has prognostic value in terms of mortality
well. This fits with the observation that patients with
have higher rates of mortality than the general

pulation and that AD is the swiftest growing cause of
ath in the Western world [2, 19].
Limitations of the present study are that our population
s derived from a tertiary memory clinic, which hampers
e generalizability of the results. However, the added
lue of our study is its focus on younger patients, for
om a paucity of data exists. We studied a broad range
determinants in patients with a relatively long follow-
duration. In addition, we included only patients with

MSE scores ≥ 16 to prevent cognitive testing from being
floor level. Of note, even in our young, mild to moder-
ly impaired cohort of patients with AD, mortality was
h. Another limitation might be the mean follow-up
ration of 5.3 ± 1.8 years for the patients who remained
ve, implying that these patients might have died shortly
er this period. Nonetheless, all patients had a minimum
llow-up of 2 years. Finally, we had information on medi-
tion use only at baseline and thus had no information
the prescription of cholinesterase inhibitors after the
gnosis AD. This could be a limitation because some
dies have shown that cholinesterase inhibitors can in-
ease survival, whereas others have shown no such effect
only in older patients [41, 43, 47]. Furthermore, we
re not able to look at the relationship between use of
tipsychotics and mortality [48, 49], because only a very
all proportion of our subjects used these medications.
wever, use of antipsychotics is likely to occur later in
e course of the disease. Among the strengths of the
esent study is our harmonized diagnostic protocol
cording to which all patients were assessed, because all
tients were selected from the same memory clinic and
ceived the same diagnostic workup and similar treat-
ent and management.

Conclusion
Our result
found that
or duration
creased mo
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