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Abstract—This paper proposes a direct model predictive con- original six-dimensional space into three orthogonal pabss
trol (MPC) scheme'for asymmetric snx-_phase permanent magnet defined asa/3, zy, and o0, [9]. The current in theaf
synchronous machines (PMSMs), which combines control and subspace contributes to the electromagnetic torque direra

modulation in one computation stage. By emulating the switching hile th t qi ise to h ic distorti d
pattern of space vector modulation (SVM), the MPC problem is while thezy component gives rse to harmonic distortions an

formulated as a four-dimensional current control problem where increases the copper losses. Henceatheurrent elimination
the switching sequences and instants are computed and directly is a critical issue for the efficiency improvement in multi-
applied to the inverters. This implicit modulation addresses the phase drive systems. Recently, model predictive contr&
issue of a variable switching frequency and spread harmonic applied to multi-phase electric drives has been a relevant r

spectra of conventional direct MPC methods. Moreover, the h tonic thanks to it dvant MPC feat
effect of the modulation constraints and controller bandwidth S€@rch topic thanks 10 Its numerous advantages. eature

on the system performance is investigated as well. To Verify the excellent transient performance and flexible deSign that ca
effectiveness of the proposed control strategy, experimemtare account for multiple control objectives and explicit caastts

carried out with an asymmetric six-phase PMSM driven by two [10]-[12]. However, the conventional direct MPC methods
three-phase two-level inverters. display high current distortion and torque ripples, whiebuit
Index Terms—Model predictive control, implicit modulator, ~ from the fact that the single optimal voltage in the finite ttoh
multi-phase machines, harmonic elimination, modulation con- set cannot exactly track the voltage reference and minimize
straints. the 2y current [13]. Accordingly, the design of an implicit
modulator to improve the steady-state performance is @alrit
I. INTRODUCTION issue for direct MPC. Aiming to eliminate the harmonic

N recent decades, multi-phase machines have obtair?gﬁtortion’ both the modulation and control problems take

I significant attention due to their potential application iff!tC account thery components by using additional voltage
drive systems. Compared to traditional three-phase mashin’€ctors and current loops [14]. The use of virtual voltage
vectors (VVs) integrated in MPC schemes can effectively

the multi-phase structure features power splitting, loteeque ;
ripple, and better fault tolerance [1]-[4]. Thanks to the adeduce themy current, V\_/here two active voltage vectors are
;synthesized to obtain the nufl; voltage [15]. Moreover,

vantages above, multi-phase machines are considered toPBe , )
suitable for high-power applications such as electric cieki [15] adopted a virtual voltage vector with a zero voltagetoec

and railway traction, electric ships and aircraft proputsiand during one interval, achieving lower torque ripples and adix
wind power generation systems [5]-[7]. In particular, riault SWItChing frequency at low speeds. However, a nylivoltage

three-phase machines are preferred for their compagibiith generated by the open-loop control cannot fully minimize th

standard three-phase power converters, where the asyimméiy CUrTent due to the impedance imbalance, which causes the
six-phase machine is the simplest configuration [8]. Toaghi current imbalance between the two sets of windings. In [16],

a completely decoupled machine model, vector space decdif effect of they current is formulated as a closed-loop
position (VSD) in an asymmetric six-phase system projéwts {direct MP_C proplem to compensate for the imbalanced current
and a pair of virtual vectors and a zero vector are adopted to
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Fig. 1: Scheme of asymmetric six-phase PMSM drive. w= [0 Lq 0 0} ’ (ZC)

wherew, is the rotor electrical angular speed angh; is the

easy to solve in real time. Moreover, a disturbance obsenfpPlitude of the fundamental component of the permanent
is designed to compensate for the parameter mismatchedT@gnet flux. It is important to highlight that from param-

the machine. Finally, the effectiveness of the algorithm ger mismatches and other unmeasurable disturbances can be
experimentally verified, and its (steady-state and dynpmigStimated with a disturbance observer, presented in Seittio
performance is compared with those of field oriented contrb€ Staté matrix” and input matrixG in (1) are given by

(FOC) with carrier based-pulse width modulation (CB-PWM) _R 0 0

and a conventional continuous-control-set MPC (CCS-MPC). Laq ;

