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ABSTRACT This paper investigates the global convergence problem of SLAM algorithms, a problem that
has been subject to topological obstacles. This is due to the fact that state-space of attitude kinematics,
SO(3), is a non-contractible manifold. Hence, SO(3) is not diffeomorphic to Euclidean space. Therefore,
existing SLAM algorithms can only guarantee almost global convergence. In order to overcome topological
obstructions, this paper introduces a gradient-based hybrid observer that ensures global asymptotic conver-
gence of estimation errors to zero. Moreover, integral action is augmented into the proposed observer to
estimate unknown constant bias. Accordingly, a projection scheme is designed to cope with the integral
action. Lyapunov stability theorem is used to prove the global asymptotic convergence of the proposed
algorithm. Experimental and simulation results are provided to evaluate the performance and demonstrate
the effectiveness and robustness of the proposed observer.

INDEX TERMS Geometric observers, global convergence, hybrid systems, simultaneous localization and
mapping (SLAM).

I. INTRODUCTION
A. MOTIVATION AND PROBLEM STATEMENT
Simultaneous localization and mapping (SLAM) is a well-
known highly nonlinear problem that many previous studies
have examined [1]. This estimation problem has an exten-
sive variety of applications, ranging from unmanned aerial
vehicles (UAV) to underwater robotics. Likewise, the code-
pendence of environmental mapping and pose estimation
makes the problem of significant theoretical interest. In the
SLAMproblem, an unmanned vehicle tries to construct amap
of an environment while simultaneously estimating its pose
(i.e., attitude and position) [2]. Different types of esti-
mation techniques have been applied to the SLAM prob-
lem, including Kalman-type filters [3], geometric nonlinear
observers [4], and optimization-based algorithms [5].

B. LITERATURE REVIEW
As mentioned, the Kalman filter and its variants are esti-
mation algorithms that have most frequently been employed
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to solve the SLAM problem [6]. Nevertheless, Kalman-
type filters suffer from serious shortcomings, such as
dependency on the prior information regarding noise statis-
tics and initial values and inconsistency [7]. Several pre-
vious studies have addressed these limitations [8]. For
instance, [9] introduced a new unscented Kalman-type fil-
ter (UKF), called the Adaptive Transformed Unscented
Simplex Cubature Kalman Filter, to address the depen-
dency of performance on the initialization and inconsis-
tency problem, which are two key restrictions of UKF.
A right invariant extended Kalman filter (RI-EKF) based on
a new Lie group structure has also been presented in [10]
to address this inconsistency issue. The Masreliez–Martin
UKF (MMUKF) has been presented in [11] to over-
come problems related to stability and tracking accuracy.
In this strategy, an adaptive factor was included to calcu-
late the process noise covariance matrix, and a dynamic
robot model was utilized to predict locations of the robot
and landmarks. The inconsistency of EKF-SLAM has also
been investigated in [12], where filter Jacobians were deter-
mined utilizing the first-ever accessible estimates for each
state to preserve the dimensions of the observable subspace.
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Reference [13] used a combination of EKF and particle filter
to address the SLAM problem. In this method, the particle
filter determines the position of a mobile robot, and the EKF
estimates the position of the environment. The performance
of UKF-SLAM was further developed by [14], who rendered
an adaptive random search maximization scheme to adapt
scaling parameters. To further improve the performance of
the standard UKF-SLAM and reduce its dependency on prior
knowledge, a robust SLAM has also been developed based on
H∞ square root UKF in [15].

