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Abstract—This paper presents a control method for three-
level neutral point clamped (NPC) inverter medium-voltage (MV)
drives that addresses the stator current control problem and
balancing of the neutral point (NP) potential in a single control
loop. To do so, a model predictive control (MPC) algorithm,
designed as a multiple-input multiple-output (MIMO) controller,
manipulates optimized pulse patterns (OPPs) in real time. As a
result, minimal current harmonic distortions are produced, while
the NP potential is kept balanced both during steady state and
transients. The presented results demonstrate the effectiveness of
the proposed control strategy for three-level NPC inverter MV
variable speed drive systems.

Index Terms—Medium-voltage (MV) drives, model predictive
control (MPC), optimized pulse patterns (OPPs), reference trajec-
tory tracking, optimal control, pulse width modulation (PWM).

I. INTRODUCTION

Multilevel converters are widely used in industrial appli-

cations to drive medium-voltage (MV) machines. To oper-

ate MV drives with high efficiency, operation at very low

switching frequencies is required to minimize the switching

power losses [1]. However, such low switching frequencies

can lead to high current distortions, and thus adverse effects,

such as increased losses in the machine. To address this issue,

optimized pulse patterns (OPPs) can be employed as they

are computed to produce the theoretical minimum current

distortions [2].

Control of OPPs, however, is a nontrivial task. This is due

to the fact that OPPs do not have a fixed-length modulation

interval, meaning that when sampling occurs, not only the

fundamental component is sampled, but also the ripple. More-

over, the discontinuities in the switching angles with respect to

the modulation index complicates the controller design. As a

result, OPPs have been traditionally used with low-bandwidth

controllers. Alas, such controllers cannot achieve satisfactory

transient performance and disturbance rejection.

To address the above, high-bandwidth controllers that adopt

the concept of trajectory tracking control have been proposed

to manipulate OPPs in real time. For example, control methods

based on deadbeat control principles were proposed in [3]–[5].

While the control scheme in [3], [4] is based on the concept

of stator current trajectory tracking, the control scheme in [5]

utilizes the stator flux trajectory. A more evolved controller de-

signed in the framework of model predictive control (MPC)—

known as model predictive pulse pattern control (MP3C)—

was presented in [6]. This method manipulates OPPs in

real time and has been validated experimentally in industrial

MV drive systems [7], [8]. In particular, MPC with OPPs

is an attractive option since it can take advantage of the

excellent steady-state performance and low current harmonic

distortions attributed to OPPs as well as the fast dynamic

responses that can be achieved with MPC. In this direction, the

control method named gradient-based predictive pulse pattern

control (GP3C) was recently proposed [9] to achieve superior

steady-state and dynamic performance for drive systems. The

GP3C method tracks the optimal stator current reference by

optimally modifying the switching time instants of the nominal

OPP.

Nevertheless, the above-mentioned control techniques need

to meet additional control objectives when multilevel con-

verters are considered as their internal voltages need to be

balanced during the whole operation of the system. For

example, when neutral point clamped (NPC) inverters are

of interest, the neutral point (NP) potential should be kept

around zero to avoid deviations of the phase voltages from the

expected voltage levels. Hence, even though the NPC inverter

has an inherent natural balancing mechanism [10], active

balancing techniques are commonly employed to prevent the

NP potential from drifting away.

To this aim, a variety of control strategies have been used

to tackle the problem of NP potential balancing. Most of

these methods are based on the manipulation of the common-

mode component of the output voltage [11]–[13]. Therefore,

control of the NP potential is achieved by using an outer loop

to manipulate the common-mode component of the reference

voltage that is fed to the modulator. Alternatively, control of

the NP potential can be achieved by exploiting the redundant

switching vectors of the NPC inverter [14]. It should be noted,

however, that the effectiveness of these methods diminishes as

the phase between the inverter voltage and current approaches

90◦ [13].

