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Abstract—In this work, we address the problem of audio
classification operating on signals recorded with various mobile
devices in challenging environments. We propose a method for
device, room and noise robust pronunciation error detection. It
involves a data augmentation pipeline of convolution operations
with room impulse responses and mobile device microphone
impulse responses, and addition of background noise. A dataset
of impulse responses of a diverse set of mobile devices, rooms and
noises is collected. The method is evaluated in a pronunciation
error detection task. The data consists of Finnish people uttering
various English words accompanied by expert annotations of
pronunciation errors. Classification accuracy is shown to improve
by up to 12.9 percentage points as the amount of generated
training data is increased. Given the large diverse set of collected
impulse responses, we demonstrate that robustness is achieved
consistently for new rooms and devices, excluded from the training
set.

Index Terms—data augmentation, robust classification, additive
noise, impulse response, pronunciation error detection.

I . I N T R O D U C T I O N

The quick development of machine learning methods has lead
to an increasing need of large amounts of data. While collecting
large datasets is a tedious and time-consuming task, the quality
of data also has a great impact on the performance of a model.
Obtaining real-life data is essential, when machine learning
is being integrated with a growing rate into smartphones and
other mobile devices.

The ability of a machine learning model to cope with
noise and distortions, i.e. robustness, can be improved with a
number of methods, one of which is data augmentation. In data
augmentation, additional training data is created by altering the
existing data for example by adding noise or by applying filters
to it. A model trained with the augmented dataset is expected
to be less susceptible to distortions and therefore more robust
because the model learns to ignore unimportant variations.

The surrounding environment distorts an acoustic signal
in a number of ways. These distortions can be divided into
additive and convolutional noises [1]. The model is formulated
as y(m) = x(m) ∗ h(m) + n(m), where y(m) is the distorted
signal, x(m) is the clean signal, h(m) is the convolutional
noise or linear channel, n(m) is the additive noise, m is the
discrete time index and ∗ denotes convolution. Typically, the
linear channel can be modelled with a room impulse response
(RIR) and the additive noise with acoustic scene recordings.

Besides environmental distortions, a recording device can
also distort a signal during its capture. All microphones have
their own non-ideal frequency responses and the capture process
may cause also introduce other kinds of distortions such as
clipping, aliasing, and data loss [2, Chapter 3].

Several audio data augmentation techniques have been
presented in the literature. The use of additive acoustic
scene recordings had a positive impact on the accuracy of
an environmental sound classifier in [3]. However, additive
acoustic scenes did not improve significantly the performance
of a musical instrument recognizer in [4]. Background noise
consisting of different types of music, technical noises and
non-technical noises from the MUSAN Noise dataset [5] was
used in [6] to augment speech data. When tested against clean
test data, additive noise lowered the character error rate only
marginally, but the baseline was outperformed when evaluating
with noisy data. In [7], even a small amount of additive Gaussian
noise only increased the classification error in a singing voice
detection task. Gaussian noise has not been lately used as much
in augmentation of audio data as acoustic scenes, but it has
been shown [8] to improve the generalization performance of
other regression and classification problems.

RIRs were beneficial for a speech recognition task in
reverberant environments [9]. When tested against reverberant
test data, the word error rate (WER) decreased from 59.7 % to
41.9 % by convolving the training data with RIRs, while with
non-reverberant test data the WER increased from 19.1 % to
26.2 % instead.

In [10] real room impulse responses yielded better results
than simulated room impulse responses on a speech recognition
task with several evaluation sets consisting of reverberated
speech. When adding point-source noise to the augmentation
routine, the performance gap between simulated and real impulse
responses vanished. Combining clean and augmented data in
the training set was noted to be more useful than using only
augmented data.

Using simulated room impulse responses created from very
basic room information improved the performance in speaker
identification and mood detection tasks [11]. The evaluation
data was collected in real reverberant environments and the
system performed within 5%-10% of a non-reverberant baseline.

An impulse response of a smartphone microphone together
with a RIR were used for convolutions in a musical instrument



recognition task [12]. For majority of the instruments in the
task, the two-step convolution improved the performance of the
recognizer over a nonaugmented baseline. However, robustness
against new devices or rooms was not tested.

Other augmentation methods were successfully used in audio
analysis tasks. Pitch shifting was shown helpful in a singing
voice detection [7] and sound event classification [3]. Vocal tract
length perturbation (VTLP) improved phoneme error rate in a
speech recognition task by at least 0.5 %-points [13]. Dynamic
range compression (DRC) was found [3] to be the most helpful
technique in classification of gunshots, and was most harmful for
classifying noise-like air conditioner sounds. In [7], the effect
of dropout, loudness, random frequency filtering, and mixing
were studied, showing that only random frequency filtering
improved the performance of the detection system. Blocks
mixing was also used in [14] to augment data for sound event
detection, showing considerable performance improvement
in car and stadium contexts. Speed perturbation was used
in [15] with VTLP and time stretching in training a speech
recognition system. Speed perturbation was found to lower the
WER more than the other tested techniques.Stochastic feature
mapping (SFM) was implemented in [16] to improve speech
recognition of small languages with limited data. A GSM
codec was used in [17] to emulate phone line channel effects
on clean speech data with added background noise for the
task of whispering detection. In multiple-width frequency-delta
(MWFD) [18], delta features are extracted from spectrograms
with varying widths to create additional data samples. MWFD
with a convolutional neural network beat the compared baselines
in nearly all acoustic scenes.

