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Abstract—Supervised learning methods can solve the given
problem in the presence of a large set of labeled data. However,
the acquisition of a dataset covering all the target classes typically
requires manual labeling which is expensive and time-consuming.
Zero-shot learning models are capable of classifying the unseen
concepts by utilizing their semantic information. The present
study introduces image embeddings as side information on zero-
shot audio classification by using a nonlinear acoustic-semantic
projection. We extract the semantic image representations from
the Open Images dataset and evaluate the performance of
the models on an audio subset of AudioSet using semantic
information in different domains; image, audio, and textual. We
demonstrate that the image embeddings can be used as semantic
information to perform zero-shot audio classification. The ex-
perimental results show that the image and textual embeddings
display similar performance both individually and together. We
additionally calculate the semantic acoustic embeddings from
the test samples to provide an upper limit to the performance.
The results show that the classification performance is highly
sensitive to the semantic relation between test and training
classes and textual and image embeddings can reach up to the
semantic acoustic embeddings when the seen and unseen classes
are semantically similar.

Index Terms—zero-shot learning, audio classification, semantic
embeddings, image embeddings

I. INTRODUCTION

Supervised learning methods have enjoyed widespread
adoption in various fields (e.g., computer vision, audio anal-
ysis). These methods mainly require a large amount of anno-
tated data to robustly learn the concepts in focus. Acquisition
of such dataset typically requires manual labeling which is
expensive and time-consuming. Additionally, these methods
have the capability to learn only the concepts defined in the
development stage of the models. In many practical scenarios,
however, the application should have the ability to learn unseen
concepts, e.g., when it is challenging to collect a sufficient
amount of instances belonging to a target class that is rare or
changes over time.

In order to overcome the aforementioned problems, zero-
shot learning (also referred to as zero-data learning) was
proposed in [1]. Zero-shot models aim to learn the concepts
that have not been introduced during training by exploiting
the semantic information about those classes. Based on the
semantic information, both seen and unseen classes can be
projected into the same representation space that is used to
bridge between different domains. Consequently, the model
acquires the ability to further mimic human cognition by
transferring the knowledge between seen and unseen concepts.

Recently, zero-shot learning has drawn increased attention
in computer vision tasks, e.g., in [2]–[6]. Due to the lack of
labeled instances belonging to the unseen zero-shot classes,
side information about the unseen classes is required. Com-
monly used side information for zero-shot object recognition
is reviewed in [7]. The authors classified the side information
into two sets: semantic attributes and beyond. Semantic at-
tributes refer to the intrinsic characteristics or properties of vi-
sual classes. Semantic information beyond attributes includes
representations that are learned from the textual descriptions
of the classes.

Despite the increasing popularity of zero-shot learning in
computer vision tasks, its applications and consequently the
investigation of semantic embeddings in the audio content
analysis have been fewer in comparison. Zero-shot audio
classification based on class embeddings with a bilinear model
was studied in [8], [9], and the work was extended with
a non-linear model in [10]. The proposed approaches were
based on the compatibility between the audio and the semantic
embeddings of the corresponding concepts where class labels
of the audio samples were used as semantic information
by employing word embedding models in [8] and sentence
embedding models in [9]. Zero-shot audio classification using
image embeddings as semantic information has not been
studied so far.

In this paper, we extend the previous work in [10] by intro-
ducing visual semantic information to the nonlinear acoustic-
semantic projection model. Furthermore, we evaluate the per-
formance of textual and visual embeddings both individually
and together based on the classification accuracy. We compare
our results with the model using acoustic embeddings as
side information. In this work, we focus on the following
questions: i) how does the performance of zero-shot audio
classification change with different semantic spaces, ii) is the
classification performance affected by the semantic relation
between the training and test classes, and iii) if so, how does
the performance change based on the hierarchical order of the
semantically related classes.

The remainder of this paper is organized as follows. First,
Section II introduces the selected zero-shot learning model for
audio classification. Then, Section III describes the dataset and
acoustic and semantic embeddings. Next, Section IV explains
the evaluation setup and reports the experimental results.
Finally, Section V concludes the paper with a discussion.



II. ZERO-SHOT LEARNING FOR AUDIO CLASSIFICATION

In this section, we formalize the zero-shot audio classifica-
tion setting and then describe the selected methodology.