Addition of external loops, however, can further limit the

controller bandwidth. For this reason, the developed closed-

loop control methods that manipulate OPPs aim at incorpo-



A
B

C

is,abc

N N
N IM

Cdc

Cdcvdc,up

vdc,lo

in

Fig. 1: Three-level neutral point clamped (NPC) voltage source inverter
driving an induction machine.

rating the NP potential balancing mechanism into the inner

control loop. In this direction, similar to [14], [15] adopts the

concept of redundant vector manipulation. By selecting appro-

priate redundant sub-bridges during steady-state and transient

operation, the control method eliminates the NP potential error

at low modulation indices while operating the power converter

at low switching frequencies. In [16], a push-pull configuration

for a variable-speed drive is presented where a five-level OPP

is mapped into two three-level OPPs for two NPC inverters.

This gives rise to an additional degree of freedom which can be

utilized to balance the NP potential. In [17], the MP3C method

addresses the balancing of the NP potential by adding an

extra term to the objective function to penalize the deviation

of the dc component of the NP potential from its reference.

Nevertheless, during the derivation of the control problem, a

number of assumptions are made that can compromise the

overall performance of the control scheme. As a result, the

controller design becomes more complicated.

Motivated by the above, this work refines the GP3C method

to tackle the problem of the NP potential balancing in a simple,

yet effective, manner. By exploiting the high design versatility

of GP3C, attributed to its modeling principle, i.e., the use

of the gradient of the system output to predict its evolution,

the current control and NP potential balancing problems

are tackled in one computational stage. In doing so, unlike

traditional balancing methods, the proposed method does not

rely on manipulating the common-mode voltage of the inverter,

but it rather directly regulates the (instantaneous) NP potential

along its reference.1 This equips the GP3C method with a high

bandwidth and a high degree of disturbance rejection. The

efficacy of the proposed method is demonstrated with an MV

drive system consisting of a three-level NPC inverter and an

induction machine (IM).

II. MODEL OF THE MV DRIVE SYSTEM

Consider the MV variable speed drive system consisting of

a three-level NPC voltage source inverter and an IM, as shown

in Fig. 1. The mathematical model of the system is derived in

the stationary αβ-frame, where the transformation matrix

K =
2

3

[

1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

]

, (1)

1It should be noted that the proposed control method does not aim to reduce
the ripple of the NP potential during steady-state operation, as this is a natural
characteristic of the NP potential vn.

is used to transform the three-phase quantities into the αβ-

frame. Throughout this paper, the quantities are normalized

and presented in the per unit (p.u.) system.

The dc link of the inverter comprises two identical ca-

pacitors Cdc with (inverse) reactance Xdc; the midpoint N is

the so-called neutral point (NP). The total (instantaneous) dc-

link voltage is vdc = vdc,up + vdc,lo, where vdc,up and vdc,lo

denote the upper and the lower dc-link capacitor voltages,

respectively. Depending on the single-phase switch position

ux ∈ {−1, 0, 1} in phase x ∈ {a, b, c} the inverter can

produce three possible phase voltage levels, namely vdc,lo, 0,

and vdc,up, respectively. Hence, the three-phase output voltage

of the inverter in the αβ-frame is a function of the three-phase

switch position uabc = [ua ub uc]
T , and it is given by

vs =
vdc

2
Kuabc − vnK |uabc| , (2)

where |uabc| = [|ua| |ub| |uc|]
T is the component-wise

absolute value of the three-phase switch position. Note that

since the inverter is driving a machine, the output voltage of

the inverter is equal to the stator voltage vs.

As can be seen in (2), the output inverter voltage fluctuates

with the NP potential, defined as

vn =
1

2
(vdc,lo − vdc,up) .