The remainder of this article is organized as follows. The F— —We  TT. 0 0 (3a)
mathematical model of the used asymmetric six-phase PMSM 0 0 _LR:y 0 |’

and the voltage vectors of the inverters are briefly intreduc 0 0 0 _ B

in Section Il. The design of the disturbance observer, SVM Lxy

method, and direct MPC problem are presented in Section G = diag{l,l’l’l}’ (3b)
lIl. The subsection focused on the SVM method includes the Laq Laq Lxy Lxy

guidelines for selecting candidate vectors, the assedsafen \,are r. is the stator resistancé,y, L, and L, are the
. . . . S ’ q Xy
modulation constraints and the pattern analysis. Thezatli ;4 ctances of two sets of windings draxis, g-axis, andzy

dual-sector solut.ion for improve.d opFimaIity_ and_ the Who'@ubspaces, respectively [16], [17]. Note that according,
process of the direct MPC algorlthm is provided in thel SaMfe magnetic coupling between the dg- and xy-subsystems and
secﬂpn. Moreove.r, the egperlmental results are Prese'medcross-saturation are neglected. This simplification, hewe
Section 1V to validate efficacy of the proposed direct MPGgeg not adversely affect the system performance as shown in
algorithm. Finally, conclusions are drawn in Section V. Section IV. Nevertheless, for operation where, e.g., stitm
of the magnetic material of the machine is prominent, the

Il. MATHEMATICAL MODEL OF THE SYSTEM full inductance model should be considered to account for al

A. Model of Asymmetric 6-ph PMSMs differential inductances, see, e.g., [18], [19]. Based Braad
Fig. 1 depicts the drive system under study, which consi€®), the discrete-time state-space model is deduced as

of a six-phase asymmetrical PMSM with two isolated neutral . .
points powered by two three-phase 2L-VSls. Due to the com- i(k +1) = Ai(k) + Bu(k) + z + e(k), (4a)
plex inductance model of the two coupling windings, the VSD y(k+1)==z(k+1), (4b)
model is widely used to analyze the effects on system perfor- . .
mance of voltage, current, and flux in each phase. Accorditdhere the matrices are calculated via forward EruTI:ar of theafo
to the VSD theory, the six-demensional space is decomposad- L ~ £'1s: B = GT;, z = wTy, ande = Ji 7 d(9)ds.
into three orthogonal subspaces, namelydite xy, ando; o0,
subspaces, while different harmonics are mapped to differe
subspaces. Among the three subspaces, the fundamental @n§oltage Vectors
harmonic components in thes subspace contribute to the
energy conversion. On the other hand, harmonics inathe
subspace increase the stator copper losses, whilevthe
components are zero due to the symmetrical machine and
two floating star points of the load. Hence, thg, subspace
is omitted in the following modeling derivation. Accordigg

s denotes the sampling interval.

As the machine is powered by two three-phase 2L-VSls,
there exists a total df® = 64 different switching possibilities

pse corresponding voltage components in diieand xy
subspaces are displayed in Fig. 2. It should be mentioned tha
only 48 distinct active voltage vectors and a zero voltaggore

theafs subspace is transformed into the synchronéugame, are mapped due to redgndancy of the switching states. A”
but thexy remains in the stationary frame. Considering th'i—!ne vectors are divided into four groups according to their

model uncertainties, the model of the six-phase PMSM uno@fnp“tUdeS in thex3 subspace, namely large, 'med|u.m, basic,
the dg andzy frames is described as and small vectors. Due to the largest amplitude in the

subspace and the smallest iry, large vectors utilize the
ii = Fi+Gv+w+d, (1) d_c-link voltage to the. greatest degree, while causing sligh
de disturbance in harmonics [17], [20]. Accordingly, the pospd
where i, v, w, andd € R**! are the vectors of stator MPC method will take advantage of this feature and build its
current, voltage, back-electromotive force (EMF), andenr switching strategy by utilizing these large vectors.
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Fig. 3: Demanded (average) stator voltage at low speed/mizhuladex.

constant during one interval. Hence, the augmented statesp
including disturbances can be defined as

&(k+1) = Az(k) + Bo(k) + 2, (5a)
16 Y 56 g(k) = Ci(k), (5b)

oo -l o[

The disturbance estimation consists of the following fivepst

oy
e

[22].
A\ Vﬁ‘ ......... X i) Prediction of state
3 43 #,(k) = Az(k—1)+ Bv(k—1)+2  (6a)
Go (k) = Cap (k). (6b)
i) Estimation of the error covariance matrix
2-1 6-1 P, = APA" + Q, (7)

where@ is the covariance of the process noise.

