
Tampere University Dissertations 742

742/2023
JIYEO

N
G

 K
IM

    C
om

putational Analysis of C
om

plex Beat-to-Beat D
ynam

ics in H
eart C

ells

Computational Analysis 
of Complex Beat-to-Beat 
Dynamics in Heart Cells

JIYEONG KIM





 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

  

Tampere University Dissertations 742 

JIYEONG KIM 

Computational Analysis of Complex  
Beat-to-Beat Dynamics in Heart Cells 

ACADEMIC DISSERTATION 
To be presented, with the permission of 

the Faculty of Engineering and Natural Sciences 
of Tampere University, 

for public discussion in the auditorium S2  
of the Sähkötalo building, Korkeakoulunkatu 3, Tampere, 

on 20 January 2023, at 12 o’clock. 



 

 

 
 
 
 

 

  

 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

 
 

 
 
 

 
 

ACADEMIC DISSERTATION 
Tampere University, Faculty of Engineering and Natural Sciences 
Finland 

Responsible 
supervisor 
and Custos 

Professor Esa Räsänen 
Tampere University 
Finland 

Pre-examiners Professor Mikko Alava Senior Lecturer Steven Williams 
Aalto University University of Edinburgh 
Finland United Kingdom 

Opponent Professor Elaine Chew 
King’s College London 
United Kingdom 

The originality of this thesis has been checked using the Turnitin OriginalityCheck 
service. 

Copyright ©2023 Jiyeong Kim 

Cover design: Roihu Inc. 

ISBN 978-952-03-2750-7 (print) 
ISBN 978-952-03-2751-4 (pdf) 
ISSN 2489-9860 (print) 
ISSN 2490-0028 (pdf) 
http://urn.fi/URN:ISBN:978-952-03-2751-4 

Carbon dioxide emissions from printing Tampere University dissertations 
have been compensated. 

PunaMusta Oy – Yliopistopaino 
Joensuu 2023 



To my baby Lotto,

I cannot wait to welcome you into this world!

iii



iv



PREFACE

The research for this thesis was carried out at the Computational Physics Laboratory

in the Faculty of Engineering andNatural Sciences, Tampere University, in close col-

laboration with the Heart Group at BioMediTech in the Faculty of Medicine and

Health Technology, Tampere University.

I am eternally grateful tomy supervisor andmentor, Esa Räsänen, who never stopped

believing in me and showed me endless support and encouragement that I needed

through this challenging but meaningful journey in my career. Thank you for going

above and beyond in your support. I could not have come this far without your

guidance and positive energy. You have always been such a caring supervisor and I

cannot thank you enough.

I would like to acknowledge with gratitude my collaborators at the Heart group for

their excellent experimental work. I am deeply grateful to Katriina Aalto-Setälä for

her expertise and guidance in the projects, and to Jukka Kuusela, Disheet Shah, and

Aliisa Lönnrot for producing and sharing the cell data that was essential to this work.

I also wish to thank all my colleagues in Quantum Control and Dynamics group,

whom I had the pleasure to interact every day and to study and work with. I am par-

ticularly grateful to Matti Molkkari and Perttu Luukko for all the help in research

and technical support, whenever I was stuck in some computer/code-related prob-

lems. I am also thankful to Ilya Potapov and Joonas Latukka for valuable collabo-

rations, and to Joonas Keski-Rahkonen, Janne Solanpää, Rostislav Duda, Alexander

Odriazola-Diaz for all the helps and good memories I received in my earlier days in

the group. In addition, I would like to extend my gratitude to Teemu Pukkila and

Matias Kanniainen for the discussions and collaboration in our recent heart projects.

v



I acknowledge several organizations including Tampere University, the Finnish Aca-

demy of Science and Letters, Magnus Ehrnrooth foundation, Orion Research Foun-

dation, and Business Finland, for fundingmy research. I also thankmy pre-examiners,

Professor Mikko Alava, Aalto University, and Senior Lecturer Steven Williams,

University of Edinburgh, United Kingdom for their detailed feedback on this thesis.

I extendmy gratitude also to AnnaNykänen for helping me navigate the dissertation-

related process.

Special thanks to my family and friends for their faith and support, and especially

to Christine, Daniel, Eddie, Lavanya, Mandy, and Paul for proofreading this thesis

and having fun together.

Finally, I am grateful to my life partner Mikko Poikkimäki, who has been here for

me from the very beginning of this journey. I have received so much love and sup-

port from you.

Jiyeong Kim

January 2023, Tampere

vi



ABSTRACT

Contrary to the popular belief that the heart maintains a regular rhythm, healthy

heartbeats fluctuate in a chaotic way. We now know that the fluctuations do not

display uncorrelated randomness, but they contain long-range correlations and can

be characterized by a fractal. This behavior supports the adaptability of the heart

and may thus protect it from external stress. The fractal complexity is also found in

the smallest parts of the heart: the cells. In the dawn of advanced pluripotent stem

cell technology, producing independently beating cardiomyocytes in a laboratory,

the beat-rate fluctuations of heart cells can be directly studied.

In this thesis, we investigate the complex fluctuations in the field potentials gen-

erated by clusters of human cardiomyocytes. We show that the heart cells exhibit

similar correlation properties in the beat-to-beat intervals and field potential dura-

tions comparable to RR and QT intervals, i.e., time between consecutive R waves

and time from Q wave to the end of T wave, respectively, in an electrocardiogram

of a heart. The cells are studied under conditions resembling real-life situations such

as cardiac disorders, application of cardioactive drugs, and injuries. The results show

significant alteration of the scaling properties in the beat rates, reflecting the changes

in the intrinsic mechanism at the cellular level.

By employing a set of nonlinear time series analysis tools, we explore their power-

ful applicability as well as their limitations. Our main method of choice throughout

the work is detrended fluctuation analysis, which is designed to detect the degree of

correlation in nonstationary time series. We demonstrate that detrended fluctuation

analysis and its extensions are extremely useful in dealing with the field potential data

of the heart cells despite the presence of abnormalities and irregular trends. The study

of heartbeat dynamics at the cellular level using computational methods has impor-

tant advantages. In particular, the methods provide non-invasive and versatile ways

to improve our understanding of the intrinsic firing patterns of the heart cells, which

play a crucial role in the future applications of in vitro human cardiomyocytes.
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1 INTRODUCTION

1.1 Overview

The research presented in this thesis is inspired by the beautiful complexity found in

our heartbeats. As elaborated in detail below, a healthy human heart exhibits fractal

characteristics, which can be observed even at the cellular level.

A fractal refers to a structure that exhibits self-similar patterns across different

scales. Since long before the mathematician Benoît Mandelbrot invented the term

“fractal” in 1975 [1], the concept has fascinated and inspired many mathematicians,

scientists, and artists alike. Fractals are found everywhere around us, and many

complex patterns in nature are best modeled by a fractal geometry as illustrated in

Fig. 1.1 [2].

Figure 1.1 Natural and generated fractals. Complex self-similar patterns are found in many places
in nature, e.g., snowflakes, tree branches, and coastlines (top). The natural patterns are
best modeled by fractal geometries (bottom).
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Fractals are also realized in non-geometrical forms. A time series is a sequence

of observables measured in time, or time-like, order. A time series generated by

a complex system contains important information about the nonlinear dynamics

that govern the system. Such time series are often characterized by a scaling law.

Following Mandelbrot’s pioneering work in fractal analysis of natural time series [3],

[4], fractal scaling has been identified in real-world data within numerous complex

systems, such as the structure of DNA [5], recordings of rainfall [6] and ozone levels

[7], transport in quantum dots [8], fluctuations in human gait [9] and heart rate

[10], [11], price fluctuations in financial markets [12], and rhythms of drum beats

and musical groove [13], [14]. Fractal analysis and the related methods continue to

be applied and refined in numerous studies; according to Google Scholar, in the last

decade (2012-2022), more than half a million scientific works related to fractal time

series analysis have been published.

Quantification of fractality in a natural complex system is useful for modeling the

dynamics and behaviors of the system. Though the origin of the fractal features is not

always obvious, it is often suggested that the most optimal and efficient systems are

associated with fractals [2], [15], [16]. A well-known example is the branching of the

blood vessels in the lung; the fractal branching structure allows a large surface area

to fit in a limited space in the lung1, resulting in the most efficient oxygen delivery.

In physiological systems, nonlinear complexity is often related to the autonomous

regulation and robustness of the system. For example, the heart, a muscular organ

consisting of many parts working in unison through coordinated electrical and me-

chanical activities, is one of the most complex systems in our body. It is connected to

the autonomous nervous system (ANS), of which the sympathetic and parasympa-

thetic branches accelerate and slow the heart rate, respectively. Fractal analysis has

been successful in distinguishing sleep stages [18] and identifying the alteration in

the fractal scaling due to aging and heart diseases, which reduce the heart’s adaptive

capacity against external stress [10], [11].

Furthermore, fractal characteristics similar to those found in the functioning

heart are also observed in human heart cells without any neural input from ANS

[19]. The study of the beat dynamics of isolated human heart cells is made possible

today by virtue of recent advancements in stem cell technology. According to the rev-

1In fact, a pair of lungs is extremely compact. To be more precise, a surface area of 130 m2 fits into

a volume of 5 liters [17].
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olutionary scheme that led to the Nobel Prize in Medicine in 2012, human-induced

pluripotent stem cells (hiPSC) can be obtained from adult tissues, such as skin and

hair, and give rise to any cell type in the body, such as heart cells [20]. The hiPSC-

derived heart muscle cells, or cardiomyocytes (CM), beat spontaneously producing

action potential similar to that of the heart. As we will demonstrate throughout this

thesis, hiPSC-derived CMs provide an exciting platform to study the fractal proper-

ties of the intrinsic firing patterns of the cells and the effects of hereditary diseases,

drugs, and other external perturbations.

Because human heart cells are a relatively new realm for fractal analysis, there

has been only a limited number of studies available on the topic. However, the

surprising and important results so far suggest that fractality in the heart is intrinsic

to its nature at the cellular level. This result has motivated further investigation and

studies presented in this thesis.

1.2 Research objectives

The goal of this research is to establish a deeper understanding of the fractal dynam-

ics of the heart at the cellular level by quantifying the complexity using advanced,

state-of-the-art computational methods. These studies are extremely important in es-

tablishing hiPSC-derived CMs as a physiologically valid model of the heart, which,

in the long run, can lead to advancements in cardiac disease modeling and drug safety

assessments, as well as novel applications, such as biological pacemakers [19]. Our

main objectives are:

1. provide detailed descriptions of fractal and other nonlinear properties in beat

dynamics of hiPSC-CMs, in comparison to those of the heart

2. investigate the effects of important factors that are known to affect the func-

tionality of the heart, such as (hereditary) cardiac disorders, drug exposure,

and hypoxia, on the fractal scaling properties

3. establish a set of advanced computational tools suitable for characterizing the

complexity of the cellular level beat rate variability

Objective 1 is addressed in Publications I-III, in which the signals from the cells

are studied alongside the signals from human subjects. Objective 2 is addressed in

Publication I for the presence of a genetic mutation and application of drugs, in Pub-
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lication IV for prolonged hypoxia, and briefly in Publication II for the presence of

a genetic mutation using a different method. Objective 3 is addressed across Publi-

cations I through IV, in which the conventional and novel computational methods

and our newly improved algorithms, are applied to analyze the cell data.

1.3 Structure of the thesis

Chapters 2 and 3 provide painless introductions to the concepts relevant to this

thesis. Chapter 2 discusses the basic concepts and characteristics of fractals and long-

range correlation, along with historical accounts of how they have developed. We

discuss how the concepts are applied to cardiology, highlighting the multidisciplinary

character of the research. In Chapter 3, we introduce new stem cell technology and

how human heart cells are generated and measured in a laboratory for the studies

presented in this thesis. We also discuss the status of research with human CMs that

is relevant to this thesis. Next, in Chapter 4, we describe the important methods in

nonlinear time series analysis, including conventional and state-of-the-art methods

used in this thesis. In Chapter 5, we discuss the key findings from the publications,

which are revised and supplemented as necessary. The current limitations of the

studies are discussed. We conclude in Chapter 6 with a brief summary and future

perspectives.
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2 PHYSICS OF FRACTAL TIME SERIES

The study of fractal behaviors has proven to be extremely versatile across multiple

disciplinary fields and is deeply rooted in chaos theory. Section 2.1 provides a brief

historical account of the development of chaos theory and how the concept of frac-

tals emerged. In the sections that follow, important concepts and characteristics of

fractals are introduced.

2.1 Chaos theory and fractals

Most people are familiar with the term “butterfly effect”: a flap of a butterfly’s wing

at a precise moment and location causes a hurricane on a continent across the ocean

[21]. This well-known expression captures the complexity and unpredictability of

nature, one of the underlying principles of chaos theory. Chaos does not mean ran-

domness. On the contrary, the theory states that in what appears to be a completely

irregular and unpredictable system, underlying patterns and order can be found.

Though the word “chaos” had not been used in this context yet, the earliest ac-

counts of chaos theory date back to the 1880s by Henri Poincaré in his study of the

three-body problem1 He discovered that a small change in the initial positions and ve-

locities set the three masses in very different paths, making the long-term prediction

of their motions impossible [22]. In the 1950s, when electronic computers became

available for lengthy, iterative calculations necessary for the simulations of chaotic

systems, chaos theory started to flourish. In 1961, mathematician and meteorologist

Edward Lorenz discovered that a certain solution to his model for atmospheric con-

vection formed a curve that continuously spiraled around two points while never

crossing its own path [23]. This peculiar solution, later known as the “Lorenz at-

tractor” (Fig. 2.1 (a)), was also highly sensitive to changes in the initial conditions,

1The problem of solving the motions of three point masses (e.g., sun, earth, and moon) with their

initial positions and velocities, which satisfy Newton’s law of motions and Newton’s law of universal

gravitation.
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Figure 2.1 An example of (a) the Lorenz attractor and (b) bifurcation diagram. Both belong to chaotic
systems that exhibit fractal characteristics.

leading to the conclusion that it could not make precise weather predictions. Around

the same time, Robert May, a theoretical ecologist, was reaching similar conclusions

during his effort to model animal populations [24]. James Yorke, who saw the po-

tential connection between Lorenz’s and May’s works, examined May’s population

model further and presented his bifurcation diagrams (Fig. 2.1 (b)) in 1975, using

the words “chaos” and “chaotic” to describe the behavior of the system [25].

The aforementioned Lorenz attractors and bifurcation diagrams, as well as many

chaotic systems in nature, share a common feature – fractals2. A fractal is a geo-

metrical shape consisting of detailed fragments at arbitrarily small scales, that are

similar to the whole. They are representable by a fractal set, which is more rigor-

ously defined as having the Hausdorff (fractional) dimension3 strictly exceeding the

topological dimension [2]. Chaos and fractal are not synonyms, but they are closely

related. Systems that behave chaotically are often described or visualized by fractal

characteristics, in particular, infinitely repeating patterns across different scales, i.e.,

self-similarity.

2It may not be too obvious to recognize why the Lorenz attractor is fractal. It comes from the fact

that it consists of an infinite number of surfaces in order for the curves to never intersect, therefore

having a non-integer fractal dimension; the interested reader is referred to, e.g., Ref. [2], [26], [27] for

more details.
3Discussion of fractal dimensions is beyond the scope of the thesis, however, it is very interesting

and can be read further in, e.g., Ref. [2], [28].
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2.2 Self-similarity and scaling law

Studying scaling properties of a function f (x) involves considering how the func-

tion changes under rescaling of the variable x to, e.g., λx. Self-similarity of a fractal

indicates scale-invariance, which means that the patterns do not change when the

scales are changed, e.g., by magnification. In less strict terms, the concept extends to

“statistical self-similarity” in which statistical properties are the same at many scales,

as is the case for coastlines [29].

It is also possible for time-dependent functions and probability distributions of

stochastic processes to exhibit self-similarity, which may be realized in a time series.

A time series is a collection of ordered data points. The values of a time series are

produced by an underlying mechanism that drives the system; in other words, by

studying a time series, one can learn about the dynamics of the system. However,

time series data collected from the real world bring many challenges. Natural systems

are governed by nonlinear dynamics, which means they produce complicated and

irregular values that appear impossible to extrapolate. However, as we have been

enlightened by chaos theory, there are often indeed underlying patterns to be found.

Many such time series are characterized by a scaling law, i.e., a power law with a

scaling exponent,

F (s) ∼ sα, (2.1)

which is a characteristic of fractals. Fractal geometry in the context of stochastic

processes refers to statistical self-similarity in time scales, rather than in length scales

(Fig. 2.2).

Fractal time series, in a more general sense, include those that are self-affine, mean-

ing that they require different rescaling factors for the time axis t and the axis of the

values x(t) to achieve statistical self-similarity, described by the relation

x(at) � aHx(t) (2.2)

for an arbitrary rescale factor a and the Hurst exponent H , named after the hydrol-

ogist Harold E. Hurst for his findings of the scaling relation in the river flow of the

Nile basin [30]. Therefore, any time series characterized by a reasonable choice of

H may be referred to as “fractal” [31].
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Figure 2.2 Geometrically self-similar structure of a fractal canopy vs. temporal self-similar dynamics
of heart rate (Reprinted from Ref. [11], copyright (2002) National Academy of Sciences).

2.3 Long-range correlation

2.3.1 Characterization of long-range correlation

Self-similarity in fractal time series reflects the presence of long-range correlation

(LRC). LRC is also commonly known as long-range dependence, long memory, or

persistence. LRC describes non-negligible statistical dependence between two data

points in a wide range of scales. Consider a discrete scalar series {xi}, i = 1, ..., N .
Increments in the series Δxi = xi−xi−1 may be completely independent of each other
or they may be correlated. A formal way to determine the degree of correlation in

a stationary time series is by looking at the behavior of the auto-covariance function
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of the increments,

C (s) = 1

N − s

N−s∑
i=1

ΔxiΔxi+s (2.3)

for the lag s between the increments [31]. For uncorrelated series, C (s) = 0 for s > 0.

For a typical (stationary) stochastic process with short-range correlated increments,

the auto-covariance function decays exponentially,

C (s) ∼ exp(−s/τ) (2.4)

with a characteristic decay time τ. On the other hand, for long-range correlated

(stationary) series, the autocorrelation function (2.3) decays much more slowly, typ-

ically displaying power-like decay, i.e.,

C (s) ∝ s−γ (2.5)

with the correlation exponent 0 < γ < 1, which is related to the Hurst exponent in

Eq. 2.2 by H = 1 − γ/2. Because the integral
∫ ∞
0

C (s) ds diverges at infinity, there is
no characteristic time scale.

2.3.2 A brief history of long memory

In his study of floods and irregular river flow in the Nile basin in Egypt, H. E.

