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Abstract— In this paper we study robust output tracking
and disturbance rejection of linear partial differential equation
(PDE) models. We focus on demonstrating how the abstract
internal model based controller design methods developed for
“regular linear systems” can be utilised in controller design
for concrete PDE systems. We show that when implemented
for PDE systems, the abstract control design methods lead in
a natural way to controllers with “PDE parts”. Moreover, we
formulate the controller construction in a way which utilises
minimal knowledge of the abstract system representation and
is instead solely based on natural properties of the original
PDE. We also discuss computation and approximation of the
controller parameters, and illustrate the results with an example
on control design for a boundary controlled diffusion equation.

Index Terms— Robust output regulation, PDE control,
boundary control, controller design.

I. INTRODUCTION

Robust output regulation has been studied actively in the
literature for controlled linear partial differential equations
as well as for distributed parameter systems. In this control
problem the aim is to achieve asymptotic convergence of
the system’s output to a predefined reference signal despite
a class of external disturbance signals and uncertainties in
the parameters of the system. The primary motivation for
studying the control problem for infinite-dimensional linear
systems is that this abstract framework facilitates the study
of classes of linear PDE models and makes it possible
to introduce general controller design methods which are
applicable to a range of different types of PDEs. This way
the abstract approach unifies and avoids repetition in the
parts of the controller design which are independent of the
type of the PDE model under consideration. The output
regulation problem adapts extremely well to the abstract
infinite-dimensional setting because the associated controller
design approaches have a lot of structure which is either
independent or depends only in a very particular way on the
considered system (e.g., through transfer function values or
locations of transmission zeros).

When such an abstract controller construction method is
applied in the control of a concrete PDE model, the resulting
controller is typically either a finite-dimensional ODE model
(such as in [9], [6], [14], [13]), or alternatively an abstract
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linear system (in [8], [7], [11], [12], [20], [18]). In the latter
case the natural expectation is that the controller is “of sim-
ilar type” as the original system, namely, a PDE model. The
abstract controllers do indeed possess this intuitive property
and this structure is easy to observe in the case of PDEs with
distributed inputs and outputs. However, this relationship
between the system and controller may become less obvious
in the case of PDEs with boundary control and observation,
where the abstract framework has a higher level of generality
due to the unboundedness of the input and output operators.
Moreover, some of the controller construction algorithms
require a certain level of technical knowledge on the abstract
framework, and this can make the design methods tedious to
implement for those researchers who are not already familiar
with the corresponding abstract theory.

In this paper we demonstrate how a selected controller
design method for abstract infinite-dimensional systems pro-
duces PDE controllers when applied in the control of PDEs
with boundary control and observation. Moreover, we show
that the controller design method can be presented in a
way which requires minimal knowledge of the “abstract
framework” and where the parameter choices are completely
based on the original PDE system (in particular, stabilizabil-
ity via feedback and output injections, and computation of
selected transfer function values). Our results are applicable
for a wide range of boundary controlled PDEs in 1D (such
as reaction–convection–diffusion equations, damped wave
and beam equations, and coupled PDE-PDE and PDE-ODE
systems), as well as nD convection–diffusion equations.

The “observer-based robust controller” [11, Sec. VI] stud-
ied in this paper consists of an ODE part (the internal model
of the reference and disturbance signals) and a modified copy
of the controlled system which is used as a Luenberger-type
observer in the stabilization of the closed-loop system. As
our main result we show that when applied in PDE control,
the infinite-dimensional part of our controller is always a
state of a PDE system which is of similar type as the original
system. We achieve this by rewriting the abstract controller
in a new way and by analysing the detailed properties of the
controller state. In this paper we allow the controlled system
to be a general regular linear system, but for simplicity
limit our attention to the situation where this model can
be stabilized with state feedback and output injection with
bounded operators. Using the results in [12], our approach
also generalises to the situation where the stabilization of
the system requires boundary feedback or boundary output
injection, but the controller form becomes somewhat more
complicated. Our approach can also be applied to other



abstract controller structures (e.g., those for “non-robust”
output regulation in [20]) to design PDE-type controllers.

