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Abstract

The steady increase in energy demands has led to an ever-increasing “energy generation”. This, coupled

with the need for higher efficiency, flexibility, and reliability, has boosted the use of power electronics in

power and energy systems. Therefore, power electronics based energy conversion systems have become

prominent in power generation, power transmission, and end-user applications. Given the relevance of such

systems, and by considering their trend of digitalization, it is crucial to establish digital and intelligent

power electronics based energy conversion systems. To this end, digital twin can be adopted as it integrates

many cutting-edge information techniques to realize the life-cycle management of complex systems by

constructing real-time mapping of them. In this paper, existing digital twin techniques for power electronics

based energy conversion systems are reviewed. The concept, system layers, and key technologies of digital

twin are described first. Some application cases of digital twin are then elaborated. Finally, future trends

and challenges of digital twin are discussed to provide a valuable reference for subsequent research.

I. INTRODUCTION

In the new era of energy transformation, to cope with the existing power supply and environmental

problems, distributed renewable energy generation systems (such as wind, wave, solar energy, etc.) have al-

ready been utilized on a large scale. In doing so, power and energy systems are rapidly developing towards

a more power-electronics-based paradigm [1]. In addition, today’s market trends—such as electrification,

renewable power generation—combined with technology trends—such as higher power electronics system

efficiency—enabled power electronics based energy conversion systems (PEECS) to become a major part
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Fig. 1. Basic information and introduction of DT.

of the modern power and energy systems [2]. Therefore, maintenance, particularly the so-called complete

life-cycle management of PEECS, has become an important and relevant research topic.

To meet the requirements of the complete life-cycle management for PEECS, such as an accurate

description of the system model and plenitude of supporting data, digital twin (DT) has attracted significant

attention from many experts and scholars [3]. The DT of a system can accurately reflect the appearance

and all the operating states as well as internal mechanisms of an entity in real-time. In addition to real-time

capability and fidelity, DT also has strong scalability. DT can be easily combined with artificial intelligence

(AI) and other advanced techniques, and it can successfully cover the whole process of product design,

control, and maintenance [4].
TABLE I

EXPLANATIONS SOME TERMS RELATED TO DT

Terms Exlanations

Physical entity An discrete, identifiable, and observable object in the physical world.

Twin body A digital model reflecting an entity from appearance and internal mechanism.

Physical space A set of physical entities.

Digital space A set of digital or virtual bodies.

Data A standardized representation of the entity state.

Link A tool that enables parts to communicate with each other.

Fig. 1(a) summarizes the development history of DT. The first appearance of DT dates to 2003 when

Professor Grieves introduced the concept in his course on “product life-cycle management”. Therein,

a three-dimensional model, including the physical entity, virtual body, and their connections, was pro-

posed [5]. In 2010, the term “Digital Twin” was officially introduced in a technical report of the National
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Aeronautics and Space Administration (NASA) [6]. In 2012, NASA and the US Air Force jointly published

a paper on DT, identifying it as one of the key technologies driving the development of future aircraft [7].

In 2014, the first white paper about DT was published, implying that the concept of DT was gradually

standardized [8].

For a better understanding of the concept of DT, Table I gives the explanations of some common terms

in DT. Although many articles have been published to explain this novel concept, there is no unified

definition of DT. Some researchers consider it in terms of the model level and believe that DT is a living,

intelligent, and evolving model [9, 10]. Some hold that DT may be a part of the “Cyber-Physical System”

or the link between virtual space and the real world [11, 12]. As briefly reported in Table II, the definitions

of DT are mostly described from three dimensions, namely model, data [13, 14], and links. However, these

might be partial understandings of the novel concept. On the basis of the three-dimensional model, [15]

proposed a five-dimensional model for DT that includes the physical entity, twin body, connection, data,

and service. Thanks to its comprehensiveness, the five-dimensional model has been widely recognized by

academia and industry. Based on this understanding, DT is defined as a technique that maps the physical

entity into a virtual body. In doing so, it aims to manage the complete life-cycle process of the entity by

means of historical and real-time data as well as intelligent algorithms [16].
TABLE II

DIFFERENT DEFINITIONS OF DT

Dimensions Definitions References

Model

A model of a physical device or system that represents all functional features with the working elements.

Computer-based models that are simulating, emulating, or mirroring the life of a physical entity.

Copies of the physical asset which need not necessarily run in real-time.

[4]

[9]

[10]

Data A digital replica of the physical environment along with abundant data and the operator. [13], [14]

Links

Connections of data and informationthat ties the virtual and the real product together.

A part of a cyber-physical system where physical entities interact with virtual spaces through networks.

Virtual counterparts for real-world entities.

[8]

[11]

[12]

Integration
A technique that maps the physical entity into a virtual body, which aims to manage the complete

life-cycle process of the entity through historical and real-time data as well as intelligent algorithms.
[15], [16]

Fig. 1(b) shows the structure diagram of DT. As can be seen, twin bodies are typically deployed in

the digital space. For the implementation of DT, data, model, and algorithm are three essential elements.

Among them, data is the basis, rooted on which physical entities and twin bodies can interact with each

other. Model is the core. Mechanism model will run through the complete life-cycle of devices. Algorithm

is the carrier. Model and data are fused by algorithm, and then a series of intelligent decisions can be made.
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The following is the workflow of DT. First, a (digital) model of the (physical) system is constructed in

the digital space. Then, as links between the physical and digital spaces, information interaction units are

responsible for the interaction of the operation data collected by sensors. Based on the data interaction and

fusion, the model can be corrected, adjusted, and updated in real-time. Generally, the units are controllers

and other communication equipment, which also need to send control signals to the physical entities to

guarantee their stable operation.

Owing to the advantages mentioned above of DT, it has until now been applied in many industries,

including but not limited to electrical, construction, and manufacturing, see [17]. Nevertheless, due to the

large amount of operation data and complex model of PEECS, research and applications of DT in the

said field are still in infancy. In recent years, however, Internet of Things (IoT), cloud computing, AI [18],

and other information techniques have been effectively applied to PEECS, thus laying a solid foundation

for the realization of DT in PEECS.