One recently adopted technique for solving the SLAM
problem is the use of geometric nonlinear observers. In these
techniques, observers are directly designed in matrix Lie
groups, including SE1+n(3) and SLAMn(3). For instance,
in [16], a gradient-based observer was designed in the under-
lying Lie group, where the innovation term was derived
from the descent direction of an error function. Utilizing
group speed and landmark measurements, [17] introduced
a geometric nonlinear observer that evolved directly from
the matrix Lie group SE1+n(3). Furthermore, [18] devel-
oped a geometric nonlinear observer directly on the mani-
fold of the Lie group SLAMn(3). This observer guarantees
predefined performance parameters and removes unspecified
bias in velocity measurements through data obtained from
the inertial measurement unit (IMU), group velocity, and
landmarks. In a continuation of previous work, the authors
have developed the observer by diminishing the boundaries
of the error function to ensure faster convergence to the
origin [19]. A new SLAM manifold has been introduced
in [20] to develop amatrix Lie group SLAMn(3) for the SLAM
problem. Consequently, a global asymptotic stable observer
has also been derived on the suggested manifold to solve the
SLAM problem in dynamic environments.

Alongside the SLAM problem, Visual SLAM (VSLAM)
has also received significant attention. VSLAM is a spe-
cific case of SLAM in which a camera provides measure-
ments. Van Goor et al. proposed a new Lie group called
VSLAMn(3) and derived an almost globally asymptotically
stable observer on VSLAMn(3) [21]. The introduced observer
utilized decoupled gain matrices for each landmark while
employing a new cost function to calculate innovations in
robot pose. In addition, [22] continued the authors’ prior
work, where a gradient-based observer with almost global
stability was designed in the VSLAMn(3) Lie group. The work
of Van Goor et al. [21] has been further developed in [23]
with the introduction of equivariant group actions. Almost
semiglobal convergence is the most important feature of the
suggested nonlinear equivariant observer. It is worth noting
that optimization-based SLAM techniques are other common
approaches for solving VSLAM. For instance, ORB-SLAM
is one of the more popular optimization-based algorithms that
has received considerable attention [24].

Although the observers described above have a number of
advantages, they also share a significant shortcoming. To the
best of the authors’ knowledge, state-of-the-art observers
ensure almost global stability [25] because the special

orthogonal group of order three SO(3) is a non-contractible
manifold [26]. Hence, there exist sets with Lebesgue measure
zero from which the estimation error cannot converge to
zero. Therefore, hybrid systems have been used to overcome
this topological obstruction and to derive observers with
global stability on SO(3) [27], SE(3) [28], and SE2(3) [29].
For example, two hybrid observers were introduced in [30],
where the first observer uses fixed gains, while the second
uses variable gains by solving a continuous Riccati equation.
Wang et al. [31] expanded on the authors’ previous work,
with the same strategy being used to develop two hybrid
observers. In contrast to previous observers, these observers
do not need information about the gravity vector and can over-
come difficulties in estimation under intermittent landmark
measurements.

C. CONTRIBUTIONS
In light of the shortcomings regarding state-of-the-art solu-
tions, the present paper aims to address the open problem
of designing a SLAM observer with global convergence.
According to the above discussion, existing approaches for
the SLAM problem cannot guarantee global convergence
because of the non-contractibility of SO(3) and the existence
of Lebesgue measure zero sets. Therefore, the present paper
makes use of a hybrid technique to overcome these topolog-
ical obstacles. Furthermore, an integrator is included in the
proposed observer to compensate for unknown bias, lead-
ing to an increase in the estimation error. Consequently, the
present paper introduces a projection scheme to address the
problem associated with the integral action. Hence, the main
contributions of the current paper are summarized below.
• A gradient-based hybrid observer is introduced on the

SLAMn(3) manifold, which overcomes topological obstruc-
tions and guarantees global asymptotic convergence.
• A Frobenius-norm-based projection scheme is defined

to address the integral action. This projection technique pre-
serves bias estimation with known upperbounds and prevents
divergence.

D. PAPER ORGANIZATION
The present article is divided into five sections, including the
introduction. Section 2 provides the preliminary mathemat-
ical notation, SLAM kinematics, and measurements equa-
tions, along with a basic background on hybrid systems.
The proposed hybrid observer and projection scheme are
described in section 3. Section 4 illustrates the experimental
and numerical results, where the proposed observer is com-
pared with geometric-type observers and Kalman-type filters.
Finally, section 5 summarizes the paper and provides some
concluding remarks.