Notation. For Hilbert spaces X and Y we denote the space
of bounded linear operators A : X → Y by L(X,Y ). The
resolvent operator of A : D(A) ⊂ X → X is defined as
R(λ,A) = (λI −A)−1 for λ ∈ C in the resolvent set ρ(A),
and the adjoint of A is denoted by A∗ : D(A∗) ⊂ X → X .
The inner product on X is denoted by 〈·, ·〉X . We denote the
Λ-extension [17, Def. 5.1] of an operator C by CΛ.

II. PRELIMINARIES

A. The Robust Output Regulation Problem

Throughout the paper consider controlled PDE systems
with an input u(t) ∈ U = Cm, a measured output y(t) ∈
Y = Cp, and an additional disturbance input wdist(t) ∈
Ud = Cnd . The main objective in output regulation is to
design a dynamic error feedback controller so that the output
y(t) converges asymptotically to a given reference signal
yref(t) despite the external disturbance signals wdist(t). The
considered reference and disturbance signals are of the form

yref (t) =

q∑
k=0

ak cos(ωkt+ θk) (1a)

wdist(t) =

q∑
k=0

bk cos(ωkt+ ϕk) (1b)

where the frequencies 0 = ω0 < ω1 < . . . < ωq are known
and the amplitudes {ak}qk=1 ⊂ Y and {bk}qk=1 ⊂ Ud and
phases {θk}qk=0, {ϕk}

q
k=0 ⊂ [0, 2π) can be unknown.

Our main control problem, the “Robust Output Regulation
Problem” [14], [7] is defined in detail in the following.

The Robust Output Regulation Problem: Construct a
dynamic error feedback controller so that the following hold.

(a) The closed-loop system consisting of the system and
the controller is exponentially stable when wdist(t) ≡ 0
and yref (t) ≡ 0.

(b) There exists α > 0 such that for all initial states of the
system and the controller and for all {ak}qk=1, {bk}qk=1,
{θk}qk=0, and {ϕk}qk=0 in (1) the output y(t) satisfies∫ ∞

0

e2αt‖y(t)− yref (t)‖2dt <∞.

(c) If the parameters of the system are perturbed in such
a way that the exponential closed-loop stability is pre-
served, then (b) still holds for some modified α̃ > 0.

B. Assumptions on the PDE System

As our main assumption we suppose that the controlled
PDE system can be expressed as a regular linear system [19],
[17]. Even though the regular linear system representation of
the system is required in the proofs of our main results, our
goal is to present the controller design and the controller
structure in a way which is largely independent of this
abstract formulation. Instead it is mainly sufficient to know

that such a representation exists. That being said, we assume
the PDE has an abstract representation

ẋ(t) = Ax(t) +Bu(t) +Bdwdist(t), x(0) = x0 (2a)
y(t) = CΛx(t) +Du(t) +Ddwdist(t). (2b)

We assume (A, [B,Bd], C, [D,Dd]) is a regular linear sys-
tem [17, Sec. 5] on a Hilbert space X with input space
U×Ud = Cm×Cnd and output space Y = Cp. In particular,
A : D(A) ⊂ X → X generates a strongly continuous
semigroup T (t) on X . Our assumption also implies that for
any [u,wdist]

T ∈ L2
loc(0,∞;U × UD) and x0 ∈ X the state

x(t) of the system is the unique mild solution of (2a) (defined
in [16, Def. 4.1.1]) given by [16, Prop. 4.2.5]

x(t) = T (t)x0 +

∫ t

0

T (t− s) [Bu(s) +Bdwdist(s)] ds.