This potential evolves as a function of the current flowing

through the NP [18], i.e.,

dvn
dt

=
1

2

(

dvdc,lo

dt
−

dvdc,up

dt

)

= −
1

2Xdc

in . (3)

The NP current in changes when a phase current isx flows

through the NP. This happens when the corresponding switch

position ux is zero, meaning that in is a function of uabc

and the inverter (i.e., stator) current is,abc = [isa isb isc]
T

according to

in = (1−|ua|)isa+(1−|ub|)isb+(1−|uc|)isc = − |uabc|
T
iabc ,
(4)

where a star connection for the load is assumed, i.e., isa+isb+
isc = 0. Using (3) and (4), the evolution of the NP potential

can be written as

dvn
dt

=
1

2Xdc

|uabc|
T
iabc . (5)

Regarding the dynamics of the squirrel cage IM in Fig. 1,

these can be described by the differential equations of the

stator current is and the rotor flux ψr,2 i.e., [19]

dis

dt
= −

1

τs
is +

(

1

τr
I2 − ωr

[

0 −1
1 0

])

Xm

D
ψr +

Xr

D
vs ,

(6a)

dψr

dt
=
Xm

τr
is −

1

τr
ψr + ωr

[

0 −1
1 0

]

ψr . (6b)

In (6), Rs and Rr are the stator and rotor resistance, re-

spectively, while Xls, Xlr, and Xm are the stator leakage,

2Note that the mechanical dynamics are neglected in the subsequent
modeling—and the prediction model—as they are slower than the electrical
dynamics.
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Fig. 2: Block diagram of the outer control loops of the GP3C scheme.

rotor leakage, and mutual reactance, respectively. Moreover,

τs = XrD/(RsX
2
r +RrX

2
m) and τr = Xr/Rr, are the

transient stator and the rotor time constants, respectively,

while the constant D is defined as D = XsXr − X2
m, with

Xs = Xls +Xm and Xr = Xlr +Xm. In addition, ωr is the

angular rotor speed. Finally, I2 is the two-dimensional identity

matrix.

Let us consider the three-phase switch position uabc as input

to the drive system, the stator current and NP potential as the

system output, i.e., y = [isα isβ vn]
T ∈ R

3, and the stator

current, rotor flux and the NP potential as the system state,

i.e., the state vector is x = [isα isβ ψrα ψrβ vn]
T ∈ R

5.

By using (6) and (5), the continuous-time state-space model

of the drive system is written as

dx(t)

dt
= F (t)x(t) +Guabc(t) (7a)

y(t) = Cx(t) , (7b)

where the system F (t) ∈ R
5×5, input G ∈ R

5×3, and

output C ∈ R
3×5 matrices are provided in Appendix A.

It is important to point out that the system matrix F (t)
contains nonlinear terms due to the nonlinear NP dynamics.

Such a characteristic poses difficulties from a controller design

perspective.

Subsequently, (7) is discretized with the sampling interval

Ts by employing forward Euler discretization. In doing so, the

discrete-time state-space model of the drive is computed as

x(k + 1) = A(k)x(k) +Buabc(k) (8a)

y(k) = Cx(k) , (8b)

where A(k) = I5 + F (t)Ts and B = GTs are the discrete-

time matrices, and k ∈ N denotes the discrete time step.

III. GP3C WITH ACTIVE NP POTENTIAL BALANCING

The proposed GP3C control scheme exploits the inherent

characteristics of OPPs [2], [20] and gradient-based direct

MPC [21], [22]. In the sequel, the control problem and the

working principles of the algorithm are presented. The block

diagram of the presented control algorithm is given in Fig. 2.

A. Preliminaries

OPPs are computed by in an offline procedure by solving

an optimization problem that typically accounts for the total

demand distortion (TDD) of the stator current. This problem is

solved for a given pulse number d and yields a set of optimal

switching angles as a function of the modulation index m.

Fig. 3(a) shows the optimal switching angles for the OPP

p(d,m) with d = 5 over the whole range of modulation

indices m ∈ [0, 4/π]. For a given set of switching angles,

the three-phase OPP can be constructed at a given modulation

index, by assuming quarter- and half-wave symmetry as well

as a balanced three-phase system. As an example, the three-

phase OPP p(5, 1.046) is depicted in Fig. 3(b). Furthermore,

based on a given OPP, the steady-state current trajectory

(Fig. 3(c)) can be computed, as explained in [9].