Fig. 2: Voltage vectors of dual-three-phase inverters. - ) .
iii) Computation of the Kalman filter gain

—1
I1l. DIRECT MODEL PREDICTIVE CONTROL STRATEGY K = PPOT OPPCT + R} ) ®)
WITH IMPLICIT MODULATOR where R is the covariance of the observation noise.
The proposed direct MPC implements the close-loop contréY) State estimatian
of current components in both the? andxy subspaces. Since (k) = 2p(k) + K(g(k) — gp(k)). 9)

the performance is strongly dependent on the drive model, . .

it is important to employ a disturbance observer for modelV) Update of the error covariance matrix

correction to avoid potential instability. Besides, théeston P(k+1) = (I _ KC’) P, (10)
of switching sequences and corresponding modulation con-

straints in direct MPC are discussed in this section. Rintie

objective function and control algorithm are introduceldng B. Four-Large-Vector Modulation

with the implementation of the praposed implicit modulator For thexy current reduction, the conventional four-vectors-

SVM (4V-SVM) is widely employed, where four active vectors
A. Design of Disturbance Observer based on Kalman FiIteFrnOSt are large vect(_)rs) are applied simultaneously torensu
vxy = 0[20], [23]. This open-loop control strategy of com-

The main uncertainties of the model are due to the defectigenents is dependent on the ideal industrial situation kvhic
knowledge of machine parameters and the presence of unn@aitains no impedance imbalance between the two threeephas
sured external disturbances, which causes a continuoas ewindings. In practice, the method based ofy = 0 partly
in the current prediction. Consequently, the correspandimeduces copper losses, however, it cannot fully compensate
trajectory of states may deviate from the references wigh tfor potential current imbalances between the two threes@ha
bias errors [21], which must be eliminated in the close-loopindings due to inevitable asymmetries [24], [25]. Therefo
control for a better tracking performance. As aforemerdihn the principle of four-vector SVM is adopted and refined to
the bias error of current is denoted aswhich is assumed achieve favorable close-loop control of thhg components.
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Fig. 4: The machine current using large vectors. Fig. 5: The machine current using medium vectoFg. 6: The machine current using small vectors.

1) Voltage Vectors Selectiois aforementioned in Section subspace, comparing with that of using medium vectors (i.e.
Il, 48 active voltage vectors in four different groups ard-6, 6-5, 5-4 and 4-1) or small vectors (i.e., 2-5, 5-6, 6-1
available in modulation. However, one challenge is how tand 1-4). However, the medium and small vectors produce
select candidate vectors to conduct the modulation witaahe larger ripples in thery-plane, since they have larger amplitude
PWM interval. The utilization of the so-called large vectorin the xy-plane than the large vectors. The corresponding
set can be found in many previous publications on the contimulation results are shown in Figs. 4 to 6, which verify the
of six-phase PMSM. However, the reason of using the largéorementioned analysis. Moreover, using medium or small
voltage vectors under the whole speed operation is hardly weector sets also results in more switching actions, as shiewn
explained. Accordingly, a detailed discussion on the dewis Fig. 7.

of the used voltage vectors is carried out. ] )
2) Unconstrained 4L-SVM:Since the dual three-phase

It is straightforward that the large voltage vectors shouldrive system can be regarded as a four-dimensional system,
be used when the demanded voltage of the motor is highe four nearest vectors out of the outermost 12 vectors
However, as will be shown in the following example, the largm the o/ subspace will be selected along with the zero
voltage vectors are also preferred when the voltage demaetttors, ergo the name 4-large-SVM (4L-SVM). Considering
of the motor is low. Take Fig. 3 as an example, where wibe significance ofi4g in torque generation, the candidate
let the motor operate &0% of its nominal speed. Thus, thevectors have to guarantee a wide modulation region irthe
demanded voltage of the motor, depicted as the red arrowsimbspace. Fig. 8(a) illustrates the vector selection ambro
Fig. 3, is very low. Under such operation point, using thgéar The modulation region in the,3 subspace is evenly divided
vectors (i.e., 6-4, 4-4, 4-5 and 5-5 in Fig. 3) to synthesidato twelve sectors of 30 electric degrees, where the four
the demanded voltage results in higher ripples in ¢h® nearest large vectors that have four corresponding conmi®ne
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Fig. 7: Six-phase switch positions. are positive and their sum cannot exceégd Different from

