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Abstract—In this paper we present a direct model predictive
control (MPC) scheme with time-varying sampling intervals.
These sampling intervals are computed based on modulation
(half-)cycles, which are obtained offline and stored in a look-
up table. By utilizing the optimized modulation (half-)cycles and
combining control and modulation in one computational stage,
the proposed direct MPC scheme achieves lower current total
harmonic distortion (THD) than conventional linear controllers
with a dedicated modulator, and fast transient responses that
characterize direct control methods. The effectiveness of the
proposed control scheme is verified on a variable speed drive
system consisting of a two-level voltage source inverter and an
induction machine.

Index Terms—AC drives, model predictive control (MPC),
direct control, optimized modulation cycles.

I. INTRODUCTION

Model predictive control (MPC) is a time-domain control

strategy that has received increasing interest from the power

electronics community in the recent years [1], [2]. Unlike the

conventional controllers that are designed in the frequency

domain, MPC formulates the control problem as a (con-

strained) optimization problem. By doing so, the nonlinearities

and physical constraints of the system can be included in a

straightforward manner [3].

MPC of power electronic systems can be formulated either

as direct MPC, i.e., a controller without a dedicated modula-

tion stage, or as indirect MPC, where a modulator is used to

translate the controller commands into switching signals [2].

The former, however, particularly in its form as direct MPC

with output reference tracking—commonly referred to as finite

control set MPC (FCS-MPC)—can lead to significant current

distortions, especially when poorly designed [4]. As a result,

it cannot outperform the steady-state performance of con-

ventional modulator-based techniques, such as field oriented

control (FOC) with space vector modulation (SVM) [5].

To address this issue of direct MPC strategies, there have

been some MPC-based schemes that emulate the behavior of

a modulator by introducing additional switching events within

the sampling interval [6]–[12]. Specifically, these schemes

ensure that all phases of the power converter switch within
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the sampling interval, thus resulting in a fixed switching

frequency, even though a modulator is not employed. In doing

so, a behavior on par with that of conventional pulse width

modulation (PWM) strategies, such as SVM, can be achieved.

Nevertheless, as is the case with conventional PWM strate-

gies, these methods use a fixed sampling interval—which in

essence is the modulation (half-)cycle—and vary the duty

cycle of the converter switches to achieve a desired average

output voltage which will lead to the desired reference track-

ing. As a result, the harmonics generated due to the switching

nature of the converters can still be relatively high. The work

in [13] showed that by using time-varying sampling intervals

and considering them as optimization variables the harmonic

distortion caused by the modulator can be further reduced.

However, a non-fixed sampling interval poses big challenges

for closed-loop control, especially when proportional-integral

(PI) controllers are considered. Therefore, the so-called opti-

mized modulation half-cycles were implemented only in an

open-loop fashion in [13].

To exploit the advantages associated with optimized time-

varying sampling intervals, a direct MPC strategy is proposed

in this paper. Specifically, the developed MPC scheme tackles

the control and modulation in one constrained optimization

problem, akin to [10] and [12]. The optimization problem

underlying direct MPC computes the time instants within

the optimized time-varying sampling intervals where all three

phases of the converter need to switch in a consecutive

manner such that accurate output reference tracking is ensured

with as little distortions as possible. In doing so, superior

steady-state performance as well as fast dynamic responses

during transients can be achieved. To demonstrate this, a low-

voltage drive system, consisting of a two-level inverter and an

induction machine, serves as a case study.

II. MATHEMATICAL MODEL OF THE SYSTEM

The examined system consists of a three-phase two-level

voltage source inverter and an induction machine (IM), as

shown in Fig. 1. The dc-link voltage is assumed to be constant

and equal to its nominal value Vdc. The modelling of the

system as well as the formulation of the control problem

are done in the stationary orthogonal αβ reference frame.

Therefore, any variable ξabc = [ξa ξb ξc]
T in the abc-plane is

transformed into a variable ξαβ = [ξα ξβ ]
T in the αβ-plane

via the Clarke transformation matrix K .1

1In the sequel of the paper, the subscript αβ used to denote variables in
the αβ-plane is omitted to simplify the notation.
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Fig. 1: Two-level three-phase voltage source inverter driving an IM.