II. PRELIMINARIES
A. NOTATION
The current paper denotes sets of real, non-negative real, and
natural numbers by R, R≥0, and N, respectively. Rn repre-
sents n-dimensional Euclidean space, where {ei}1≤i≤n ⊂ Rn
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is the canonical basis of Rn. ‖x‖ =
√
〈x, x〉 denotes the two-

norm of a vector where 〈x, y〉 := xT y is the inner products of
vectors x, y ∈ Rn and ‖x‖A := miny∈A ‖x − y‖. The trace,
determinant, transpose, and skew-symmetric parts of a matrix
A ∈ Rn×n are denoted by tr(A), det(A), AT , and skew(A) =
(A − AT )/2, respectively. Moreover, ‖A‖F =

√
〈A,A〉 is

the Frobenius norm of A, where 〈A,B〉 := tr(ATB) =
(vecA)T (vecB), and vecA = [Ae1 . . .Aen]T is the vectoriza-
tion of A. The singular values of A are denoted by σi, i =
1, . . . , n, where σmax and σmin stand for the maximum and
minimum singular values, respectively. The attitude of a rigid
body is denoted by R ∈ SO(3), where SO(3) := {R ∈ R3×3

:

RTR = RRT = I , det(R) = 1} is the special orthogonal group
of order three and so(3) = {A ∈ R3×3

: AT = −A} is the Lie
algebra of SO(3). In the current paper, SLAMn(3) := {X =
9(R, p, η) : R ∈ SO(3), p ∈ R3, η ∈ R3×n

} represents the
matrix Lie group. Throughout the present paper, the below
identities are used frequently.

0(y) =

 0 −y3 y2
y3 0 −y1
−y2 y1 0

 ,
ϕ(A) =

1
2

A(3,2) − A(2,3)A(1,3) − A(3,1)
A(2,1) − A(1,2)

 ,
9(R, p, η) =

 R p η

01×3 1 01×n
0n×3 0n×1 In×n

 ,
ϒ(B) = ϒ(

[
B1 B2
BT3 B4

]
) =

[
skew(B1) B2
0n+1×3 0n+1×n+1

]
,

y ∈ R3,A,B1 ∈ R3×3,B2,B3 ∈ R3×n+1,

B4 ∈ Rn+1×n+1 (1)

The inverse of X is determined as X−1 = 9(RT ,−RT p,
−RTη), and the Lie algebra associated with the SLAMn(3) is
given by

slamn(3) := {V(ω, v, ξ ) =
[
0(ω) v ξ

0n+1×3 0n+1×1 0n+1×n

]
: ω, v ∈ R3, ξ ∈ R3×n

}.

The gradient of a differentiable smooth function m :

SLAMn(3)→ R is denoted by ∇Xm ∈ TX SLAMn(3), where
TX SLAMn(3) := {XV : X ∈ SLAMn(3) and V ∈ slamn(3)}
is the tangent space of SLAMn(3). Accordingly, ∇Xm is
calculated using the following equation:

dm.XV = 〈∇Xm,XV〉X =
〈
X−1∇Xm,V

〉
, (2)

where dm is the differential of m and 〈., .〉X is a Riemannian
metric on SLAMn(3) such that

〈XV1,XV2〉X = 〈V1,V2〉 .

The adjoint map AdX : SLAMn(3)×slamn(3)→ slamn(3)
is defined as AdXV := XVX−1. This map takes a tangent

vector of one element and transforms it into a tangent vector
of another element. Rodrigues formula < : R× S2→ SO(3)
parameterizes a rotation matrix R ∈ SO(3) using a specific
angle θ ∈ R around a fixed axis y ∈ S2, which is expressed
as follows:

<(θ, y) = I+sin(θ )0(y)+ (1− cos(θ))02(y) = exp(θ0(y)),

(3)

where S2 := {y ∈ R3
: ‖y‖ = 1} is a unit two-dimensional

sphere.