B. Control Problem

Consider a prediction horizon Tp of finite length, i.e., Tp =
NpTs, where Np ∈ N

+ is the number of prediction steps. Let

z ∈ N be the number of switching time instants of the nominal

OPP that fall within the horizon Tp. Moreover, for controller

design purposes, the following vectors are introduced

tref =
[

t1,ref t2,ref . . . tz,ref

]T
, (9a)

U =
[

uT
abc(t0) uT

abc(t1,ref) . . . uT
abc(tz,ref)

]T
, (9b)

t =
[

t1 t2 . . . tz
]T
, (9c)

where tref ∈ R
z is the vector of switching time instants of the

nominal OPP that fall within Tp, U ∈ U3(z+1) is the vector of

the corresponding OPP switch positions,3 and t ∈ R
z includes

the to-be-computed modified switching time instants.

The discussed control algorithm aims to regulate the stator

current is along its optimal reference trajectory is,ref by

manipulating (i.e., modifying) the switching time instants of

the nominal OPP tref such that minimal current distortions are

achieved in steady state. Moreover, the voltage over the upper

and lower dc-link capacitors, vdc,up and vdc,lo, respectively,

should be balanced by minimizing the deviation of the NP

potential vn from its reference vn,ref. These goals are to be

achieved while modifying the nominal OPP as little as pos-

sible. Finally during transients, the controller should exhibit

high bandwidth to achieve fast dynamic performance.

To meet the above-mentioned objectives, the control scheme

is formulated as a constrained optimization problem. Specifi-

cally, the objective function that captures the output tracking

error and the changes in the switching time instants is4

J =

z
∑

i=1

‖yref(ti,ref)− y(ti)‖
2
Q
+ λt ‖∆t‖

2
2 , (10)

with yref being the output reference vector, i.e., yref =
[iTs,ref vn,ref]

T ∈ R
3, and Q = diag(1 1 λn) ∈ R

3×3 being

a diagonal positive-definite matrix, whose entries penalize the

deviation of the output variables from their respective refer-

ences, i.e., is− is,ref and vn− vn,ref.
5 Moreover, ∆t = tref − t

denotes the (to-be-applied) modifications on the nominal OPP.

The weighting factor λt ≥ 0 penalizes the deviation of the

3The first entry in U represents the switch position at the end of the last

sampling interval, i.e., uabc(t
−

0
).

4The expression ‖ξ‖2Q denotes the squared norm of a vector ξ weighted

with the matrix Q.
5The reference of the NP potential vn,ref is zero.
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Fig. 3: (a) OPP p(d,m) for a three-level converter with d = 5 switching angles per quarter of the fundamental period. The optimal switching angles for the
modulation index m = 1.046 are indicated by (black) circles. (b) Three-phase OPP for m = 1.046. (c) The current reference trajectory (solid blue line) for
the given three-phase OPP is a combination of the fundamental component is1,ref (red dash-dotted line) and the harmonic component ish,ref.

modified switching time instants with respect to the nominal

OPP, and thus serves as a tuning parameter to prioritize

between the output tracking and allowed modifications in the

nominal OPP.

Function (10) needs to be minimized to obtain the vector

of modified switching time instants t. To do so, the evolution

of the output variables within the prediction horizon must be

computed. As the OPP switch positions uabc that fall within Tp
are known, see the switching sequences U (9b), the evolution

of the system output can be computed based on its gradient.

Specifically, it can be assumed that the output evolves with a

constant gradient within each subinterval ∆tℓ,ref, where

∆tℓ,ref = tℓ+1,ref − tℓ,ref , (11)

and ℓ ∈ {0, 1, 2, . . . , z−1}. As a result, the output trajectories

can be described by their associated gradients, i.e.,

m(tℓ,ref) =
y(tℓ+1,ref)− y(tℓ,ref)

∆tℓ,ref

= C
x(tℓ+1,ref)− x(tℓ,ref)

∆tℓ,ref

.

(12)

Note that in (12), the gradients at the nominal OPP switching

instants t1,ref, t2,ref, . . . , tz,ref are dependent on the predicted

state, i.e., x(t1,ref), x(t2,ref), . . . , x(tz,ref), respectively, to

provide the most accurate computation of the corresponding

gradient. This is accomplished by employing the discrete-time

system model (8).