the conventional SVM, the voltage referencel, and vy,
. ) ] are both non-null. Since the modulation OLB and vy, are
in the zy subspace are used in each sector. A_ccord_mg to t@@upled, the constraints analysis is necessary. Spetjfiegl;
voltage reference” = [vg; vi; vy; vyl, the sector in which the gtates counterclockwise with a constant angular speed, as
vy IS located is selected. For example, assumifig (blué gefined by the fundamental frequency. On the other hand,
arrow) is inside sector |, the candidate vectors (red afowge rotational direction ob}, is irregular, as this is dictated
are vs—s, V45, va—4, @nd ve_q. In the counter-clockwise py the composition of high-order harmonics. Accordinghg t
direction, the components in the3 and duration of the four ,,qulation region in thery subspace must allow all the

candidate vectors are denoteckasandty, v; andis, vz and  pogsiple voltage referenceg, to ensure the optimal control
t3, v4 andty, respectively. Then, to achieve reference trackings ihe drive.

a set of linear equation is formulated as To further discuss the strategy, it should be pointed out tha

Zle vit; = vl T the solution (11a) cannot be applied to the whole modulation
2{1 vit; = vi T, region in the sector. Given that the modulation region in the
Zfl ot T (11a) 2y subspace is decided by the modulation index in dhie
p=1 Tx T X subspace, it is essential to investigate whether the @intr
4 1t, = v*T . . . . .
i1 Uyt = )T are active in such a narrow modulation region [26]. To verify
] t;>0 (i=0,1,2,3,4) the effectiveness of (11b), a simulation where the deadbeat
subject to Z4 PR . (11b) (DB) control is utilized is carried out to explore whether
=07 s voltage vy, can track their references;,. As shown in

The solution of this set of equations yields the duratiorteec Fig. 9, the results indicate thaty, is located within an
t = [t1;t2;t3;t4; to], Wheretg is the duration of the zero vectorextremely small circle where it is easily tracked under the
and: is the identifier of the active and zero vectors. steady-state (with a small modulation index). However,

3) Constraints of 4L-SVM:Due to lack of modulation as the modulation indexn exceeds a certain value when
constraints in (11a), the calculated switching positiom$ du- a transient occurs, it is impossible fex,, to exactly track
rations cannot be physically implemented under an extryemeJ;y, and thusi,, is uncontrolled. Notably, this does not

high modulation indexmyp = % or Myy = “,”X?‘Q. mean thatv,, is too small to be considered as zero, which

Accordingly, (11b) is added to introduce modulation coris similar to the mentioned virtual vectors. It can be seen
straints, such that the application times of all voltageteec that underm = 0.4977, although the amplitude oby, is




0.078&me 0.0924 where f;,, is the switching frequency anf], is the sampling

S~ frequency.

C. Direct Model Predictive Current Control

.........

As shown in Fig. 10, the proposed direct MPC consists of
two main steps, i.e., the sector selection, and the fornoulat
e and solution of the optimization problem to provide the
A (constrained) application times of the voltage vectorseseh
: steps are described in the sequel of this section.

1) Dual-sectors solution:Firstly, it is necessary to select
the candidate vectors to construct the switching sequahgaes

Vﬂl Vy (V)

-40 -30 -20 -l 0 10 20 30 40

Va VV) ing one sampling interval. To this aim, the DB control saiuti
@ is employed. Specifically, the DB solution that achievezer
. _ ] m=0.4977 current tracking error at the next stépt+ 1 is given by

Vune(k) = B7H[i*(k +1) — Ai(k) — z —e(k)].  (13)

H
—> Vyy

Hence the ideal voltage refereneg,. is calculated without

o]0 RTINS od-
: 5 : considering the modulation constraints. Neverthelesss it
N 5 P R possible that the calculated DB solution violates the cairsts
2 o : 5 when the current reference changes significantly, paatityul
>T i 5 i ‘ in the zy subspace. In fact, considering the constraints, the
N optimal voltage reference,, is possibly located in a different