To our best knowledge, studies on robustness against
distortions produced both by the capture devices and the
environment have so far been performed without consideration
of the diversity of the devices. In this paper, we propose
a data augmentation pipeline to improve room, device and
noise robustness of a pronunciation error detector. The method
consists of convolution operations with room and device impulse
responses as well as addition of background noise. We propose
that given sufficient number of diverse devices and rooms in
the dataset of impulse responses, robustness can be achieved
towards new, unseen devices and rooms. The procedure of the
impulse response collection and the augmentation pipeline are
outlined in Section II, followed by evaluation in Section III,
with conclusions drawn in Section IV.

I I . M E T H O D O L O G Y

Making a machine learning model robust to environmental
distortions and recording device effects requires a large dataset
recorded with several devices in varying locations. To reduce
the effort of collecting such a dataset, the distortions can be
applied on clean data by convolution and summation, if the
distortions are assumed to be linear and time-invariant.

The proposed method consists of simulating the process of
recording a sound with a mobile device in varying locations.
The process (Fig. 1) is split into three steps: convolution with

a room IR, background noise addition, and convolution with a
device IR.

Room IR 
convolution

Background
noise addition

Device IR
convolution

Input
audio

Augmented
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Fig. 1. Flow diagram of the proposed augmentation process.

Every time convolution or noise addition is performed, the IR
sample or the background noise recording is selected randomly.
To accommodate for the difference in duration of the payload
signal and the background noise, the segment with the desired
length is also randomly selected from the background noise
recording. The magnitude of additive noise is controlled by
and scaled according to a signal-to-noise ratio (SNR) drawn
randomly from a set of predefined SNRs. The SNR of clean
signals to the background noise segment are computed in terms
of root mean square of the waveforms. Due to the importance of
training on non-augmented data too [10], we use a probabilistic
threshold to decide whether each of the operations is to be
performed for each speech sample. For each operation, a random
number between 0 and 1 is drawn from a uniform distribution,
and the operation is applied if the number is within the interval
[0, 0.3].

To allow for generalisation to new rooms and devices, an
IR dataset of sufficient diversity needs to be collected. The
following sections outline the procedure.

A. Room measurements

The RIRs were measured with the Farina method [19] using
a sweep length of 10 seconds and a frequency range from
80 Hz to 20 kHz. The following equipment was used: an
Earthworks Audio M30 measurement microphone, a Genelec
G Two loudspeaker, and a Focusrite Scarlett 18i20 1st gen
audio interface.

RIRs were measured in five locations at Tampere University:
small office, medium-size meeting room, medium-size lounge,
large lecture hall, and a very large underground bomb shelter.
The locations were selected to cover sufficient variation in
their acoustical characteristics. The reverberation times were
estimated to be from hundreds of milliseconds in the smaller
rooms and medium rooms to several seconds in the bomb
shelter. In each room, IRs were measured from five positions:
one in each corner and one in the middle of the room. In the
corner measurements, the microphone was in the corner facing
the center of the room. The speaker was set to a distance of 100
cm towards the center facing the microphone. In the middle of
the room the same distance was used. In each position, three
measurements were made by changing the direction of the
speaker between -15°, 0°, and 15° in the horisontal plane. A
total of 78 RIRs were collected.

B. Mobile device measurements

The mobile device IRs were measured using the similar
method and sweep settings as with the rooms. The capture
was performed by passing the microphone signal of the mobile



devices through their output jacks, ensuring that no additional
processing or compression was performed on the device. The
signal repeated through the output jack was recorded externally
to measure the impulse responses. The measurements were
carried out in an anechoic chamber to minimize the contribution
of the room. The equipment was the following: Genelec 1029A
loudspeaker and a Focusrite Scarlett 2i2 2nd gen audio interface.