Hurst made an important discovery that led to the concept of long memory [30],

[32]. He defined a statistic of the cumulative flows of the river over time, called

the adjusted range (R), normalized by the standard deviation (S), to obtain rescaled

adjusted range (R/S (n)) for the scale n. He observed that these particular statistics
empirically followed a power-law,

R/S (n) ∝ nk (2.6)

for some k, of which the mean was 0.72 ± 0.006. This empirical result was contrary

to the prediction of the theoretical model, in which k = 0.5 under the assumption of

independent Gaussian data4. The discrepancy, later named the Hurst phenomenon,

remained a riddle until Mandelbrot applied the idea of scaling and self-similarity to

4Hurst’s data was indeed Gaussian.
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develop the fractional Brownian motion (FBM) model and its incremental process,

the fractional Gaussian noise (FGN) [33]. Despite being stationary and Gaussian,

the FGN model was able to reproduce the Hurst phenomenon. The correlation

structure that FGN exhibits, namely, having the auto-correlation function’s integral

diverge at infinity, became a generally accepted definition of LRC. While Mandel-

brot’s FGN model was successful in reproducing the Hurst phenomenon, the phys-

ical interpretation of the empirical model, i.e., self-similarity, was not popular [32].

A different class of long-memory models, known as autoregressive fractionally

integrated moving average (ARFIMA) models, was later established by econometri-

cian Clive Granger [34] and hydrologist Jonathan Hosking [35], who adopted the

idea of “fractionally differencing” the simple random walk. The ARFIMA model

was an extension of the autoregressive integrated moving average (ARIMA) model,

introduced by Box and Jenkins [36], which is more widely accepted for its intuitive

interpretation and flexibility. In the present day, ARFIMA models are the most

commonly used long memory models [32].

2.3.3 Random walk and detecting long-range correlation

The methods for detecting LRC use the concept of random walk theory. As the

name suggests, a random walk refers to a path consisting of a succession of random

steps. A time series {xi}, i = 1, · · · , N , can be considered as increments of a one-
dimensional random walk so that its cumulative sum is the net displacement after n

steps of the walker:

Xn =
n∑
i=1

xi − µ , (2.7)

where µ is the mean of the time series {xi}, which is subtracted to remove the con-

stant offset. The root-mean-square (RMS) displacement of a random walker is an

important statistical quantity for characterizing the walk [37]. For the special case

where step sizes vary according to a normal distribution, in which each step in the

walk is independent, the RMS displacement after n steps is

√
E[X2

n ] = σ
√
n , (2.8)

where E indicates the expectation value and σ the standard deviation of the step size

distribution. Therefore, the RMS displacement of an uncorrelated walk follows a
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power lawwith the scaling exponent 1/2. For a correlated walk, the scaling exponent

is greater than 1/2, and for an anticorrelated walk, less than 1/2 [38].

Later, standard fluctuation analysis and detrended fluctuation analysis were in-

troduced by C-K Peng et al. [5], [37] to detect long-range correlation in real-world

data (see the following Chapter 4). Both methods use the RMS displacement of a

walker to define the fluctuation in the time series as a function of the scale, which

corresponds to the number of steps taken (n in Eq. 2.8).

2.4 Application to cardiology

A natural complex system readily found in our environment is the heart. Its com-

plex dynamics can be observed in the recordings of heart rates or heartbeat intervals.

A human heart is an example of a chaotic system that exhibits abrupt changes and

periodic and irregular patterns that are physiologically meaningful. For example, it

may exhibit a type of bifurcation, in which there is a sudden transition between irreg-

ular and periodic fluctuations or oscillation of alternating values, known as cardiac

alternans [39], [40]. Such nonstationary fluctuations are considered as the output

of collective behaviors arising from a network of pacemaker cells that interact in

nonlinear ways, meaning that they cannot be defined by a simple summation of in-

dividual interactions between the cells. They are also largely influenced by neural

input signals from external and internal stimuli [41]. Sympathetic stimulation, such

as responding to stress and exercise, increases the firing rate of the action potentials of

pacemaker cells in the heart’s sinoatrial node (SAN), while parasympathetic stimu-

lation, such as from internal organ functions, trauma, or allergic reactions, decreases

the firing rate. It has been widely accepted that autonomic neural control of the

heart gives rise to variations in the beat-to-beat intervals, commonly known as heart

rate variability (HRV) [42]–[44].

Contrary to the archaic belief that the healthy human heart rate should consist

of regular sinus rhythms, aimed at maintaining constant equilibrium, a healthy heart

exhibits very complex and nonstationary fluctuations in beat-to-beat intervals, which

are neither regular nor completely random, i.e., uncorrelated (Fig. 2.3). A modern

interpretation is that such behavior is necessary to keep the heart protected against

external stress. Its breakdown into strong periodic oscillations or uncorrelated fluc-

tuations, as seen in Fig. 2.3, indicates the presence of a cardiac problem. In other
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Figure 2.3 Heart rate recordings of a healthy individual and those with cardiac disorders. A, C: severe
congestive heart failure; B: healthy; D: atrial fibrillation (Reprinted from Ref. [11], copyright
(2002) National Academy of Sciences).
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words, the degree of complexity in HRV provides important insights into cardiac

health. Numerous papers in the past, e.g., [45]–[47], have shown that HRV, along

with heart rate, can be a powerful marker of cardiac health. Ref. [44] provides a

comprehensive list of reported cases of the known association between HRV and

health factors, as well as various HRV analysis methods.

Nonlinear measures of HRV have been of great interest and there have been many

efforts toward a better understanding of the dynamics, e.g., [48]–[51]. In particular,

fractal-like scaling properties of HRV and its implications in cardiac health have been

well established; many have studied the alteration of scaling properties in HRV with

heart diseases, such as congestive heart failure [10], [52], myocardial infarction [53],

[54], and dilated cardiomyopathy [55], as well as the effects of age and gender [56],

sleep [57], [58], and exercise [59], [60] on the scaling behavior.

The studies also extend to amore fundamental level by investigating the variability

at the cellular level, called beat rate variability (BRV). In a human heart, pacemaker

cells in SAN tissue are responsible for producing an electric impulse through the

heart, making the heart contract. It has already been shown that even in the dener-

vated state, i.e., cut off from any neural inputs, the pacemaker cells exhibit irregular

beat-to-beat variations, e.g., [61]. In search of the origin of the power-law behav-

ior in HRV, studies have investigated intrinsic fractal properties of the pacemaker

cells in animal models. In particular, it was shown that spontaneously beating heart

cells of neonatal rats exhibited fractal self-similarity as a result of nonlinear dynam-

ics of cellular processes [62]. This was further explored using a mathematical model,

which showed that the turnover of ion channels induced the variability patterns with

power-law behaviors [63]. The experiments using isolated rabbit SAN cells linked

the variation in the periodicity in local Ca2+ release, which affects the cycle length,
to the resulting BRV [64]. So far, studies suggest the importance of quantifying thee

fractal-like properties at the cellular level, and clearly indicate that both the intrinsic

properties of cellular processes and the inputs from the autonomic nervous system

play roles in BRV [65].

13



14



3 HUMAN HEART CELLS AS A PLATFORM

This chapter covers the basic background information on the hiPSC-CMs, how they

are made and measured, their advantages and disadvantages as a research platform,

and some perspectives on their future applications.

3.1 How to make human heart cells

3.1.1 Rise of induced pluripotent stem cells

All the cells with designated roles in our body are derived from stem cells. The

process of stem cells becoming specialized cells, such as blood, nerve, and cardiac

cells, is called differentiation. Stem cells can be obtained from embryos (embryonic

stem cells: ESCs) or, today, from mature adult cells (induced pluripotent stem cells:

iPSCs). Both types of stem cells are pluripotent, meaning that they are capable of

giving rise to any cell type.

While stem cells offer great potential to advance medical research, because of

the origin of embryonic stem cells1, there has been controversy about the ethics of

the research ever since they came onto the scene. When the novel idea of inducing

pluripotency in somatic cells to produce pluripotent stem cells (iPSCs) was intro-

duced, it became a game changer in the field.

In 1962, British developmental biologist John B. Gurdon discovered that replac-

ing the immature cell nucleus in an egg cell of a frog with that of a mature intestinal

cell resulted in normal development [66]. The result essentially showed that the ma-

ture, already specialized cells have all the information necessary to develop all the

cells in the frog. In 2006, Japanese stem cell researcher Shinya Yamanaka discovered

that mature cells in mice could become pluripotent stem cells by introducing and

1They are obtained from fertilized embryos in their early stages, and are either destroyed or at least

manipulated in the process.
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Figure 3.1 Schematics of human-induced pluripotent stem cell generation and differentiation into var-
ious types of somatic cells. A special selection of genes, known as Yamanaka factors, are
added to the adult skin cells to reprogram them to be pluripotent. The resulting stem cells
are then cultured and differentiated into all types of cells in the body. The figure is created
using the images from Servier Medical Art, provided by Servier, licensed under a Creative
Commons Attribution 3.0 unported license.

activating only a few genes [20]. For the scientific breakthrough, Gurdon and Ya-

manaka were awarded the Nobel Prize in Medicine in 2012. Since the discovery, the

iPSC technology has been further studied and developed; it was shown that iPSC

can give rise to all kinds of cell types in the body, and that iPSC can be generated

also from mature human cells.

3.1.2 Generation and differentiation of human-induced pluripotent stem cells

In practice, there are several approaches of generating human-induced pluripotent

stem cells (hiPSCs) with different efficiencies and advantages [67]. The technical de-

tails are beyond the scope of the thesis, however, it is briefly outlined how hiPSCs

are generated. First, a small sample of skin from a human subject is taken, and the

skin cells (dermal fibroblasts) are isolated and cultured. Next, a specific set of genes

are then added to the cells; these genes contain factors (proteins) that can reprogram

the cells to revert to their embryonic state. After about a month, a subset of the

reprogrammed cells turns into pluripotent stem cells, which can be harvested and
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cultured separately. The successfully generated hiPSCs are validated by characteri-

zation of their features, functionality, and genetic profiles.

Once hiPSCs are generated and characterized, they are ready to be differentiated,

i.e., to become any type of cell we choose, such as heart cells. The hiPSCs undergo

directed differentiation, guided by physical and chemical stimuli that mimic the em-

bryonic development and signal the cells to take a particular developmental pathway.

For the studies discussed in this thesis, we focus on cardiomyocytes (CMs), which

reside in the cardiac muscle tissue and are responsible for the pumping function of

the heart.

3.2 Measurement of cardiac field potentials

The most apparent feature of hiPSC-derived CMs (hiPSC-CMs) is their spontaneous

contraction [68], [69]. Each hiPSC-CM generates an action potential, and an aggre-

gate of hiPSC-CMs produces a collective field potential that can be measured.

3.2.1 Electrophysiology of cardiomyocytes

An action potential of a CM indicates the changes in the cell’s membrane potential,

which is the driving force for the cell’s mechanical contraction. The membrane

potential changes due to the movement of ions, namely Na+, Ca2+, and K+, through
different ion channels. CMs are categorized into three subtypes: nodal-, atrial-, and

ventricular-like cells. The subtypes exhibit different action potentials possibly due

to different ion channel compositions [70]. The hiPSC-CM aggregates used in the

experiments in the thesis were not tested explicitly for their subtypes [71], but it has

been suggested that the particular differentiation method, known as END-2, tends

to generate mostly ventricular CMs [69]. A schematic of a ventricular cardiac action

potential is shown in Fig. 3.2. Ventricular action potentials consist of five distinct

phases (see, e.g., Ref. [72] for more details):
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Figure 3.2 A schematic of a ventricular cardiac action potential and the underlying ionic currents.
Adapted from Ref. [73], copyright (2005) American Physiological Society.

Phase 0 Onset of action potential. Rapid influx of Na+ ions into the cells
depolarizes the membrane potential.

Phase 1 Transient repolarization. Na+ channel deactivates and fast transient
outward K+ current activates.

Phase 2 Plateau. Ca2+ flows into the cell and balances out with the delayed,
outward rectifying K+ currents.

Phase 3 Repolarization. Ca2+ channel closes and the outward K+ currents
bring the potential back to the resting potential.

Phase 4 Resting potential. The potential is maintained at about -90 mV by

different ion pumps and the inward rectifying K+ current.
The activities of the ion channels are summed up to produce the action potential

shown in Fig. 3.2, which is converted into mechanical contraction.

3.2.2 Comparison to electrical activity of the heart

The collective extracellular field potential generated by an aggregate of hiPSC-CMs

is measured using a multielectrode array (MEA). MEA is a non-invasive method,

in which the cells are plated in a culture well on top of the embedded electrodes, as

shown in Fig. 3.3.

MEA, while it cannot measure individual ion currents, has many advantages over

the traditional patch-clamp method [74]. MEA does not require a high level of

technical skills. It allows measurements of a colony of cells with spatial and temporal

resolution, as several electrodes measure a cluster, and the cells are continuously

cultured and can stay viable over an extended period [75], [76].

18



Figure 3.3 Magnified pictures of hiPSC-CM clusters plated in a well of a multielectrode array with
electrodes measuring the electrical activity of the cluster.

Figure 3.4 Schematics of human ECG, an action potential of an adult CM, and the field potential
generated by a cluster of hiPSC-CMs. QT intervals, action potential duration (APD), and
field potential duration (FPD) are comparable with each other. Modified from Ref. [75].
The ECG schematic is downloaded from Servier Medical Art, provided by Servier, licensed
under a Creative Commons Attribution 3.0 unported license.
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The field potential produced by an aggregate of hiPSC-CMs, measured by MEA,

consists of a depolarizing Na+ peak, a plateau phase by Ca2+, and a repolarizing K+

wave, as shown in the bottom of Fig. 3.4.

A parallel can be drawn among the field potential of a cluster of CMs, an action

potential of a single CM, and a human ECG as depicted in Fig. 3.4. The two

most commonly considered measures in ECG are RR and QT intervals. Interbeat

interval (IBI) in the action potential of a CM and the field potential of a cluster

of CMs correspond to the RR intervals in ECG. Similarly, QT intervals in ECG

correlate highly with the action potential duration (APD) of a CM and with the

field potential duration (FPD) of a cluster of CMs [77], [78].

3.3 Advantages of using human-induced pluripotent stem
cell-derived cardiomyocytes

hiPSC-derived cells, including hiPSC-CMs, offer an in vitro platform for disease

modeling, i.e., the study of how diseases develop at the cellular level. In particu-

lar, the hiPSC-CMs carry the exact genetic information of the patient from which

they were derived; they are particularly suitable for the study of patient-specific mu-

tations. They are also useful in testing new drug candidates for their effectiveness,

any adverse effects, and how the (patient-specific) cells respond to certain drugs [79],

[80].

Though not yet used in clinical practice, hiPSCs offer great potential in the devel-

opment of individual-specific therapies and medicines. For example, stem cells can

become healthy, specialized cells that can replace the diseased ones; such treatment

is known as regenerative medicine. With the iPSC technology, the stem cells are

generated from the patient, and thus the cells are genetically identical to the patient,

reducing the risk of transplant refusal. Although practical challenges still remain,

exciting possibilities of regenerative medicine and biological pacemakers have been

suggested; cells that are cardiomyocyte-like in functionality were generated from

human skin and used to partially re-muscularize affected areas of the heart in im-

munodeficient mice [81]; pacemaker cells derived from hiPSCs were able to pace the

host tissues when transplanted in rat hearts [82]; and a biological pacemaker made

with iPSC-CMs was demonstrated in a canine model [83].

The advantages mentioned so far can be applied to human ESCs (hESCs) as well,
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but, as mentioned earlier, hiPSCs are preferred to hESCs in research because their

sources, matured somatic cells, are much more available than the embryos needed to

generate hESCs. They are also less controversial, even though the new technology

brings its own ethical questions and challenges2.

There are a few disadvantages to using hiPSC-CMs, including inefficiency in their

production, e.g., [67], and their relative immaturity compared to adult CMs [79].

Despite the current limitations, hiPSC-CMs have already proven useful as an in

vitro model for drug assessments. In recent years, the use of hiPSC-CMs has been

implemented in pre-clinical drug screening as a part of the Comprehensive in vitro

Proarrhythmia Assay (CiPA) protocol by the US Food and Drug Administration

(FDA) [84].

3.4 Beat rate variability of human cardiomyocytes

In Sec. 2.4, applications of time series analysis to study the variations in heartbeats,

or HRV, are discussed. Just like a beating heart, spontaneously beating clusters of

hiPSC-CMs also exhibit beat-to-beat variations. BRV and its fractal-like character-

istics in human in vitro heart cells were first reported by Mandel et al. [19]. The

study successfully demonstrated that hESC-CMs and hiPSC-CMs exhibit complex

BRV and fractal scaling properties, even in the absence of autonomic neural inputs

from the ANS, reflecting the presence of intrinsic cardiac regulatory mechanisms.

The results are in line with previous animal studies using denervated pacemaker cells

in SAN [62]–[64].

The complex nature of BRV is so far considered as a collective phenomenon aris-

ing from a network of independently beating cells that are coupled with each other

[85]. Studies based on rat and human CMs [19], [63] have postulated that the in-

trinsic BRV due to stochastic cellular functions contributes to the overall nonlinear

characteristics of HRV. In several follow-up studies [86]–[88], the idea is discussed

further. In particular, Ref. [86] and [87] hypothesized and tested multiscale interac-

tion in three levels: (a) single pacemaker cells, (b) network of pacemaker cells, and

(c) in situ SAN, which all exhibit similar fractal BRV/HRV. We summarize the key

points as follows:

2For example, it is theoretically possible to generate sperm and eggs that can be fertilized from cells

from skin or hair using the iPSC technology.
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(a) At the single-cell level, magnitude of BRV is the largest. Possible sources of

BRV and fractality include nonlinear dynamics from ion-channel gating, in-

tracellular Ca2+ cycling, mitochondrial function, and other intracellular pro-
cesses.

(b) In an ensemble network of electrically coupled pacemaker cells in SAN, BRV

is significantly reduced as the single-cell noise is dampened. A few studies have

modeled the cardiac network [63], [85], [89] to uncover the origin of BRV

at this level and suggested the intracellular coupling of the cells and long-term

correlated processes as strong factors responsible for the observed complexity

in BRV. In particular, mitochondrial function and intracellular Ca2+ cycling,
as well as the cross-talk between the sarcoplasmic reticulum and mitochondria

exhibit fractal behaviors, which may contribute to that of the network.

(c) Finally, it is hypothesized that complex spatial and temporal integration of in-

trinsic components from first and second levels as well as external factors in the

organ level, such as ANS, humoral factors, thermoregulatory, and circadian

inputs, form the overall HRV properties at the third level.

The level that is most relevant to the studies presented in this thesis is (b). We study

the BRV of hiPSC-CM clusters using various time series analysis methods introduced

in the following chapter. While it is important to consider the physiological origin

of the observed BRV, the details of the intracellular processes are beyond the scope

of this thesis, and thus are not discussed further in the current work. However, the

interested reader may find more information in, e.g., Ref. [86].
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4 METHODS OF NONLINEAR TIME SERIES

ANALYSIS

Important concepts and methods in nonlinear time series analysis that are relevant

to Publications I-IV are presented in this chapter.

4.1 Challenges with the real-world data

Nonlinear systems can produce outputs that are seemingly unpredictable; depending

on a single parameter, the behavior may change drastically from regular to erratic.

Any attempts to simplify are futile because these systems are so complex that they

cannot be split into subsystems. Furthermore, the mechanisms that drive the system

can rarely be assumed a priori.