The pipeline of the zero-shot audio classification model is
illustrated in Figure 1. First, audio feature embeddings are
extracted from audio clips using an acoustic embedding model.
Based on the semantic information that is used in zero-shot
learning, semantic embeddings are obtained with an image
embedding model that takes image samples or a language
embedding model that takes textual class labels as input. Next,
the model learns an acoustic-semantic projection by measuring
the compatibility between two spaces during training. In the
test time, the model takes unknown audio samples and applies
the learned acoustic-semantic projection between the acoustic
embedding of the unknown audio recordings and semantic
embeddings of the new sound classes. Finally, a classifier
selects the label whose semantic representation has the highest
compatibility with the unknown audio sample.
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Fig. 1. Zero-shot audio classification using visual semantic information.
Training is represented in solid line and testing in dashed line. Sound classes
bird and ambulance are used during training and cat and boat are used in
testing.

We denote the audio sample space by X , and the semantic
space of the seen and unseen sound classes by Y and Z,
respectively, where Y ∩Z = ∅. Given an audio instance x ∈ X ,
and a sound class y ∈ Y , the main goal of the zero-shot
learning is to learn a classifier f : X −→ Y , that is defined as

f(x) = argmax
y∈Y

F (x, y), (1)

where F is the compatibility function between the represen-
tations of an audio instance and a sound class.

In the present work, we project semantic embeddings onto
acoustic embeddings due to the higher dimensionality of the
semantic embeddings compared with acoustic embeddings. By
doing so, we aim to capture the semantic embeddings in a
lower and more relevant representational space. We define
the compatibility function F as the dot product between the

acoustic embedding θ(x) ∈ Rda of an audio instance x and
the projection of the semantic embedding φ(y) ∈ Rds of a
sound class y as

F (x, y) = H(φ(y))T θ(x), (2)

where H is the acoustic-semantic projection.
We follow the nonlinear acoustic-semantic projection model

proposed for zero-shot audio classification in [10]. In order to
decrease the computational complexity, the model uses factor-
ization of a bilinear model and introduces nonlinear activation
to capture the nonlinear relationship between acoustic and
semantic embeddings. Consequently, we define H as

H(φ(y)) = V T t(UTφ(y)), (3)

where Uds×r and Vr×da are the learned projection matrices
and t is a nonlinear activation function.

The underlying assumption of zero-shot learning is that the
acoustic embedding of an audio instance is expected to be
closer to the semantic embedding of the corresponding class in
the acoustic-semantic space rather than those of other classes.
Under this assumption, in test time, the model aims to assign
an audio sample to an unseen class label that has the highest
compatibility with.

III. AUDIO, VISUAL, AND TEXTUAL EMBEDDINGS

In this section, we describe the dataset and acoustic and
semantic embeddings.

A. Dataset

To our knowledge, there is no joint audio and image dataset
where mutual classes are defined. Therefore, we conducted
our experiments based on separate datasets; the audio dataset,
AudioSet [11] and image dataset, Open Images [12]. AudioSet
is an unbalanced general audio dataset that contains 527
sound classes with over two million audio clips in total.
The samples in AudioSet contain clip-level textual labels
that consist of one or several words and a longer sentence
description for every sound class. In this work, we use only the
class labels rather than the sentence descriptions. Open Images
is a dataset of around nine million images with image-level
labels, object bounding boxes, object segmentation masks, and
visual relationships. It contains a total of 16 M bounding boxes
for 600 object classes on 1.9 M images. In our experiments,
we use the images whose bounding boxes are defined.

In order to semantically exploit every audio instance that
belongs to one class by their visual representations, we de-
fined mutual classes that occur in both AudioSet and Open
Images. Both datasets provide the textual class labels with their
Knowledge Graph Machine IDs (MID) [13] which are unique
identifier codes for each entity in all languages. We define the
mutual classes between AudioSet and Open Images by using
the MID of the classes instead of string matching. Therefore,
we prevent mistakenly capturing homonym word labels as
well as losing information about the mutual classes that are
defined with synonym words. Among 527 sound classes and



600 object classes, there are 79 mutual classes defined with
the same MID in AudioSet and Open Images.