Eleven devices were used to measure IRs: Huawei Mate
10 lite, iPhone SE, iPhone 6S+, iPhone 8, LG G4, Motorola
Moto C, Motorola Moto G (3rd gen), Samsung Galaxy J5, iPad
Pro 12.9”, iPhone 8 headset, and Huawei Mate 10 lite headset.
IRs were mainly measured from eight positions with some
exceptions with the headsets and the iPad. First, the loudspeaker
was positioned in the corner of the anechoic chamber. A person
standing behind the loudspeaker as if the speaker were their
head held the phone in front of the speaker at a 30 cm distance
first on chest level and then on mouth level. On both levels, the
phone was held horizontally, with a 45° incline and vertically
to measure a total of six impulse responses. Additionally, two
measurements were performed with a person sitting at a table:
first holding the phone in hand, and then having the phone
lying on the table. The use of the person and the table in the
measurements was motivated by the realistic reflections caused
by them. Five people assisted in holding the phones to account
for the diversity of reflections. Since most of the smartphones
have multiple microphones, separate measurements were made
with the same settings for each microphone. In total, 148 device
IRs were collected.

C. Background noises

An ambient noise dataset was crowdsourced with mobile
devices to be used in evaluation of the system. It consists of
715 five-second-long clips that were recorded by 80 unique
subjects in uncontrolled locations using 41 unique smartphone
models (12 iOS and 29 Android). The recorded clips contain
mostly ambient noise and noises coming from handling the
device, with occasional babble and music-type of noises present
as well.

I I I . E VA L U AT I O N

We evaluate the proposed method on a task of pronunciation
error detection. Given an utterance of an English word made
by a native Finnish speaker, the classifier is to detect whether a
certain typical pronunciation error is present. In the following
sections, we outline briefly the speech dataset and the classifier
architecture. More details are found in the previous work [20].

A. Data

The dataset consists of recordings of 120 mostly Finnish
subjects pronouncing 80 different English words two or three
times. The words were selected by English teachers to contain
most of the errors Finnish speakers make when speaking British
English. The data was collected in a noise-insulated room with
a reverberation time of 0.26 s and dimensions 4.53 m × 3.96
m × 2.59 m. A Røde NT55 condenser microphone and a
Focusrite Scarlett 2i2 audio interface were used to record the

TABLE I
R O O M E X P E R I M E N T R E S U LT S .

description room accuracy

Aug. train, aug. test Bomb shelter (VL) 0.845
Lecture hall (L) 0.857
Living room (M) 0.847
Meeting room (M) 0.848
Office (S) 0.855

Aug. train, clean test All 0.890
Clean train, clean test All 0.886
Clean train, aug. test All 0.762
Maj. class predictor All 0.737

audio with a 40 cm distance from the speaker and a 44.1 kHz
sampling rate.

Each of the samples was assigned a label indicating whether
the target phoneme in the uttered word is pronounced correctly
or with a specific error. Secondary errors were not taken
into account due to their scarcity. Samples with disagreeing
annotations between the two annotators were discarded to have
a fixed ground truth for all samples. Five words were selected
for evaluation based on the availability of sufficient data of
both erroneous and correct samples: hit, job, join, pull, and
worse. Four different target phonemes appear in the selected
words.

B. Classifier

The classifier architecture consisted of an recurrent neural
network (RNN) with three bidirectional long short-term memory
(BiLSTM) layers with 100 nodes in each and an output layer
with a single node using sigmoid activation. BiLSTM was used
because pronunciation errors may affect both the preceding
and the following parts of the words, and BiLSTM allows
information to flow between past and future frames. Mel-
frequency cepstral coefficients (MFCC) with 128 mel bands
and 20 coefficients were used with standardization and zero
padding to maximum length of samples. A five-run Monte
Carlo cross-validation setup was implemented with 0.6-0.2-0.2
split intro training, validation and test subsets.

C. Experiments

Four experiments were designed to evaluate the proposed
method with a focus on (1) rooms, (2) backgrounds, (3) devices,
and (4) all three steps combined into a pipeline. In addition
to using original test data, the test data was augmented to
simulate noisy test conditions. To facilitate a fair evaluation,
when creating training, validation and test subsets, we ensured
that the information leakage was avoided both for the speech
and augmentation data. Such partitioning was performed in
the following manner. The underlying speech data was split
by speakers. Background noise samples were split based on
the unique user id’s of the people recording them. RIRs were
split based on the recording rooms (experiment 2) and the
measurement points inside the rooms (experiment 4). Device
IRs were split based on the device models. Headsets were
treated as their own categories.



TABLE II
D E V I C E E X P E R I M E N T R E S U LT S .

description device acc.

Aug. train, aug. test Apple headset 0.848
Huawei Mate 10 Lite 0.859
Huawei headset 0.855
LG G4 0.841
Motorola Moto C 0.851
Motorola Moto G 0.854
Samsung Galaxy J5 0.852
iPad Pro 12.9” 0.855
iPhone 6S Plus 0.856
iPhone 8 0.846

Aug. train, clean test All 0.897
Clean train, clean test All 0.886
Clean train, aug. test All 0.745
Maj. class predictor All 0.737

For each speech sample, the IR convolutions were performed
with a 30% probability drawn from a uniform distribution. The
background noise addition operation was performed for each
speech sample with a target SNR value selected randomly and
uniformly from the pre-defined list of SNRs. In the combined
augmentation experiment (4), a measurement point split, id split,
and a device manufacturer split was used for rooms, noises,
and devices, respectively.