In general, time series data are considered a realization of a stochastic process, i.e.,

a sequence of random variables produced by an underlying probabilistic mechanism

of the system [36], [90]. A common assumption in the study of stochastic processes

is stationarity, meaning the process remains in a “statistical equilibrium” throughout

the series, which requires relevant statistical parameters, such as mean and variance,

to remain constant, and the phenomena of interest to be present frequently enough

[91]. Therefore, the most common methods in time series analysis require station-

arity of the data; however, real-world data is rarely stationary. Nonstationarities are

almost always present due to external effects, such as trends, seasonality, and changes

in the dynamics of the system over time, which may or may not be known [31]. In

an effort to deal with nonstationarities, popular methods to make nonstationary time

series (quasi-) stationary include using time derivatives or increments of the series as

inputs and detrending; though, the trends need to be known to be independent of

the dynamics [91].
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4.2 Detrended fluctuation analysis

Detrended fluctuation analysis (DFA), one of the standard tools for the detection of

LRC across different fields, was introduced by Peng et al. [5]. Based on the random

walk theory, it is similar to its predecessor, standard fluctuation analysis (FA) [37],

but DFA incorporates linear detrending into FA to remove monotonic local trends

and was later extended to further consider polynomial detrending [18]. The steps

for the basic DFA algorithm, based on Ref. [92], are summarized as follows:

1. For a given times series {xi} of length N , the profile, or the cumulative sum is

defined:

Y (i) =
i∑

k=1

xk − 〈x〉 , (4.1)

where 〈〉 indicates the mean. Note that the subtraction by the mean is not
strictly necessary for DFA [92].

2. The profile Y (i) is divided intoNs non-overlapping segments of equal length s.

Since s does not always divideN evenly, the same procedure is performed from

both ends of the time series. Thus we obtain 2Ns segments in total.

3. For each segment ν, the local trend pν is calculated by a least-squares fit. The

trend is subtracted from the profile:

Ys(i) = Y (i) − pν (i). (4.2)

pν is a linear polynomial in the basic DFA, but it may also be a higher-order

polynomial.

4. The variance of the detrended series Ys(i) each segment is calculated by aver-
aging over all data points i in the ν-th segment:

〈
Y 2
s

〉
=
1

s

s∑
i=1

Y 2
s [(ν − 1)s + i] = F 2

s (ν). (4.3)

5. By averaging the variance and taking the square root (equivalent to root-mean-

square deviation around the local trend), the DFA fluctuation function F (s) as
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a function of the segment size s (“scale”) is obtained:

F (s) =

√√√
1

2Ns

2Ns∑
ν=1

F 2
s (ν). (4.4)

The fluctuation function follows a power law,

F (s) ∝ sα, (4.5)

where the scaling exponent α is related to the correlation exponent (in Eq. 2.5) by

α = 1 − γ

2
for 0 < γ < 1. (4.6)

The DFA scaling exponent α is determined by plotting the fluctuation F as a function

of the scale s in the log-log scale and measuring the linear slope. Depending on the

application, it may require more than one scaling exponent to describe the dynamics

due to, e.g., crossover phenomenon [10], [93]. It is a common practice to assign two

scale regimes for each of which a scaling exponent is calculated; for a range of small

scales, the scaling exponent is referred to as “short-term” scaling exponent or α1, and

for a range of large scales, “long-term” scaling exponent or α2. The scale regimes

for α1 and α2 are not defined strictly. The scaling exponents are interpreted as in

Table 4.1.

DFA’s simple interpretation and ability to deal with (unknown) nonstationar-

ity due to local trends are very desirable, hence the method has become extremely

popular in diverse fields, such as cardiology [10], [11], [18], meteorology [6], [94],

Table 4.1 Interpretation of the DFA scaling exponent α.

Scaling exponent Interpretation

0 < α < 0.5 Anti-correlation

α � 0.5 Uncorrelated (White noise)

0.5 < α ≤ 1 Correlated

α � 1 1/f noise (Pink noise)
α > 1 Nonstationary

α � 1.5 Brownian noise
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finance [95], and physics [8], [96]. However, one must also be aware of the com-

mon pitfalls when interpreting the results. While DFA is sensitive to LRC, it is not

specific, i.e., the presence of scaling exponent α > 0.5 does not always imply LRC,

especially for time series with finite lengths [97].

Effects of different types of nonstationarities, namely, discontinuous signals, out-

liers, different local behaviors, and different types of trends, such as sinusoidal,

and power-law trends, have been studied through empirical studies with simulated

data [98], [99]. The studies show that, in reality, DFA cannot fully account for non-

stationarities, but there are strategies to minimize the effects of nonstationarities.

Some also argue that it does not provide even generic protection against nonsta-

tionarities [100]. Therefore, we must employ the method with a grain of salt, yet

the success and the benefit of the method in identifying important insights in many

complex systems, most notably in the field of physiology, cannot be denied.

4.3 Extensions of detrended fluctuation analysis

There have been significant progress in analytical derivations and theoretical under-

standing of DFA [101]–[104], as well as many extensions of the method. For exam-

ple, multifractal DFA offers a generalization of DFA to characterize the multifrac-

tality [105], and detrended cross-correlation analysis extends DFA to analyze long-

range cross-correlation between coupled time series [106]. This section describes the

extensions to DFA for a more robust determination of the scaling exponents beyond

the conventional methods and to account for the time and scale dependency of the

scaling behavior.

4.3.1 Maximally overlapping segments

In the conventional DFA algorithm, non-overlapping segments are utilized to cal-

culate the fluctuation function [Eq. (4.4)]. As a result, the largest possible scale is

recommended not to exceed a quarter of the length of the time series [92]. Fur-

thermore, as noted earlier in Sec. 4.2, non-overlapping segments do not allow even

division of the time series, hence it is accommodated by division is performed twice

from both ends of the time series.

One solution to enhance the statistical properties of the fluctuation function is

to allow the segments to overlap and thus increasing the sample size [38] and en-
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suring the uniformly weighted estimation of the RMS deviation [102]. Using the

overlapping segments yields smaller local slope variability of the scaling exponent

due to intermittent bursts and strong LRC in the time series data than that of the

conventional non-overlapping segments. We utilize maximally overlapping segments

whenever suitable, but not always, due to its high computational cost.

4.3.2 Scaling exponents as a function of scale

A conventional approach to determine the scaling exponent in DFA is using a linear

least-squares fit on the fluctuation function in a double-log scale, i.e., log10F (s) as
a function of log10s, which has a linear relationship with the slope α. However,

in many complex real-world data, one or more scaling exponents are required to

describe the correlation. One common example is the presence of a crossover in the

fluctuation function. A crossover refers to the phenomenon, in which the power-law

changes after a certain scale, dividing the scale into two regimes that are described

with different scaling exponents [10], [93]. The existence of a crossover is usually not

a priori but may provide important insights into the underlying dynamical process.

In some cases, it may be difficult to determine one or two suitable regimes in

the fluctuation function to apply the normal linear regression. Instead of arbitrarily

choosing scale regimes to perform linear regression, these cases can benefit from a

different approach of determining scaling exponent as a function of scale, α(s), also
known as a “spectrum” of scaling exponents or “local” scaling exponents, which is

basically a derivative of the logarithmic fluctuation function,

α(s) = d[log10 F (s)]
d[log10 s]

. (4.7)

There are several ways to estimate a smooth derivative, such as applying αβ filter [107]

and parameter-free Kalman smoother [38]. Alternatively, when the fluctuation func-

tion possesses a good statistical property, that is, when the data is sufficiently long

or maximally overlapping segments (Sec. 4.3.1) are used, a simple numerical differ-

entiation may be used.
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4.3.3 Dynamic detrended fluctuation analysis

So far, we have assumed the system or the dynamic under study to be unchanging in

time. Dynamic detrended fluctuation analysis (DDFA), first introduced in Ref. [60],

successfully detects real-time changes in the correlation properties in a time series.

DDFA measures the DFA scaling exponents as a function of time and scale. The

dynamical approach is especially powerful when investigating real-world conditions,

in which the system changes over time, for example, the heartbeats in high-intensity

interval training or in a marathon.

The basic idea of DDFA is to perform DFA in a moving temporal segment. The

execution of the method is, however, not so trivial. In order to ensure high tem-

poral resolution, the segment in time must be sufficiently small, but a segment that

is too small suffers from high statistical noise in the fluctuation function. In other

words, the biggest challenge of DDFA is minimizing the statistical noise while maxi-

mizing temporal resolution. DDFA resolves the problem by employing a procedure

called “dynamic segmentation”, in which the temporal segment length is varied as a

function of the scale, e.g.,

l(s) = as, (4.8)

where a is a constant dynamic length factor. A suitable value is chosen according

to the problem in hand. Therefore, for each scale the time series is divided into

segments of length l(s). In each temporal segment, the dynamic scaling exponent
α(t, s) is computed by the finite difference approximation:

α(t, s) ≈ h2−F̃ t (s + 1) + (h2+ − h2−)F̃ t (s) − h2+F̃ t (s − 1)
h−h+(h+ + h−)

, (4.9)

where F̃ t = log10 Ft, (4.10)

h− = log10(s) − log10(s − 1), (4.11)

h+ = log10(s − 1) − log10(s). (4.12)

The full and detailed description of the algorithm and validation are found in Ref. [60].
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4.4 Other nonlinear measures

This section introduces a few important nonlinear measures and methods that are

complementary to DFA in determining the complexity of a time series, especially in

the context of applications in cardiology.

4.4.1 Poincaré plots

A Poincaré plot is a simple visualization tool to quantify short-scale temporal cor-

relation in a time series. For a given time series {xi} for i = 1, · · · , N , each value
xi+1 is plotted against its preceding value xi in the time series. The beat-to-beat vari-
ability and long-term variability are quantified by measuring the standard deviation

perpendicular and along the line xi = xi+1 and denoted as SD1 and SD2, respectively.
SD1 and SD2 are computed by an ellipse fitting technique [108]. The two measures

are closely related to the overall standard deviation σ by

SD12 + SD22 = 2σ2. (4.13)

SD1 and SD2, and in particular, the ratio of the two SD1/SD2, have become popular

heart rate variability measures that can be potential classifiers of cardiac diseases [44].

4.4.2 Multiscale entropy

Entropy is a measure that originates from statistical physics and information theory

and reflects the disorder of a system. In a time series, the concept of entropy is used to

quantify complexity and regularity in a statistical sense. Popular entropy measures

include approximate entropy (ApEn) [109] and sample entropy (SampEn) [110].

Both measures are aimed at finding how similar a segment is to other segments of

equal length in the time series. The problem with such measures is that it is limited

to the rudimentary definition of complexity being simply the opposite of regularity

and thus cannot portray the meaningful complexity that lies between regularity and

randomness.

Multiscale entropy (MSE) developed by Costa et al. [111], is developed to address

the limitations by considering the scale-dependency of entropy, in particular, that of

SampEn. The method successfully distinguishes the correlated complex signals from
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Figure 4.1 Multiscale entropy analysis of generated signals of sufficient lengths with various scaling
exponents: α = 0.5, 0.7, 1.0. The sample entropy values are averaged over 20 iterations
and the mean (solid lines) and standard deviation (colored bands) are plotted over the
scale factor.

the uncorrelated random signals (Fig. 4.1). Furthermore, it has the advantage of

being useful for time series of finite lengths, but the finite length also introduces

high uncertainty in the entropy measurement, especially for long-range correlated

signals. The procedure for MSE is as follows.

1. Given a time series {xi} for i = 1, · · · , N , a set of consecutive coarse-grained
series with the scale factors τ is constructed, for each of which contains the

elements:

y(τ )j =
1

τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ. (4.14)

2. For each coarse-grained time series, the SampEn is calculated and plotted as a

function of the scale factor τ to produce an MSE curve.

MSE algorithm depends on two parameters, the epoch length m and the tolerance

level r, and we use the default values (m = 2, r = 0.15) as in Ref. [111], [112].

In practice, SampEn behaves differently as a function of the scale for long-range

correlated signals compared to uncorrelated white noise, allowing the comparison of

the scale dependency between various states and conditions, such as cardiac diseases

and sleep stages [111].
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5 RESULTS

The common theme in Publications I-IV is the study of complexity exhibited by

independently beating clusters of human heart cells. Important findings that con-

tribute to state-of-the-art knowledge of the intrinsic beat rate variability of the heart

cells are summarized in Sec. 5.1-5.3. When appropriate, we update the results using

newer preprocessing schemes and computational methods. The limitations of the

current studies are discussed in Sec. 5.4.

5.1 Beat rate variability and fractal scaling in human cardiomyocytes

In Publications I, III, and IV, we first confirm that clusters of healthy hiPSC-CMs

indeed exhibit spontaneous contraction in intervals having fractal scaling similar to

that of a functioning human heart. Previous findings and discussions are found in

Sec. 3.4. The following subsections summarize the results from Publications I and

IV in particular.

5.1.1 Effects of genetic mutation

We investigate how the beat rate properties are altered in the presence of genetic mu-

tations that cause hereditary cardiac disorders, such as Long QT Syndrome (LQTS),

which is the main focus of Publication I. LQTS is a disease, characterized by pro-

longed cardiac repolarization, represented by QT intervals in ECGs. It can lead to

fatal arrhythmias, i.e., fast and irregular heartbeats and even a special type of ven-

rtricular tachycardia, Torsades de Pointes. Inherited forms of LQTS1 are classified

into subtypes based on which genes are affected by the mutation. The most preva-

lent subtypes are LQTS type 1 (LQT1) and type 2 (LQT2), caused by mutations in

the KCNQ1 and KCNH2 genes, respectively [113], [114]. In the study conducted

1LQTS can also be acquired later in life.
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Table 5.1 Patient/subject characteristics of the healthy individual, asymptomatic LQT1 mutation car-
rier, and symptomatic LQT1 mutation carrier. The heart rate is written in mean ± standard
deviation.

Healthy LQT1 (asymptomatic) LQT1 (symptomatic)

Age (year) 55 28 41

Gender (M/F) F F F

Heart rate (bpm) 115 ± 26 112 ± 15 99 ± 11

QTc (ms) 406 428 456

in Publication I, healthy control, denoted as wild type (WT), and LQT1-specific

hiPSC-CMs are derived from a healthy individual and two LQT1 mutation carri-

ers, respectively. The characteristics of the subjects are summarized in Table 5.1.

One LQT1 mutation carrier is symptomatic and the other, asymptomatic. A pre-

vious study has shown that the baseline beat rates of WT- and LQT1-CMs do not

differ significantly, but the LQT1-CMs show significantly more prolonged (beat

rate-corrected) FPDs [71].

In Publication I, we perform the most basic DFA to detect long-range correlation

in the IBI series and find that (i) the average DFA scaling exponents range between

0.9− 1.1 for both WT and LQT1-CMs, without any notable differences between the

groups, and (ii) the scaling exponents are comparable to those computed from ECGs:

α = 1.21, 1.07, and 1.08 for the healthy individual, asymptomatic LQT1 mutation

carrier, and symptomatic LQT1 mutation carrier, respectively. Later, a follow-up

study [115] using two scale ranges to define short- and long-term scaling exponents,

α1 and α2, rather than a single α, supplements Publication I with the finding that (iii)

each group exhibits significantly different short- and long-term behaviors. The results

from Publication I and the supplementary study [115] lead to the conclusion that

the scaling behaviors are not altered by the presence of a LQT1-specific mutation.

We believe, however, that the results may benefit from clarifying and revising

of the analysis procedures. The IBI data used in the analyses in Publication I and

the supplementary study underwent several steps of preprocessing, in which large

portions of the data were discarded; however, the procedure is not described in the

publications. In general, hiPSC-CMs exhibit a wide range of beat rates and their

IBI series often contain large fluctuations and nontrivial trends, which means that

deciding whether a recording is suitable for the analysis is often an ambiguous and
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Figure 5.1 DFA-2 scaling exponents for healthy cells (WT), and LQT1-specific hiPSC-CMs, computed
over different scale ranges.

subjective process. Therefore, in the following, we include recordings of varying

quality to better reflect reality. We revisit the results by first employing a simpler

filtering scheme to remove only the most obvious outliers; we set constant cut-off

thresholds for each recording so that the data points below 1/2 of the median and

above 3/2 of the median are discarded. If more than 20% of the IBI series is removed,

then the whole series is discarded. We also use DFA-2 to address any nontrivial trends

that are hard to remove with conventional linear detrending of DFA-1. Distributions

of the overall α (calculated over all available scales) and of the short- and long-term

scaling exponents, α1 and α2, are shown in Fig. 5.1.

Figure 5.1, which uses revised analysis procedures, suggests a conclusion contrary

to that of Publication I. DFA scaling exponents computed over all available scales are

significantly different between the WT- and LQT1-CMs, and also between asymp-

tomatic and symptomatic LQT1-CMs. When only the short-term scale range is

considered, the WT- and asymptomatic LQT1-CMs exhibit similar scaling proper-

ties, while the scaling exponent for symptomatic LQT1-CMs is notably reduced.

Therefore, according to the results, the presence of a LQT1 mutation in the genes

reduces the degree of LRC in the IBI. When the LQT1-CMs are derived from a

symptomatic patient, correlation properties of the IBI are also affected in the short

range.

There is a single 24-hour ECG recording for each subject (i.e., the healthy in-
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Figure 5.2 Fluctuation function computed by DFA-2 in double-log scale for the 24-hour ECG data of
the healthy individual and LQT1 mutation carriers. Short- and long-term scaling exponents
α1 and α2 are defined in the same scale ranges as in Fig. 5.1. In addition, α3 is defined for
an even longer scale range (>1000 beats).

dividual and LQT1 mutation carriers) from whom the hiPSC-CMs were derived.

Analysis of the ECG recordings is shown in Fig. 5.2. The α1 and α2 are computed

from the same scale ranges as for the cell data. In these scales, the healthy individ-

ual and the asymptomatic LQT1 mutation carrier exhibit similar scaling behaviors.

Since the ECG recordings are much longer than the 30-minute recordings of the

CMs, we are able to define an additional scaling exponent α3 for larger scales, e.g.,

longer than 1000 beats. Over the longer range, the healthy individual exhibits a scal-

ing property closer to that of Brownian noise, while no notable change is detected

for the asymptomatic LQT1 carrier at the same scale. The surprising case is of the

symptomatic LQT1 mutation carrier, whose ECG recording exhibits a “normal”

scaling behavior, i.e., the scaling exponents are notably larger compared to those of

the cellular counterpart. One may attribute the result to the fact that the symp-

tomatic LQT1 mutation carrier is on the beta blocker treatment, but a previous

human study has suggested that the fractal scaling is not altered by the beta blocker

treatments [116]. It is not possible to make any strong conclusive interpretations

with a single ECG recording for each subject, but we may safely state that there are

extra mechanisms in the heart that control the heart rate and its variability that are

absent in the isolated clusters of heart cells.

In summary, the scaling properties in the ECG data are approximately compa-

rable to those in the cellular field potentials. However, in the presence of LQT1

mutations and symptoms, the heart rate dynamics are altered, resulting in signif-

icantly reduced correlations at the cellular level, which may not be visible in the
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Table 5.2 Characteristics of the drugs tested on WT- and LQT1-CMs. A more detailed description is
found in Publication I. CM: cardiomyocytes, M: molar unit, BR: beat rate, cFPD: (Fridericia)
corrected FPD, -: no physiologically significant effect.