In this direction, there have been some cases of DT in PEECS. For example, DT has been applied

for grid analysis, converter maintenance, motor control, battery management, etc. [19]. In [20], an online

real-time grid analysis software based on DT is developed, which has a second response speed. In [21],

an approach is proposed for the online diagnostic analysis of power converters utilizing probabilistic DT.

With this approach, probabilistic simulation models of power converters are established using generalized

polynomial chaos expansion to reflect the running status of a physical entity in real-time. In [22], a

DT model of photovoltaic devices is constructed, which can realize real-time fault diagnosis. A health

indicator estimation method based on the DT concept is proposed in [23] to improve the reliability of

capacitance and switching tubes in a Buck converter. In [24], a new method using DT-driven prognostic

and health management (PHM) for wind turbines is proposed, thus making effective use of the interaction

mechanism and fused data of DT. Based on IoT, the DT of a battery management system is implemented

in [25], where the degradation, as well as the remaining useful life (RUL) of batteries can be evaluated.

Regardless of the above-mentioned paradigms, there is a lack of a comprehensive review of DT in

PEECS and its future outlook and possible trends. Motivated by this, this paper presents the function layers

and key technologies of DT in PEECS, aiming to form the basic theoretical framework. Furthermore, the

complete life-cycle management (i.e., design, control, and maintenance) of PEECS is discussed. In parallel

to that, relevant applications are presented along with the development trends in each case. With the above,

the main contributions of this article are listed below.

1) A comprehensive summary of applications of DT in PEECS to engage practitioners in the topic of
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interest and serve as a reference for subsequent research.

2) A systematic investigation of DT in PEECS from a complete life-cycle perspective to provide

sufficient insight into DT and demonstrate its potential benefits.

3) A detailed discussion of future development trends and challenges of DT in PEECS to initiate and

motivate future research.

The remainder of this article is organized as follows. Section II discusses the function layers and key

technologies of DT in PEECS. Following, the applications of DT in the design, control, and maintenance

of PEECS are presented in Section III. Then, Section IV provides a case study of the implementation of

DT for a power converter. The outlook of DT for PEECS is put forward in Section V. Finally, Section

VI concludes this article.

II. LAYERS AND KEY TECHNOLOGIES OF DIGITAL TWIN

Fig. 2(a) summarizes the function layers and key technologies of DT for PEECS, including the founda-

tion, the data interaction, the modeling and simulation, and the application layer. Each layer has its own

key technologies, which are discussed in the sequel of this section.

A. Foundation Layer

The foundation layer includes hardware and software platforms. For PEECS, the hardware platform

refers to the power equipment or systems represented by power converters. Power converters are core

devices in PEECS, such as renewable energy power generation systems, energy storage systems, micro-

grids, and variable speed drive systems [26], etc. As a result, the implementation of DT in such systems

should start with the power converters and be subsequently extended to other parts of the systems, such as

motors, grids, and loads. In addition, controllers, sensors, and other communication equipment are crucial.

The IoT platform is the key carrier of the function realization and landing applications for DT [19]. IoT

refers to a platform that collects multi-dimensional information through various sensors and then connects

them to various accessible networks to realize real-time perception, monitoring, and management. As for

the architecture of IoT, most commonly, a three-layer architecture is used that consists of the infrastructure

layer (IaaS), platform layer (PaaS), and software layer (SaaS) [27]. As the framework of DT is very similar

to that of IoT, the latter is considered to be the most suitable structure paradigm for the implementation of

the former. As different software platforms are needed to realize the functions of DT at different levels, the

paradigm of the IoT can serve as the basic architecture to realize the information interaction and resource

sharing among these software platforms. Each software platform plays its role in the IoT environment to



6

DC-AC
M

System

Layer

Equipment

Layer

Sensors

Layer

Information
Interaction

Unit

Physical
Space

AC-DC

DC-AC

AC-AC

DC-AC

AC-DC

AC-DC

Wind Power G
eneration

Photovoltaic Power

Generation

Hydrogen

Fuel C
ell

Electric
 Vehicle

Intellig
ent B

uildings
Micro DC-Grid

s

Sensors

Controller

Model Visualization Simulation

IaaS
Layer

PaaS
Layer

SaaS
Layer

IoT
LayersDigital Twin Structure

Digital Space

Applications MaintenanceControlDesign

LoadGrid

Modeling
and

Simulation

CommunicationControl Signal

Interaction

(b) Relationships between IoT platform and DT. (d) Flow chart of data processing.

(c) Framework of panoramic data acquisition for power electronics
based energy conversion systems.

Principal Component Analysis

Kalman Filtering

Autoencoder

Fourier or Wavelet Transform
Extract Useful Features
From Abundant Data

Data Description and Visualization

Common Data
Processing Methods

Edge Computing and Cloud Computing

90%

100

data: 90

data: 60

data: 80

Purpose

(a) Layers and key technologies of DT for power electronics based energy conversion systems.

Physical
Entity

Twin
Body

Data

Algorithm

Layer Tasks

1. Data Collection
2. Data Transmission
3. Data Storage
4. Data Processing

1. Geometrical Model
2. Mechanism Model
3. Simulation

1. Design
2. Control
3. Maintenance

1. Hardware Development
2. Software Design

System Layers

Data Interaction
Layer 

Modeling and
SimulationLayer 

Foundation Layer 

Application Layer

Key Technologies

1. Modern Sensor Technology
2. Communication Technology
3. Database and Blockchain
4. Data Fusion and Visualization

1. 3D Digital Modeling
2. Knowledge-Driven Modeling
3. Data-Driven Modeling

1. Internet of Things

1. Artificial Intelligence
2. Advanced Control Theory

Fig. 2. Key techniques in the layers of DT for PEECS.

facilitate the realization of DT systems. Specifically, mainstream DT software like “Ansys–Twin Builder”

and “Matlab–Simulink” are frequently-used simulation software with DT modeling modules, and “Unity–

Unity Pro” focuses on the geometrical models and 3D visualization [19].