AudioSet Ontology further provides a tree-like hierarchical
structure for individual classes, where each audio sample is
annotated with a more specific description when traversed to
the deeper nodes. Using the hierarchical structure, we defined
the child classes of each class until its deepest node. Among
79 mutual classes, we did not include the classes that have
more than two children in the mutual class set (i.e. the class
labels of Animal, Musical Instrument, Vehicle). In this way,
we prevent the model from attempting to classify an audio
instance either as ”Animal” or ”Cat”. For the classes that have
only one or two child classes in the mutual class set, we only
kept the parent class in the mutual class set (i.e. Bird, Insect,
Car, Aircraft, Tools) as the parent classes provide with more
samples without significantly reducing the number of classes.
We used the remaining 69 classes in our experiments. The
least populated classes have 10 and 4 samples in AudioSet
and Open Images, respectively. In order to provide a more
balanced set, we randomly sampled the over-represented audio
and image classes until each class has at most 300 and 1000
samples, respectively.

B. Acoustic Embeddings

Following [8]–[10], we used a pre-trained VGGish [14] to
obtain acoustic embeddings. First, a 10-second audio clip was
split into ten 1-second audio segments. Next, log mel spectro-
grams with the size of 96x64 were extracted for each segment
and passed into VGGish that produced 128-dimensional audio
embeddings. Then, the clip-level audio embeddings were ob-
tained by averaging the embeddings extracted from the audio
segments within the clip they belong to. It should be noted
that the VGGish should be trained from scratch to reduce the
bias arising from the seen classes used to train the model.

C. Semantic Embeddings

We compare class embeddings from three different domains:
textual, audio, and image embeddings. We utilized pre-trained
Word2Vec [15], ResNet101 [16], and VGGish [14] models
for textual, image, and audio embeddings, respectively. Addi-
tionally, we concatenated the image and textual embeddings
to capture the semantic information from both domains and
denoted them as hybrid embeddings.

Word2Vec is a two-layered fully-connected neural network.
The model learns the word embeddings by either predicting
the current word by looking at its surroundings (bag-of-words)
or the surrounding words from the current word (skip-gram).
The model produces a 300-dimensional vector to represent the
input word. We extracted the word embeddings based on the
textual class labels of the sound classes defined in AudioSet.
For the sound classes that are defined with multiple words, we
averaged the extracted word embeddings.

ResNet101 is a 101-layered convolutional neural network
that is trained on 1.28 million images composed of 1000
classes in the ImageNet database. The model takes images
with the size of 224x224. First, we extracted the objects

that belong to the mutual classes from the defined bounding
boxes and resized them into 224x224. Then, we obtained
a 1000-dimensional vector from the classification layer of
the ResNet101 model for each image instance. We averaged
the image embeddings over the samples within each class
to represent the sound classes. It should be noted that the
ResNet101 model with the current setup achieves an accuracy
of 84% on the supervised image classification task.

By the nature of zero-shot learning, the model aims to
exploit semantic information assuming that there is not enough
labeled data in test time. Therefore, in the task of zero-shot
audio classification, it is not possible to use the audio data
as semantic information. However, in this study, similar to
the visual embeddings, we utilize the acoustic embeddings as
semantic information by averaging the acoustic embeddings
of audio instances that are used in the classification over the
classes. As these semantic audio embeddings are calculated
from the samples of test data, we use semantic audio embed-
dings with the purpose of measuring the known upper limit
of the zero-shot learning performance that can be reached by
using the semantic information provided with the test set itself.

IV. RESULTS AND ANALYSIS

In this section, we first describe the evaluation setup used
to examine the effect of different semantic spaces and next
present the experimental results of the zero-shot learning
model.

A. Evaluation

In our experiments, we evaluate zero-shot audio classifi-
cation based on two different strategies, random-based class
partitions, and category-based class partitions. On random-
based class partition strategy, we randomly split the extracted
dataset into three disjoint subsets for training, validation, and
testing, which all at the end have 23 sound classes and a
similar number of audio samples and image samples. We
ran the experiments five times with different splits. Table I
displays the selected subsets on one trial with random-based
class partitions.