B. SLAM KINEMATICS
Kinematic equations that define the motion of a rigid body
and family of n landmarks are given as follows:

Ṙ = R0(ω) (4)

ṗ = Rv (5)

η̇i = Rξi, i = 1, . . . , n (6)

where ω ∈ R3 and v ∈ R3 are the angular rate and linear
velocity of rigid body expressed in the body-fixed frame B,
respectively. ξi ∈ R3 is the linear speed of i-th landmark
expressed in B. Moreover, p ∈ R3 and ηi ∈ R3 denote
the position of the rigid body and i-landmarks in the inertial
frame I, respectively. The kinematic equations (4)-(6) can be
rephrased using the following compact form:

Ẋ = XV . (7)

In the present paper, it is assumed that landmarks are
stationary (i.e., ξi = 0) and that the linear and angular veloc-
ities of the rigid body are available for measurement. It is
also assumed that angular and linear velocity measurements
include an unknown constant bias, as follows:

Vm = V + Vb,
Vm = V(ωm, vm, 0), Vb = V(bω, bv, 0), b = [bω bv]T .

(8)

It is also assumed that the robot can perceive both range
θb = ‖ηi − p‖ and bearing  = RT (ηi − p)/θb relative
to landmarks. Accordingly, the following compact equation
is the result of a combination of the range and bearing
measurements:

βi := X−1ri =

RT (ηi − p)1
−ei

 , i = 1, . . . , n

ri =

 03×1
1
−ei

 (9)

C. HYBRID SYSTEM FRAMEWORKS
The present paper uses the following framework of hybrid
systemsH first introduced by [32].

H :
{
ẋ = f (x, u), (x, u) ∈ C
x+ = g(x, u), (x, u) ∈ D

(10)
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In this framework, f : Rn
× Rm

→ Rn is the flow map
that defines the continuous dynamics of H, and g : Rn

×

Rm
→ Rn is the jump map that specifies the behavior of H

during jumps. The flow set C ⊂ Rn
× Rm indicates where

a continuous evolution is allowed to flow, and the jump set
D ⊂ Rn

×Rm demonstrates where the system is permitted to
jump. Subset E ⊂ R≥0×N is called a hybrid time domain if

E =
I⋃
i=1

([ti, ti+1] , i) for finite sequences of times 0 = t0 ≤

t1 · · · ≤ tI+1. A hybrid arc consists of a hybrid time domain
dom x and a function x : dom x → Rn, which is also called
a solution toH.
Lemma 1 [33]: The closed set A ⊂ Rn is locally and

exponentially stable for H if (α1 > α2, s1, s2, n) ∈ R≥0
exist and there is a continuously differentiable function V :
dom V → R on an open set containing the closure of C that
satisfies the following equation:

α2‖x‖nA ≤ V (x) ≤ α1‖x‖nA,

∀x ∈ (C ∪ D ∪ g(D)) ∩ (A+ s1B)
〈∇V (x), f 〉 ≤ −s2V (x), ∀x ∈ C ∩ (A+ s1B)

V (g) ≤ exp(−s2)V (x), ∀x ∈ D ∩ (A+ s1B). (11)

whereB := {x ∈ Rn
: ‖x‖ ≤ 1} is the closed unit ball. The set

A is said to be globally exponentially stable if s1 = ∞, andA
is said to be globally asymptotically stable if s1 = ∞, s2 = 0.

III. PROPOSED OBSERVER AND
PROJECTION ALGORITHMS
This section describes the proposed observer and projection
method. As mentioned above, the two main techniques that
have been utilized to solve the SLAM problem are geometric
nonlinear observers and Kalman-type filters. The drawbacks
of these methods have also been discussed. Consequently, the
current paper has designed a hybrid observer to overcome
these drawbacks. Moreover, the integral action is considered
in the proposed observer algorithm to estimate constant bias,
which leads to an increase in bias estimation. Therefore,
a new projection scheme has been designed to address this
problem.