Consider the three-phase switch position of the two-level

inverter uabc = [ua ub uc]
T , where ux ∈ U = {−1, 1}, with

x ∈ {a, b, c}, is the single-phase switch position. The voltage

applied to the machine terminals is calculated as

vs =
Vdc
2
u =

Vdc
2
Kuabc . (1)

The dynamics of the squirrel-cage IM can be described by the

following differential equations [14]

dis
dt

= −
1

τs
is +
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[
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where Rs (Rr) is the stator (rotor) resistance, Xls (Xrs) the

stator (rotor) leakage reactance, and Xm the mutual reactance.

Moreover, τs = XrD/(RsX
2
r + RrX

2
m) and τr = Xr/Rr

are the transient stator and rotor time constants, respectively,

where the constant D is defined as D = XsXr − X2
m, with

Xs = Xls +Xm and Xr = Xlr +Xm.

Based on (2), the model of the drive system in continuous-

time state-space representation is written as

dx(t)

dt
= Fx(t) +GKuabc(t) (3a)

y(t) = Cx(t) , (3b)

where the state vector is x = [isα isβ ψrα ψrβ ]
T , while

the three-phase switch position and the stator current are the

system input and output, respectively, i.e., uabc = [ua ub uc]
T

and y = [isα isβ ]
T . Moreover, matrices F , G, and C are the

system, input and output matrices, respectively, and they can

be easily derived from (2).

Finally, with the help of forward Euler discretization the

discrete-time state-space model of the system becomes

x(k + 1) = Ax(k) +BKuabc(k) (4a)

y(k) = Cx(k) , (4b)

with k ∈ N, A = I + FTs, and B = GTs, where I

is the identity matrix of appropriate dimensions, and Ts the

sampling interval. Note, however, that, as shown in the sequel,

the system eventually is not discretized based on Ts, but rather

by using the appropriate optimized sampling interval Tk, as

computed in Section III-A.
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Fig. 2: Two-level inverter switch positions in the stationary (αβ) plane.

III. DIRECT MPC WITH OPTIMIZED SAMPLING INTERVAL

A direct MPC scheme that allows the converter switches to

switch not only at the discrete time steps, but also at any time

instant within the sampling interval, was initially proposed

in [10]. Moreover, by forcing each phase to switch once per

sampling interval Ts, a switching pattern similar to SVM

is achieved. By doing so, the direct MPC scheme achieves

similar steady-state behavior as conventional FOC with SVM.

However, the total harmonic distortion (THD) of the stator

current can be further decreased by considering the sampling

interval, namely the equivalent modulation half-cycle, as an

optimization variable [13]. Based on the above, in this work,

the aforementioned direct MPC scheme is combined with

optimized modulation cycles to achieve a favorable steady-

state and transient performance.

A. Optimized Modulation Cycles

In conventional SVM, the reference voltage vector us,ref in

one sampling interval Ts is approximated by a combination

of two neighboring active voltage vectors ua, ub, and one

zero vector u0 (or u7), see, Fig. 2. According to SVM, the

application times of the voltage vectors can be calculated as

taua + tbub = Tsus,ref (5)

to = Ts − ta − tb , (6)

where ta, tb, to are the application times of ua, ub, and

u0/u7, respectively. Note that to is divided into two equal time

intervals located at the beginning and end of the modulation

half-cycle to ensure that the harmonic current is zero when

sampling occurs [15]. The impact of the voltage harmonics

on the machine can be assessed by the harmonic model

vs = Rsis +Xσ

dis
dt

, (7)

where Xσ = σXs, with σ = (1 −
X2

m

XsXr
), is the total

leakage reactance. The equivalent circuit representation of the

harmonic model is shown in Fig. 3.
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Fig. 3: Harmonic model of an induction machine.

t

ihk,α

t0 t1 t2 t3 Ts

u0

m0

ua

ma

ub

mb

u0

m0

Fig. 4: The harmonic current (α-component) within one modulation cycle.