On the other hand, by [16, Rem. 4.2.6] the state also satisfies

〈x(t)− x0, φ〉X =

∫ t

0

[
〈x(s), A∗φ〉X + 〈u(s), B∗φ〉U

+ 〈wdist(s), B
∗
dφ〉Ud

]
ds

(3)

for all t > 0 and φ ∈ D(A∗). It is important to note that
it is precisely the identity (3) which connects the state x(t)
of the system (2) to the weak solution of the original PDE
system. This relationship is illustrated in concrete examples
in [16, Rem. 10.2.2, 10.2.4 and Sec. 10.7, 10.8].

We make the following assumptions on the stabilizability
and transmission zeros of the controlled PDE system.

Assumption 2.1: Assume that there exists K0 ∈ L(X,U)
such that the state feedback u(t) = K0x(t) stabilizes
system (2) exponentially. In addition, assume that there exists
L ∈ L(Y,X) such that the output injection Ly(t) stabilizes
system (2) exponentially. N

The fact that K0 and L are bounded operators in As-
sumption 2.1 means that we only consider systems which are
stabilizable using distributed feedback and output injection.

Remark 2.2: In terms of regular linear systems Assump-
tion 2.1 means that K0 ∈ L(X,U) and L ∈ L(Y,X) are
such that the semigroups generated by A + LC : D(A) ⊂
X → X and A + BK0 : D(A + BK0) ⊂ X → X with
domain D(A + BK0) = {x ∈ X | Ax + BK0x ∈ X } are
exponentially stable. N

The following condition on transmission zeros is necessary
for the solvability of the robust output regulation problem.

Assumption 2.3: The numbers of inputs and outputs of (2)
satisfy m ≥ p and (2) does not have transmission zeros at
{±iωk}qk=0. N

If we denote the transfer function of the system (from
the input u(t) to the output y(t)) by P (λ), then for any
iωk ∈ ρ(A) the condition in Assumption 2.3 requires that
P (±iωk) has full row rank. More generally, if iωk ∈ iR the
condition requires that the transfer function of the system
stabilized with state feedback has full row rank at iωk.



III. CONTROLLER DESIGN

In this section we construct an error feedback controller
which solves the robust output regulation problem. Our main
result in Theorem 3.2 shows that the controller state has a
part which is the weak solution of a PDE of the same form
as the original system.

The controller design is based on the construction of
parameters (G1, G2, L,K) in Definition 3.1 below. The
construction uses the matrices Bk1 ∈ L(U, Y × Y ) and the
operators Hk

K ∈ L(X,Y × Y ) defined by

Bk1 =
1

2

[
PK(iωk) + PK(−iωk)
iPK(iωk)− iPK(−iωk)

]
Hk
K =

1

2

[
PKI(iωk) + PKI(−iωk)
iPKI(iωk)− iPKI(−iωk)

]
,

where PK(λ) = (CΛ + DK0)R(λ,A + BK0)B + D and
PKI(λ) = (CΛ +DK0)R(λ,A+BK0).

Definition 3.1 (Controller Parameters): Define Z0 =
Cp(2q+1),

G1 = diag(0p, ω1Ωp, . . . , ωqΩp) ∈ Rp(2q+1)×p(2q+1),

with Ωp =
[

0p Ip
−Ip 0p

]
, where 0p, Ip ∈ Rp×p are the zero and

identity matrices, and

G2 =
[
Ip, Ip, 0p, Ip, 0p, . . . , Ip, 0p

]T ∈ Rp(2q+1)×p.

Let L ∈ L(Y,X) and K0 ∈ L(U,X) be as in Assump-
tion 2.1. Define

B1 =


PK(0)
B1

1
...
Bq1

 and HK =


PKI(0)
H1
K
...