Fig. 2(b) shows the relationships between the IoT platform and the DT framework. As can be seen, the
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IaaS layer includes hardware equipment that DT needs and collects, stores, and manages massive amounts

of data, providing reliable data sources for DT. It serves as physical entities and links in DT. The PaaS

layer deploys a series of tools for DT model construction, simulation, and visualization, corresponding

to the model block in Fig. 1(b). As the interaction units in DT, controllers not only process the collected

data and send them to the PaaS layer, but also transmit the control signals to physical entities based on

the updated models. The DT application platform is further established in the SaaS layer to serve the

design, control, maintenance, and the complete life-cycle process of the equipment, through AI and other

algorithms [28]. As a whole, the implementation process of DT is similar to the workflow of IoT. While

DT is more focused on constructing dynamic models to track physical entities in real-time, and then

manages the complete life-cycle process. Compared to IoT, the functions of DT are more targeted. As a

relevant example, an IoT-based DT of the cyber-physical system that interacts with the control system is

proposed to resist cyber-attacks in [29].

B. Data Interaction Layer

It is worth noting that the data size of DT for PEECS is enormous due to the real-time reflection of

the physical entity. As a result, the data interaction layer is established to provide data support for the DT

of the whole system. This layer mainly involves four tasks, namely data collection, transmission, storage,

and processing, as discussed in the following.

1) Data Collection: With the wide application of new measurement materials and the rapid development

of advanced intelligent sensing techniques, the breadth and depth of operation data collection for PEECS

can fully support the massive operation data demand of DT. For PEECS, electrical parameters, such as

current and voltage, are the most significant operating state data. Moreover, environmental characteristics,

such as temperature, humidity, and pressure, are also significant for DT. The framework of panoramic

data acquisition for typical PEECS is shown in Fig. 2(c). With the hardware support from the sensors

layer, operating state and environment characteristic data can be easily obtained from the equipment layer

and system layer, respectively. As a result, the DT model can be modified continuously and gradually,

fully imitating the physical entity.

2) Data Transmission: Data transmission is the key process to realize real-time information interaction

between physical entities and DT. This implies that communication is vital in this task. Communication

technologies usually depend on communication protocols, access methods, channel multiplex modulation,

and coding technologies [16]. For the DT of PEECS, high-quality and flexible communication technologies
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are required. In this direction, 5G architecture is expected to accommodate these use cases, especially in

terms of latency, resilience, coverage, and bandwidth [30].

3) Data Storage: The responsibility of data storage is to store the collected data for further processing,

analysis, and application. It is inseparable from database technologies [31]. Nevertheless, due to the

increase in data quantity and heterogeneity in DT, distributed control methods are widely applied to

PEECS, which can inadvertently lead to severe data security problems for classical databases. Blockchain

is expected to solve the problem.The reason for this is that even though blockchain is known as a computing

paradigm based on distributed architecture, it stores various data through the block and chain data structure,

and utilizes the knowledge of cryptography to ensure the security of data transmission and storage. Hence,

it has many features such as decentralization, secure encryption, and transparency [32]. In [33], to cope with

the problems of unreliable communication channels and storage environment caused by the distributed DT

paradigm, a blockchain-empowered federated learning framework is proposed. Furthermore, to enhance

the security and reliability of DT from untrusted end users, the DT data are stored in the blockchain and

they are updated as the state of the corresponding user changes. Similar examples can be found in [34].

4) Data Processing: Data processing techniques generally include data compression, fusion, transfor-

mation, discretization, etc., intending to extract these data with useful features [19]. Specifically, principal

component analysis and autoencoders are the mian tools for data compression. Kalman filtering, essentially

belonging to data fusion techniques, aims to minimize the interference of redundant information and get

the most relevant information by fusing the prediction data from system models and the sampled data

from sensors [35]. Furthermore, Fourier and Wavelet transforms are used to transform the signal between

the time-domain and the frequency-domain to obtain insightful and useful information. Fig. 2(d) gives

the flowchart of data processing. As can be seen, the introduction of cloud and edge computing provides

powerful and reliable analysis capabilities for the big data needed for DT. Consequently, this can solve the

problems of data redundancy and delay in the realization of DT [36]. Subsequently, useful data information

can be vividly presented through data visualization.

C. Modeling and Simulation Layer

As previously mentioned, the model is the core of DT. The construction of a DT model should

be in the following order, namely geometrical, physical, behavior, and mechanism modeling [37]. The

first two mainly focus on describing the shape of a physical object using geometric concepts, and see

e.g., [10]. Correspondingly, the last two relate to the operation law and mechanism of the physical system,

see [21, 35]. Therefore, as shown in Fig. 2(a), the models can be generally divided into geometrical and
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performance models. However, the geometric model is not further considered in this work because research

in PEECS is more focused on the performance model.

Knowledge-driven and data-driven methods are the two frequently-used modeling methods for the

performance model [38]. A knowledge-driven method obtains the characteristics of research objects by

analyzing the mechanisms. Subsequently, it describes the relationship between variables with mathematical

expressions. The main tools of such a method include mechanism modeling, probability modeling, and

optimization modeling [39]. Correspondingly, data-driven methods are based on a large number of tests

and data. Through different data processing algorithms, the empirical model is generated. Data-driven

methods rely on statistical analysis, AI, and other tools to build models.

To break through the limitations of single knowledge or data dependency that classical methods are

suffering from, the knowledge-data fusion methods are now widely used. The difference and relationship

between the two methods are shown in Fig. 3. Among many knowledge-data fusion methods, the feedback

mode modeling method, shown in Fig. 3, is the most common in PEECS. The feedback mode modifies or

compensates for the relevant modules or parameters of the knowledge model through a data-driven method.

As an example, the ultra-local model of modular multilevel converters (MMCs) is established in [40],

and a neural network (NN) observer is designed to observe the system disturbances and compensate for

parameter deviations. In doing so, the accuracy and robustness of the whole system are greatly improved.

D. Application Layer

DT can run through the complete life-cycle of PEECS, which usually includes design, control, and

maintenance. The design part typically takes very little time, while most functions of DT need to be

invested in the control and maintenance parts of PEECS [41]. In addition, the design works can often

be carried out offline and dispensed with real-time interaction. However, control and maintenance works

need to be done online, which requires the IoT platform and related hardware to collect data and update
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models. Advanced control theories and AI methods are used to complete these tasks. More details of DT

applications in these three parts are provided in the next section.