A. PROPOSED HYBRID OBSERVER
State-of-the-art observers are almost globally stable because
of the non-contractibility of the state-space of attitude kine-
matics (i.e., SO(3)). Consequently, hybrid systems have been
used to tackle this topological obstruction and obtain globally
stable results [34]. Therefore, the present paper builds on the
observer developed by [17], describing a hybrid observer for
solving the SLAM problem. Consider the following smooth
real-value function: U : SLAMn(3)→ R

U(X ) =
1
2
tr((I − X )A(I − X )T ), (12)

where A :=
∑n

i=1 kiriri
T and ki ∈ R≥0 are positive con-

stants. Utilizing the Riemannian metric on SLAMn(3) and the
identities provided in the Appendix, one can show

the following:

dU .XV =
〈
X−1∇XU ,V

〉
⇒

dU .XV = tr(−A(I − X )TXV)
=

〈
ϒ(X−1(X − I )A),V

〉
=

〈
ϒ((I − X−1)A),V

〉
. (13)

Therefore, the gradient of U with respect to X is calcu-
lated with the following equation:

∇X (U) = Xϒ((I − X−1)A). (14)

Throughout the current paper, X̂ denotes the estimated
value of the stateX . Therefore, X̃ = XX̂−1 is the estimation
error with R̃ = RR̂T , p̃ = p− R̃p̂, and η̃ = η− R̃η̂. Hence, the
following identity can be easily calculated using (7) and (1).

ϒ(
n∑
i=1

ki(ri − X̂βi)rTi ) = ϒ((I − X̃−1)A), (a)

n∑
i=1

ki‖ri − X̂βi‖2 = tr((I − X̃ )A(I − X̃ )T ), (b) (15)

The dynamics of the proposed hybrid observer is defined
as follows:
˙̂X = X̂ (Vm − Vb̂ −1),
V̇b̂ = −ϒ(X̂ T ∑n

i=1 ki(ri − X̂βi)rTi X̂−T ), (X̂ , b̂) ∈ C
q̇ = 0,
X̂+ = Xq,

V+
b̂
= Proj(Vb̂), (X̂ , b̂) ∈ D

q+ = argmin
q∈Q

U(X̃q),

C := {(U(X̃ )− min
X̃q∈Q

U(X̃q) ≤ δ) and (‖Vb̂‖F ≤ Z)},

D := {(U(X̃ )− min
X̃q∈Q

U(X̃q) ≥ δ) or (‖Vb̂‖F > Z)},

Xq = 9(<(qθ, `)′R̂,<(qθ, `)p̂, qη̂), q ∈ N

1 = −AdX̂−1ϒ(
n∑
i=1

ki(ri − X̂βi)rTi )K ,

b̂ = [ϕ(Vb̂(1 : 3, 1 : 3)) Vb̂(1 : 3, 4)]
T . (16)

In (16), θ, δ,Z ∈ R>0 are arbitrary constants, ` ∈ S2 is an
arbitrary fixed vector, Q = {Xq ∈ SLAMn(3) : q ∈ N} is a
compact set,K := koIn×n with ko ∈ R>0 is the observer gain,
and X̃q = XX−1q .
Theorem: Consider the proposed hybrid observer (16) with

any θ ∈ R>0 and ` ∈ S2 for the SLAM kinematics (7).
The state estimation error X̃ and bias estimation error Vb̃ =
Vb − Vb̂ converge to In×n and 0, respectively. Therefore, the
following set is globally asymptotically stable:

A := {(X̃ ,Vb̃) ∈ SLAMn(3)× slamn(3)

: X̃ = I ,Vb̃ = 0}. (17)
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Proof: According to Lemma 1, Theorem is proven in
two steps.