Hq
K

 .
The pair (G1, B1) is controllable due to Assumption 2.3 and
K1 ∈ L(Z0, U) can be chosen so that G1+B1K1 is Hurwitz.
Finally, define K2 = K0 +K1HK . N

Theorem 3.2 below presents a controller solving the
robust output regulation problem based on the parameters
constructed in Definition 3.1. The theorem shows that the
controller consists of an ODE system with state z1(t) (the
“internal model”) and an “observer-part” which is a copy of
the system with input u(t), output ŷ(t), and an additional
input with input operator L. In view of the discussion in
Section II-B the result also shows that x̂(t) is a weak solution
of a PDE of the same form as the original PDE system (with
the additional input through the operator L and with zero
disturbance). The controller can therefore be rewritten as a
coupled PDE-ODE system, and this is illustrated further in
the example considered in Section V.

Theorem 3.2: Let G1, G2, L, and K be as in Defini-
tion 3.1 and let e(t) = y(t) − yref (t). The robust output
regulation problem is solved by the dynamic error feedback

controller

ż1(t) = G1z1(t) +G2e(t), z1(0) ∈ Z (4a)
˙̂x(t) = Ax̂(t) +Bu(t) + L(ŷ(t)− e(t)), x̂(0) ∈ X (4b)
ŷ(t) = CΛx̂(t) +Du(t) (4c)
u(t) = K1z1(t) +K2x̂(t). (4d)

With this controller the closed-loop system (consisting of (2)
and (4)) has a unique mild state xe(t) = [x(t), z1(t), x̂(t)]T ,
u(·) ∈ L2

loc(0,∞;Y ) e(·), ŷ(·) ∈ L2
loc(0,∞;Y ) and x̂(·) ∈

C([0,∞);X) satisfies

〈x̂(t)− x̂(0), φ〉X =

∫ t

0

[
〈x̂(s), A∗φ〉X + 〈u(s), B∗φ〉U

+ 〈L(ŷ(s)− e(s)), φ〉X
]
ds

for all t ≥ 0 and φ ∈ D(A∗). N
Remark 3.3: Definition 3.1 shows that G1 and G2 have

explicit formulas and that L and the part K0 of K2 are
chosen as in Assumption 2.1 based on the stabilizability
properties of the original PDE system. Finally, the values
PK(±iωk) and PKI(±iωk) in B1 and HK can be computed
based on the original PDE, as shown in Section IV. N

The controller in Theorem 3.2 is based on an abstract
controller introduced in [7], [11] with general structure

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z (5a)
u(t) = Kz(t) (5b)

with e(t) = y(t) − yref (t) on a Hilbert space Z. Here G1

generates a strongly continuous semigroup on Z and G2 ∈
L(Y,Z) and K ∈ L(Z,U). For the proof of Theorem 3.2 we
define the closed-loop system consisting of the system (2)
and the controller (5). This closed-loop system has state
xe(t) = [x(t), z(t)]T on Xe = X × Z and is of the form

ẋe(t) = Aexe(t) +Bewe(t), xe(0) = xe0 (6a)
e(t) = Cexe(t) +Dewe(t) (6b)

where we(t) = [wdist(t), yref (t)]
T , xe0 = [x0, z0]T ,

Ae =

[
A BK
G2CΛ G1 + G2DK

]
, Be =

[
Bd 0
0 −G2

]
,

with domain D(Ae) = { [x, z]T ∈ D(CΛ) × D(G1) |
Ax + BKz ∈ X }, and Ce = [CΛ, DK] and De = [0,−I].
The closed-loop system (Ae, Be, Ce, De) is a regular linear
system [11, Thm. 3]. The following additional properties of
the closed-loop system are used in the proof of Theorem 3.2.