-100 sector from the solution of (13). Hence, to avoid excluding

the optimal voltage vectors that are required to synthetbige

DB solution, the neighboring sectors of the sector the DB
solution lies within are also considered. In doing so, optity

is secured. According to the above, as a simplified approach,
the dual-sector solution can be adopted that merely corsside
two adjacent sectors during one interval. As described én th
Fig. 9: Modulation constraints in direct MPC with implicit maidtor: (a) top left of Fig. 11, bounded by the angular bisector, the
steady state; (b) transient state. selected sectaV is divided into the forward semi-sector (pink
area) and backward semi-sector (blue area) depending on the

below 0.5V, vy, is generated with an amplitude of 0.8V..rOtaltIon of the voltage vector (back-EMF). #.. is located

. - In the forward semi-sector, sectdfy = N and N, = N — 1
Undoubtedly, these uncontrolled active voltage compaient .
. . . . : are selected. For example,if = 1, then sectors | and XlI are
the zy subspace lead to intensive ripples %f, which can chosen. Correspondingly. sectdf — N and Ny — N + 1
potentially cause instability. Therefore, a detailed stigation ' P gy L= 2= '

. . . . i.e., sector | and Il, are considered wheg,; is within the
on how to implement a wide¥y modulation region is relevant ; ; . .
. o backward semi-sector. Fig. 11 also lists the corresponding
for the dynamic performance, though it is beyond the scopé . . :
of this work ectors of the choices between two semi-sectors in sector |.

4) Pattern analysis:Once the candidate vectors and du,_Another interesting finding is that in the dual-sector solut

ration are obtained, the switching sequeligeand switching the modulation constraints in they subspace of both sectors

instantst are designed to generate the gate signals. The claéﬁigk area in the top right) are involved in MPC as a union,

pattern of 4L-SVM adopts the vectors._o andwv-_- as zero us, the modulation region in they subspace is extended

. . : under the steady state. Therefore the dual-sector soldties
vectors, where the former is located on the sides of the\/laternot onlv effectivelv crop the search space without influence
and the latter at the center. The four active vectors aretgtse y y P P

betweenw,_o andvy_» such that the switching frequency ion the.performance, but also extends the feasible region of
the optimal control.

minimized. In doing so, however, the PWM pattern displays an 2) Obijective function:Given that the manipulated variable

asymmetric seven-segment switching sequence which ampli- . . ) . "
fies the influence ofy harmonics. To avoid this, the implicit Pn 4L-SVM is the duration of switch positions, an additional

modulation strategy proposed in this paper generates a (_rernsformanon matriXTm, given by (14), is necessary to

segment) symmetrical switching pattern with respect to tﬁr? Icul?tettr:je ap':adl\:fca};lr(])n t'mde.lf?ké of tg_et_v oltagz vle_ctor_sttln
midpoint of the modulation cycle, as shown in Fig. 8(b). Thig € selected sectoy. The modilied predictive modet s written

switching strategy, however, comes at a cost of a somew St
increased switching frequency which can be calculated by: (x4 1) = Ai(k) + BTpanToemt(k) + 2z + e(k),  (15)

-20

4 . . .
fow = gfs» (12) whereT,..x is the matrix of the extended Park transformation.
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Algorithm 1 Direct MPC with implicit modulator

Giveni*(k + 1), ¢(k) ande(k)
1: Utilize the DB solution to acquir@,.(k + 1)
2: Select the candidate switching sequentgsi € {1, 2}
3: For each sector: Solve the QP (18).
This yieldst; and J;.
4: Solve the secondary optimization problem (19).
This yieldst* andu*.
Returnt* and u*.