Finally, based on the above expressions and by introducing

some assumptions as outlined in [9], the objective func-

tion (10) is rewritten as

J = ‖r −Mt‖
2
Q + λt ‖∆t‖

2
2 , (13)

where r is a vector that depends on the reference values and

measurements of the outputs, and M is a matrix of the slopes

with which the controlled variables evolve over the prediction

horizon, see Appendix B.

z−1

Reference
computation

Solve problem (14)

Calculation of rand
m(ti,ref) based on U

p(d,m) ψr ωs
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u
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c
(t

− 0
)
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vdc,up

vdc,lo

vn,ref

∠ψr

Yref

r tref M

(U , t∗)

Switching signals

Fig. 4: Inner control loops of the GP3C algorithm.

Algorithm 1: Gradient-based predictive pulse pattern

control

Given uabc(t0), x(t0), is,ref,dq , vn,ref and p(d,m)

0. Extract the z switching time instants and switch positions that fall
within Tp from the nominal OPP p(d,m) to formulate tref and U .

1. Compute the reference values of outputs yref(ti,ref), i ∈ {1, 2, . . . , z}.

2. Formulate the gradients m(tℓ,ref), ℓ ∈ {0, 1, 2, . . . , z − 1}.

3. Solve the optimization problem (14). This yields t∗.

Return t∗(k) that fall within Ts and modify the OPP accordingly.

C. Control Algorithm

The proposed control method is designed in the discrete-

time domain and works at equally spaced time instants kTs.

The block diagram of the inner control loop is shown in

Fig. 4. Furthermore, Algorithm 1 provides the pseudocode of

the proposed control method.

Before the control algorithm is executed, the offline com-

puted nominal OPP and harmonic current references are re-
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current reference sampled at the nominal OPP time instants.

trieved from the look-up tables (LUTs) where they are stored.

With this, the three-phase OPP is computed and the stator cur-

rent reference over the prediction horizon is constructed. Fol-

lowing, the current reference is aggregated into the output ref-

erence vector Yref = [yTref(t1,ref) y
T
ref(t2,ref) . . . yTref(tz,ref)]

T .

In a next step, according to (12), z unique output vector

gradients are computed within the subintervals of the predic-

tion horizon using the nominal OPP switching instants and

the corresponding predicted output variables. This yields the

gradient matrix M . Finally, the modified switching instants

t∗ = [t∗1 t∗2 . . . t∗z]
T are computed by solving the optimiza-

tion problem

minimize
t∈Rz

‖r −Mt‖2Q + λt ‖∆t‖
2
2

subject to kTs < t1 < · · · < tz < kTs + Tp .
(14)

As per the receding horizon policy, the switch positions that

fall within the first sampling interval Ts are implemented at

the corresponding time instants t∗.6

For a better understanding, the following example is pro-

vided.

Example 1: Consider the drive system in Fig. 1. As depicted

in Fig. 5, uabc(t
−
0 ) = [1 0 −1]T , with t0 ≡ kTs, is the

three-phase switch position applied at the end of the previous

sampling interval. According to the illustrated OPP, four

nominal switching time instants t1,ref, t2,ref, t3,ref, and t4,ref,

with switch positions uabc(t1,ref), uabc(t2,ref), uabc(t3,ref), and

uabc(t4,ref), respectively, fall within the prediction horizon

Tp. These instants divide the horizon into five subintervals.

Within each subinterval, it is assumed that the system output

evolves with a constant gradient. Therefore, with the help of

the discrete-time model (8) the evolution of the output can be

6For more details on the operation of the control algorithm, the reader is
referred to [9].

Table I: Rated values (left) and parameters (right) of the drive.

Induction Voltage 3300V Rs 0.0108 p.u.

motor Current 356A Rr 0.0091 p.u.

Real power 1.646MW Xls 0.1493 p.u.

Apparent power 2.034MVA Xlr 0.1104 p.u.