Name Type Concentration Effects on CMs

Bisoprolol Beta blocker 260, 530 nM BR -, cFPD -

ML277 IKs channel activator 1, 2 µM BR ↑, cFPD ↓
JNJ303 IKs channel blocker 300, 1000 nM BR -, cFPD ↑

ECGs. The finding is supported further by MSE analysis, as we discuss in Sec. 5.2.

Effects of the age of and medication taken by the subjects and characteristics of the

CMs were not examined in the study, but are potential factors that can alter the beat

dynamics.

5.1.2 Effects of pharmacological compounds

Another main objective of Publication I is to investigate the effects of exposure to

different drugs on the functionality and scaling properties of the healthy and LQT1-

specific hiPSC-CMs. Drugs chosen for the study include a type of beta blocker,

which is the most commonly used standard medication for LQTS. The results are of

particular interest for disease modeling and applications in drug safety assessments.

The list of drugs that are applied to the WT- and LQT1-CMs and their descrip-

tions are found in Table 5.2. Experimental details of how the drugs were applied are

found in Publication I. The key findings of Publication I are that (i) all the drugs

(Bisoprolol, ML277, and JNJ303) lead to an increase in the DFA scaling exponent

α in WT- and LQT1-CMs, and (ii) an increase in the drug concentration does not

affect the scaling exponent further. The results have been revised for the reasons

described in the previous section (Sec. 5.1.1).

As we have seen in Sec. 5.1.1, the fractal scaling is reduced in the case of symp-

tomatic LQT1-CMs. Figure 5.3 clearly shows that the alteration of the scaling ex-

ponents due to a LQT1-specific mutation is more significant than that due to drug

exposure. It is also important to notice the large discrepancy between the mean base-

line α for different drugs. The reasons behind the discrepancy are not yet clear. Since

the variation is rather large even in the same baseline condition, we do not combine

the baseline measurements but keep them separate for each drug exposure test. This
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Figure 5.3 DFA-2 scaling exponents as a function of drug concentrations.

way, the relative change in the average scaling exponent due to the drugs is priori-

tized over the values of the exponents themselves at each drug concentration. The

distributions of all baseline scaling exponents are found in Fig. 5.1.

With the updated analysis procedure, we find that Bisoprolol, ML277, and JNJ303,

in general, have nomeaningful effect on the long-range correlation in the hiPSC-CMs

(see Fig. 5.3). One exception is found in the LQT1-CMs derived from the symp-

tomatic mutation carrier with the larger dosage of Bisoprolol, which increased the

scaling exponent toward α ∼ 1 (p  0.001 with Welch’s t-test). Figure 5.3 shows

only the average behaviors over all cell lines of symptomatic LQT1-CMs, but we

also note that the effect is prominent in one symptomatic cell line, but not in the

other. The analysis using two scaling regimes yields similar results, though the en-

hancement of α1 is not as prominent as that of α2.

Based on this result, we may infer that the acute application of the drugs that

regulate the K+ ion channel does not affect the scaling behaviors in hiPSC-CMs.

However, the beta blocker bisoprolol, while not having a physiologically significant

effect on the beat rate or FPD, seems to increase the correlation in the beats of

LQT-CMs derived from the symptomatic LQT1 subject towards fractality, which

is associated with a healthy heart. The mechanism behind the effect remains unclear,

but the result suggests the reduced fractality in the LQT1-CMs can be recovered by

acute applications of bisoprolol at a sufficient dosage. However, further systematic

studies are in order, as the results clearly show that the baseline scaling behaviors

and the responses to the drugs may depend on the characteristics of the hiPSC-CMs,

such as the cell lines and the age of the culture.
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Table 5.3 Definitions used to describe stable and transient phases with different partial oxygen pres-
sure (pO2) in the hypoxia experiment in Publication IV.

Phase pO2 Duration Description

BASELINE 19% 10-12 hours Stable normoxia

HYPOX-I 19%→ 1% 8 hours Transient hypoxia

HYPOX-II 1% 14 hours Stable hypoxia

REOX-I 1%→ 19% 6 hours Transient reoxygenation

REOX-II 19% 6 hours Stable reoxygenation

5.1.3 Effects of hypoxia and reperfusion

Publication IV studies the cellular response to the physiological stress caused by pro-

longed hypoxia, i.e., low concentration of oxygen in the environment. The study has

physiological significance as a cycle of hypoxia and reperfusion mimics the ischemia-

reperfusion injury2 in humans. Despite the hiPSC-CMs being immature in their

structure, functionality, and metabolism [79], [117], and being more resistant to hy-

poxia than adult CMs [118], they have been a popular in vitro model for cardiac

ischemia (e.g., [118]–[120]). In the experiments, six clusters of healthy hiPSC-CMs

are exposed to a hypoxic environment (1% O2) for up to 24 hours in a custom-built

hypoxia chamber [121] and the field potentials are measured on MEA. Experimental

details are found in Publication IV.

The most obvious effects of hypoxia and reperfusion on the functionality of the

hiPSC-CMs are the changes in the beat rates [119], [120]. As shown in Fig. 5.4,

we find that the cell aggregates reduce their beat rates to approximately 61-69% of

the baseline values during stable hypoxia. On the other hand, during reperfusion,

while three aggregate samples recover about 84% of the baseline levels, the other

three samples with the higher baseline beat rates remain at the suppressed beat rates.

This is due to a decline in the beat rate independent of hypoxia and reperfusion in

the more active cells, which leads to the aggregates’ inability to fully recover from

hypoxia.

In Publication IV, we investigate the effects of prolonged hypoxia and reperfusion

on the time- and frequency-domain BRV measures and the scaling properties. The

2Ischemia-reperfusion injury refers to the (cardiac) tissue damage caused by ischemia, i.e., shortage

of oxygen due to restriction of blood flow, followed by restoration of the blood supply to the tissue.
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Figure 5.4 Average beat rates of the six hiPSC-CM aggregates in a cycle of normoxia-hypoxia-
reperfusion. A: Mean instantaneous beat rates over 1-hour segments. Inset shows the
mean beat rates and standard deviations over the entire phases, normalized to the base-
line values. B, C: Average beat rates during transient phases, each normalized to the
mean beat rates at the onset of hypoxia and reperfusion, respectively, with partial oxygen
pressure (pO2) in gray. Reprinted from Publication IV.

basic time- and frequency-domain measures are discussed along with their relation-

ship with the beat rates in Sec. 5.3. In this present section, we summarize the scaling

(correlation) properties at each oxygen phase. In the following discussion, we refer

to different oxygen (sub-) phases as defined in Table 5.3.

We compute the DFA-2 scaling exponents α1 and α2 over the complete phases for

each aggregate. The results are shown in Fig. 5.5. We first note that the baseline

behaviors are in line with previous findings, e.g., in Publication III, that most of the

cells exhibit long-range correlation and crossover phenomena, in which the short-

and long-term DFA scaling exponents are distinctively different. One of the key

results is that on average α1 and α2 are reduced during hypoxia. However, while av-

erage α1 recovers to the baseline value during reperfusion, average α2 is not restored

to its baseline value. This result suggests that hypoxia affects long-range correlation

more than it does short-range correlation, and may indicate possible long-term dam-

age by hypoxia in the cellular mechanisms that affect the intrinsic beat dynamics.

The results are, however, far from conclusive, due to the wide variation and strong
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Figure 5.5 DFA-2 scaling exponents α1 and α2 as a function of the hypoxia phase. The thicker col-
ored line indicates the average over all samples with standard deviation. Reprinted from
Publication IV.

Figure 5.6 An example of the landscape of scaling exponents of CM5 as a function of time and scale
computed by dynamical DFA. The real-time changes in the scaling exponent can be seen
in relation to the beat rate and oxygen concentration. Modified from Publication IV.

individuality among such a small number of samples, as shown in Fig. 5.5.

While α1 and α2 have been widely accepted as standard HRV measures due to

the ease of interpretation of the correlation properties, they cannot fully portray

the complexity of the scaling properties in real-world data. DDFA can address the

possibly missing details in the information by computing the scaling exponent as a

function of time and scale, with emphasis on the temporal changes in the correla-

tion properties. The application of DDFA on the cell data is rather preliminary

at present, but the example of the DDFA landscape for the aggregate sample CM5
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(Fig. 5.6) offers a powerful future perspective.

The particular example contains a number of interesting features. In the landscape

of the scaling exponent, the values are represented in different colors, as shown in

the color bar in Fig. 5.6, which are interpreted in the same manner as in Table 4.1.

For example, the red-orange regions indicate nonstationarity, reflecting the “abrupt”

changes in IBI during the transient phases, i.e., HYPOX-I and REOX-I. On the

other hand, the blue regions indicate anticorrelation, which reflects periodic mod-

ulation and appears at various points in time and scale. The green regions reflect

correlated, stationary behaviors. The preliminary results provide novel insights into

the local dynamics of the beats; the interplay of anticorrelated, correlated, and non-

stationary behaviors across different scales are studied in high temporal resolution at

various chosen times, as demonstrated in detail in Publication IV.

5.2 Intrinsic complexity in IBI and FPD variability

Publications II and III explore the scaling properties and the complexity present

in the fluctuations of beat-to-beat intervals and the durations of the field potential

generated by hiPSC-CMs. While HRV has been studied extensively, relatively few

studies are available on QT variability, especially in terms of LRC and nonlinear

measures [18], [122], [123]. However, QT intervals also exhibit spontaneous beat-

to-beat fluctuations [124] and QT variability is potentially a critical measure to quan-

tify, as QT intervals are often used in assessing risk factors in cardiac safety and drug

development. To our best knowledge, Publication II and III are the first to report

MSE and DFA results on FPD of human CMs.

In Publication II, we first performMSE analysis on RR andQT intervals recorded

for healthy individuals and IBI and FPD series from healthyWT-CMs (Fig. 5.7). We

interpret the results by examining the magnitude of entropy values and the profile of

MSE curves between the data and shuffled data. When shuffled, the data is essentially

randomized and thus correlation in the data is lost. Hence, the MSE curves of the

shuffled series provide a reference behavior of the uncorrelated signal. As mentioned

in Sec. 4.4.2, entropy values reflect irregularity in the signal. The values alone are

not meaningful in determining the complexity of the signal, but the scale-dependency

of the values provides insights into the persistent complexity that does not diminish
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Figure 5.7 Multiscale entropy profiles of (a) RR and QT intervals of healthy individuals and (b) IBI
and FPD of healthy hiPSC-CMs. In (c) and (d), IBI and FPD of healthy hiPSC-CMs are
grouped according to their cell line, differentiation methods (SM and END2), and the age
of the CMs at the time of the measurement. Each profile represents the average over
the samples with standard error shown as colored bands. Multiscale entropy profiles of
shuffled series with no correlation are added as a reference. Adapted from Publication II.

over a long period.

The MSE of RR intervals has a relatively flat profile, similar to that of 1/f noise

(see Fig. 4.1), as one would expect. On the other hand, the MSE profile of QT

intervals is notably different from that of RR intervals, which is in agreement with

a previous report that studied QT intervals of pregnant women [112]. The SampEn

values decrease monotonically until the scale factor τ ∼ 11 (Fig. 5.7 (a)), indicating

the degradation of the control mechanism that drives QT variability, namely the

heart rate, in the scale smaller than 11 beats. Coarse-graining process in the MSE
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Figure 5.8 Multiscale entropy (MSE) analysis of IBIs of WT- and symptomatic and asymptomatic
LQT1-CMs. Each MSE entropy profile shows the mean and the standard error. The MSE
profile of the shuffled series is added as a reference.

analysis progressively filters out the uncorrelated components in the QT intervals in

the small scales; hence, the flat profile in the larger scales reflects the correlation in-

nate to QT intervals. The MSE curve of the QT intervals staying significantly below

that of the shuffled series indicates a deterministic component of the QT variability,

which sustains a level of regularity in QT interval.

Figure 5.7 (b) shows the result for the cellular equivalents. Due to the length

of each field potential recording, we are limited to a scale factor of up to 10 beats.

Similar to RR intervals, IBIs reaches a plateau around τ ∼ 6, indicative of LRC.

The average MSE curve for IBI lies far below that of the shuffled series for all the

available scales, contrary to what we observe for the RR intervals in Fig. 5.7 (a).

This appears to be due to the variation among different hiPSC-CMs; some cell lines

produce more ‘regular’ IBI than others (Fig. 5.7 (c)). On the other hand, we observe

that FPDs have almost the same profile as the shuffled FPDs. In other words, in the

scale range available, FPDs show characteristics of white noise. The average MSE

profiles are consistent among the cell aggregates, even though their magnitudes vary

and the profiles in the smallest scale regimes < 5 beats may be different, as seen

in Fig. 5.7 (c) and (d). Presently it is not clear why there is large variation in the

entropy values between cell lines, differentiation methods, and the age of the CMs.

We briefly add here the MSE analysis result on IBI series of LQT1-CMs com-
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pared to the healthy CMs. Figure 5.8 shows that WT- and asymptomatic LQT1-

CMs exhibit comparable MSE curves, while the entropy continues to decrease for

symptomatic LQT1-CMs for longer scales than the other two. The result aligns well

with our findings in Sec. 5.1.1 that the scaling properties in the small scales, quan-

tified by DFA-2 α1, are comparable between WT- and asymptomatic LQT1-CMs,

but symptomatic LQT1-CMs exhibit reduction in the correlation towards that of

white noise.

In Publication III, we investigate the correlation properties in FPD series of

healthy hiPSC-CMs by Poincaré plots and DFA. We first review the Poincaré plots

of RR and QT, shown in Fig. 1 in Publication III. For RR intervals, we see a clear

positive beat-to-beat correlation. The fan-like shape of the Poincaré plot reflects the

heart rate dependence of beat-to-beat variation (we discuss the relationship further

in Sec. 5.3), as RR interval increases. The QT variability is relatively smaller in

magnitude but also generally exhibits a positive correlation between two consecutive

beats similar to RR intervals. We note that the fan-like shape (increasing variation

with increasing interval) in (b) is not reciprocated in the QT intervals.

Poincaré plots for the cellular equivalence from a 6-well MEA are shown in

Fig. 5.9. While IBIs have very similar positively elongated shapes, the positive cor-

relation is not too obvious in FPDs. The round shapes of Poincaré plots reflect no

correlation between two consecutive FPDs, which is in agreement with the MSE

results, showing white-noise-like behavior, in small-scale regimes. In some cases, for

example, the well C-E in Fig. 5.9, FPDs also exhibit a (weak) positive correlation.

So far, MSE analysis and Poincaré plots provide only small hints of meaningful

(long-range) correlation in the FPDs of hiPSC-CMs. DFA allows us to check the

correlation and scaling properties in the larger scale regime. We first perform a

conventional DFA with two scale regimes to compute α1 and α2, then the scale-

dependent α spectra to provide a more complete description of the scaling behaviors

of IBI and FPD in comparison to their ECG counterparts.

Based on the results so far, it should come as no surprise that RR and IBI exhibit

similar fractal scaling properties (see Publication III or Ref. [19] for more details).

We now focus more on the QT variability and its equivalence, FPD variability. QT

intervals have significantly different mean α1 and α2. The mean α1 is close to 0.5,

indicating the scaling property of uncorrelated white noise in the short time scale.

On the other hand, the mean α2 is close to 1, indicating the presence of long-
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Figure 5.9 Poincaré plots for IBI and FPD series generated by a sample hiPSC-CM aggregate. Each
window, labeled with A-F, represents a well in a six-well MEA. Reprinted from Publication
III.
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Figure 5.10 Average scaling exponents of RR and QT intervals and IBI and FPD series, as functions
of the scale. An updated version of Fig. 4 in Publication III.

range correlation as the RR intervals. FPDs also have very similar average scaling

exponents, with only a small discrepancy that α2 is slightly smaller than that of the

QT intervals (p-value ∼ 0.09). The results clearly show that QT intervals and FPDs

are indeed long-range correlated. The full spectra of scaling exponents are shown in

Fig. 5.10. They provide a more complete description of the scaling properties as

a function of the scale (more generalized). Again, the overall resemblance between

the ECGs and the cell data is clear. The scaling exponent of QT intervals has a very

distinctive scaling dependency compared to RR; it increases steadily for the scales

longer than 10 beats until it reaches α ∼ 1. The α(s) of FPD behaves similarly but

the increase in the exponent is slower than that of QT intervals.

To summarize, hiPSC-CMs exhibit similar correlation properties as RR and QT

intervals, especially in small scales. The scaling exponents of IBI and FPD evolve

in a comparable manner to those of RR and FPD, but the long-range correlation is

attenuated for FPDs of the cells. In Publication III, we discuss possible explanations

for the discrepancy. One such reason is the different RR-QT relationship at the

cellular level in the absence of autonomic regulation of the nervous system. In this

study, we did not account for the beat-rate dependence of QT intervals and FPDs; in

other words, we did not use the beat-rate “corrected” values. While there have been

many studies on the response of QT intervals to changes in RR intervals [125], [126],

the relationship is not too clear at the cellular level; in fact, as Fig. 5 in Publication III

shows, FPDs do not necessarily have a positive correlation with IBIs.
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5.3 Relationship between beat rate and beat rate variability

Heart rate is regulated by two branches of the autonomic nervous system; the sym-

pathetic nervous system (SNS) promotes acceleration of the heart rate, while the

parasympathetic nervous system (PNS) causes deceleration of the heart rate. And

HRV, which measures the degree of variation in the heart rate, reflects the balance

between the SNS and PNS and serves as a good marker of cardiac morbidity and

mortality [44]. Therefore HRV measures have become popular in assessing cardiac

health, in addition to the heart rate. However, some argue that HRV is driven solely

by the heart rate, making it a surrogate of the heart rate rather than a mirror of the

ANS [127], while others believe that there are independent effects of the ANS on

HRV apart from the obvious influence from the heart rate [128].

Many conventional HRV metrics indeed exhibit clear relationship with the heart

rate, especially in a chronotropic state, that is, when the heart rate is changing.

In the case of the standard deviation of RR intervals (SDNN), a universal beat rate

dependence is observed also in denervated hearts and sinoatrial nodal cells of animals,

as well as in a functioning human heart [127], which motivated us to examine the

relationship between the beat rate and the BRV in the hiPSC-CMs in Publication IV.

In Publication IV, we induce chronotropic states for the independently beating

clusters of healthy hiPSC-CMs by reducing and restoring the oxygen in the envi-

ronment. The beat rate changes due to the changing oxygen state are very clear in

each sample of cell aggregates and they happen over an extended period of 6-8 hours.

Therefore they provide an excellent platform to observe the dynamical effect of hy-

poxia and reperfusion on BRV, despite the small number of samples. The results are

summarized as follows.

5.3.1 Time- and frequency-domain BRV

Beat rate dependence is most evident and intuitive in the time-domain BRVmeasures.

As RR intervals and heart rate are inversely proportional, changes in higher heart

rate naturally correspond to a smaller difference in the RR intervals. For example,

while the increase in heart rate by 20 bpm at 60 bpm is equivalent to a decrease in

RR interval by 250 ms, the same increase by 20 bpm at 100 bpm corresponds to a

decrease in RR by 100 ms. A negative exponential relationship of SDNN and the
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root-mean-square of successive differences (RMSSD) with respect to the heart rate

has been reported and attempts to correct the measures for the beat rate have been

made [129], [130].