3) Control algorithm: The pseudocode of the control
method is summarized in Algorithm 1. In a pre-processing
stage, the measured currei(k), estimated disturbanae(k),
and the current referencé (k + 1) are computed. Then
the unconstrained referenag,. is calculated from the DB
solution, as the candidate switching sequentgsand U,
are selected. In the third step, for either switching seqgeen
U, (i =1,2), an optimization problem is formulated to find
the durationt. With (17), the optimization problem can be
stated as

minimize ||r(k) + Mt(k)||a
t € R
subject to ¢; >0 (i=0,1,2,3,4)

4
§ t; =1,
=0

which can be solved efficiently by the method proposed in
[27]. The problem (18) is solved twice, once fé&f, and
the other forU,. Each problem yields the corresponding
durationst; and t,, respectively. The last step selects these
combinations of duration and vectors with the minimal value
of the objective function

(18)

minimize J;, ¢ € {1,2}. (19)
The optimal switching sequences and corresponding swichi
instants are designed as described in Section I1I-B. Kinbyl

means of a high-frequency counter, a field programmable gate

C_;iven the new prediction model (15), the. objectivg funct.iogrray (FPGA) applies the switch positions at the appropriat
which accounts for the stator current tracking error is defin switching instants to the inverters.

as

J =ik +1) —i*(k + 1|3, (16)

whereA is a weighting matrix for thelq andxy components.

IV. EXPERIMENT
The proposed direct MPC scheme is implemented on an

Considering the formulation of(k + 1), function (16) can be @symmetric six-phase PMSM supplied by two 2L-VSIs to

described as

J = Ai(k) + z + e(k) — i*(k + 1) + BTpark Tevm t(k) |3 -

I

(17)

examine the steady-state and transient-state perform&hee
experimental setup is shown in Fig. 12. The real-time cdntro
platform is a dSPACE SCALEXIO system composed of a
4 GHz Intel XEON processor and a Xilinx Kintex-7 FPGA.
Two three-phase two-level SEW MDX inverters are used to



can also be observed in the corresponding current spectrum,
see Fig. 13(b). For comparison purposes, a linear controlle
(i.e., FOC) with CB-PWM and common mode injection is
carried out. The parameters of the proportional and integra
(PI) controllers are adjusted according to the modulusnuguti
method. The results under steady state displayed in Fig. 14
are similar to those of the direct MPC scheme. The current
total harmonic distortion (THD) in FOC is slightly worse tha
that of direct MPC, though it achieves betigy control. This

is consistent with the observation of the phase current evher
FOC produces larger distortion at its peaks. A conventional
continuous-control-set MPC (CCS-MPC) method is also im-
plemented for further comparison purposes. More spedifjcal
the objective function is chosen ds= ||i(k+1)—¢*(k+1)||,
where A = diag{1, 1, A\«y, Ay} and Xy, is the weighting
factor of thei,,. Therefore, the QP problem of the CCS-MPC
is formulated as following:

minimize |[i(k +1) —*(k + 1)||3
v ER*

subject to  i(k +1) = Ai(k) + Bv(k) + z +e(k) (20)
2 2 < VdC
Fig. 12: Setup of the electrical drives testbench. A:two Skwerters for vg t o A

G < .
dual three-phase PMSM; B:Danfoss inverter for load indurcthachine (IM); \/3
C:dSPACE SCALEXIO real-time control system; D:InterfaceDgcilloscope; As shown in Fig. 15, the CCS-MPC achieves a very similar

FIM; G:dual-three-phase PMSM. steady-state behavior as the proposed direct MPC scherae. Th
TABLE I: PARAMETERS OF PMSM magnitude of the5*™® and 7*" harmonics are also increased
compared to FOC. As can be observed from Figs. 13(d)

Parameter Symbol  Value and 15(d), these harmonics come mainly from iheplane.
Rated voltage Un 220V This is because we have used weighting factors to give
Rated current In 6A higher tracking priority onigq, and lower priority Oniy,
Rated speed WmN 2000 1/min sincetqq directly relates to the electrical-to-mechanical energy
Rated torque N 10N.m conversion. By doing so, the reference tracking iQf is
Number of pole pairs np S compromised. However, the overall THD of the proposed
Nominal permanent flux ~ ¥p, 0.18Wb DMPC is slightly lower than that of FOC.
Nominal phase resistance R 0.45Q
Nominal phase inductance Ls 3.5mH B. Transient Performance