III. APPLICATIONS OF DIGITAL TWIN FOR POWER ELECTRONICS BASED ENERGY CONVERSION

SYSTEMS

This section discusses the applications of DT in the design, control, and maintenance of PEECS.

Moreover, some typical cases are given to demonstrate the advantages of DT.

A. Design

The design in PEECS includes the requirements of topology, component size and weight, reliability, etc.,

as defined by the IEEE standards for the design of power electronics equipment [42]. The design work of

PEECS can be divided into three steps, namely objective formulation, scheme selection, and effectiveness

verification [18]. In the process of the objective formulation, the desired goal(s) should be first quantified

by a function, and supplemented with (equality and/or inequality) constraints. Then, the optimal solution

is found by solving the formulated optimization problem, implying that this process is in essence an

optimization task. Following, the candidate schemes are verified by simulation and experimental tests.

Finally, the final design scheme is selected and applied to the physical system.

Nevertheless, classical design methods in PEECS are time-consuming as they need multiple iterations to

conclude the desired design due to the high complexity and uncertainty of the systems in consideration [43].

However, DT can avoid such problems. DT provides a precise and real-time simulation platform as well

as sufficient data for designing, testing, and assessing PEECS. Moreover, various operating conditions of

the equipment can be simulated by DT to improve the design efficiency and equipment reliability.

As an example of the effectiveness of the above DT-based design procedure, the DT of battery emulator

and tester systems are designed in [44]. Specifically, the power converters and motors are validated and

tested by building the DT of batteries to simulate the behavior of real batteries. At the same time, a

battery tester is developed in a hardware-in-the-loop (HiL) environment for the design and test of battery

packs, ultracapacitors, etc. As it is shown in that work, the three-day testing required for the real-world

system can be cut down to merely four hours in the Hil DT environment. Similar examples can be found

in [45] for more information.

In [46], the design work for the microgrid digital twin (MGDT) is discussed from a structure aspect. In

this process, the capacity of the system equipment, application environment, and the uncertainty resulting

from the wind speed, solar radiation, as well as ambient temperature should be considered. Then, the
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virtual models of the MGDT can be first developed and even delivered in advance to validate these

candidate design schemes.

Another application of a DT-based design is presented in [47], where DT is employed to increase the

reliability of a photovoltaic (PV) power station. To do so, the real-world PV power station is mapped

into a virtual one. Specifically, three-dimensional scene models of the solar PV panels are built using

the Unity3D virtual reality engine. Following, a back-propagation neural network (BPNN) and a particle

swarm optimization algorithm (PSO) are applied to process the collected data and realize fault diagnosis.

B. Control

Due to the ability to accurately reflect the operating state of the physical entity in real time, DT can

contribute to the performance assessment of PEECS, and make fast decisions in response to changes in

parameters and operating conditions. Generally, the applications of DT in the control of PEECS relate to

two aspects, they are multi-objective optimization, and prediction of key state variables (see Fig. 4(a)).

Specifically, intelligent algorithms are usually adopted to realize multi-objective optimization problems,

thus ensuring that the system tracks the reference fast and accurately. In this context, DT techniques

can further improve the accuracy of the system representation and give more accurate control signals.

Furthermore, DT models of the PEECS cover different information about multiple physical fields and can
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accurately reflect any changes in physical entities. Based on this, DT techniques can be used to realize

real-time and accurate prediction of system state variables, and enhance its anti-interference ability.

Regarding the former aspect, i.e., multi-objective optimization, a DT-based multi-agent coordination

control strategy for microgrids is proposed in [48]. Firstly, the DT and multi-agent control architecture of

the microgrid is designed, see the schematic diagram in Fig. 4(b). Following, according to the tasks in the

complete life-cycle process, the microgrid is divided into different agents, and the DT model of each agent

is constructed. Power prediction and multi-objective optimization can be made with the assistance of PSO.

Finally, the DT model of the microgrid is built on an Opal-RT simulation platform for verification, and

its hardware architecture is similar to the “physical space” in Fig. 2(b). Simulation results demonstrate

that the application of DT can effectively improve the self-sensing, self-prediction, and self-adaptation

capabilities of the microgrid. Moreover, similar examples can be found in [49, 50].

As for predicting some state quantities, NNs are usually used in PEECS. In [51], a DT model based

on long- and short-term memory network (LTSM) is used to predict the power of a PV system. In virtue

of transfer learning, this model can be employed to predict the power of other PV systems with short

operation time and insufficient data. Furthermore, this method can also facilitate and improve the reliability

of PV systems. Similar examples of prediction based on DT can be found in [52, 53].

C. Maintenance

Reliability and safety of PEECS are paramount [54]. Hence, maintenance is crucial, particularly in the

complete life-cycle. Roughly, the failures in the systems can be separated into two categories, i.e., short-

and long-term faults. Short-term faults relate to sudden and abrupt faults due to overstress conditions and

may cause catastrophic effects. Long-term faults refer to the wearing out and degradation of the hardware

due to long-term operation [18]. Fig. 5(a) shows the maintenance strategies for the two kinds of faults. For

long-term faults, condition monitoring and prediction of the RUL of key components—such as switching

tubes, capacitors, etc.—are generally adopted to avoid faults [55]. For the same aim, the reliability of

the plant can be systematically tested in the design process. While, for short-term faults, fast, accurate

diagnosis and fault-tolerant strategies should be adopted to ensure the stable operation of systems [56].

Due to the nature of this type of fault, this research dimension focuses on the system level.

Considering the different types of faults, it can be inferred that their time scale can be very different and

vary a lot. The same applies to the complexity of the faults. Therefore, combining maintenance strategies

to implement the most effective one to avoid possible faults in PEECS is a nontrivial task. Thanks to

its attributes, DT can tellingly address this issue [57]. To do so, sensing devices as well as historical
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and current data are used to make state monitoring and life prediction of the devices more accurate [58].

Furthermore, AI and advanced control algorithms can be employed for fault feature extraction and fault-

tolerant strategy formulation [59].