We observe the negative exponential relationship between SDNN and the beat

rate also in hiPSC-CMs and establish an exponential model similar that that of Mon-

fredi et al. [127],

SDNN = SDNNref exp

[
BRref − BR

8.7

]
, (5.1)

which predicts the changes in SDNN as a function of the beat rate (BR). As shown

in Fig. 7 in Publication IV, when each average baseline beat rate and SDNN are

used as the reference values, aggregate samples with higher baseline beat rates follow

the universal exponential model closely, especially during hypoxia. Others are less

conclusive; though the model may be suitable within the standard deviation of the

SDNN, and SDNN during stable hypoxia and reperfusion phases deviate from the

model in some samples. The results may be an indication of the need for sample-

specific models or a possibility of the hypoxia-induced changes beyond the simple

beat rate dependence. Due to the limited number of samples, however, it is not

sufficient to make a clear conclusion.

Frequency domain measures, low-frequency (LF) and high-frequency (HF) pow-

ers, exhibit a strong negative exponential relationship. In Publication IV, we con-

clude that the strong dependence is more likely to be an artifact of a trivial inverse

relationship between IBI and beat rate, rather than something physiologically mean-

ingful. Because the beat rate dependence is comparable between LF and HF powers,

when we take the ratio of the two, LF/HF, the dependence is essentially eliminated.

Similarly, normalizing the LF and HF measures by the total power (LF + HF)

would be another way to remove the strong beat-rate dependence. We observe that

the LF/HF computed over the complete phases tends to decrease during HYPOX-I

(see Table 5.3 for definitions) and on average does not recover, as shown in Fig. 8

of Publication IV. There are no consistent behaviors among the aggregates, thus the

results are largely inconclusive.
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Figure 5.11 DFA-2 scaling exponents α1 and α2 as a function of beat rate. The scaling exponents are
calculated for a moving window of 300 beats and are plotted over the mean beat rate of
the window. Different colors indicate the oxygen phases. The locally weighted scatterplot
smoothing (LOWESS) curves are added to show the local trend in the data.

5.3.2 DFA scaling exponents

Discussions on the effects of hypoxia and reperfusion on the scaling exponents are

found in Sec. 5.1.3. In this section, we describe the relationship between DFA scal-

ing exponents and the beat rate discussed in Publication IV. Unlike the time- and

frequency-domain measures, the beat rate dependence is not so obvious (Fig. 5.11);

while the average α2 appears to increase uniformly from 0.5 to 1.0, α1 seems to fluc-

tuate with increasing beat rates. These initial observations suggest that the beat rate

dependence is not characterized easily by a simple relation as for the basic time- and

frequency-domain measures. However, we must note that the strong local behaviors

are most likely due to sample-specific characteristics since the aggregates have wildly

varying beat rate ranges. One solution is to use the beat rate relative to the baseline

mean beat rate, rather than the absolute mean beat rate. The results are shown in

Fig. 10 in Publication IV. In summary, α1 exhibit weaker correlation with the beat

rate, while α2 show in general a more prominent positive correlation. Analysis with

the relative beat rate reveals that the scaling exponents exhibit trends with opposite

slopes during hypoxia compared to the other phases. While the current result is not

yet sufficient to draw a definitive conclusion, it suggests that hypoxia has an effect on

the scaling exponents that cannot be explained by the changes in the beat rate alone.

The nonlinear correlation between the scaling exponents and the beat rate has
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Figure 5.12 DFA-1 scaling exponents α1 and α2 of RR interval segments of 100 beats as a function of
beat rate. RR intervals are extracted from 24 subjects in Physionet ECG databank [131].
The segments of RR intervals with beat rates ranging over 10 bpm are omitted. Locally
Weighted Scatterplot Smoothing (LOWESS) curves are added to show the local trend in
the data.

been also seen in the ECG data [60]. We also check the relationship in RR intervals,

extracted from PhysioNet ECG databases [131] (Fig. 5.12). Since the beat rate

naturally varies over the 24-hour recordings, we use the moving window of 100 beats

and omit those that have a large variation of the beat rate (> 10 bpm). Most windows

of RR intervals fall roughly between 50 - 90 bpm, in which the α1 is roughly constant,

and α2 has a positive trend. The rapid decline in α1 towards anti-correlation for beat

rates over 100 bpm may reflect the person’s reaching a heart rate threshold in the

exercise intensity, which has been studied in detail in recent years [60]. Overall, the

beat rate dependence in the resting condition has a comparable trend with the results

from the cells. In summary, the results so far suggest that on average the short-range

correlation is independent of the beat rate, while the LRC shows on average a positive

linear relationship with the beat rates.

In general, it is not possible to separate the effects of chronotropic factors from

the effects of beat rate on BRV. For example, in Publication IV, we observe changes

in the mean scaling exponents when the oxygen is reduced or restored (see Sec.

5.1.3), however, it is unclear whether those changes reflect the alteration of the in-

trinsic mechanism due to hypoxia or is purely a result of beat rate dependence, inde-

pendent of the environment. In order to tackle this challenge, a much larger sample
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number representing a wide range of baseline beat rates is required. At present, the

baseline data in Publication IV is too sparse over the beat rate to model a meaningful

relationship between beat rate and BRV measures. An important takeaway is that,

whether we study cells or ECG signals, the beat rate dependence must be taken into

account when the changes in the LRC are detected.

5.4 Limitations

The time series analysis methods used in the studies of this thesis have many advan-

tages in the applications to cardiology; they offer non-invasive, cost-effective, and

versatile solutions to detect diseases and monitor cardiac health. Even though the

study of HRV has been extremely popular in research, they are not yet used in clini-

cal settings. Despite the potentially powerful ability of time series analysis methods,

there are also several limitations that need to be addressed.

There are clearly limitations coming from nonstationarities in real-world data.

Time-series analysis methods require at least quasi-stationarity more often than not,

and even those that are designed to deal with nonstationarities, such as DFA, are lim-

ited in their ability to deal with features, such as slowly varying trends, thus requiring

a careful preprocessing of the data. Throughout the studies, we have found that the

results are often very sensitive to preprocessing, yet a common protocol or a standard

guideline is lacking. As we discuss in Sec. 5.1.1 and 5.1.2, the outcome of the study

can be very different depending on the severity of the preprocessing schemes. The

problem becomes even more challenging when there are many unknowns about the

systems of interest, i.e., in our case, the clusters of heart cells. For ECG recordings, a

variety of measurement devices, large databases, a good physiological understanding

of existing trends, e.g., circadian rhythm, and advanced algorithms to detect impor-

tant parameters, such as RR and QT intervals, are readily available and constantly

improved. On the other hand, hiPSC-CMs are more delicate to work with; they

naturally have large variations in their functionality and their measurements are eas-

ily influenced by factors, such as the movement of the aggregates and changes in the

coupling between the electrodes and the aggregates. Furthermore, it is often ambigu-

ous to determine whether an outlier or underlying trend reflects a physical effect or

a spurious feature. In the studies presented in this thesis, we keep the preprocessing

steps minimal so that we may not discard the real features of the data.
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Another limitation to consider is the state-of-the-art methods to produce hiPSC-

CMs. It has been known that hiPSC-CMs are different from mature adult CMs in

electrophysiology, and thus their functionality. The hiPSC-CMs used in the studies

of this thesis are not tested for their subtypes, and the effects of different factors,

such as the cell lines, age, differentiation methods, size, and the number of cells in

the aggregates are not considered. The inefficiency in the production also leads to a

small sample size, which all the studies have suffered from, but especially the work in

Publication IV; even though each recording is exceptionally long, only six aggregate

samples were available in total.
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6 CONCLUSION AND OUTLOOK

In this thesis, we investigate the complexity in the beating of human heart cells,

i.e., cardiomyocytes generated by human-induced pluripotent stem cell technology

(hiPSC-CMs). Our computational approach focuses on advanced time series analysis

methods, especially nonlinear tools to examine the scaling properties of the beats.

We build upon the state-of-the-art knowledge that hiPSC-CMs exhibit fractal

power-law scaling in the beat-to-beat fluctuations, or beat rate variability. In all the

studies presented in this thesis, we first confirm that the spontaneous beat rates of

hiPSC-CM aggregates exhibit long-range correlations similar to those found in the

functioning human heart. We demonstrate that the fractal scaling can be altered

by the presence of genetic mutations, exposure to drugs, and external stress in the

environment. Understanding these factors is important in establishing hiPSC-CMs

as an in vitro model of the heart for future studies, as well as for applications in drug

safety assessments.

We find that the fractal scaling in interbeat intervals (IBIs) is fairly robust. It

is altered by the LQT1-specific mutation, only in some cases, in particular, when

the CMs are derived from the symptomatic LQT1-specific mutation carrier. When

the hiPSC-CMs are exposed to three pharmacological compounds that are known

to influence the beat rates and potassium ion channel, we detect the change in scal-

ing behavior. The change was only notable for a large dose of a beta-blocker on

symptomatic LQT1-CMs, though the beta-blocker did not alter the beat rates of the

CMs. On the other hand, we observe that hiPSC-CMs respond to hypoxia by dras-

tically reducing their beat rates, and our analysis suggests alteration of the short- and

long-range correlations. On average, the correlation found in the short-scale regime

recovers while that of the long-scale regime appears to be hindered even after the

oxygen is restored. Based on the findings, we conclude that short-range correlations

in the beat rates of hiPSC-CMs tend to be more robust than long-range correla-

tions in the presence of LQT1-specific mutations, exposure to drugs, and hypoxia.
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When they undergo a chronotropic condition, which alters the beat rates drastically,

correlation may also be affected to a larger degree.

There are continuous efforts to reliably produce hiPSC-CMs that can overcome

the current limitations of low efficiency and their relative immaturity. Time series

analysis can potentially contribute to the development of the reliable establishment

of the baseline cell models, by studying different characteristics of the hiPSC-CMs.

One aspect to investigate further may be the abnormal peaks and decay effects in the

cellular field potential (as shown in Publication IV) and their effects on IBI proper-

ties. While this thesis only discusses the effects of LQT1-specific mutations, it would

be extremely beneficial to include other hereditary diseases, such as dilated cardiomy-

opathy, as well as various forms of arrhythmia that are common in hiPSC-CMs.

We also investigate the field-potential durations (FPDs), which are measured to

assess the functionality of the CMs. Their nonlinear correlation properties have not

yet been widely studied despite their important analogue in the human electrocardio-

gram, that is, the QT interval. We apply Poincaré plots and detrended fluctuation

analysis (DFA) on IBI and FPD series from healthy hiPSC-CMs and compare the

results with RR and QT intervals from electrocardiograms. We find that FPDs ap-

pear to behave similarly to uncorrelated signals, but in the long-scale regime they

exhibit intrinsic correlations. The scaling properties are comparable to that of QT

intervals, though it is attenuated for FPDs. The findings give rise to important

research questions about the relationship between RR and QT intervals at the cel-

lular level. RR and QT intervals have a nontrivial relationship and less is known

about the relationship between IBI and FPD, especially in the absence of autonomic

neural control. Further studies exploring (long-range) cross-correlation and transfer

entropy between IBIs and FPDs are natural next steps following this thesis.
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Abstract Healthy human heart rate fluctuates overtime show-
ing long-range fractal correlations. In contrast, various cardiac
diseases and normal aging show the breakdown of fractal
complexity. Recently, it was shown that human induced plu-
ripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in-
trinsically exhibit fractal behavior as in humans. Here, we
investigated the fractal complexity of hiPSC-derived long
QT-cardiomyocytes (LQT-CMs). We recorded extracellular
field potentials from hiPSC-CMs at baseline and under the
effect of various compounds including β-blocker bisoprolol,
ML277, a specific and potent IKs current activator, as well as
JNJ303, a specific IKs blocker. From the peak-to-peak-inter-
vals, we determined the long-range fractal correlations by
using detrended fluctuation analysis. Electrophysiologically,
the baseline corrected field potential durations (cFPDs) were

more prolonged in LQT-CMs than in wildtype (WT)-CMs.
Bisoprolol did not have significant effects to the cFPD in
any CMs. ML277 shortened cFPD in a dose-dependent fash-
ion by 11 % and 5–11 % in WT- and LQT-CMs, respectively.
JNJ303 prolonged cFPD in a dose-dependent fashion by 22%
and 7–13 % in WT- and LQT-CMs, respectively. At baseline,
all CMs showed fractal correlations as determined by short-
term scaling exponent α. However, in all CMs, the α was
increased when pharmacological compounds were applied in-
dicating of breakdown of fractal complexity. These findings
suggest that the intrinsic mechanisms contributing to the frac-
tal complexity are not altered in LQT-CMs. The modulation of
IKs channel and β1-adrenoreceptors by pharmacological com-
pounds may affect the fractal complexity of the hiPSC-CMs.

Keywords Induced pluripotent stem cell . LongQT
syndrome . Cardiomyocytes . Multielectrode array .

Detrended fluctuation analysis . Fractals .Nonlinear dynamics

Introduction

Heart rate dynamics have been previously analyzed using
conventional linear and newer nonlinear methods in healthy
and diseased states (for review see Perkiömäki [1]). The non-
linear indices of the RR variations include fractals, which are
geometrically defined as objects composed of subunits (and
sub-subunits) that sustain self-similarity on different measure-
ment scales [2]. The characteristic feature of fractals is 1/f-like
fluctuations, which has been shown to be present in a healthy
human heartbeat [3–6]. Such fluctuations possess long-range
correlations indicative of a memory effect, which means that
the heart rate is not only related to immediately preceding
value but also to values in the remote past [2].
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In the heart rate time series, a breakdown of 1/f-like fluc-
tuations may lead into either completely uncorrelated random-
ness (white noise) or into total correlation resembling random
walk (Brownian motion). A number of studies have shown
that in various cardiac disease states (e.g. congestive heart
failure, myocardial infarction) the fractal 1/f-like long-range
correlations of the heartbeat breakdown producing more un-
correlated randomness [7–13]. Furthermore, normal aging has
been associated with the breakdown of fractal complexity
producing more total correlation in the heartbeat dynamics
[6, 14, 15]. Thus, it is thought that the breakdown of fractal
complexity in heart rate dynamics may cause the system to be
less adaptable and less responsive to unpredictable stimuli and
stresses increasing susceptibility to injury and illness [6, 16].

The biological origin of the fractal-like behavior has not
been yet fully established and is somewhat contradictory. In
the heart, the origin of the fractal-like behavior is thought to
result from complex interaction between vagal and sympathet-
ic inputs of the autonomous nervous system [17, 18].
Experimental observations in humans have supported this no-
tion [19–23], although opposing views have been presented
[24]. However, evidence suggests that monolayer cultures of
rat ventricular cardiomyocytes and human induced pluripotent
stem cell-derived cardiomyocytes (hiPSC-CMs) lacking auto-
nomic control exhibit fractal-like complexity, which indicates
that the autonomous nervous system input is not necessary for
fractal dynamics [25, 26]. It has been further demonstrated
that single cardiomyocytes also exhibit fractal-like complexity
and that intracellular Ca2+-cycling mechanisms contribute to
the fractal complexity of the single cardiomyocytes [27].

Long QT syndrome (LQTS) is a potentially severe life-
threatening arrhythmic cardiac disease characterized by
prolonged QT interval on the electrocardiogram. LQTS is asso-
ciatedwith torsades de pointes, a special type of ventricular tachy-
cardia, which may degenerate into ventricular fibrillation and
cause sudden cardiac death [28]. Inherited forms of LQTS are a
result of mutations in the cardiac ion channel coding genes. One
of the most common LQTS genes isKCNQ1, which encodes the
α-subunit of the voltage-gated potassium channel responsible for
the slow delayed rectifier K+ current (IKs) [29, 30]. In Finland, the
prevalence of gene mutations associated with LQTS is high
(0.4 % of Finnish population), which has been explained to be
caused by four founder mutations with one of them being C-
terminal G589D missense mutation in KCNQ1 gene [31, 32].
The hiPSCs represent excellent research tool to study the patho-
physiology of inherited cardiac diseases [33–41]. Until now, the
fractal dynamics of hiPSC-LQT-CMs have not been investigated.

Here, we utilize patient-specific LQTS disease model [41]
to study the fractal dynamics in the symptomatic and asymp-
tomatic LQTS type 1 (LQT1)-specific CMs carrying Finnish
founder mutation G589D. The aim of this study was to inves-
tigate the fractal dynamics of LQT-CMs in unmedicated and
medicated conditions as compared to healthy control and

under the effect of various compounds affecting cardiac
action potential.

Material & Methods

ECG Recordings and Human Induced Pluripotent Stem
Cell Generation

The study was approved by the ethical committee of
Pirkanmaa Hospital District (R08070). Participants who
volunteered for the study gave their consent. The ECGs were
recorded using MARS-Holter from a healthy individual,
asymptomatic LQT-mutation carrier and symptomatic LQT-
patient. The LQT-patients are on bisoprolol medication. The
healthy individual has no medication. Human iPSCs were
generated as described earlier [42]. The LQT1-specific
hiPSCs were derived from patients’ skin fibroblasts carrying
G589D missense mutation in KCNQ1 [41, 43].

Patient Characteristics

Skin biopsies with LQT1 mutation were obtained from a
symptomatic 41-year old female patient (QTc interval,
456 ms) and from an asymptomatic 28-year old female muta-
tion carrier (QTc interval, 428 ms). Both carry the KCNQ1
G589D mutation. The symptomatic 41-year old patient had
experienced seizures, episodes of unconsciousness and synco-
pe beforeβ-blocker (bisoprolol) medication. The healthy con-
trol human iPS cells were derived from skin fibroblasts of a
healthy 55-year old female (QTc interval, 406 ms) [44].

Human Induced Pluripotent Stem Cell Culture,
Differentiation and Characterization

Human iPS cells were cultured and differentiated as previous-
ly described [43]. All the hiPSC lines (UTA.04602.WT,
UTA.00208.LQT1, UTA.00211.LQT1, UTA.00303.LQT1
and UTA.00313.LQT1) and the differentiated CMs from them
have been previously characterized elsewhere [41, 43, 44].