Based on Fig. 3, and by neglecting the stator resistance Rs,

the harmonic current of an IM can be calculated as

ihk(t) =
1

Xσ

∫ t0+Ts

t0

(vs(t, k)− vs,ref(k))dt , (8)

where ihk is the harmonic current of the kth modulation half-

cycle, which starts at time instant t0, vs(t, k) is used to denote

the voltage vectors within the kth modulation half-cycle, and

vs,ref(k) is the sampled reference voltage vector.

Using the solution from SVM, and assuming the harmonic

current is zero when the current is sampled, the evolution of

the harmonic current ihk within the kth modulation half-cycle

can be calculated based on its gradients, i.e.,

ihk(t) =



















m0t if 0 ≤ t ≤ t1,

ihk(t1) +ma(t− t1) if t1 < t ≤ t2,

ihk(t2) +mb(t− t2) if t2 < t ≤ t3,

ihk(t3) +m0(t− t3) if t3 < t ≤ Ts ,

(9)

where

m0 = −
vs,ref

Xσ

, (10a)

ma =
va − vs,ref

Xσ

, (10b)

mb =
vb − vs,ref

Xσ

, (10c)

are the gradients of the harmonic current within the four

subintervals, and t1 = to
2 , t2 = t1 + ta and t3 = t2 + tb,

as exemplified in Fig. 4.
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Fig. 5: The rms harmonic current in each modulation half-cycle Ih0k , when
a fundamental period of n = 42 modulation half-cycles is considered. The
modulation index is m = 1.03 and the total leakage inductance Xσ = 0.11
per unit (p.u.).

Based on (9), the rms harmonic current of the kth modula-

tion half-cycle for a given reference voltage vector vs,ref(k)
can be calculated as

Ih0k =

√

1

Ts

∫ t0+Ts

t0

‖ihk(t)‖22dt . (11)

When steady-state operation is considered, which means the

amplitude of the reference voltage vector vs,ref(k) is constant,

Ih0k is a function of the angle of vs,ref(k), see Fig. 5. As can

be seen, when vs,ref(k) is close to one of the six active voltage

vectors, the rms harmonic current Ih0k is relative smaller in

the corresponding modulation half-cycles, while the opposite

holds when vs,ref is in the middle of the sector.

Consider that the three-phase switching sequences are syn-

chronized with the fundamental period. This means the fun-

damental period T0 can be divided into an integer number n
of sampling intervals

n =
T0
Ts
. (12)

The total harmonic distortion over a full fundamental period

can be calculated as

Ih =

√

√

√

√

1

T0

n
∑

k=1

I2h0kTs . (13)

Now we treat the sampling interval Ts as a variable Tk,

while keeping the number of sampling intervals within one

full fundamental period the same, i.e.,

n
∑

k=1

Tk = nTs = T0 . (14)

Similarly, the rms harmonic current Ihk of each time-

varying sampling interval Tk can be calculated. By performing

the same calculation as before, it can be obtained that

Ihk(θk) =
Tk
Ts
Ih0k(θk) , (15)
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Fig. 6: The optimized modulation half-cycles Tk over one full fundamental
period, with n = 42 and m = 1.03.

where θk is the angle of the reference voltage vector vs,ref(k).
As a result, the harmonic distortion within a fundamental

period can be calculated as

Ih =

√

√

√

√

1

T0

n
∑

k=1

I2hkTk =

√

√

√

√

1

T0T 2
s

n
∑

k=1

I2h0kT
3
k . (16)

Finally, the optimized sampling intervals Tk are obtained

by solving the following optimization problem

minimize
T ∈Rn

Ih (17a)

subject to

n
∑

k=1

Tk = T0 (17b)

Ts,min ≤ Tk ≤ Ts,max , ∀k = 1, 2, ..., n , (17c)

where T = [T1 T2 . . . Tn]
T , i.e., the vector of time-varying

sampling intervals within one fundamental period, is the

optimization variable. Regarding the constraints in (17), (17b)

ensures that the number of sampling intervals over one fun-

damental period is fixed to n, thus guaranteeing that a fixed

switching frequency results. Moreover, considering that a too

short sampling interval may render the real-time implementa-

tion computational infeasible, and a too long sampling interval

deteriorates the sampling accuracy, the constraint (17c) limits

the length of the optimized sampling intervals between a lower

limit Ts,min and an upper limit Ts,max.