Lemma 3.4: Let xe(t) = [x(t), z(t)]T be the mild state
of (6). Then z(t) is the mild solution of the differential
equation (5a). Moreover, if V is a Hilbert space and Q :
D(G1) ⊂ Z → V is an admissible output operator for the
semigroup generated by G1, then z(t) ∈ D(QΛ) for a.e. t ≥ 0
and QΛz(·) ∈ L2

loc(0,∞;V ). N
Proof: Consider an open loop system [12, Thm. 2.3]([
A 0
0 G1

]
,

[
B Bd 0
0 0 G2

]
,

[
C 0
0 K

]
,

[
D 0 0
0 0 0

])



with input [u(t), wdist(t), uc(t)]
T and output [y(t), yc(t)]

T . It
is easy to see that this is a regular linear system on Xe =
X×Z. The closed-loop system (6) is obtained from the open
loop system by applying the admissible output feedback u(t)

wdist(t)
uc(t)

 =

0 I
0 0
I 0

[ y(t)
yc(t)

]
+

 0
wdist(t)
−yref (t)

 ,
subsequently ignoring the first input and the second output,
and finally adding the feedthrough term Dewe(t). This
feedback structure together with [19, Thm. 6.1 and Eq. (6.1)]
imply that z(t) is indeed the mild solution of (5a).

To prove the second claim we can note that since G2 is a
bounded operator, (G1,G2, Q, 0) is a regular linear system.
Since z(t) is the mild solution of (5a) and since the regulation
error satisfies e(·) ∈ L2

loc(0,∞;Y ) (as the output of the
regular closed-loop system), we have z(t) ∈ D(QΛ) for a.e.
t ≥ 0 and QΛz(·) ∈ L2

loc(0,∞;V ) by [19, Thm. 5.5].
Proof of Theorem 3.2: Definition 3.1 and [11, Thm. 15]1

imply that the robust output regulation problem is solved by
an abstract controller of the form (5) on Z = Z0 ×X with
state z(t) = [z1(t), x̂(t)]T and with parameters

G1 =

[
G1 0

(B + LD)K1 A+ LCΛ + (B + LD)K2

]
D(G1) = { [ z1x ] ∈ Z0 ×D(CΛ) | Ax+BK[ z1x ] ∈ X }

G2 =

[
G2

−L

]
, K =

[
K1, K2

]
, K2 = K0 +K1HK .

The closed-loop system has a well-defined mild state
xe(t) = [x(t), z1(t), x̂(t)]T . Thus it remains to show that
[z1(t), x̂(t)]T is the mild state of the controller (4) and that
u(·), e(·), ŷ(·), and x̂(·) have the claimed properties.

Define Q =
[
K1 K2

0 C

]
with D(Q) = Z0 ×D(A). We have

G1 =

[
G1 0
0 A+ LCΛ

]
+

[
0

B + LD

] [
I 0

] [K1 K2

0 CΛ

]
,

where([
G1 0
0 A+ LC

]
,

[
0

B + LD

]
,

[
K1 K2

0 C

]
,

[
0
0

])
is a regular linear system. We therefore have from [17,
Thm. 5.17] that Q is an admissible output operator for the
semigroup generated by G1 and its Λ-extension is given by
QΛ =

[
K1 K2

0 CΛ

]
with D(QΛ) = Z0 × D(CΛ). Lemma 3.4

thus implies that z(t) ∈ D(QΛ) = Z0 × D(CΛ) for a.e.
t ≥ 0 and QΛz(·) ∈ L2

loc(0,∞;Y ). But since ŷ(t) =
CΛx̂(t) + Du(t) = [D, I]QΛz(t), this immediately implies
ŷ(·) ∈ L2

loc(0,∞;Y ). Moreover, the regularity of the closed-
loop system implies e(·) ∈ L2

loc(0,∞;Y ), and thus also the
output u(t) of (5) satisfies u(·) ∈ L2

loc(0,∞;U).
By Lemma 3.4 the function z(t) = [z1(t), x̂(t)]T is the

mild solution of (5a). Since Z0 is finite-dimensional, the
triangular structure of G1 implies that z1(t) is the (strong)

1The result [11, Thm. 15] assumes that the system has an equal number
of inputs and outputs, i.e., m = p. However, the result and its proof remain
valid for m ≥ p under Assumption 2.3 since G1 + B1K1 is Hurwitz by
the choice of K1.

solution of ż1(t) = G1z1(t) + G2e(t). Moreover, the struc-
ture of G1 and u(t) = K1z1(t)+K2x̂(t) also imply that x̂(t)
is the mild solution of the differential equation

˙̂x(t) = (B + LD)K1z1(t)

+ (A+ LCΛ + (B + LD)K2)x̂(t)− Le(t)
= Ax̂(t) + (B + LD)(K1z1(t) +K2x̂(t))

+ L(CΛx̂(t)− e(t))
= Ax̂(t) +Bu(t) + L(ŷ(t)− e(t)).