Multielectrode Array Recordings and Data Analysis

In this study, 30–45 days old hiPSC-CMs were used for the
experiments. Spontaneously beating cardiomyocyte clusters
were manually dissected and plated on 6-well MEAs (6-well
MEA 200/30iR-Ti-tcr, Multichannel Systems, Reutlingen,
Germany), which were first coated with fetal bovine serum
(FBS, Invitrogen) for 30 min at room temperature and then
with 0.1 % gelatine (Sigma Aldrich) for 1 h at room temper-
ature. The cardiomyocyte clusters were cultured in EB-medi-
um: KO-DMEM with 20 % FBS, NEAA, Glutamax and pen-
icillin/streptomycin. The experiments were conducted in 5 %
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FBS containing EB-medium (5 % EB-medium). Before drug
tests, the field potentials originating from the spontaneously
beating cardiomyocytes were recorded for 30min (baseline) at
+37 °C with the MEA platform (MEA2100-2 × 60–2,
Multichannel Systems, Reutlingen, Germany) using 10 kHz
sampling frequency and MC_Rack (Multichannel Systems,
Reutlingen, Germany) software. After the 30-min baseline
measurement, the MEA plate was put on +37 °C thermal plate
(Tokai Hit, Japan) for keeping the temperature stable while
adding drugs. The following drugs were used in the study:
Bisoprolol (Sigma-Aldrich), ML277 (Tocris Bioscience) and
JNJ303 (Tocris Bioscience). The drugs were dissolved in di-
methyl sulfoxide (DMSO, Sigma-Aldrich) according to man-
ufacturer’s instructions. The bisoprolol concentrations were
chosen based on its therapeutic blood serum concentration
range [45]. For bisoprolol, 260 nM (upper limit of the thera-
peutic serum concentration) and 520 nM (twice the upper limit
of the therapeutic concentration) concentrations were used.
ML277 (IKs channel activator) concentrations of 1 μM and
2 μM were chosen based on previous reports [46, 47]. The
concentrations of IKs blocker JNJ303 (300 nM and 1000 nM)
were chosen based on our previous study [41]. After drug
addition, the MEA plates were incubated for 5 min at
+37 °C thermal plate before the 30-min measurement (first
drug concentration). After this, we added more drugs to the
cells (second drug concentration) and similarly as before, re-
corded the field potentials for 30 min. We also conducted
vehicle control experiments with similar protocol as described
above, with the exception that no drugs but only DMSO
(0.1 %) was added to the cells. The recording time for baseline
and for each drug concentration was 30 min. The data obtain-
ed from MEA was analyzed by our in-house developed
CardioMDA software, which averages field potential signals
using cross correlation algorithms [48]. From each recording,
the last 2 min from the 30-min recording were chosen for
averaging the field potential signals. For determining the field
potential duration (FPD), the onset was determined as the
beginning of depolarizing peak and the offset as Tmax of the
repolarizing wave. The Bazett’s and Fridericia’s formula were
used to calculate the corrected field potential duration (cFPD).

Detrended Fluctuation Analysis

We applied detrended fluctuation analysis (DFA) to the RR-
intervals. DFA is one of the most used time-series analysis
methods that gives a reliable estimate for the existence and
the characteristics of long-range correlations in the data [7].
DFA has been applied in various fields of science rang-
ing from physiological signals such as heartbeat and
gait [49] to, for example, musical rhythms [50, 51],
rainfall statistics [52], structural properties of DNA
[53], and electronic quantum transport [54].

A detailed description of DFA can be found in the above-
listed references and here we only summarize the main steps.
First, we take the peak-to-peak intervals of the hiPSC-CM or
ECG data set and subtract the mean value, so that we consider
the fluctuations around the mean. Next, we integrate the series
by taking a cumulative sum of the fluctuations. The time axis
is then divided into non-overlapping windows, and in each
window, a least-squares line (trend) is fit to the data. The
root-mean-square deviations from the trend (residuals) are av-
eraged through the whole data set. This procedure is repeated
for different window sizes. As a result, we get relationship
between the window size and the average fluctuation (within
that window size). The slope in this plot in a log-log scale
corresponds to the DFA exponent α. White noise with no
correlation between consecutive values has α = 0.5, whereas
Brownian motion with strongly correlated values generated
by uncorrelated consecutive increments has α = 1.5. In gen-
eral, intermediate predictability between these limits with
0.5 < α ≤ 1.5 indicates long-range (fractal) correlations.
Anti-correlations are characterized by −0.5 < α < 0.5. The
special case of pink noise α = 1 corresponds to 1/f behavior.

Statistical Analyses

FromMEA data, one-way ANOVA followed by Dunnet’s post
hoc test was performed to test differences in baseline values
between control and LQT cell lines (IBM version 22.0; SPSS
Inc., Chicago, USA). If datasets did not meet ANOVA require-
ments (normal distribution, equal variances), nonparametric test
Mann-Whitney U followed by alpha correction was employed
to compare control cell line and LQT cell lines. In drug exper-
iments, the baseline and the effect of drug concentrations were
compared using paired sample t-test. Similarly, if datasets did
not meet the requirements for t-test, nonparametric Wilcoxon
test was employed. From DFA data, paired sample t-test was
employed to determine the statistical differences between base-
line and each drug concentration. The p < 0.05 was considered
statistically significant. The levels of significance are represent-
ed as (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001. The cFPD
prolongations of >10 % are considered physiologically signif-
icant. The data is presented as mean ± standard deviation (SD).

Results

The Effect of Pharmacological Compounds
to the hiPSC-CM Clusters

The 208.LQT1 and 211.LQT1 were derived from symptom-
atic patient whereas 303.LQT1 and 313.LQT1 were derived
from asymptomatic mutation carrier. The baseline cFPDs
(Fridericia’s correction) were significantly more prolonged
in hiPSC-LQT-CMs than in healthy WT-CMs (Fig. 1b, d, f).

700 Stem Cell Rev and Rep (2016) 12:698–707



Similar results were obtained when Bazett’s FPD correction
was used (Supplemental Fig. 1). In contrast, we did not find
any significant differences in the beating rates (BRs) between
WT- and LQT-CMs (Fig. 1 a, c, e).

β-Blocker Bisoprolol The bisoprolol did not cause any major
differences in the BRs of the hiPSC-CMs (Fig. 1a). We noted a
slightly increasing trend of BR with increasing bisoprolol con-
centration in the hiPSC-CMs from asymptomatic mutation car-
rier (15 % for 303.LQT1 and 19 % for 313.LQT1). As for the
cFPD, bisoprolol caused only mild cFPD prolongation in the
WT-CMs (3–7 %) at the concentration range of 260–520 nM.
Similar cFPD prolongations were seen in LQT-CMs from
symptomatic patient (2–6 % for 208.LQT1 and 5–7 % for
211.LQT1) and from asymptomatic mutation carrier (5–10 %
for 303.LQT1 and 5–8 % for 313.LQT1) at the concentration
range of 260-520 nM (Fig. 1b). The representative bisoprolol
traces for WT- and LQT-CMs are illustrated in Fig. 2a.

IKs ActivatorML277 TheML277 caused significant increase
in the BRs of WTand 211.LQT1, 9 % and 14 %, respectively
(Fig. 1c). Overall, the trend of increasing BR with increasing
ML277 concentration was observed although statistical sig-
nificance was not found for all the cell lines. As expected, the
ML277 shortened the cFPD in a dose-dependent manner, al-
though the cFPD shortening was relatively mild (Fig. 1d). In

the WT, the shortening of cFPD was 11 % whereas in the
LQTs it ranged from 5 to 11 % at the concentration range of
1-2 μM. The representative ML277 traces for WT- and LQT-
CMs are illustrated in Fig. 2b.

IKs Blocker JNJ303 Blocking the IKs channel with JNJ303
did not significantly change the BRs of the WT- or LQT-CMs
except in 313.LQT1, in which the 23 % increase in the BR
was observed (Fig. 1e). JNJ303 showed a dose-dependent
cFPD prolongation in the WT- and LQT-CMs (Fig. 1f). The
most increment in cFPD was seen in the WT (22 %) whereas
in the LQTs, the cFPD increase was around 7–13 % at the
highest concentration (1000 nM). The representative JNJ303
traces for WT- and LQT-CMs are illustrated in Fig. 2c.

Detrended Fluctuation Analysis (DFA) of Healthy
Control- and LQT-Specific Cardiomyocytes and ECG
Data

We first determined the fractal scaling exponent α from hu-
man subjects who participated to the study (n = 3). Results are
shown in Table 1. Next, we determined the scaling exponentα
from hiPSC-CMs derived from the same human subjects par-
ticipating to the study. In Fig. 3 we show the DFA results of
the peak-to-peak fluctuations for healthy control- (WT) and
LQT-specific CMs when exposed to bisoprolol (Fig. 3 a),

Fig. 1 The effects of various compounds to the human induced
pluripotent stem cell (hiPSC)-derived cardiomyocytes’ field potential
parameters. The upper row depicts the beating rate (BR) and the lower
row Fridericia-corrected field potential duration (cFPD). The baseline
cFPDs of long QT-specific cardiomyocytes were significantly more

prolonged than in healthy wild type-cardiomyocytes. The asterisks on
top of the bars depict the statistical significance for mean BR or cFPD
change compared to baseline values. Significance levels are indicated by
(*) p < 0.05, (**) p < 0.01 and (***) p < 0.001, respectively
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ML277 (Fig. 3 b), or JNJ303 (Fig. 3c). The first bar in all the
subplots corresponds to the baseline with zero drug con-
centration. The LQT data is grouped according to symp-
tomatic (208.LQT1, 211.LQT1) and asymptomatic cases

(303.LQT1, 313.LQT1) shown in the middle and in the
right column, respectively.

We found that all the average baseline values for the DFA
scaling exponent are close to one, i.e., α ~ 0.9–1.1. There was

Fig. 2 The representative traces of the human induced pluripotent stem
cell (hiPSC)-derived wild type- and long QT (LQT)-specific
cardiomyocytes under the effect of various compounds. The LQTs are
grouped according to symptomatic (208.LQT1, 211.LQT1) and
asymptomatic cases (303.LQT1, 313.LQT1) shown in the middle and
in the right column, respectively. a) β-blocker Bisoprolol, b) IKs
activator ML277 c) IKs blocker JNJ303. Notice, how the Tmax of the

repolarization wave is relatively unchanged between baseline and
different bisoprolol concentrations depicting marginal effect of the β-
blocker to the corrected field potential duration (cFPD). However, IKs
activator ML277 shows clear shortening of cFPD seen by shift in the
Tmax. Similarly, but conversely to ML277, IKs blocker JNJ303 shows
clear prolongation of cFPD assessed by the shift in the Tmax

Table 1 The patient
characteristics and detrended
fluctuation analysis from ECG
data

Healthy individual LQT1-patient (symptomatic) LQT1-patient (asymptomatic)

Age 55 41 28

Medication - Bisoprolol Bisoprolol

QTc (ms) 406 456 428

α 1.21 ± 0.03 1.08 ± 0.02 1.07 ± 0.02
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no notable difference in the baseline α values between
the WT and the LQTs. This is in line with our ECG
data, which shows α of 1.08, 1.07 and 1.21 for symp-
tomatic and asymptomatic LQT patient as well as for
healthy individual, respectively (Table 1). However, all
the pharmacological compounds lead to an increase in
the DFA scaling exponent α toward Brownian motion
(α = 1.5) when compared to the baseline (Fig. 3). The
trend is visible both in the WT and in the LQTs. In
most cases a further increase in the concentration does
not affect α. When comparing all the α values of WT

and LQTs, we did not find any statistical difference
between the groups. We also conducted vehicle control
experiments in which no pharmacological compounds
but only DMSO (0.1 %) was added to the CMs. We
did not observe any significant changes in the α scaling ex-
ponent during these recordings. The α was 1.024 ± 0.13 at
baseline, 1.00 ± 0.12 (first DMSO addition) and 1.03 ± 0.13
(second DMSO addition) (n = 6). Thus, the change seen in α
scaling exponent with various pharmacological compounds
reflect the intrinsic properties of the pharmacological com-
pounds themselves.

Fig. 3 The detrended fluctuation analysis (DFA) α scaling exponents of
the human induced pluripotent stem cell (hiPSC)-derived wild type- and
long QT (LQT)-specific cardiomyocytes. The LQTs are grouped
according to symptomatic (208.LQT1, 211.LQT1) and asymptomatic
cases (303.LQT1, 313.LQT1) shown in the middle and in the right
column, respectively. a) (row) β-blocker Bisoprolol, b) IKs activator
ML277 c) IKs blocker JNJ303. At baseline, the α scaling exponents are

close to 1 in all hiPSC-CMs. The addition of various compounds to the
hiPSC-CMs increased the α scaling exponent closer to Brownian motion
(α = 1.5). The asterisks on top of the bars depict the statistical significance
for mean α scaling exponent change compared to baseline values.
Significance levels are indicated by (*) p < 0.05, (**) p < 0.01 and
(***) p < 0.001, respectively
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Discussion

In human hearts, the fractal dynamics is thought to result from
complex interaction between vagal and sympathetic inputs of
autonomous nervous system [17, 18]. However, evidence sug-
gest that the hiPSC-CMs also exhibit fractal-like complexity
indicating intrinsic mechanisms of the CMs contributing to
fractal dynamics [26, 27]. This study further supports the con-
cept that healthy hiPSC-CMs lacking autonomous nervous
system input exhibit fractal-like complexity at baseline condi-
tion. We also observed that the untreated (without any phar-
macological intervention) hiPSC-LQT-CMs also appear to ex-
hibit fractal-like complexity at baseline condition. This result
is in line with the previous study in untreated patients with
congenital LQTS [55]. Thus, our results further expand this
concept suggesting that the intrinsic mechanisms contributing
to the fractal-like complexity is not altered in hiPSC-LQT-
CMs.However, it is of note that the results obtainedwere from
2 LQTS patients only and further studies on a larger popula-
tion would be needed to definitely conclude the matter.

The Electrophysiological Properties of the hiPSC-CMs
The baseline behavior of hiPSC-CMs is in line with our pre-
vious studies [41, 43]. Results obtained from this study clearly
show that the cFPDs, corrected with either Bazett’s or
Fridericia’s formulae, are more prolonged in LQT-CMs than
in healthy WT-CMs. We also investigated the healthy and
LQT-specific hiPSC-CMs under the effect of β-blocker
bisoprolol and pharmacological compounds affecting specifi-
cally to cardiac ion channel IKs. Overall, the drug effects in
LQT-CMs appeared to be of similar magnitude to those of
WT-CMs, similar to our previous findings [43].

The Effect of Bisoprolol to the Fractal Complexity of
hiPSC-CMs The β-blockers are the standard and currently,
the only treatment of choice for LQTS patients [56]. Here, in
order for valid comparisons between cellular and whole heart
data, we chose to study bisoprolol in hiPSC-CMs because the
LQTS patients volunteered for this study were on bisoprolol
medication. Bisoprolol, a β1-adrenoreceptor selective β-
blocker, did not have physiological significance to the field
potential parameters (>10 % cFPD prolongation) in any of the
hiPSC-CMs at clinically relevant concentration. It is important
to notice that we did not activate β-receptors with β-agonists
prior to β-blocker application. However, the acute application
of bisoprolol increased the α scaling exponent toward
Brownian motion (α = 1.5) in all hiPSC-CMs at the upper
limit of therapeutic concentration (260 nM). At 520 nM, the
effect was attenuated. Although the baseline α data from
hiPSC-LQT-CMs correlated with the ECG data (α ~ 1.0),
bisoprolol α data did not correlate with the ECG data. The
discrepancy between cellular and heart α data remains yet
unclear but it may be attributed to e.g. acute application of

the bisoprolol or in the absence of autonomous nervous sys-
tem in hiPSC-LQT-CMs, whichmay affect to fractal complex-
ity upon drug application. Previous human study has shown
that the fractal complexity (α ~ 1.0) was unaltered in patients
with congenital LQTS treated or untreated with β-blockers
[55]. Thus, the β-blockers may not have significant effect on
the α of the whole LQTS hearts. On the other hand, there is
evidence from the human studies that the β-blocker treatment
improves fractal dynamics of the heart in advanced congestive
heart failure patients by increasing the α scaling exponent
during 1–3-month therapy period [21–23]. It is completely
unknown whether such differences result from the different
disease states, the type of β-blocker used or treatment periods
among other things. However, this study clearly shows that
although the field potential parameters were not significantly
changed, the intrinsic mechanisms contributing to fractal-like
complexity were altered during acute β-blocker treatment. On
the other hand, further studies would be needed to answer
what the effect would be in long-term (chronic) situation and
what the mechanism behind of this phenomenon is.

The significance of the fractal complexity resembling
Brownian motion in the heart is unclear. The loss of fractality
toward white noise (α = 0.5) has been found to predispose to
severe life-threatening arrhythmias and cardiac death [9, 10,
13]. However, very little is known when the fractal dynamics
of the heart become more correlated resembling Brownian
motion (α = 1.5). Such phenomenon has been observed in
healthy elderly subjects implying decrease of fractal complex-
ity with age [6, 14, 15] and, although not yet proven, it has
been suggested that such systemwould be more susceptible to
injury and illness in the elderly [6, 16].

The Effect of IKs Affecting Pharmacological Compounds
to the Fractal Complexity of hiPSC-CMs Next, we investi-
gated the effects of the other two pharmacological compounds
(ML277 and JNJ303) to hiPSC-CMs. The ion channel activa-
tor ML277 has been shown to augment specifically IKs current
and shorten the action potential duration in both healthy and
LQT-CMs [46, 47]. Similarly, in this study, the ML277 short-
ened the cFPD although the effect was relatively mild in these
hiPSC-CM clusters at 1-2 μMconcentration. Similarly, as was
seen with bisoprolol, also ML277 resulted in the dysfunction
of regulatory mechanisms contributing to fractal complexity
as the α scaling exponent was increased toward Brownian
motion in all hiPSC-CMs at 1 μM. However, at 2 μM a small
difference was seen that in the WT-CMs α exponent de-
creased to baseline level whereas the LQT-CMs α exponents
continued to increase from 1 μM, which was most prominent-
ly seen in CMs derived from symptomatic patient (208.LQT1
and 00,211.LQT1). Furthermore, the effect of JNJ303, a po-
tent and specific IKs blocker [57] known to evoke torsades de
pointes, was assessed in hiPSC-CMs. The WT-CMs appeared
to bemore sensitive to JNJ303 than LQT-CMs asmeasured by
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cFPD prolongation. This result is in line with our previous
findings from single WT- and LQT-CMs measured with patch
clamp using the same cell lines [41]. Although not yet proven
in the experimental setting, this indicates that the IKs current is
diminished in the LQT1-CMs harboring G589D missense
mutation compared to healthy WT-CMs. Contradictory to
our expectations, also the JNJ303 resulted in similar alter-
ations of fractal complexity in hiPSC-CMs as ML277 by in-
creasing the α scaling exponent. Taken together, these evi-
dence imply that the modulation of the ion channel generating
IKs current with pharmacological compounds may result in the
dysfunction of the intrinsic mechanisms contributing to fractal
complexity. Indeed, rhythmic ion channel activation and inac-
tivation in pacemaker cells has been thought to contribute to
the ultradian rhythmicity in addition to spontaneous Ca2+-cy-
cling [58]. Previous study has shown that the disruption of
intracellular Ca2+ handling causes alterations in the scaling
exponent α, mostly by decreasing it [27]. Here, we have
shown that at baseline, the rhythmicity of hiPSC-CMs is
sustained as determined by long-range fractal correlations.
Furthermore, the modulation of the ion channel generating
IKs current with specific pharmacological compounds disrupts
CM rhythmicity and fractal complexity.

Potential Limitation of the Study

In this study, only the acute effects of the various compounds
to the fractal-like complexity were assessed in hiPSC-CMs.
Further studies would be needed to show the chronic, long-
term effects of the compounds. Moreover, the mechanisms
behind the alterations in fractal complexity were not studied.
We did not investigate in detail the effect of β-adrenergic
agonist to the long-range fractal correlations of hiPSC-CMs.
Also, with this model we could not take into account the
continuous exposure of sympathetic and parasympathetic
stimuli affecting CMs in vivo. This study does not answer to
what would be the implications of altered fractality toward
Brownian motion in hiPSC-CMs in terms of long-term health,
adaptability and responsiveness to unpredictable stimuli.