Fig. 6 shows one example of the optimized sampling inter-

vals Tk over the interval [0, π/3], while the function of Tk over

the remaining five π/3 segments is identical due to symmetry.

Note that the optimized modulation cycles Tk are independent

from the machine parameters. They merely depend on the

number of modulation half-cycles n and the modulation index

m. Therefore, the optimized modulation half-cycles over one-

sixth of the fundamental can be stored in a look-up table for

different pairs {n,m}.

B. Optimal Control Scheme

The proposed control scheme combines the optimized mod-

ulation half-cycles with the direct MPC scheme in [10],

[12]. At first, a steady-state operation with a fixed switching

frequency is considered, which means the modulation index

m and the number of modulation half-cycles n are constant.

Then, the sampling interval Tk of each time step is decided

t
t0 ≡ 0 Tk Tk + Tk+1

t1(k) t2(k) t3(k) t1(k+1) t2(k+1)t3(k+1)

−1

0

1

−1

0

1

−1

0

1

uc

ub

ua

(a) Three-phase switch position.

t
t0 ≡ 0 Tk Tk + Tk+1

t1(k) t2(k) t3(k) t1(k+1) t2(k+1)t3(k+1)

isα

is,ref,α

(b) Stator current (α-component).

Fig. 7: Example of the evolution of isα over two sampling intervals by
applying the depicted switching sequence.

by the angle of the reference voltage vs,ref , which can be

obtained from the deadbeat solution vs,db. However, note that

the deadbeat solution, in turn, requires the sampling interval

Tk. Therefore, vs,ref and Tk are approximated in an iterative

manner. More specifically, let the initial guess T 0
k = Ts, based

on which the deadbeat solution v0s,db ≡ v0s,ref is calculated.

Following, at the next iteration, T 1
k can be obtained from

arg(v0s,db). By repeating this procedure, the required values

are found and subsequently stored in a look-up table. Note

that in practice, about two to three iterations suffice.

In the next step, the control problem is formulated as

a constrained optimization problem, where the aim is to

minimize the stator current ripple. To this aim, the gradients

of the stator current are utilized. Moreover, in order to achieve

a fixed switching frequency and an equal distribution of the

switching power losses, each phase of the converter is allowed

to switch once within the sampling intervals Tk, as exemplified

in Fig. 7(a). More specifically, let tz , z ∈ {1, 2, 3}, denote

the switching time instants in chronological order within one

sampling interval Tk, and uabc(ti), i ∈ {0, 1, 2, 3}, the switch

positions in the four sub-intervals [0, t1), [t1, t2), [t2, t3) and

[t3, Tk). Given that the sampling interval Tk is much smaller

than the fundamental period T0, i.e., Tk ≪ T0, it is assumed

that the stator current evolves linearly within each sub-interval.



TABLE I: Possible switching sequences for a two-step horizon.

Number Phase with the switching transition

of 1st sampling interval 2nd sampling interval

sequence First Second Third First Second Third

1 a b c c b a

2 a c b b c a

3 b a c c a b

4 b c a a c b

5 c a b b a c

6 c b a a b c

Therefore, the stator current trajectories can be described by

their corresponding gradients, i.e.,

m(ti) =
dis(ti)

dt
= C(Fx(t0) +GKuabc(ti)) , (18)

where i ∈ {0, 1, 2, 3}. Utilizing the gradients provided by (18),

the stator current at the switching instants and discrete time

steps can be calculated as

is(ti) = is(ti−1) +m(ti−1)(ti − ti−1) , (19)

with i ∈ {1, 2, 3, 4} and t4 = Tk.