As an example of the benefits that DT can bring in the maintenance of PEECS, [22] presents a DT

method for fault diagnosis in a PV energy conversion unit. This is done by estimating the characteristic

outputs of the system. As shown, DT can compute a residual error vector required for fault detection in real-

time. By doing so, higher fault sensitivity can be achieved. Similarly, a real-time field-programmable gate

array-digital twin (FPGA-DT) technique is proposed in [60] to realize the fault diagnosis for transformers

used in power electronics applications. The physical entity and the twin body operate with the actual

conditions and expected conditions, respectively. With the faults injection, operation data of the physical

entity and the expected data of the twin body can be obtained. Then, the fault diagnosis module realizes

fault identification and location by comparing the differences between operation and expected data.

Furthermore, a method is developed within the DT framework in [61] that predicts the RUL of an offshore

wind turbine power converter by estimating the IGBT and diode junction temperatures.

In [23], a DT-based health estimation method is proposed for a buck converter. The state-space de-

scription of a buck converter is established, and the fourth-order Runge-Kutta method is used to construct

the discrete-time equivalent model. Due to its effectiveness with multi-objective optimization problems,
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a PSO algorithm is applied to monitor and correct the numerous parameters of the converter in real-

time. The schematic diagram of this method is shown in Fig. 5(c). The presented experimental results

clearly show the ability of the DT-based method to accurately estimate the parameters of the real-world

system during both steady-state and transient operating conditions. To avoid modeling errors caused by

linearization, in [62], a new digital-twin-based condition monitoring method is proposed. Compared with

the method in [23], the parameters of the replica buck converter in [62] can be calculated and updated

in Matlab/Simulink through an automatic process, which could further reduce estimation errors. Similar

examples can be found in [63, 64].

D. Summary of DT Applications in Design, Control and Maintenance

In summary, Table. III presents the classified applications of DT in design, control, and maintenance for

PEECS. It is clear that most of the applications (about 50 %) are for the maintenance phase, around 35 %

of applications belong to the control phase, and only a few applications (15 %) focus on the design phase.

During the maintenance process, DT techniques are primarily applied for the online condition monitoring

of PEECS, including degradation parameter identification and state-of-health estimation, etc. It indicates

that the long-term condition monitoring for complex systems fits best with the original purpose of the

DT concept and maximizes its advantages. Nevertheless, Table. III also summarizes the main tasks and

benefits of DT in other processes. In the future, as DT techniques become more and more mature, their

application scope will be extended and even cover the equipment recycle [16].
TABLE III

OVERVIEW OF DT APPLICATIONS IN PEECS

Applications Advantages of DT Applications Main Tasks References

Design

Cost-effective;

High design efficiency;

High design security and reliability.

Structure Design [46]

Simulation Platform Design [43], [44], [45], [65]

Reliability Design [47]

Control

Coordinate multiple control objectives flexibly;

Accurate predictions with abundant data;

Strong adaptability in various conditions.

Multi-objective Optimization [30], [48], [49], [50], [66]

State Variables Prediction [51], [52], [53], [67]

Other Control Tasks [20], [38], [68]

Maintenance

Real-time perception of states;

Accurate predictions with knowledge-data fusion;

Fast diagnosis and robust fault tolerance.

Condition Monitoring
[23], [24], [35], [57],

[62], [63], [64], [69]

Remaining Useful Life Prediction [25], [58], [61], [70]

Fault Diagnosis and Tolerance [21], [22], [29], [60]
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IV. IMPLEMENTATION OF DIGITAL TWIN FOR A POWER CONVERTER

DT can serve the needs of collaborative design, intelligent control, and predictive maintenance for

PEECS. Meanwhile, the implementation of DT in PEECS also faces lots of challenges, and is in urgent

need of research. As mentioned above, model, data, and algorithm are the three elements of DT. Therefore,

the implementation of DT should be carried out from these three aspects. In this section, a case study of

an AC-DC rectifier is given to elaborate on the implementation method of DT from the following steps,

namely DT model construction, DT platform development, as well as HiL experimental results analysis.

A. DT model construction

To build an accurate dynamic twin body that can be updated in real time, the knowledge-data fusion

modeling method should be adopted [68]. As shown in Fig. 6(a), the input and output signals of the circuit

collected by sensors, are used to identify model parameters with intelligent algorithms. Further, we can

modify the mechanism model in real time and obtain better control performance with new parameters.

Fig. 6(a) depicts the circuit topology of a three-phase AC-DC rectifier, which is connected to the AC

grid via three grid-side filter inductors Lg and resistors Rg. Furthermore, it also contains six switching

tubes (Ga1 to Gc2), six antiparallel diodes, a dc-link capacitor (C), and the load (equivalent resistance

RL). According to the rectifier model, the output voltage can be represented as

vx = ex − Lg
dix
dt

−Rgix, (1)

where ex is the grid voltage, vx is the output voltage of the rectifier (x ∈ {a, b, c}).

To achieve decoupling of the current components, the Park transformation is needed to obtain equations

in the dq frame. The discrete-time model in the dq frame, using the forward Euler approximation, is given

as

i⃗dq(k + 1) =

1− TsRg

Lg
Tsωg

−Tsωg 1− TsRg

Lg

 i⃗dq(k) +
Ts

Lg

[(e⃗dq(k)− v⃗dq(k)], (2)

where Ts denotes the sampling interval, ωg is the frequency of the grid voltage.

Equation (2) is the knowledge model of the rectifier that we want to obtain. Based on this, we use NN

predictor to estimate parameters in the knowledge model in real time [40], so that we can get a more

accurate and dynamic model of the rectifier (see Fig. 6(a)). Specifically, we take i⃗dq(k − 1), e⃗dq(k − 1),

and v⃗dq(k − 1) as the input variables of the NN. Correspondingly, ˆ⃗idq(k) is the output variable of the
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NN, where x̂ represents the estimated value of variable x. The parameters in (2) can be expressed as the

weighting factor ωi of the NN. Hence, the fusion model of the rectifier is described as

ˆ⃗
idq(k) =

 ω1(k − 1) ω3(k − 1)

−ω3(k − 1) ω1(k − 1)

 i⃗dq(k − 1) + ω2(k − 1)(e⃗dq(k − 1)− v⃗dq(k − 1)), (3)

The NN representing the system model is trained online through the gradient descent algorithm. The

main objective of the training procedure is to reduce the prediction error between the real and estimated

states (⃗idq and ˆ⃗
idq) and then identify the real parameters [66]. Therefore, we should formulate an objective

function which is given as follows.