TABLE I
SELECTED SUBSETS FOR ONE TRIAL WITH THE RANDOM-BASED CLASS

PARTITIONS

Subset Class Labels

Training

violin, bus, cat, door, horse, goose, scissors,
ratchet, sheep, alarm clock, goat, tap, snake,
chicken, car, trombone, harp, chainsaw, tool,
frog, cupboard, coin, microwave oven

Validation

camera, ambulance, motorcycle, aircraft, horn, duck,
guitar, drum, cattle, mechanical fan, skateboard, chime,
television, bike, piano, harpsichord, sink, bird,
bathtub, sewing machine, telephone, mouse, drawer

Test

hand, boat, dog, computer keyboard, truck, insect,
flute, train, clock, pig, maracas, banjo, tableware,
printer, trumpet, accordion, saxophone, cello,
harmonica, blender, organ, hair dryer, toothbrush

On category-based class partition strategy, we conduct zero-
shot learning within and across categories with the aim of



investigating whether the hierarchical order of the semantically
related classes affects the behavior of the classifier. We define
a category as a class whose several child classes occur in the
mutual classes, i.e. Animal, Musical Instrument, and Vehicle.
Table II shows the classes that belong to each of the categories.
First, we conducted zero-shot learning within each category
by randomly splitting the classes into training, validation, and
test sets. In each split, the test sets of each category contain
two different classes, and training and validation sets of the
categories include 8, 6, and 4 different classes for Musical
Instrument (MI), Animal (A), and Vehicle (V), respectively.
Second, we evaluated the zero-shot learning across categories
by combining two different categories and randomly splitting
the classes where each subset has the same number of classes
from both categories. When performed across categories, we
included same number of classes from each category in all the
subsets by limiting the number of classes based on the smallest
category, i.e. Vehicle. We randomly selected four classes from
each represented category for training and validation sets in
each trial. In the test set, we combined one random class from
each category. We ran the experiments five times with different
splits for each strategy and category.

TABLE II
CLASS LABELS FOR DIFFERENT CATEGORIES

Category Class Labels

Animal
cat, horse, goose, sheep, goat,
snake, chicken, frog, duck,
cattle, bird, mouse, dog, pig

Musical
Instrument

trombone, harp, guitar, cello, drum,
organ, chime, piano, harpsichord, flute,
maracas, banjo, trumpet, accordion,
saxophone, harmonica, horn, violin

Vehicle skateboard, bus, car, motorcycle, boat,
aircraft, bike, train, truck, ambulance

In all the setups, we implemented (3) with two fully-
connected layers where r equals to ds and t is the tanh
activation function. We trained all the models using a batch
size of 32, and SGD optimizer with the learning rate of 10−2

for 200 epochs.

B. Random-based zero-shot learning

Random-based zero-shot audio classification results are re-
ported in Table III. The table shows the average and standard
deviation of the accuracies with five trials where each trial
has different randomization for class partitioning. In each run,
training, validation, and test sets included 23 different classes.
Overall, each model performs better than the random guess
of 0.04. As the averaged audio embeddings represent the
class-level audio instances that are used during classification,
the model using audio embeddings determined the known
upper limit for the performance. Between image and textual
embeddings, we did not observe a significant advantage of
choosing one over another in the current setup. Moreover, the
model using the hybrid embeddings (image + textual) did not
provide any improvement on the model performance.

TABLE III
ZERO-SHOT AUDIO CLASSIFICATION WITH RANDOM-BASED CLASS

PARTITIONS WHERE RANDOM GUESS IS 0.04

Class
embeddings

Accuracy [0–1]
(mean ± SD)

Audio 0.32 ± 0.02

Image 0.17 ± 0.02
Text 0.15 ± 0.04

Hybrid 0.16 ± 0.04

Additionally, we conducted experiments by randomly se-
lecting audio and image embeddings among each class in
each run to represent the class to which the selected instance
belongs. The accuracy results of using audio and image
embeddings with five runs were 0.16 ± 0.14 and 0.12 ± 0.03,
respectively. Comparing the performance between averaging
the embeddings over classes and randomly selecting, these
results indicate that the averaging eliminates the undesirable
effect of the outliers, and classes can be represented more
accurately by taking advantage of the representational variety.