Conclusions

In conclusion, the hiPSC-LQT-CMs appear to exhibit fractal-
like complexity at baseline condition suggesting that the intrin-
sic mechanisms of LQT-CMs contributing to the fractal com-
plexity are not altered. Although the effects of various com-
pounds to the field potential parameters were as expected, the
fractal-like complexity of the hiPSC-CMs was significantly al-
tered in healthy as well as LQT-specific CMs. No significant
differences in the α scaling exponent were found betweenWT-
and LQT-CMs. These findings may suggest that the cardiac ion

channel generating IKs current as well as the modulation of β1-
adrenoreceptors by β-blocker bisoprolol may contribute to the
fractal-like complexity of the hiPSC-CMs.
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Abstract

We characterize the complexity of interbeat intervals
(IBIs) and field potential durations (FPDs) of human-
induced plurioptent stem cell-derived cardiomyocytes
(hiPSC-CMs). The complexity is assessed using the mul-
tiscale entropy (MSE) method up to the scale of ten beats.
The MSE profiles of healthy and diseased (long-QT syn-
drome) hiPSC-CMs show important differences, which
demonstrate the usefulness of the method in the character-
ization of the cells and in the analysis of hereditary cardiac
diseases. We show that the intrinsic complexity is possibly
altered by the differentiation methods, as well as the age
and mutations of the cells.

1. Introduction

The complexity of heart rate variability (HRV) has been
well established as an important measure in cardiac health,
as it reflects the heart’s ability to adapt to sudden perturba-
tions. Multiscale entropy (MSE) [1] is one of the measures
assessing the complexity of long-range correlated signals.
In HRV studies, MSE curves often have distinguishable
profiles under different conditions, such as age and car-
diac diseases [2]. QT intervals also exhibit spontaneous
beat-to-beat variability, which is useful in monitoring in-
creased risks of fatal ventricular arrhythmias. Only few
studies have quantified QT variability (QTV) using MSE
[3] and related measures, such as sample entropy [4] and
revised MSE [5]. In essence, QT intervals have a MSE
profile distinctly different from those of RR intervals [3].

To the best of our knowledge, entropy-based measures
have not yet been reported for beat rate dynamics at the
cellular level. In this study, we apply the MSE method to
quantify the complexity of field potential signals, gener-
ated by clusters of human-induced pluripotent stem-cell-
derived cardiomyocytes (hiPSC-CMs). For this purpose,
we extract the interbeat intervals (IBIs) and field potential
durations (FPDs) from the field potential. These quanti-
ties correspond to the RR and QT intervals of the electro-
cardiogram (ECG), respectively. The observed effects of

age and differentiation methods of hiPSC-CMs on the IBI
entropies contribute important information for the charac-
terization of the cell aggregates as an in vitro model of a
heart. We demonstrate the ability of the MSE method to
distinguish the diseased state of the cell aggregates, which
is useful in the study of hereditary cardiac diseases mod-
eled by hiPSC-CMs.

2. Data and Methods

2.1. Electrocardiogram data

Raw ECG recordings were obtained from the MIT-BIH
Normal Sinus Rhythm database of PhysioNet [6]. RR and
QT intervals were extracted using the PhysioNet algorithm
[6] and other software [7, 8]. Low quality signals and ec-
topic beats were discarded. The final set of the ECG data
contains 15 RR and QT interval time series of 24 hours
from healthy individuals of 11 women (age from 20 to 45
years) and 4 men (age from 26 to 45 years).

2.2. Cellular data

Healthy control hiPSCs were derived from skin fibrob-
lasts of a 55-year-old female and a 44-year-old male. The
LQT1-specific hiPSCs were derived from a symptomatic
41-year-old female long QT syndrome (LQTS) patient and
an asymptomatic 28-year-old LQT-mutation carrier, both
carrying G589D missense mutation in KCNQ1 [9,10]. The
study was performed under the volunteers’ informed con-
sent and approved by the Ethical Committee of Pirkanmaa
Hospital District (R08070). The hiPSCs were generated
as described in Ref. [11], and cultured and differentiated
with the small molecule (SM) [12] and the mouse visceral
endoderm-like (END2) cell co-culture method, as previ-
ously described in Ref. [10]. The field potential signals
of hiPSC-CMs were measured with a six-well multielec-
trode array. The signals displaying the highest amplitudes,
low signal-to-noise ratios, and clear repolarization phases
were chosen for the analysis. Two parameters that were ex-
tracted were IBIs and FPDs; an IBI is defined as the time
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period between two consecutive depolarization peaks. A
FPD is defined as the time period between the depolar-
ization peak and the end of the repolarization peak. The
extracted IBI and FPD time series have a length of 1000-
3000 beats.

2.3. Multiscale entropy analysis

Entropy-based algorithms measure the degree of reg-
ularity to quantify complexity. The multiscale entropy
(MSE) method overcomes the limitations of traditional
entropy-based algorithms by considering nature of com-
plexity at various scales [2]. The complexity at each scale
is quantified by the sample entropy (SampEn) [13], which
is obtained from a set of time series that are coarse-grained
by scale factors τ . The SampEn values are then plotted
over the scale factors to produce a MSE curve. Due to the
finite length of real-world data, it is not feasible to assign
a single complexity value from the MSE curves, but the
curve profiles can be compared between normalized time
series.

In this study, we use the same MSE parameters as in the
previous studies [2, 3], i.e., the epoch length m = 2 and
tolerance level r = 0.15. For hiPSC-CM aggregates we
apply scale factors 1 ≤ τ ≤ 10.

3. Results and Discussion

3.1. ECG vs. cellular level

For healthy adults, our MSE analysis of RR intervals
(from ECG) in Fig. 1(a) is in line with the previous studies.
In particular, the result resembles the MSE profile (both
the shape and magnitude) of healthy young subjects during
sleep [2]. The MSE of the corresponding QT intervals in
Fig. 1(a) is significantly smaller than that of RR for scales
greater than five (p<0.05 by independent t-test). This re-
flects the deterministic components of the QT variability
(QTV), possibly driven by HRV as a major physiological
source of the QTV in the resting condition. A compara-
ble result has been reported in Ref. [3]. The MSE curve
of the QT intervals consists of two different regimes. At
small scales (<5 in particular), the curve resembles that of
the shuffled QT, indicating highly irregular QTV. At larger
scales (>10), on the other hand, the profile of the curve
is very similar to that of RR. The observation suggests
that similar control mechanisms regulating HRV may be
assumed for QTV at large scales.

The MSE analysis of IBIs and FPDs for healthy hiPSC-
CM aggregates is shown in Fig. 1(b). At small scales (<5),
the entropy values of IBI and FPD decrease monotonically,
forming similar profiles as those of the shuffled series. The
white noise-like irregularity may be due to hiPSC-CMs’
immaturity and divergent expression levels of atrial, nodal,

and ventricular cardiomyocytes [14]. Other factors such as
differentiation techniques, age of the cells, and environ-
mental variations may also introduce erratic variability in
their beat rates. For scales larger than five beats, the IBI has
a constant entropy over the scale, which is a characteristic
for the “fractal” 1/f noise. Even though the entropy values
are lower than those of the shuffled IBI, we expect an over-
turn at a larger scale, as long-range correlated IBIs would
retain a constant entropy value, while uncorrelated shuf-
fled series would have monotonically decreasing entropy
over the scale. On the other hand, the MSE curve of FPDs
closely follows that of the shuffled series over the scales
up to ten beats. The result agrees well with our previous
report [15], in which FPDs of hiPSC-CM aggregates were
observed to have scaling exponents comparable to that of
white noise at relatively small scales (<20 beats).

3.2. hiPSC-CMs by age and differentiation

methods

The age and differentiation methods of hiPSC-CMs are
factors that may affect the cell aggregates’ beat rate dy-
namics. Figure 2 shows the MSE curves for IBI and FPD
data, classified by those factors. The difference between
the MSE curves is pronounced for IBIs. In particular,
the IBI entropies of 26-day-old hiPSC-CM aggregates are
significantly larger than the others (p<0.05 for scales >3
beats). The observation suggests that the complexity of the
IBIs is higher for younger hiPSC-CMs, though no statisti-
cally significant difference is found in the entropy values
between 47- and 70-day-old hiPSC-CMs.

Two older hiPSC-CM groups are differentiated with the
END2 method. Both exhibit monotonically decreasing
MSE profiles at short scales, contrary to that of 26-day-old
hiPSC-CMs, which are differentiated with the SM method.
Therefore, the significant difference in the entropy val-
ues may be due to different differentiation methods of the
hiPSC-CMs. More systematic investigation is required to
determine which factor is more responsible in determining
the MSE profile and entropy values.

On the other hand, FPDs show no significant differences
between different groups. The MSE profile follows that of
the shuffled FPD, as already seen in Fig. 1(b). Therefore,
neither age nor differentiation method affects the dynamics
of FPDs in the defined scale.

3.3. Healthy vs. diseased hiPSC-CMs

The MSE is also evaluated for hiPSC-CMs derived from
type-1 long-QT syndrome patients (LQT1-CMs) carrying
the KCNQ1 (G589D) mutation. Figure 3 shows three cell
groups of (i) healthy wild type (WT) and (ii) symptomatic
and (iii) asymptomatic LQT1 cells. Here we use only
the IBIs as they contain more interesting information than
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Figure 1. MSE analysis of (a) RR and QT intervals of ECGs and (b) IBIs and FPDs of hiPSC-CM aggregates. MSE
analysis of shuffled, i.e., uncorrelated, times series (dashed lines) are included as references.
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Figure 2. MSE curves of (a) IBI and (b) FPD, classified by their cell lines, differentiation methods, and age of the cells.
The MSE curve of shuffled data is added in each plot as a reference. The averages of the curves are shown in Fig. 1 (b).

FPDs in the defined scale regime of fewer than ten beats.
The hiPSC-CMs of all three groups are differentiated with
the END2 method and have comparable ages ranging 30-
45 days. Similar to the MSE profiles of 47- and 70-day-old
hiPSC-CMs in Fig. 2 (a), all three curves in Fig. 3 share a
common feature of monotonically decreasing entropy val-
ues over small scales (<5).

For scales larger than five beats, the entropy of symp-
tomatic LQT1-CMs continues to decrease, while those of
healthy and asymptomatic LQT1-CMs reach constant val-
ues. Thus, the beat rate dynamics of symptomatic LQT1-
CMs seems to be less complex than that of healthy or
asymptomatic LQT1-CMs at scales 5 . . . 10 beats. How-
ever, the MSE of symptomatic LQT1-CMs still contains
a structure that persists over the scale, as it is clearly dif-
ferent from that of uncorrelated noise, represented by the

shuffled series (dashed line in Fig. 3). The result indi-
cates that the intrinsic complexity of the hiPSC-CMs can
be altered by a diseased state of hiPSC-CMs. It is also
in line with our previous study [16], which showed that
symptomatic LQT1-CMs exhibit reduced short-term scal-
ing exponents, while healthy and asymptomatic LQT1-
CMs have scaling exponents close to 1/f noise throughout
the scale.

4. Conclusion

We have characterized the complexity of beat rates and
beat durations of hiPSC-CM aggregates using the MSE
method. While RR-equivalent IBIs exhibit scale-invariant
entropy values, especially for large scales greater than
five consecutive beats, the MSE profiles of QT-equivalent

Page 3

Authorized licensed use limited to: Tampere University. Downloaded on September 27,2022 at 09:38:56 UTC from IEEE Xplore.  Restrictions apply.



0 2 4 6 8 10

Scale factor

0.8

1.0

1.2

S
am

p
E
n

IBI

Shuffled (offset)

Healthy hiPSC-CMs

Symptomatic LQT1-CMs

Asymptomatic LQT1-CMs

Figure 3. MSE analysis of IBIs of healthy, symptomatic
and asymptomatic LQT1-CMs. All hiPSC-CMs are differ-
entiated with the END2 method and aged 30-45 days. The
reference MSE of shuffled data (dashed line) is offset to
the overlap with other curves for easier comparison.

FPDs follow those of uncorrelated noise. This reflects the
irregular nature of FPDs at small scales (<10 beats). We
suggest that the age and differentiation method of hiPSC-
CMs possibly affect the entropy values and profile of IBIs
at short scales, though these factors do not affect the FPD
results. The MSE analysis of healthy and LQT1 cells also
shows that the diseased state of hiPSC-CMs leads to re-
duced complexity at short scales. The result suggests that
the usefulness of the MSE method in studying other hered-
itary cardiac diseases that can be modeled by hiPSC-CMs.
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Scaling and correlation properties 
of RR and QT intervals at the 
cellular level
Jiyeong Kim , Disheet Shah , Ilya Potapov , Joonas Latukka , Katriina Aalto-Setälä  & 
Esa Räsänen

We study complex scaling properties of RR and QT intervals of electrocardiograms (ECGs) with their 

of spontaneously beating human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) 

in the short- and long-term scaling exponents α  and α  of RR and QT intervals and their cellular 

increasing scaling exponent of QT intervals as a function of the time scale, is an intrinsic feature at the 
cellular level.

In the last few decades, it has been shown that a healthy heart commonly exhibits fractal scaling (long-range 
correlations) in heart rate variability, i.e., variations in beat-to-beat RR intervals in electrocardiograms (ECGs)1. 
Alterations in the scaling properties have been observed in the case of cardiac diseases, such as congestive heart 
failure2,3, myocardial infarction4,5, atrial fibrillation6, and dilated cardiomyopathy7. QT intervals also exhibit 
spontaneous beat-to-beat fluctuations8 and QT variability has been an important measure in cardiac safety and 
drug development, because prolongation of QT intervals increases the risk of ventricular arrhythmias, such as 
Torsade de Pointes9,10, and repolarisation lability11. On the other hand, relatively few studies have characterised 
the long-range scaling properties of QT intervals under different physical conditions12–14.

Less is known about the beat-to-beat scaling properties at the cellular level. With the rise of human-induced 
pluripotent stem cell (hiPSC) technology15, it is now possible to study the complex non-linear properties at the 
cellular level. Spontaneous contraction of hiPSC-derived cardiomyocyte (hiPSC-CM) aggregates produces a field 
potential comparable to an ECG waveform. In particular, peak-to-peak intervals in the field potential denoted 
here as interbeat intervals (IBIs) correspond to RR intervals, and field potential durations (FPDs) are equivalent 
to QT intervals16–20.

Recently intrinsic power-law behaviour of IBIs of the isolated clusters of cardiomyocytes (CMs) has been 
characterised with one or two scaling exponents over predefined scale ranges21–23. In this study, we assess complex 
variabilities of IBI as well as FPD times series more in depth. To the best of our knowledge, scaling properties 
of FPDs of isolated CMs have never been investigated. Complex variabilities of RR and QT intervals of in vivo 
heart are also evaluated. Understanding the complex dynamics of IBIs and FPDs in comparison to the RR and 
QT variabilities is important in establishing hiPSC-CM aggregates as an ideal in vitro model of the human heart. 
Moreover, these studies provide new insights into the intrinsic QT-RR dynamics in the absence of the autonomic 
nervous system.

Methods
ECG recordings. Raw ECG recordings are obtained from the MIT-BIH Normal Sinus Rhythm database of 
PhysioNet24. RR and QT intervals are extracted using the PhysioNet algorithm24 and other software25–27. Low 
quality signals and ectopic beats have been discarded (see Preprocessing). The final set of ECG data contain 18 RR 
and QT interval time series of 24 hours from healthy individuals of 13 women (age from 20 to 50 years) and 5 men 
(age from 26 to 45 years). The average length of RR and QT intervals is around 9800 beats.
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Oral and written information of the study has been provided and a 
signed informed consent has been obtained from the participants. The study has been approved by the ethics 
committee of Pirkanmaa Hospital District to establish, culture, and differentiate the hiPSC lines (R08070). All 
experiments were carried out in accordance with following all relevant rules and regulations set by Tampere 
University. Healthy control hiPSCs were derived from skin fibroblasts of a 55-year-old female and a 44-year-old 
male (hiPSC lines UTA.04602.WT, UTA.04511.WT). Both subjects showed no detectable cardiac diseases when 
the skin biopsy was taken. The hiPSCs were generated and characterised as described by Takahashi et al.28. The 
hiPSCs were cultured and differentiated as previously described29. All the hiPSCs were genotyped to ensure 
that no major cardiac genetic disease mutations were present. A normality test on Graphpad Prism 8 software 
(GraphPad Software, Inc., USA) was conducted on the beating frequency and field potential duration of each 
sample to ensure the normally distributed population.

Multi-electrode array (MEA) measurements. Spontaneously beating cardiomyocyte (CM) aggregates 
(day 30–70) were manually dissected and plated on 1% gelatin-coated 6-well MEAs (Multichannel Systems, 
Reutlingen, Germany). Field potential signals were recorded from the CM aggregates under serum-free EB 
medium (knock-out DMEM, non-essential amino acids, GlutaMAX and penicilin/streptomycin) at 36 ± 1 °C at 
10 kHz sampling frequency using MEA 1060-Inv-BC and MC_Rack software (Multichannel Systems, Reutlingen, 
Germany). The field potentials were continuously recorded for 30 minutes at the baseline. The data obtained from 
MEA were analysed using a custom-made analysis module in Origin2018 software (OriginLab Corporation, 
USA). The signals displaying the highest amplitudes, low signal-to-noise ratios, and clear repolarisation phases 
were chosen for the analysis.

Two parameters that were extracted were IBIs and FPDs. An IBI is defined as the time period between two 
consecutive depolarisation peaks. A FPD is defined as the time period measured from the first upstroke of the 
depolarisation wave to the baseline of the repolarisation wave. FPDs have been shown to correlate with APD90 
from action potential measurements16,20. Both IBIs and FPDs were extracted using a custom-developed analysis 
module in Origin 2017 (MicroCal Origin™, USA), in which each upstroke of the depolarisation wave is detected 
as the start of a field potential, and the end of the field potential is calculated semi-automatically by detecting 
where the repolarisation decay phase intersects with the 0 μV line abscissa. The lengths of IBI and FPD time series 
range from 900 to 3000 beats with the average length around 1600 beats. The IBI and FPD data-sets are available 
from the corresponding author on reasonable request.

Preprocessing. Each time series was filtered before analysis in order to discard any artificial noises and 
ectopic beats. All the RR and QT intervals or their cellular equivalences below 200 and above 3000 ms were sys-
tematically discarded as nonphysical values. Then an appropriate envelope, or lower and upper limit, was selected 
around a global trend, so that the intervals outside the envelope were filtered out. The trend was calculated with 
a 5th order polynomial fit and twice the standard deviation of the time series was used for the envelope size, or 
limits.