By [16, Rem. 4.2.6] this means that x̂(·) is continuous and
that it satisfies the integral equation in the claim. �

IV. COMPUTING THE CONTROLLER PARAMETERS

In this section we describe how the values PK(±iωk)
and PKI(±iωk) used in the controller construction can be
computed based on the original PDE system.

A. The General Transfer Function Approach

The definitions

PK(λ) = (CΛ +DK0)R(λ,A+BK0)B +D

PKI(λ) = (CΛ +DK0)R(λ,A+BK0)

imply that [PK(λ), PKI(λ)] is the transfer function of the
regular linear system (A + BK0, [B, I], C + DK0, [D, 0]).
This is precisely the system (A, [B, I], C, [D, 0]) under state
feedback [u(t), ψ(t)]T = [K0x(t)+ũ(t), ψ(t)]T (see Fig. 1).

K0

PDE Systemũ(t)

+

ψ(t) y(t)

x(t)

Fig. 1. The system structure for computing PK(±iωk) and PKI(±iωk).

This feedback structure and the fundamental properties
of transfer functions imply that the values of PK(iω) and
PKI(iω) for ω ∈ {±ωk}qk=0 can be computed from the
original PDE system in the following way (cf. [21], [4]):

Add a new distributed input ψ(t) to the PDE
system corresponding to the input operator I ∈
L(X). Let u0 ∈ U , ψ0 ∈ X , and ω ∈ R. If x0 is
the (unique) initial data of the PDE system such
that the weak solution corresponding to the input
(u(t), ψ(t)) = (eiωtK0x0 + eiωtu0, e

iωtψ0) has
the form x(t) = eiωtx0, then the corresponding
output has the form y(t) = eiωty0 where y0 =
PK(iω)u0 + PKI(iω)ψ0.

As noted in [4, Sec. 1.1], the above approach (after
elimination of the common factors eiωt) leads to the same
static differential equation for x0 ∈ X as taking the formal
Laplace transform of the PDE system with an additional
distributed input ψ(t), under state feedback [u(t), ψ(t)]T =



[K0x(t) + ũ(t), ψ(t)]T , and with zero initial condition.
This same property can also be observed in the abstract
system (2): It is easy to use [16, Rem. 4.2.6] to show that
x0 ∈ X has the above properties if and only if

iω〈x0, φ〉X = 〈x0, A
∗φ〉X + 〈u0 +K0x0, B

∗φ〉U + 〈ψ0, φ〉X
for all φ ∈ D(A∗). This equation coincides (in a weak sense)
with the formal Laplace transform of the corresponding
differential equation (with zero initial condition).

Remark 4.1: The differential equation for computing
PK(iω) and PKI(iω) for ω ∈ {±ωk}qk=0 has a particularly
concrete representation if the original PDE can be expressed
as an abstract Boundary Control System

ẋ(t) = Ax(t) +B0
dw

0
d (t), x(0) = x0

Bx(t) = u(t) + w1
d (t), Bdx(t) = w2

d (t)

y(t) = Cx(t),

where A : D(A) ⊂ X → X is a differential operator and
B ∈ L(D(A), U) and Bd ∈ L(D(A), Ud) are boundary trace
operators (see [15], [3], [10] for details). In this situation, the
above approach (and elimination of the common factors eiωt)
shows that if u0 ∈ U , ψ0 ∈ X and ω ∈ R and if x0 ∈ D(A)
is the solution of the boundary value problem