In the first experiment, the effect of augmentation by
convolution with RIRs on the classifier performance was studied.
Robustness against unseen rooms was tested in mismatched
conditions: for each test room, the training set was augmented
with the remaining RIRs. The effect of augmenting only the
training data was also evaluated and compared with a case where
only the test data was augmented. As a baseline, the classifier
was trained and tested without augmentation. In addition, a
majority class predictor (zero rule classifier) performance was
measured, since accuracy alone is not a sufficient metric for an
unbalanced problem.

The results are presented in Table I. The letters in the
room column denote the size of the room, from small (S) to
medium (M), large (L), and very large (VL). Matched training
without robustness requirement (the so-called clean train, clean
test case) is among the easiest, as expected. Interestingly,
applying RIRs for increasing the amount of training data without
the robustness requirement (the so-called augmented train,
clean test) yields even better performance than the matched
clean conditions. Finally, with robustness requirements, despite
mismatched conditions, reasonable and consistent performance is
achieved across the test rooms, presumably due to the sufficient
diversity of the RIRs in the training set that allow generalisation
to new rooms.

The second experiment studies the effect of device IRs in
a similar manner. The results are shown in Table II. Similar
behaviour was observed: given the large and diverse set of
device IRs used in training, the model becomes robust to
unseen devices. No particularly challenging test device was
found in the experiments, which suggests good generalisation

TABLE III
A D D I T I V E N O I S E E X P E R I M E N T R E S U LT S .

description acc.

Aug. train, clean test 0.892
Clean train, clean test 0.886
Aug. train, aug. test (mism. SNRs, test less noisy) 0.863
Aug. train, aug. test (matched SNRs) 0.848
Clean train, aug. test 0.758
Majority class predictor 0.737
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Fig. 2. Partitioning of the augmentation data in one of the runs of the combined
experiment.

properties of the method. As with rooms, performing the
proposed augmentation was useful also without the robustness
requirement, for the sake of increasing the diversity of training
data (the augmented train, clean test case).

The third experiment consists of different additive noise
scenarios. The seen/unseen noise test cases from previous
experiments was replaced with matching/mismatching SNRs.
The SNR values were randomly selected from 0, 6, 12, 24
and 96 dBs in all but the mismatched noise test case, where
test SNRs were selected from 12 and 24 dBs. The varying
SNR adds another dimension to the augmentation process. The
results are presented in Table III. Augmenting the training set
with additive noise improves the performance on the original
test set. When augmenting both training and test sets, the
performance expectedly depends on the test set SNR values.

The fourth experiment combines all implemented augmen-
tation techniques into a three-step routine. All the word data
subsets in each run are augmented with non-overlapping and
rotating impulse response and background noise partitions as
illustrated in Fig. 2 for the case of one of the runs. The room,
background noise, and device partitions in test and validation
sets are rotated for each run, while rest of the partitions are used
for training. In the results shown in Table IV, the presented



TABLE IV
AU G M E N TAT I O N C O U N T E X P E R I M E N T R E S U LT S .

augmentation count accuracy
mean std

1 0.759 0.014
5 0.818 0.023
10 0.833 0.009
30 0.878 0.021
50 0.878 0.020
100 0.888 0.009

standard deviations take into account only the variation between
the five runs, which have been averaged across words. The
augmentation count stands for to the number of replications of
the original dataset performed with the proposed augmentation
method. A count of one corresponds to the amount of data being
the same as original. The test data was fixed to an augmentation
count of 100. The classifier was trained with augmentation
counts 1, 5, 10, 30, 50, and 100. A total gain of 12.9 percentage
points was achieved with the augmentation count 100, with
performance starting to saturate at the augmentation count of
30.

I V. C O N C L U S I O N S

A method for augmenting audio signals to have characteristics
of having been recorded with mobile devices in various
environments was presented. The method can improve the
robustness of classification models to convolutional and additive
noises with a focus on mobile device effects. It consists
of convolving audio with a room impulse response, adding
background noise, and convolving the result with a mobile
device microphone impulse response. A system implementing
the method was evaluated with a pronunciation error detector.
The augmentation steps were studied individually and in a
combined three-step augmentation routine.

Augmenting the data improved the performance of the
classifier on both augmented and original data in all tests
scenarios. Consistent robustness towards unseen rooms and
devices was observed. The combined augmentation consistently
improved performance until data was augmented to 30 times the
original amount of data. Further research possibilities include
using data generators to augment data on the fly enabling
unlimited augmentations during training. The proposed method
could also be evaluated with different learning tasks and datasets.
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