Figs. 16 to 18 and Figs. 19 to 21 compare the performance

control the PMSM and a Danfoss inverter is for the Ioa8]c tthe thre? SChemﬁs ?ur":g a tot:quebstep-((jjovrg and step-
induction machine (IM), all of which are powered by a stift!P transient, respectively. AS can be observed, the propose

dc source with a dc-link voltage of 300V. The switchinggirect MPC achieyes the fas_test referenc_:ing tracking irh b.Ot
fequency of the nverter is always kept ds. — 10kkz. 2% TR R SO T o e sioniantyy
The parameters of the PMSM are given in Table I. lower than that of MPC. Besides, the transient behavior of
the proposed direct MPC also outperforms the conventional
A. Steady-State Performance CCS-MPC with PWM. This is because the proposed direct
Figs. 13 shows the steady-state performance of the drivlPC is a direct control scheme, thus it simultaneously sglec
controlled by the proposed direct MPC scheme while trithe optimal switching vector sets and calculates the optima
machine is operating at a fundamental frequelfigy= 50Hz  switching time. By doing so, the switching position is ditgc
and at half of the nominal torque. The six-phase currergontrolled, meaning that the proposed direct MPC strategy c
current components idg and zy frames, current harmonic achieve a faster transient than modulator-based MPC saheme
spectrum, and the used average voltage of each phase at egspecially when overmodulation is considered. It is worth
sampling interval are presented. As can be obserig@nd mentioning that MPC schemes suffer from larger ripplesn
iy accurately track their referenceé, and i, are controlled during the torque reference step changes. This is becau€e MP
within an amplitude of 0.2A, hence the phase currents ar@es to achieve as fast a transient in theframe as possible.
effectively sinusoidal with a fundamental frequen@¥F50Hz.  The exact tracking ta}, is prioritized due to its significant
As can be seen, the graphsigfandi, display an inconsistent contribution to torque generation, and MPC follows thiserul
(non-sinusoidal) oscillation whose frequency is appratily On the other hand, FOC equally considéfg and iy, thus
between thes*® and the7t" multiple of f,. These harmonics resulting in a slower response in the frame. Moreoverj.,
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Fig. 13: Steady-state behavior of the proposed

DMPGC Fig. 14: Steady-state behavior of FOC. Fig. 15: Steady-state behavior of CCS-MPC.

is composed of harmonics which do not participate in torqu& Computational Burden
generation. They only lead to increased harmonic distastio
and thus copper losses. Hence, the controk.gf is more

significant at steady state rather at transient. As shown inyq evaluate the computational burden of the aforementioned
Figs. 16(b) and 19(b), although MPC schemes suffer froffree control schemes, the maximum and average turnaround
a large, but transient, ripple i, when there is a Step-Uptimes in dSPACE are summarized in Table II. As shown, the
change in the referenag, the effects of these ripples on theygposed DMPC needs the longest time since it solves two
six-phase currents are very small. Considering such a shgfbs within each sampling interval. But thanks to the efficien
period of time, this ripple essentially does not affect thper  op solver, the max turnaround time is kept considerably low,

losses. And as mentioned above, this ripple in theplane o 41 5 s, which makes the real-time implementatiorhef t
does not affect the electromagnetic torque. proposed DMPC feasible.
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Fig. 16: Transient behavior of the proposed DMPC Fig. 17: Transient behavior of FOC at a torqbi. 18: Transient behavior of CCS-MPC at a

at a torque reference step down.

TABLE II: The maximum and average turnaround time of the threeutised

control algorithms running on dSPACE.

reference step down. torque reference step down.

the optimal voltage vectors are applied at the correspondin

switching instants by emulating an SVM pattern. Finally, to

DMPC | FOC | CCS-MPC keep the computational complexity modest, instead of con-
Ma’;;‘;"('a;’“”d 415 | 112 | 307 sidering all the possible sectors and corresponding simitch
a sequences in the optimization process, the DB solution is
Average turnaround % . . .
time (us) 35.7 | 10.7 23.7 utilized to limit the set of candidate solutions. The pre-

V. CONCLUSION

This paper proposed an direct MPC scheme with an impli
modulator that minimizes the stator current error and COPPG
losses. To avoid potential performance degradation due

sented results demonstrated the effectiveness of the gedpo
method. Specifically, direct MPC achieves better steadiest
erformance with lower harmonic distortions (and thus &spp
5sses) as compared with conventional FOC and CCS-MPC.
oreover, the dynamic behavior of the proposed method is
perior thanks to its direct control principle.

parameter mismatches, model uncertainties, etc., a biistae

observer based on a Kalman filter is implemented. Moreover,
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