(iω −A)x0 = ψ0, (7a)
Bx0 = K0x0 + u0, Bdx0 = 0, (7b)

then y0 = Cx0 = PK(iω)u0 + PKI(iω)ψ0. In particular,
x0 ∈ X satisfies the boundary conditions of the static
differential equation (7). N

Remark 4.2: As shown in [11, Thm. 15], the operator
HK ∈ L(X,Z0) is the solution of the Sylvester equation

G1HK = HK(A+BK0) +G2(CΛ +DK0)

defined on D(A+BK0). However, we emphasize that HK

has an explicit formula based on PKI(±iωk), and solving
this operator equation is not required. On the other hand, in
certain situations such as for parabolic equations the operator
HK can be approximated reliably with a solution of the
Sylvester equation projected onto a finite-dimensional space.
N

B. Reduction to Simpler Systems

In the case where iω ∈ ρ(A) the values PK(iω) and
PKI(iω) can be computed based on solutions of simpler dif-
ferential equations. Standard properties of transfer functions
show that for any λ ∈ ρ(A) ∩ ρ(A+BK0) we have

PK(λ)u0 = P (λ)(I −GK(λ))−1u0

PKI(λ)ψ0 = CR(λ,A)ψ0 + PK(λ)K0R(λ,A)ψ0

where GK(λ) := K0R(λ,A)B is the transfer function of
the system (A,B,K0, 0). The system(

A, [B, I],

[
C
K0

]
,

[
D 0
0 0

])
, (8)

is the original PDE system with an additional distributed
input ψ(t) corresponding to the input operator I ∈ L(X)

and with an additional output with operator K0. The transfer
function of (8) is given by[

P (λ) CR(λ,A)
GK(λ) K0R(λ,A)

]
,

and thus its values at λ = ±iωk contain the necessary
information for computing PK(±iωk) and PKI(±iωk). This
transfer function of (8) can be computed using the same
approach as in Section IV-A (but without the state feedback).

C. Numerical Approximations

Due to the internal model structure of the controller
the output tracking and disturbance rejection are achieved
whenever the parameter K = [K1,K2] of the controller
is such that the closed-loop system is exponentially stable.
Replacing K with K̃ in the closed-loop system leads to

Ãe =

[
A BK̃

G2CΛ G1 + G2DK̃

]
= Ae +

[
B
G2D

] [
0, K̃ −K

]
.

Since the nominal values K1 and K2 = K0 + K1HK

are guaranteed to stabilize the closed-loop semigroup Te(t)
generated by Ae and since

[
B
G2D

]
is an admissible input

operator for Te(t), the closed-loop system is stable for any
K̃ for which ‖K̃−K‖ is sufficiently small. Because of this,
we can replace K1 and HK in the controller with any approx-
imations K̃1 and H̃K for which ‖K̃1−K1‖ and ‖H̃K−HK‖
are sufficiently small. This immediately implies that it is suf-
ficient to compute the values [PK(±iωk), PKI(±iωk)] with
finite numerical accuracy, e.g., using software for solving the
boundary value problems in Sections IV-A and IV-B.

Moreover, since dimY = p, the operators PKI(±iωk) are
compact and can be approximated with finite-rank operators.
For any orthonormal basis {ψn}n∈N of X we can define

HN
K =

N∑
n=1

〈·, ψn〉PKI(±iωk)ψn,

and the approximation error ‖HN
K − HK‖ can be made

arbitrarily small with a sufficiently large N ∈ N. This shows
that it is sufficient to compute PKI(±iωk)ψ0 for ψ0 = ψn
for a finite number of basis functions n ∈ {1, . . . , N}. In
the method presented in Sections IV-A and IV-B this means
that only a finite number of boundary value problems with
ψ0 = ψn, n ∈ {1, . . . , N}, need to be solved (and each of
these can be solved numerically).