Step 1: This step proves the second condition of (11) with
s2 = 0. Utilizing the facts ˙̂X−1 = −X̂−1 ˙̂XX̂−1 and V̇ =
V̇m = 0, one has the following:

˙̃X = X̃ (AdX̂ (1− Vb̃))
V̇b̃ = −V̇b̂. (18)

Hence, the estimation error dynamics can be calculated
using the following equation:

˙̃X = X̃ (−ϒ((I − X̃−1)A)K − AdX̂Vb̃)
V̇b̃ = ϒ(X̂ T (I − X̃−1)AX̂−T ). (19)

The Lyapunov function candidate is defined as follows:

V (X̃ ,Vb̃) = U(X̃ )+
1
2

∥∥Vb̃∥∥2F . (20)

Time derivative of V is calculated as follows:

V̇ =
〈
ϒ((I − X̃−1)A), (−ϒ((I − X̃−1)A)K − AdX̂Vb̃)

〉
+

〈
ϒ(X̂ T (I − X̃−1)AX̂−T ),Vb̃

〉
= −

〈
ϒ((I − X̃−1)A), ϒ((I − X̃−1)A)K

〉
−

〈
X̂ T (I − X̃−1)AX̂−T ,Vb̃

〉
+

〈
X̂ T (I − X̃−1)AX̂−T ,Vb̃

〉
= −ko‖ϒ((I − X̃−1)A)‖2F . (21)

After simplifying (21) and utilizing the Cauchy–Schwarz
inequality for matrix [35], the resulting equation is as follows:

V̇ ≤ −ko‖ϒ((I − X̃−1)A)‖2F ≤ 0. (22)

Thus, it can be deduced that R̃, p̃, η̃ and Vb̃ are glob-
ally bounded. This implies that V̈ is also globally bounded.
Barbalat’s lemma reveals that limt→+∞ V̇ = 0; therefore,
X̃ = I and Vb̃ = 0 (for details, see [17]).

Step 2: In this step, the last condition of (11) is proven.
Because the switching variable q generates jumps, it is essen-
tial to assay the variation in V (X̃ ,Vb̃) to ensure that the
Lyapunov function is reduced across jumps. The variation in
V along jumps is given by the following equation:

V (X̂+,V+
b̂
)− V (X̂ ,Vb̂)

= (U(X̂+)+
1
2

∥∥∥V+
b̂

∥∥∥2
F
)− (U(X̂ )+

1
2

∥∥Vb̂∥∥2F )
= (U(Xq)− U(X̂ ))+ (

∥∥Proj(Vb̂)∥∥2F − ∥∥Vb̂∥∥2F ). (23)

From (16), one can obtain the following:

min
X̃q∈Q

U(X̃q)− U(X̃ ) ≤ −δ. (24)

From the fact σmax(Vb̂) ≤ ‖Vb̂‖F , we have
∥∥Proj(Vb̂)∥∥2F ≤∥∥Vb̂∥∥2F , so we have the following:

V (X̂+,V+
b̂
)− V (X̂ ,Vb̂) ≤ 0. (25)

Finally, it follows from Lemma 1 that the setA is globally
asymptotically stable. �

The salient features of the proposed observer are 1) its
simplicity, 2) global convergence, and 3) low computational
cost.

B. PROPOSED PROJECTION SCHEME
Because of the existence of measurement noise in practical
applications, the integral action may cause an enhancement
in bias estimation [36]. To address this problem, the present
paper introduces a new projection mechanism, as follows:

A = tdiag(σmax , . . . , σmin)∨T , (a)

Proj(A)

=


A, if ‖A‖F ≤ γ,
tdiag(min(γ, σmax),
. . . ,min(γ, σmin))∨T , otherwise

(26)

Equation (26a) is the singular value decomposition of A,
in which t,∨ are unitary matrices. The proposed projection
scheme upperbounds the Frobenius norm of A by γ ∈ R>0.
Lemma 2: The following properties hold for the proposed

projection scheme:
1) ‖Proj(.)‖F ≤ γ ,
2) Proj(.) is locally Lipschitz continuous.
Proof: The proof of property (1) is clear from the fact

that σmax(Proj(.)) = min(γ, σmax) ≤ ‖Proj(.)‖F . To prove the
second property, consider two matrices A,B ∈ Rn×n. It holds
that