Stator frequency 2π50 rad/s Xm 2.3489 p.u.

Rotational speed 596 rpm

Torque 26.2 kNm

Inverter Dc-link voltage 5200 V Vdc 1.9299 p.u.

Dc-link capacitance 2.24mF Xdc 3.7628 p.u.

predicted based on the corresponding gradients m(tℓ,ref). For

example, evolution of one of the controlled variables, i.e., isα
(dash-dotted, magenta line), is shown in Fig. 5 along with its

sampled reference (dashed, black line). With the knowledge

of the evolution of the system output within the horizon Tp,

the GP3C algorithm manipulates the OPP such that the error

between the output and its reference is minimized, e.g., the

error between isα and is,ref,α in Fig. 5. In doing so, the

modified switching instants t1–t4 are obtained that result in

the stator current shown as solid (green) line. Finally, the

(modified) pattern that falls within the first sampling interval

Ts—shown in red in Fig. 5—is applied to the inverter and the

horizon is shifted by one Ts.

IV. PERFORMANCE EVALUATION

In this section, the performance of the proposed

GP3C scheme for the drive shown in Fig. 1 is assessed using

simulations. It is assumed that the IM has a constant mechan-

ical load. The rated values of the MV drive system along with

its parameters are provided in Table I. Note that for the given

parameters, a total leakage reactance Xσ = 0.255 p.u. results.

The dc-link voltage of the inverter is assumed to be constant.

The sampling interval is Ts = 50 µs and a 16-step prediction

horizon (i.e., Np = 16) is chosen. The weighting factors are

λt = 5 · 105 and λn = 5. The OPP in use has pulse number

d = 5, i.e., the device switching frequency is 250Hz for

operation at nominal speed, while the modulation index is

m = 1.046. Finally, all results are shown in the p.u. system.

A. Steady-State Performance

The steady-state performance of the MV drive system is

examined for operation at nominal speed and rated torque. The

corresponding results are presented in Fig. 6. Fig. 6(a) depicts

the three-phase stator current over one fundamental period. As

can be seen, the current reference tracking capability of the

controller is excellent, with only minute deviations from the

optimal current trajectory. As a result, the harmonic energy is

very low, as indicated by the current TDD ITDD of 4.14%. Fur-

thermore, the harmonic energy is concentrated at frequencies

that are odd, non-triplen integer multiples of the fundamental.

This is thanks to the symmetry properties of the nominal OPP,

which are preserved—to some extent—by the controller, as

can be in Fig. 6(c) where the three-phase switching pattern

generated by the controller is shown. Additionally, the elec-

tromagnetic torque also accurately tracks its reference, see

Fig. 6(d), due to the good current reference tracking. Finally,

Fig. 6(e), shows that the controller successfully balances the
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Fig. 6: Simulation results of the proposed GP3C algorithm at steady-state operation, nominal speed and rated torque. The modulation index is m = 1.046,
the pulse number d = 5, and the switching frequency is 250Hz.
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(b) Three-phase switching pattern uabc (solid
lines) and the nominal OPP (dash-dotted lines).
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Fig. 7: Simulation results produced by the proposed GP3C algorithm during torque reference steps.

NP potential around its reference, highlighting its multiple-

input multiple-output (MIMO) feature and high versatility.