C. Category-based zero-shot learning

Zero-shot audio classification results within categories are
reported in Table IV. In all cases, the models perform better
than the random guess of 0.50. The average of the accuracy
scores shows that both individual and combined image and
textual embeddings can easily reach up to the performance
of audio embeddings when the seen and unseen concepts
are semantically similar. Yet, the standard deviation of the
accuracy scores indicates that the performance of the model is
sensitive to the variation of the classes within the category. For
instance, the accuracy of the model using hybrid embeddings
is 0.75 when the test classes are selected as ”boat” and
”ambulance” whereas the accuracy is reported as 0.54 when
the test set consists of ”car” and ”truck”. In the hierarchical
structure of the AudioSet, the class of ”boat, water vehicle”
is defined as the immediate subcategory of Vehicle whereas
”car”, ”truck”, and ”ambulance” are defined under the ”motor
vehicle (road)”. For further improvement, the intermediate
categories should be explored.

TABLE IV
TOP-1 ACCURACIES (MEAN AND SD) OF ZERO-SHOT AUDIO

CLASSIFICATION WITHIN CATEGORIES WHERE RANDOM GUESS IS 0.50

Class
Embedding

Categories

Animal Musical
Instrument Vehicle

Audio 0.61 ± 0.05 0.66 ± 0.09 0.61 ± 0.05
Image 0.53 ± 0.07 0.57 ± 0.19 0.62 ± 0.13
Text 0.60 ± 0.06 0.60 ± 0.09 0.61 ± 0.10

Hybrid 0.63 ± 0.08 0.62 ± 0.12 0.59 ± 0.12

Zero-shot audio classification results across categories are
reported in Table V. As can be seen from the results, the
model performs significantly better than the random guess
of 0.50 in each setup. Compared with the results of within-
category experiments, we observe that the model can easily



TABLE V
TOP-1 ACCURACIES (MEAN AND SD) OF ZERO-SHOT AUDIO

CLASSIFICATION ACROSS CATEGORIES WHERE RANDOM GUESS IS 0.50

Class
Embedding

Categories
A + MI A + V MI + V

Audio 0.92 ± 0.02 0.80 ± 0.18 0.94 ± 0.04
Image 0.89 ± 0.03 0.77 ± 0.07 0.87 ± 0.15
Text 0.90 ± 0.05 0.84 ± 0.08 0.95 ± 0.04

Hybrid 0.88 ± 0.08 0.85 ± 0.06 0.96 ± 0.04

learn different categories. This indicates that the classifier can
transfer the knowledge from one class to another in the same
category.

V. DISCUSSION AND CONCLUSION

In this paper, we introduced image embeddings as semantic
information for zero-shot audio classification. The zero-shot
model was evaluated by comparing the performance of the
models using visual, audio, and textual embeddings as seman-
tic information. We used VGGish, ResNet101, and word2vec
models to extract audio, image, and textual embeddings,
respectively. We performed the audio classification task by
extracting the mutually observed classes between audio and
image datasets.

The experiments showed that using visual semantic embed-
dings both individually and combined with textual embeddings
can achieve better accuracy than a random guess on the zero-
shot audio classification task. Yet, the difference between the
results of using averaged and randomly selected semantic
embeddings suggested that the performance of the model can
be improved in the presence of a larger dataset where the
averaging eliminates outliers more accurately. Additionally,
the experimental results showed that the image, textual, and
hybrid embeddings can further reach up to the performance
of acoustic semantic embeddings when the seen and unseen
classes are semantically similar. However, the varying behavior
on the different splits indicates that the performance of the
model is sensitive to the class splits when performed within the
same category. The model reached up to the highest accuracy
when performed across categories.

Even though the visual embeddings might increase the
representational power for each class by introducing rich
variety to the model with a large number of image instances,
they lack the ability to express more abstract classes. On
the other hand, textual embeddings can capture the abstract
classes in the presence of the nonambiguous textual class
description. Yet, they provide each class only with a singular
representation. Cognitively motivated approaches suggest that
human semantic knowledge relies on perceptual information
rather than only linguistic information [17]. In order to allow
the model to capture complementary information from dif-
ferent modalities, future work should explore more advanced
hybrid models. Furthermore, for a fully unbiased evaluation,
the embedding models should be trained from scratch where
the zero-shot classes are excluded from the training data.
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