‖Proj(A)− Proj(B)‖2F
= tr((Proj(A)− Proj(B))(Proj(A)− Proj(B))T )

= tr(Proj(A)Proj(A)T )− 2tr(Proj(A)Proj(B)T )

+tr(Proj(B)Proj(B)T ) = ‖Proj(A)‖2F + ‖Proj(B)‖
2
F

−2tr(Proj(A)Proj(B)T ). (27)

Accordingly, it follows fromVonNeumann’s trace inequal-
ity [37], which is represented in the Appendix , and the fact
‖Proj(A)‖F ≤ ‖A‖F , that

‖Proj(A)− Proj(B)‖F ≤ ‖A− B‖F . (28)

Finally, it can be deduced from (28) that the proposed
projection scheme is locally Lipschitz continuous. �

IV. EVALUATION STUDIES
This section presents numerical simulations and experimental
results to evaluate the performance of the proposed observer.
The proposed hybrid observer is contrasted with the geo-
metric observer, smooth observer, Unscented Kalman Filter
(UKF), and Right UKF on Lie Groups (Right-UKF-LG),
as described in [17], [21], and [38], respectively. Moreover,
two different datasets are utilized to show the robustness
of the proposed technique and to verify the stability and
convergence of the proposed observer. The experiments were
conducted on an Intel Core i5-1145G7 CPU ˙ 2.60GHz desk-
top PC with 16 GB RAM.
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A. SIMULATION RESULTS
This section investigates performance of the proposed
method by numerical simulation. It is considered that the
robot moves in a circular trajectory at a constant altitude, and
it is assumed that it can measure range and bearing to four
landmarks located at

η =

8 0 − 8 0
0 8 0 − 8
0 0 0 0

 .
Moreover, range and bearingmeasurements contain a noise

signal consisting of a uniform distribution on the inter-
val [0 0.4] and a Gaussian distribution with zero mean and
unit variance. The following constant biases corrupt the angu-
lar velocity and linear velocity bω = [−0.02 0.05 0.03]T ,
bv = [0.2 0.05 0.1]T , respectively. Unbiased measurements
of the angular velocity and linear velocity in the body fixed
frame are such that ω = [0 0 0.3]T rad/sec and v =
[1 0 0]T m/sec. The initial position and attitude of robot were
set to p(0) = [0 0 2]T and R(0) = R(0, e1), respectively.
The initial conditions for both observers were set to p̂(0) =
[0 0 0]T , R̂(0) = R(π/6, e1), and η̂ = 1.5 ∗ η. Figures (1–4)
illustrate the results of this experiment. Figure (1) depicts the
estimated path of the robot and the observer landmark trajec-
tories, as well as the actual robot path and true landmark posi-
tions. The errors associated with the estimates of the robot’s
position and landmarks’ positions are shown in Figure (2).
The evolution of the Lyapunov function and error in the
estimation of bias are depicted in Figure (3). The attitude
tracking errors are illustrated in Figure (4). This figure reveals
that the hybrid observer successfully tracked the true attitude
compared with the designed observer in [21]. This figure
also proves that the proposed observer breaks topological
obstructions and produces rotation for reducing the attitude
tracking error. Furthermore, these figures demonstrate that
the proposed observer has lower estimation errors than the
geometric observer and the convergence rate of the proposed
observer is faster than that of the geometric observer.

B. EXPERIMENTAL RESULTS
In this section, the performance of the proposed observer
is evaluated by utilizing a real-world EuRoc dataset [39].
The EuRoC dataset consists of synchronized 1) 200 Hz IMU
measurements, 2) micro aerial vehicle (MAV) ground truth,
and 3) 20 Hz stereo images. The EuRoC provides two kinds
of datasets, which were recorded in a large machine hall
and in the Vicon room. The present paper considers this
dataset for the experimental evaluation because of the violent
rotation and considerable lighting variation that make the
dataset laborious for VSLAM algorithms. Figure (5) depicts
the features extracted from sample images in the V2_01_easy
datasets.