B. Transient Performance

The transient performance of the proposed GP3C scheme

is presented in Fig. 7. While operating at nominal speed,

reference torque steps of magnitude 1 p.u. are imposed. As

can be seen in Fig. 7(a), the stator currents accurately track

their new reference values, resulting in an excellent torque

reference tracking, see Fig. 7(c). Despite the big changes in

the torque reference, GP3C manages to quickly settle to the

new operating points by significantly modifying the nominal

OPP, see Fig. 8. Specifically, during the torque reference step-

down change, the proposed controller modifies the nominal

OPP such that the load angle decreases as fast as possible. As

shown in Fig. 8(b), this is done by significantly reducing the

width of the pulses in phase c and by shifting forward in time

the pulses in phases a and b. Same observations can be made

for the step-up case, as illustrated in more detail in Fig. 8(e). It

is worth noting that in the latter case, GP3C removes switching

pulses from phase a, allowing the available dc-link voltage to

be fully utilized. Finally, Fig. 7(d) shows that the NP potential

is kept balanced around zero, despite the large changes in the
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(b) Switching pattern uabc.
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Fig. 8: Transient performance of GP3C at rated speed during a torque reference (a)–(c) step-down change, and (d)–(f) step-up change. In (b) and (e), the
(black) dash-dotted lines refer to the switching sequence of the unmodified, nominal OPP, whereas the solid lines correspond to the modified switching
sequence as computed by GP3C.
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Fig. 9: Balancing of the NP potential for different values of λn. The initial offset of the NP potential is 0.1 p.u..
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Fig. 10: Three-phase stator current is,abc when balancing the NP potential for different values of λn.

torque as well as operation at zero torque. With regards to the

latter, as mentioned, balancing the NP potential at zero torque

is challenging because the vectors (in the αβ-frame) of the

applied voltage and stator current are perpendicular. Hence,

this figure clearly demonstrates the effectiveness of the active

balancing mechanism of the proposed control method.

C. Evaluation of the Active NP Potential Balancing Mecha-

nism

Finally, to further investigate the NP potential balancing

ability of the proposed algorithm, the weighting factor λn is

varied and the resulting performance is shown in Fig. 9. For the

presented results operation at nominal speed and rated torque

is considered. As can be inferred, the natural balancing of the

NP potential, i.e., when λn = 0 (see Fig. 9(a)), is significantly

slower compared with the active NP balancing achieved with

the proposed controller, i.e., when λn > 0. Specifically, as the

controller prioritizes the NP potential balancing, i.e., as λn
increases, the NP potential is balanced faster, see Figs. 9(b)

and 9(c). Additionally, as can be observed in Fig. 10, larger

values of λn result in a faster regulation of the stator current

along its reference. This is facilitated by the fast balancing of

the NP potential.



V. CONCLUSIONS

This paper refined the GP3C algorithm introduced in [9]

to incorporate the balancing of the NP potential of a three-

level NPC inverter into the control problem. The mathematical

model adopted within the framework of the proposed con-

troller demonstrates the high versatility of GP3C as well as its

ability to simultaneously address multiple control objectives.

As highlighted by the presented results, thanks to the combi-

nation of optimal constrained control and optimal modulation,

the proposed strategy exhibits superior performance during

steady state, i.e., minimal current TDD for a given switching

frequency, short settling times during transients, and balanced

NP potential over the whole operating regime.

APPENDIX A

SYSTEM MATRICES

The matrices of the continuous-time state-space model in (7)

are

F (t) =







FIM

[

−Xr

D
K |uabc(t)|
02×1

]

[

1
2Xdc

|uabc(t)|
T
K−1

01×2

]

0






,

G =
vdc

2

Xr

D













1 0
0 1
0 0
0 0
0 0













K, C =





1 0 0 0 0
0 1 0 0 0
0 0 0 0 1



 ,

where

FIM =











− 1
τs

0 Xm

τrD
ωr

Xm

D

0 − 1
τs

−ωr
Xm

D
Xm

τrD
Xm

τr
0 − 1

τr
−ωr

0 Xm

τr
ωr − 1

τr











.

APPENDIX B

OBJECTIVE FUNCTION MATRICES

The vector r and matrix M in (13) are

r =















yref(t1,ref)− y(t0)
yref(t2,ref)− y(t0)
yref(t3,ref)− y(t0)

...

yref(tz,ref)− y(t0)















and

M =



















mt0 02 02 . . . 02

m0 mt1 02 . . . 02

m0 m1 mt2 . . . 02

...
...

...
. . .

...

m0 m1 m2 . . . 02

m0 m1 m2 . . . mtz−1



















with

mtℓ =m(tℓ,ref)

mℓ =m(tℓ,ref)−m(tℓ+1,ref)

where ℓ ∈ {0, 1, 2, . . . , z − 1}.
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