A Poincaré plot is a standard method to measure and visualise the temporal correlation of a 
time series at the shortest time scale. For a given time series {xt}t = 1, …, N, each xt is plotted against xt + 1. To char-
acterise the distribution of the data points on the plane, an ellipse fitting technique30 is employed. The standard 
deviation of the data points perpendicular to the line xt = xt + 1, denoted as SD1, represents short-term variabil-
ity of the data31. The standard deviation along the line xt = xt + 1, denoted as SD2, reflects long-term variability, 
implied by the relation:

σ+ =SD1 SD2 2 , (1)2 2 2

where σ is the standard deviation of the time series31. Equation 1 is equivalent to the statement that the sum of 
short-term and long-term variability is the total variability. SD1 and SD2 are computed from the eigenvalues of 
the covariance matrix between xt and xt + 1.

A complementary measure to SD1 and SD2 is the Pearson’s correlation coefficient r, which represents the 
linear correlation between time series xt and xt + 1, defined by

σ σ
= +

+

r
x xcov( , )

,t t

x x

1

t t 1

where cov stands for the covariance and σ is the standard deviation. The Pearson r ranges from −1 to 1, where 
values closer to 1 indicate positive linear correlation, and values closer to −1 indicate negative correlation.

Detrended fluctuation analysis (DFA), originally introduced by Peng et 
al.32, has been established as a reliable method to detect long-range correlation in a non-stationary time series. We 
follow the algorithms as described by Kantelhardt et al.33. The implementation of the algorithm has been validated 
against the PhysioNet DFA software package24; see section 1 of the supplementary information for more details. 
For a time series of length N with observations = …x{ }t t N1, , , the DFA procedure can be summarised in four steps:

 1. The profile of the time series is defined by taking an integrated sum of the series:

∑= − .
=
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 2. The profile is divided into N/s non-overlapping windows of equal length s. In each window, an n-degree 
polynomial approximation ytr representing a local trend is computed by a least-squares fit. For our analysis 
we use the first-order DFA, in which a linear trend is eliminated from each window. When the windows 
does not divide the profile evenly, a reverse ordering of the window is averaged with the original ordering, 
so that the windows cover the whole profile.

 3. The root-mean-square of the average variance of the residuals (y − ytr) over all 2N/s windows defines the 
fluctuation F for window size s.
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The window sizes range from s = 4 to s = N/4.
 4. In presence of power-law scaling, F(s) ~ sα. The scaling exponent α is the slope of F(s) in log-log scale.

The scaling exponent α describes the nature of the correlation present in the data. The white noise with no 
correlation and Brown noise are characterised by α = 0.5 and α = 1.5, respectively. Values 0.5 < α < 1.5 indicate 
long-range correlation, and values α < 0.5 correspond to anti-correlations. The value α = 1 corresponds to 1/f or 
“pink” noise, often referred to as fractal.

More than one scaling exponents may be required to describe different correlations at different scales. It is a 
common practice to define two scaling exponents, α1 and α2, to describe short-range and long-range correlations, 
respectively. It is also possible to calculate the gradient of F(s) as a function of s and define a spectrum α(s), also 
known as continuous α or local α. Here we use the αβ filter34, which is a simplified version of a Kalman filter, 
to recursively estimate a local least-squares fit for tracking the evolution of the gradient of F(s) in log-log scale. 
The α spectrum provides a more complete description of complex correlation properties of a given time series 
than two scaling exponents with predefined scale ranges. Despite possible limitations of the αβ filter, such as 
over-smoothing or under-smoothing of the gradient depending on the choice of its parameters, the method is 
sufficient for our purpose to assess the general scaling patterns of our time series data. The limitations may be 
overcome by advanced filtering techniques using other types of smoother based on Kalman filters35.

Statistical analyses. Normality of the measures obtained from Poincaré analysis and DFA was checked 
with Shapiro-Wilk test. When comparing the measures between ECG and hiPSC-CM data Welch’s t-test was 
employed to determine the statistical differences. If a variable did not meet the normality requirement for t-test, 
non-parametric Wilcoxon rank-sum test was employed. All the measures are presented in min-max, median, 
and interquartile range (Q1–Q3). Distributions of the measures are plotted in section 2 of the supplementary 
information.

Results
Figure 1 shows the representative Poincaré plots of RR and QT 

intervals extracted from ECGs. Most of the RR intervals show a shape of an ellipse, as in Fig. 1(a), but 20% of the 
samples have a fan-like shape, which is spread out towards larger RR intervals, as shown in Fig. 1(b). Results are 
in line with the previous studies showing the Poincaré plots of RR intervals are spread along the line of identity36.

The Poincaré plots of the corresponding QT intervals, also shown in Fig. 1 in the same time scale, have ellipti-
cal shapes along the line of identity, but with less eccentricity and variation, compared to those of the RR intervals. 

Figure 1. Examples of Poincaré plots of RR and QT intervals. A typical Poincaré plot for RR intervals has an 
elongated elliptical shape shown in (a). A few samples of RR interval time series has a fan-shaped plot shown 
in (b). Poincaré plots of QT intervals have smaller and rounder elliptical shapes, compared to those of RR. The 
density of the points is shown with a colour bar.
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The standard quantitative measures to characterise the poincaré plots, averaged over 18 control ECG recordings, 
are listed in Table 1.

Figure 2 and Table 1 show the Poincaré plots and the related measures of IBI and FPD time series of the 
hiPSC-CM aggregates, which correspond to RR and QT interval times series of ECGs. Each Poincaré plot 
Fig. 2(a) is plotted for the IBI time series, measured from a cell aggregate in each well, labelled as A, B, C, D, E, and 
F on a six-well MEA. The Poincaré plots in Fig. 2(b) are plotted for the corresponding FPD time series.

The IBI and FPD values vary considerably among the aggregates. The hiPSC-CM aggregates tend to behave 
more erratically as they contract spontaneously without any inputs from the autonomous nervous system. Their 
beat-to-beat variations are also extremely sensitive to small fluctuations in the environment, e.g., in the temper-
ature, pressure, oxygen levels, and ion concentration. Consequently, the absolute measures of SD1 and SD2 have 
large variances. In order to make the visual comparison of the Poincaré plots among the aggregates easier, we have 
normalised the data by subtracting the mean offset and scaling by the standard deviation, so that each Poincaré 
plot in Fig. 2 is centred at zero and comparable with each other in magnitude. Therefore, instead of computing 
SD1 and SD2 separately, we examine the ratio SD1/SD2 and Pearson’s correlation coefficient r between the differ-
ent groups, which are unaffected by the normalisation. There is a remarkable agreement between RR and IBI in 
SD1/SD2 and r, while a discrepancy exists between QT and FPD. The significantly larger SD1/SD2 (with statistical 
significance p = 0.023) and smaller r (p = 0.015) of the FPD Poincaré plots suggest that the FPD time series have 
significantly larger short-term variability with respect to the long-term variability.

We first quantify two scaling exponents α1 and α2, which represent 
short-range and long-range correlations, respectively. In particular, α1 is calculated in the time scale of less than 
20 beats, α2 in the scale of more than 30 beats. The α1 and α2 values of RR and QT intervals of ECGs and IBIs and 
FPDs of the hiPSC-CM measurements are visualised in Fig. 3. Each corner of the quadrilaterals corresponds to a 
scaling exponent. The mean α values are marked with bold lines and the spread of the values is shown in coloured 
bands. The means and standard deviations of the α1 and α2 values are also listed in Table 2.

Figure 3 allows us to compare the relative magnitudes of the α values from the shapes of the quadrilaterals. On 
the average, the quadrilateral for the hiPSC-CM aggregates resembles that of ECGs. The top sites of the quadri-
laterals connecting the α1 and α2 of RR intervals and IBIs are flat, i.e., α1 ≈ α2 ≈ 1, suggesting that the fractal-like 
scaling property is invariant over the time scale. On the other hand, QT intervals have significantly different α1 
and α2. The mean α2 is close to one, indicating that QT intervals are long-range correlated as the RR intervals, 
while the mean α1 is much closer to 0.5, indicating that the correlation properties resemble those of white noise 
in the short time scale. The scaling behaviour of FPDs is in notable agreement with that of QT intervals, with a 
small discrepancy in α2 (p = 0.09).

In further analysis, we examine the spectra of the scaling exponent α defined over a continuous time scale. 
The estimation of local α using the αβ filter34 produces a smooth spectrum, which depicts the evolution of the 

Measures
ECG, RR (n = 18) hiPSC-CMs, IBI (n = 21)

p-valuemin-max, median, (Q1–Q3) min-max, median, (Q1–Q3)

Mean (ms)
871–1830 703–2383

0.02071092 1400
(1044–1232) (1178–1745)

SD1/SD2 (n.u)
0.15–0.54 0.03–0.98

0.7490.28 0.28
(0.22–0.33) (0.16–0.45)

Pearson’s r (n.u)
0.55–0.96 −0.02–1.00

0.4830.85 0.85
(0.80–0.91) (0.67–0.95)

Measures
ECG, QT (n = 18) hiPSC-CMs, FPD (n = 20)

p-value
min-max, median, (Q1–Q3) min-max, median, (Q1–Q3)

Mean (ms)
377–501 394–1529

<0.001419 902
(406–434) (764–982)

SD1/SD2 (n.u)
0.21–0.83 0.13–0.98

0.0230.45 0.72
(0.35–0.67) 0.53–0.88

Pearson’s r (n.u)
0.19–0.92 −0.15–0.97

0.0150.66 0.32
(0.38–0.78) (0.08–0.56)

Table 1. Standard measures of the Poincaré plots of RR and QT intervals represented by min-max, median, and 
interquartile range (Q1–Q3). The values are obtained over n = 18 ECG samples, and those of IBIs and FPDs of 
the hiPSC-CM aggregates, obtained over n = 21 IBI and n = 20 FPD time series. p-values are computed using 
independent two-sample t-test.
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scaling exponents over the scales from short-range to long-range. The left panel of Fig. 4 shows the characteristic 
scaling patterns of the α spectra of RR and QT intervals. The α spectra of RR intervals approach a constant value 
with increasing scale resulting α1 ≈ α2 ≈ 1. In contrast, the α spectra of QT intervals start at lower values and 
increase with scale, hence α2 > α1. Similar results have been shown in the case study of the heart rate variability 
during pregnancy12.

Overall, Fig. 4 reveals notable similarities in the scaling patterns of ECGs and the hiPSC-CM aggregates. The 
hiPSC-CM aggregates tend to behave more erratically. Consequently, their α spectra are not as precise as those of 
ECGs. However, the scaling patterns observed in ECG, namely, the descending α spectra of RR intervals and the 
increasing α spectra of QT intervals, are clearly present in the spectra of hiPSC-CM aggregates. Unfortunately, the 
field potential measurements of the hiPSC-CM aggregates are limited in length to about 1600 intervals, so that the 
maximum window size in DFA is about 400 (see Methods). Therefore, we are not able to compare the spectra for 
larger scales than what is shown in Fig. 4. This result, however, already shows that the scaling properties in beat 
rates of the hiPSC-CM aggregates are well comparable to those of ECGs.

Discussion
Our quantitative analysis reveals that RR intervals and their in vitro equivalent from hiPSC-CM aggregates (IBIs) 
share a common geometry in Poincaré plots with a positive linear correlation between two consecutive beats. 
Quantitative measures according to the ellipse fitting technique30 show that the ratio of short-term to long-term 
variabilities is consistent between the ECGs and the hiPSC-CM data. Therefore, clusters of hiPSC-CMs exhibit 
beat rate dynamics comparable to a human heart. This has also been confirmed in previous studies21,22. On the 
other hand, there is a significant difference between the hiPSC-CM aggregates and human hearts in variations of 
the field potential durations, i.e., QT intervals and FPDs. The ratio of short-term to long-term variability is larger 
in FPDs. This may be due to the erratic and immature nature of the hiPSC-CMs, causing random fluctuations 

Figure 2. Poincaré plots of (a) IBI and (b) FPD time series extracted from the field potentials of the hiPSC-CM 
aggregates. The cell aggregates are plated on a six-well MEA with each well labelled as A, B, C, D, E, and F. Each 
Poincaré plot is centred at zero and scaled by the standard deviation. The density of the points is shown in 
colour.



6SCIENTIFIC REPORTS |          (2019) 9:3651  | 

www.nature.com/scientificreportswww.nature.com/scientificreports/

between consecutive beats. However, as it did not affect the IBIs in the same way, the reason may be found in the 
non-trivial relationship between QT and RR intervals (see below).

The complexity of the RR and QT variabilities and their equivalences at the cellular level is further examined 
in their longer-range scaling properties. The conventional way to compute short- and long-term scaling expo-
nents α1 and α2 in two predefined scales shows a remarkable agreement between RR intervals and IBIs (Fig. 3 
and Table 2). The results are in line with previous reports3,21,22. Here, more complete descriptions of the scaling 
properties are given by the full spectra of the scaling exponents. The α spectra of RR and QT in Fig. 4 are in good 
agreement with results from previous studies12,34.

The α spectra of IBI and FPD, reported here for the first time, show a notable similarity with the RR and 
QT intervals of the ECG data. The overall resemblance implies that the distinct scaling patterns of RR and QT 
intervals are independent of the autonomous regulation of the nervous system, as it is also present in the isolated 
hiPSC-CM aggregates without any external stimulation. The α spectra of the FPDs stay at low scaling exponents, 
but the increasing trend towards larger scales–similar to that of the QT intervals–is present. The less prominent 
long-range correlation may be due to the different QT-RR relationship at the cellular level.

In a normal heart, QT variability is often described in the context of heart rate variability, because the vari-
ability in RR intervals is the major physiological source of variability in QT intervals8. There is a clear response 
of QT to the acceleration and deceleration of the heart rate37. Moreover, recent studies have shown that there is 

Figure 3. Visualisation of the DFA α1 in the time scale of beats <20 and α2 in the scale of beats >30 for 
ECGs (left panel, N = 18) and hiPSC-CM aggregates (right panel, N = 10), respectively. Each corner of the 
quadrilateral corresponds to an α value. The mean value is marked with bold line, and the statistical significance 
of the difference in the α values are denoted with asterisks with following significance level: *p < 0.05, 
**p < 0.01, and ***p < 0.001.

ECG (n = 18) hiPSC-CMs (n = 10)
p-valuemin-max, median, (Q1–Q3) min-max, median, (Q1–Q3)

RR α1

0.64–1.33
IBI α1

0.83–1.14
0.7300.94 1.03

(0.85–1.17) (0.98–1.11)

RR α2

0.73–1.16
IBI α2

0.69–1.28
0.5160.94 0.93

(0.90–0.99) (0.72–0.99)

QT α1

0.52–1.04
FPD α1

0.52–0.96
0.3620.63 0.60

(0.57–0.70) (0.54–0.66)

QT α2

0.74–1.31
FPD α2

0.59–1.17
0.0901.05 0.91

(0.89–1.15) (0.74–1.03)

Table 2. Min-max, median, and interquartile range (Q1–Q3) of the DFA scaling exponents α1 and α2 for ECGs 
(n = 18) and the hiPSC-CM aggregates (n = 10). Independent two sample t-tests and Wilcoxon rank-sum test 
are performed between α values of ECGs and hiPSC-CM aggregates to obtain p-values. High p-values indicate 
that the values are drawn from a same distribution, hence, similar.
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a non-trivial dynamic relationship in terms of transfer entropy between RR and QT intervals38. The relationship 
is not as clear at the cellular level; FPDs do not necessarily have a positive correlation with IBIs, contrary to the 
well-known QT-RR relationship (See Fig. 5). Therefore, the discrepancies that appear only for FPDs but not IBIs, 
such as lower scaling exponents and relatively large short- to long-term variability ratio of FPDs, depicted by the 
Poincaré plots above, may be due to the less significant influence of IBIs on FPD variability compared to that of 
RR interval changes on QT variability.

The spontaneously beating hiPSC-CMs are relatively immature cells, which better represent a fetal heart 
with an underdeveloped contraction machinery and organised structural filaments, when compared to adult 
cardiomyocytes39. Even though the hiPSC-CMs have an expression of similar panel of ion channels as adult 

Figure 4. Continuous spectra of α of RR and QT intervals (left) and IBIs and FPDs (right) over the log scales. 
Local α s are estimated using the αβ filter34.

Figure 5. Non-trivial relationship between IBI and FPD. Each colour represents an hiPSC-CM aggregate. FPDs 
do not necessarily have a positive correlation with IBIs, which is found in a typical QT-RR relationship, shown 
in the inset.
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cardiomyocytes, they may have divergent expression levels of atrial, nodal, and ventricular cardiomyocytes40. 
The varying expression levels and other factors, such as differentiation techniques, age of the cells, variations in 
temperature and ion concentrations in the recording solutions, and recording protocols may introduce erratic 
variability in the beat rates of hiPSC-CM aggregates. Therefore, the interpretation of the results must be practised 
with caution. However, our results show that the beating dynamics of the hiPSC-CM aggregates resemble those of 
in vivo heart, despite their relative immaturity and the absence of the autonomic neural input.

Even though the hiPSC-CM aggregates were derived from only two subjects, we assume they are independent, 
as there are many factors in culture and differentiation process of the hiPSCs that introduce variations among 
cells, such as passage number, age of the cells, and batch of cultures and differentiation. After the cardiac differen-
tiation, different cell types (nodal, atrial, and ventricular), various sizes and number of beating cells in the culture 
further give rise to variations among the cell aggregates.

A recent study has suggested that in the presence of inter-cellular connections along with electro-mechanical 
interactions, intrinsic clock-like signalling of the pacemaker cells in sinoatrial node tissues, which are similar to 
hiPSC-CM aggregates in vitro, adapts and modifies their beat dynamics, contributing to the overall fractal-like 
behaviour of the heart41. Therefore, our findings support the idea that hiPSC-CM aggregates could be an ideal in 
vitro model of a heart, i.e., a suitable platform (i) to model cardiac diseases, (ii) to screen new treatment options, 
and (iii) to assess cardiac safety of new chemical entities of potential new drug candidates.

Fractality and power-law behaviour of IBIs have been attributed to ion-channel gating and intra-cellular 
mechanisms that are themselves non-linear processes. In an adult CM, variation in intra-cellular Ca2+ is the main 
trigger for excitation-contraction coupling, which generates mechanical contraction. Due to immaturity, the Ca2+ 
transient is slower and smaller in amplitude for hiPSC-CMs42, but is clearly present and closely related to the 
beat rate variability (BRV) of hiPSC-CM aggregates. In particular, the intra-cellular sarcoplasmic reticulum (SR) 
Ca2+ cycling and mitochondrial Ca2+ extrusion, and the crosstalk between SR and mitochondria43 exhibit fractal 
behaviour, hence contribute to the fractal BRV at the cellular level22,44.

Intra-cellular Ca2+ cycling, among other cellular processes, also contributes to the beat-to-beat variation of 
the overall repolarisation, which causes variations in QT intervals at a stationary heart rate8. Therefore, we may 
postulate that the fractal behaviour of the intra-cellular Ca2+ cycling is also accountable for the intrinsic fractal 
scaling of FPDs in hiPSC-CM aggregates. There are also other factors, such as stochastic fluctuations in ion cur-
rents and inter-cellular interactions that cause variations in QT intervals. Similar effects may be present also in 
FPDs, which calls for further systematic investigations.

Other standard HRV time- and frequency-domain measures are available in the section 3 of the supplemen-
tary information.
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