F =
1

2
[(̂id(k)− id(k))

2 + ((̂iq(k)− iq(k))
2]. (4)

Then, the gradient descent training algorithm is defined as

∂F

∂ω1

= (̂id(k)− id(k))id(k − 1) + (̂iq(k)− iq(k))iq(k − 1),

∂F

∂ω2

= (̂id(k)− id(k)) (ed(k − 1)− vd(k − 1)) + (̂iq(k)− iq(k)) (eq(k − 1)− vq(k − 1)) ,

∂F

∂ω3

= (̂id(k)− id(k))iq(k − 1)− (̂iq(k)− iq(k))id(k − 1),

ωi(k) = ωi(k − 1)− αi
∂F

∂ωi(k)
, (i = 1, 2, 3),

(5)

where α1, α2 and α3 are the learning rates of the algorithm.

Through the updated weighting factors, we can easily obtain the real parameters of the model at each

sampling interval. The specific expressions are given as

{Rg(k) =
1− ω1(k)

ω2(k)
,

Lg(k) =
Ts

ω2(k)
.

(6)

With the data transmission step, the twin body of the rectifier can be updated in real time through the

obtained real parameters. Then, a list of control and maintenance tasks can be completed.

B. DT platform development

Ensuring high fidelity of real-time simulations is the most prominent requirement for the hardware and

software platforms of DT. Specifically, switching signals of power electronics devices are needed to be

captured in the range of several nanoseconds. In doing so, the information collected from the real-time

simulator can be as close as possible to the response of the physical entity. Therefore, the HiL platform

should have sufficient computational power to provide the means for the implementation of DT. Through
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(a) Schematic diagram of the implementation of DT for an AC-DC

rectifier.

(b) Hardware tools for the implementation of DT.

(c) Component development for the implementation of DT.

(d) Parameter (Rg and Lg) identification results. (e) Physical rectifier state tracking results of the twin body.

Fig. 6. Implementation of DT for a power converter.
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suitable interfaces, real-time simulators are connected with the dedicated controller, which provides the

opportunity to realize the interaction between twin bodies and the real power equipment [65].

Fig. 6(b) shows the RT-Boxes for the implementation of DT for the chosen case study. One box emulates

the physical rectifier and another one is used to deploy the DT model. Each box integrates multiple CPU

cores, and one of them performs communication with the user while the remaining cores are used for the

real-time simulation. During the operation, the two boxes communicate with each other in real time and

the operating data are transmitted with ADCs in the box which features 16-bit resolution with simultaneous

sample and update. Specific development processes of the components are shown in Fig. 6(c). It is clear

that the controller obtains and processes the analog signals like currents and voltages from the boxes,

and then, provides PWM signals to the emulators. To ensure that the communication is synchronized, I/O

delay is set for each box. Furthermore, system models in the physical entity emulator are built through

specific modules and the ones in the twin body emulator are devleped through compatible programming

languages. Same sample intervals are set for the two emulators, which is one-tenth of the control period.

In this case study, we use the “PLECS” simulation software to validate the performance of the DT

for the rectifier. The software can provide models of multiple physical fields, such as electric, magnetic,

thermal, and mechanical models, as well as their control parts, and emulate the actual physical system to

the maximum extent. In doing so, models can be built based on the functional modules of the software

and integrated with the collected data. Therewith, with the data visualization interface of the software,

each state of the physical entity and the twin body can be monitored and analyzed (see Fig. 6(c)). As

for the implementation of a single power converter, thanks to its small data size, several functions of

DT can be realized based on a simple software. However, for a complex system such as microgrids,

advanced tools like IoT and more powerful controllers are required [67]. Additional details about tools

of the implementation for DT are specified in [69, 71].

C. HiL Experimental Results analysis

In this step, the integration of model, data, and algorithm is completed based on a series of deployments

on the RT-box, and the DT of the rectifier is finally implemented. Furthermore, the ”PLECS” platform is

used for real-time display and analysis of the HiL results. The accuracy of parameter identification and

the entity tracking ability of the twin body are mainly validated in this part. The HiL experimental results

are shown in Fig. 6(d) and Fig. 6(e) with the experimental parameters in Table. IV.

Considering the extreme situation that the values of parameters drop abruptly, we set the values of Rg

and Lg to half of their initial values to emulate the degradation process. At t = 0.05s, a step of the value
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TABLE IV

PARAMETERS OF THE RECTIFIER

Parameter Symbol Value

Gird voltage eabc 70V

Frequency wg 50Hz

Resistance Rg 0.5Ω

Inductance Lg 10mH

Parameter Symbol Value

DC-link voltage Vdc 200V

DC-link capacitance C 1.1mF

Load Resistance RL 60Ω

Sampling frequency fs 20kHz

of Lg from 10mH to 5mH happens. Similarly, at t = 0.05s, the value of Rg drop to 0.25Ω. The parameter

identification results are shown in Fig. 6(d). It is clear that these parameters (Rg and Lg) converge to a

stable value in a short period of time. Furthermore, the identification accuracy of the value of Lg is quite

high, and the relative error is within 2%. As for the identification accuracy of Rg, it is also acceptable

and the relative error is within 5%. With these estimated parameters, the twin body can be updated and

track the state of the physical power converter in real time.

The comparisons of the operating state between the DT and the physical rectifier are shown in Fig. 6(e).

The waveforms from top to bottom are the current of phase A (phase B and C are the same as phase

A), dc-link voltage, and load current respectively. At t = 0.2s, the dc-link voltage changes from 200V

to 220V in a step-wise manner, and then at t = 0.3s, the load resistance changes to 80Ω from 60Ω

(parametric variations are consistent with those described in the preceding paragraph). It can be seen that

the waveforms almost overlap with each other in both dynamic and static responses, which indicates that

the estimated parameters are very close to the real ones and the twin body can fit the physical entity

accurately.