V. CONTROLLER DESIGN FOR HEAT EQUATIONS

As a concrete model we consider a heat equation

xt(ξ, t) = ∆x(ξ, t) +B0
d(ξ)w0

d (t), x(ξ, 0) = x0(ξ)

∂x

∂n
(ξ, t)|∂Ω = b(ξ)u(t) +B1

d(ξ)w1
d (t)

y(t) =

∫
∂Ω

x(ξ, t)c(ξ)dξ,

on a one or two-dimensional spatial domain Ω ⊂ Rn. We
assume that Ω = (a, b) if n = 1 and that Ω is bounded and
convex with piecewise C2-boundary if n = 2. The system
has scalar-valued input u(t) ∈ R and output y(t) ∈ R



acting on the boundary with b, c ∈ L2(∂Ω;R), b 6= 0
and c 6= 0. We assume w0

d (t) ∈ Rnd0 , w1
d (t) ∈ Rnd1 ,

B0
d(·) ∈ L2(Ω;R1×nd0), and B1

d(·) ∈ L2(∂Ω;R1×nd1). The
PDE defines a regular linear system on X = L2(Ω) [2,
Thm. 2], and it is unstable due to eigenvalue at 0 ∈ C.

Theorem 3.2 shows that if the parameters G1, G2, K1,
K2, and L are as in Definition 3.1, then the robust output
regulation problem is solved by the controller

ż1(t) = G1z1(t) +G2(y(t)− yref (t)) z1(0) ∈ Z0

x̂t(ξ, t) = ∆x̂(ξ, t) + L(ξ)
(∫
∂Ω

x̂(ξ, t)c(ξ)dξ − y(t) + yref (t)
)

∂x̂

∂n
(ξ, t)|∂Ω = b(ξ)(K1z1(t) +K2x̂(·, t)), x̂(ξ, 0) = x̂0(ξ)

u(t) = K1z1(t) +K2x̂(·, t).

In particular, x̂(·, ·) is the weak solution of the PDE in the
controller equations. To construct the controller parameters,
we can first choose G1 and G2 as in Definition 3.1 corre-
sponding to the output space Y = C and the frequencies
0 = ω0 < ω1 < . . . < ωq in the considered reference and
disturbance signals. The stabilization of the system can be
achieved using LQR design [1] or (if n = 1) explicit choices
of the bounded K0 and L. The results in Section IV-A show
that for ω = ±ωk ∈ R the values PK(iω) and PKI(iω) can
be computed by solving the boundary value problem

iωx0(ξ) = ∆x0(ξ) + ψn(ξ)

∂x0

∂n
(ξ)|∂Ω = b(ξ)(u0 +K0x0(·)), y0 =

∫
∂Ω

x0(ξ)c(ξ)dξ.

With the choices u0 = 1 ∈ C and ψn = 0 ∈ L2(0, 1) we
then have y0 = PK(iω), and for u0 = 0 and ψn ∈ L2(0, 1)
we get y0 = PKI(iω)ψn. As in Section IV-C the boundary
value problem can be solved numerically and it suffices to
compute y0 for a finite number of ψn from an orthonormal
basis of L2(Ω). In the 1D case the equations become ODEs,
∂Ω = {a, b}, and K0x0 = −

∫ b
a
x0(ξ)k0(ξ)dξ for some

k0 ∈ L2(a, b). Such boundary value problems can be solved
easily and with very high precision using the free Chebfun
MATLAB library [5] (available at www.chebfun.org).

MATLAB simulation codes for a 2D heat equation on a
rectangle and a 1D heat equation (with spatially varying heat
conductivity) are available at github.com/lassipau/CDC22-
Matlab-simulations/. The codes utilise the RORPack
MATLAB library (github.com/lassipau/rorpack-matlab/) and
Chebfun in the controller construction. Fig. 2 illustrates the
2D simulation example and results.
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