1) FIRST EXPERIMENT
This experiment aims to prove that applying a hybrid algo-
rithm to the smooth observer [17] leads to a performance

FIGURE 1. 3D trajectories of the observers compared with the actual
system evolution.

FIGURE 2. Estimation errors of robot position and Landmarks’ positions.

FIGURE 3. Evolution of the Lyapunov function and norm of the velocity
bias estimation error versus time.

improvement. In this experiment, the proposed and smooth
observers are evaluated on a V2_01_easy of EuRoc public
dataset. The estimated trajectories of the observers and their
comparisons against the ground truth, which is acquired via
a Vicon 6D motion capture system at a rate of 100 Hz,
are demonstrated in Figure (6). Here, the observer-estimated
trajectory has been aligned to the ground truth by utilizing the
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FIGURE 4. Rotation estimation errors versus time.

FIGURE 5. Examples of feature tracks between two consecutive
keyframes.

FIGURE 6. Comparison of global trajectories estimated by proposed
observer and smooth observer on V2_01_easy sequence.

Umeyama technique [40]. Figure (7) illustrates the position
states (x, y, and z) of the observers and ground truth. It can be
deduced from these figures that the proposed observer suc-
cessfully tracked the actual trajectory and finally converged
to the true values within an acceptable range of error.

2) SECOND EXPERIMENT
In this experiment, the performance of the hybrid observer
is compared with the results acquired utilizing the traditional
UKF and Right UKF on Lie Groups (Right-UKF-LG). This
experiment tests the performance of proposed method with
real-world measurements from the V1_02_medium of EuRoc
public dataset. Figure (8) illustrates the estimated trajectories
by hybrid observer, UKF, and Right-UKF-LG compared with
the ground truth. The true position of MAV and estimated
positions in the x, y, z direction are depicted in Figure (9).
It is worth noting that UKF and Right-UKF-LG are

FIGURE 7. True position and estimated positions in the x , y and
z direction.

TABLE 1. Comparison of the execution times by UKF, Right-UKF-LG, and
the proposed observer.

FIGURE 8. Comparison of global trajectories estimated by proposed
observer, UKF, and Right-UKF-LG on V1_02_medium sequence.

FIGURE 9. Actual position and estimated positions in the x , y and
z direction.

initialized with the true values while the proposed observer
is randomly initialized. It can be ascertained from these fig-
ures that, despite the random initialization for the proposed
observer, it features superior performance when compared
with the UKF and Right-UKF-LG on both trajectory tracking
and reducing the effect of noise. Moreover, Table 1 summa-
rizes the execution times of the three algorithms. It can be
deduced from Table 1 that the hybrid observer is capable
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of obtaining superior performance with less computational
time compared with the UKF and Right-UKF-LG. Moreover,
Table 1 also indicates that the proposed observer is more
suitable for real-time implementation.

V. CONCLUSION
The present paper has investigated the problem of global con-
vergence in SLAM observers. State-of-the-art SLAM tech-
niques can only guarantee almost global convergence because
of the non-contractibility of the state-space of attitude.
Accordingly, the present paper has introduced a gradient-
based hybrid observer to overcome topological obstructions
and achieve global convergence. The proposed algorithm
was demonstrated to be globally asymptotically convergent.
Additionally, a new projection mechanism was introduced to
tackle integral action for preserving the estimated bias in a
predefined bound. Experimental and simulation results were
provided to demonstrate the key advantages of the proposed
algorithm.

SOME USEFUL IDENTITIES
The current paper uses the following identities related to the
orthogonal projection and matrix inner product.

ϒ(XB) = ϒ(X−TB), (a)

〈V,B〉 = 〈V, ϒ(B)〉 = 〈ϒ(B),V〉 , (b)

tr(ABCD) = tr(CDAB) = tr(DABC), (c)

|tr(AB)| ≤
n∑
i=1

σi(A)σi(B), (d)

tr(X TXϒ(B)ϒ(B)T ) = tr(ϒ(B)ϒ(B)T ), (e)
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