V. OUTLOOK ON DIGITAL TWIN FOR POWER ELECTRONICS BASED ENERGY CONVERSION SYSTEMS

The previous section presents a comprehensive introduction to the implementation method of DT tech-

niques in an AC-DC power converter. Based on the implementation in a single converter, DT techniques

can be further in complex energy conversion systems. As shown in Table. V, DT techniques are summarized

from the perspective of application context and objects, and the role of DT in these application scenarios

is also attached. It is clear that, currently, in PEECS, new energy power generation systems and microgrids

are the two fields in which DT techniques are developed most maturely and more than half of the studies

have focused on them. It is because of the enormous scale and investment of these systems that DT

can maximize its superiority and run through the complete life-cycle. Furthermore, as emerging research
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topics, energy storage systems [70] and electric vehicles [72] are in infancy as well as DT. But in the

future, all of these systems are embedded in our lives as part of the micro-energy conversion system and

DT techniques will help us manage and maintain these systems more intelligently and securely [41].
TABLE V

OVERVIEW OF VARIOUS APPLICATION SCENARIOS OF DT IN PEECS

Application Scenarios Concrete Objects Role of DT Techniques References

Power Converters and

Other Equipment

DC-DC Converters
Online parameters identification,

health monitoring and fault diagnosis

[21], [23],

[62], [63]

DC-AC Inverters Parameter identification and fault diagnosis [60], [64]

MMCs Small-scale real-time simulator design [65]

Power Transformers Real-Time monitoring of medium voltage [69]

Microgrids Microgrids

Optimal allocation and scheduling
[20], [30],

[48], [49]

Structure design for DT of microgrids [46]

DT for microgrids against cyber attacks [29]

Electric Vehicles and

Drive Systems

Motors State and health monitoring of motors [35], [38], [58]

Electric Vehicles
Open the avenues for cost-effective and

efficient development of electric vehicles
[72]

Energy Storage Systems Batteries

Battery simulation platform design [44], [45]

Frequency regulation of batteries [68]

Battery management and health estimation [25], [70]

Renewable Energy Power

Generation Systems

Photovoltaic Systems
Photovoltaic power prediction [51], [53]

Fault diagnosis and reliability design [22], [47]

Wind Power Generation Systems

Wind power prediction [52]

Online monitoring and health management
[24], [39],

[57], [61]

Renewable Energies
Improve efficiency for energy usage, enable

effective decarbonisation and low costs
[41]

At the moment, the advanced theories and methods proposed by various researchers have been monu-

mental in establishing the foundation of DT technologies in PEECS. However, this is merely the tip of

the iceberg for the potential of DT. As a result, in this section, we aim to bring into consideration these

pertinent opportunities and challenges that will govern the objectives of future research in this domain.

A. Challenges and limitations

In terms of the challenges, the most striking is the modeling of extremely intricate and interconnected

systems. When building a DT model for a complex system, each part of the system is first modeled as
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a standalone entity, and in a second step, they are combined together. Considering PEECS, this means

that the electrical, mechanical, thermal, and other parts need to be modeled separately from each other.

Due to different time scales and modeling software for the different parts, their compatibility is a relevant

problem that needs to be solved [73].

As far as the data aspect is concerned, data integrity and fidelity can be facilitated by DT. As mentioned

in Section II, existing data interaction techniques are mature enough to support the realization of DT in

PEECS. However, there are still some problems that need to be tackled. On the one hand, it is difficult to

achieve consistency in multi-dimensional and multi-scale data acquisition. On the other hand, multi-source

heterogeneous data types are hard to merge and fuse, especially when data are sampled at different rates.

DT ties closely to IoT, making it extremely versatile and flexible. However, due to the high-security

data sharing and immature opening mechanisms, the inclusion of IoT will lead to numerous risks to data

security. For instance, data sharing is vulnerable to cyber attacks [74], which may result in data missing

or leakage. For PEECS, which is closely interlinked to energy security of a whole region, cyber attacks

can be potentially fatal and must be carefully examined when constructing DT.

Another interesting point that requires further investigation relates to the connection of the link of the

complete life-cycle (design, control, and maintenance) of PEECS. Specifically, as DT is independently

designed for and applied to each link of the complete life-cycle of PEECS, the correlation between them

needs to be improved such that the benefits of DT are fully harvested.

B. Future trends and solutions

There are many challenges faced by the DT applications in PEECS, however, in the future, the role of

DT may be expanded and become more and more prominent in PEECS. DT framework can be customized

to any topology of power converters and is capable to model hundreds of them within seconds once the

initial architecture is set up. DT techniques also poses the capacity to streamline the study and testing

of modern energy conversion systems. This will be the catalyst for the interaction between virtual and

physical energy conversion systems. As a whole, DT has immense potential in PEECS. Some solutions

aiming at the aforementioned issues are explored as follows.

1) Universal Modeling Platform: Given the compatibility of the models, a modeling and design

platform for DT should be developed on which all types of models can run. This should be followed by

the design of specification programs to describe the different components, their interactions, and simulate

various environmental conditions they would operate. For instance, the platform should take the coupling
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characteristics of mechanical, electrical, and thermal fields of PEECS into account, and then standardize

the interface design.

2) Multilevel Data and Model Fusion: For a specific energy conversion system, various kinds of

information and knowledge are generally available. For this purpose, the knowledge-data fusion driven

advantages need to be exploited for better accuracy and robustness of the system models. Digging into the

available data helps to study the parts hard to describe in the complex system. Meanwhile, the maximum

utilization of classical knowledge can reduce the burden of numerous data collection and transmission.

3) Powerful Real-Time Computational Unit: Although AI and other advanced techniques can provide

superior performance for DT, it is computationally intensive in the case of PEECS. As a result, controllers

and other computational units should possess the capability of fast computation and data processing.

Moreover, due to the nanosecond-level operation time step required by power electronics switching devices,

real-time and high-performance solvers are extremely essential for DT in modern PEECS.

4) Data Privacy and Security: Research is needed to discuss which kind of data is vulnerable to

intrusion and can be monitored. Accordingly, it will mitigate the threat by using encrypted protocols or

other active defense methods. Additionally, a multi-layered defense mechanism is indispensable. It allows

the first defense layer to be penetrated to trigger a response and stop the attack in subsequent layers [41].

5) Predictive Control and Maintenance: At the present stage, model predictive control (MPC) combines

the advantages of prediction and optimization [75], implying that its combination with DT can bring

significant benefits. Furthermore, PHM is crucial for complex systems operating in a harsh environment.

This kind of predictive maintenance will gradually replace existing “post-fault maintenance” by means of

DT [24]. Under this tendency, design, control and maintenance will be in closer contact with each other.

This will be more conducive to the application of DT in the complete life-cycle management of PEECS.

VI. CONCLUSION

With the development of digital transformation and more power-electronics-based paradigms in energy

and power systems, the application of DT to PEECS has become a relevant research topic. As a result,

existing DT techniques in PEECS are reviewed in this paper. The basic hierarchical structure and key

technologies of DT for PEECS are emphasized. In particular, DT for PEECS is systematically investigated

from a complete life-cycle perspective, i.e., design, control, and maintenance. In doing so, application cases

of DT in each process are presented to provide more insight into the benefits of the discussed method.

Moreover, future trends and problems of DT for PEECS are discussed in detail. The current investigation

results show that the application of DT to PEECS can effectively improve the design efficiency of power
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electronics equipment, enhance the control performance, realize the maintenance of the system more

flexibly and conveniently, and ensure the high quality and reliable operation of the whole system.
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[25] W. Li, M. Rentemeister, J. Badeda, D. Jöst, D. Schulte, and D. U. Sauer, “Digital twin for

battery systems: Cloud battery management system with online state-of-charge and state-of-health

estimation,” Journal of Energy Storage, vol. 30, no. April, p. 101557, 2020. [Online]. Available:

https://doi.org/10.1016/j.est.2020.101557

[26] Y. Li, Z. Zhang, T. Dragicevic, and J. Rodriguez, “A Unified Distributed Cooperative Control of

DC Microgrids Using Consensus Protocol,” IEEE Transactions on Smart Grid, vol. 12, no. 3, pp.

1880–1892, 2021.

[27] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communication: Automation

networks in the era of the internet of things and industry 4.0,” IEEE Industrial Electronics Magazine,

vol. 11, no. 1, pp. 17–27, 2017.

[28] P. Jia, X. Wang, and X. Shen, “Digital-twin-enabled intelligent distributed clock synchronization in

industrial iot systems,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4548–4559, 2020.

[29] A. Saad, S. Faddel, T. Youssef, and O. A. Mohammed, “On the implementation of iot-based digital

twin for networked microgrids resiliency against cyber attacks,” IEEE transactions on smart grid,

vol. 11, no. 6, pp. 5138–5150, 2020.

[30] Z. Zhou, Z. Jia, H. Liao, W. Lu, S. Mumtaz, M. Guizani, and M. Tariq, “Secure and latency-aware

digital twin assisted resource scheduling for 5g edge computing-empowered distribution grids,” IEEE

Transactions on Industrial Informatics, vol. 18, no. 7, pp. 4933–4943, 2022.

[31] D. Geng, C. Zhang, C. Xia, X. Xia, Q. Liu, and X. Fu, “Big data-based improved data acquisition

and storage system for designing industrial data platform,” IEEE Access, vol. 7, pp. 44 574–44 582,

2019.

[32] X. Yu, C. Tang, P. Palensky, and A. W. Colombo, “Blockchain: What does it mean to industrial

electronics?: Technologies, challenges, and opportunities,” IEEE Industrial Electronics Magazine,

vol. 16, no. 2, pp. 4–14, 2022.

[33] S. Son, D. Kwon, J. Lee, S. Yu, N.-S. Jho, and Y. Park, “On the design of a privacy-preserving

communication scheme for cloud-based digital twin environments using blockchain,” IEEE Access,

vol. 10, pp. 75 365–75 375, 2022.

[34] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency federated learning and

blockchain for edge association in digital twin empowered 6g networks,” IEEE Transactions on



26

Industrial Informatics, vol. 17, no. 7, pp. 5098–5107, 2021.

[35] B. Rodrı́guez, E. Sanjurjo, M. Tranchero, C. Romano, and F. González, “Thermal parameter and state
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[38] A. Rassõlkin, V. Rjabtšikov, V. Kuts, T. Vaimann, A. Kallaste, B. Asad, and A. Partyshev, “Interface

development for digital twin of an electric motor based on empirical performance model,” IEEE

Access, vol. 10, pp. 15 635–15 643, 2022.

[39] J. Yi, W. Lin, J. Hu, J. Dai, X. Zhou, and Y. Tang, “An integrated model-driven and data-driven

method for on-line prediction of transient stability of power system with wind power generation,”

IEEE Access, vol. 8, pp. 83 472–83 482, 2020.

[40] X. Liu, L. Qiu, W. Wu, J. Ma, Y. Fang, Z. Peng, and D. Wang, “Predictor-based neural network finite-

set predictive control for modular multilevel converter,” IEEE Transactions on Industrial Electronics,

vol. 68, no. 11, pp. 11 621–11 627, 2021.

[41] W. Yu, P. Patros, B. Young, E. Klinac, and T. G. Walmsley, “Energy digital twin technology for

industrial energy management: Classification, challenges and future,” Renewable and Sustainable

Energy Reviews, vol. 161, pp. 112 407–, 2022.

[42] “Ieee recommended practice for the design and application of power electronics in electrical power

systems,” IEEE Std 1662-2016 (Revision of IEEE Std 1662-2008), pp. 1–68, 2017.

[43] F. Arrano-Vargas and G. Konstantinou, “Modular design and real-time simulators toward power

system digital twins implementation,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2022.

[44] S. Deda, A. Eder, V. Mhetre, A. Kuchling, R. Greul, and O. Koenig, “Designing a battery emula-

tor/tester from scratch to prototyping to automated testing within a hil digital twin environment,”

in PCIM Europe digital days 2020; International Exhibition and Conference for Power Electronics,

Intelligent Motion, Renewable Energy and Energy Management, 2020, pp. 1–8.
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