Note that by adopting the same principle, the current

reference is assumed to evolve with a constant gradient within

each sampling interval, given by

mref(k) =
is,ref(k + 1)− is,ref(k)

Tk
. (20)

Hence, the current reference over the horizon is

is,ref(t) = is,ref(k) +mref(k)t . (21)

The above concept can be extended to longer prediction

horizons to achieve better steady-state performance [16]. As

shown in [12], by mirroring the switching sequences with

respect to the discrete time steps the number of possible

switching sequences is kept constant regardless of the pre-

diction horizon steps Np. In this work, a two-step horizon

(Np = 2) is implemented, as illustrated in Fig. 7. Table I

summarizes all possible switching sequences over a two-step

horizon.

Given the two-step horizon and the switching time instants

and corresponding switch positions within each prediction

step, the vector of switching time instants t and the vector

of switch positions (i.e., the switching sequence) U are

introduced, i.e.,

t =
[

tT (k) tT (k + 1)
]T

(22a)

U =
[

UT (k) UT (k + 1)
]T

, (22b)

where

t(ℓ) =
[

t1(ℓ) t2(ℓ) t3(ℓ)
]T

(23a)

U(ℓ) =
[

uT
abc(t0(ℓ)) u

T
abc(t1(ℓ)) u

T
abc(t2(ℓ)) u

T
abc(t3(ℓ))

]T

,

(23b)
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Fig. 8: Direct MPC with optimized sampling interval for a two-level three-
phase voltage source inverter driving an IM.

Algorithm 1 Direct MPC with Optimized Sampling Interval

Given uabc(t
−

0 ), is,ref(t0) and x(t0)
1: Compute iteratively the optimized modulation half-cycles,

i.e., sampling intervals Tk
2: Compute the corresponding gradient vectors mz , z ∈

{0, 1, ...6}
3: Enumerate the possible switching sequences Uz , z ∈

{1, 2, ...6}, based on uabc(t
−

0 )
4: For each Uz , solve the QP (25). This yields tz and Jz .

5: Find the minimum Jz . This yields t∗ and U∗.

Return t∗(k) and U∗(k).

with ℓ ∈ {k, k + 1} and

U(k + 1) =
[

uT
abc(t3(k)) u

T
abc(t2(k)) u

T
abc(t1(k)) u

T
abc(t0(k))

]T
.

With all the above, the main control objective of (approxi-

mate) minimization of the rms stator current error is mapped

into the objective function

J =

k+1
∑

ℓ=k

( 3
∑

i=1

‖is,ref(ti(ℓ))− is(ti(ℓ))‖
2
2

+
∥

∥Λ
(

is,ref(Tℓ(ℓ))− is(Tℓ(ℓ))
)
∥

∥

2

2

)

,

(24)

where the current tracking error is penalized at the switching

time instants and at the discrete time steps. Moreover, the

diagonal, positive definite matrix Λ ≻ 0 ∈ R
2×2 is introduced

to penalize more heavily the tracking error at the discrete time

steps [12, Section III].

After some algebraic manipulations, the control problem can



Time [ms]

0 5 10 15 20

−1

−0.5

0

0.5

1

(a) Three-phase stator current is,abc

Frequency [kHz]

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

(b) Stator current harmonic spectrum; the THD is
15.27%

Time [ms]

0 5 10 15 20

−1

−1

−1

1

1

1

(c) Three-phase switch position uabc

Fig. 9: Simulation results of direct MPC with optimized sampling intervals at steady-state operation, fsw = 1050 Hz.
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Fig. 10: Simulation results of FOC with conventional SVM at steady-state operation, fsw = 1050 Hz.

be formulated as an optimization problem of the form

minimize
t∈R6

‖r −Mt‖22

subject to 0 ≤ t1(k) ≤ t2(k) ≤ t3(k) ≤ Tk ≤ t1(k + 1)

≤ t2(k + 1) ≤ t3(k + 1) ≤ Tk + Tk+1 ,
(25)

where the vector r ∈ R
8Np and matrix M ∈ R

8Np×3Np can

be found in [12].

To find the optimal switching time instants t∗ and corre-

sponding optimal switching sequence U∗, the QP (25) has

to be solved six times, i.e., once for each possible switching

sequence Uz , z ∈ {1, 2, . . . , 6}, shown in Table I. The

pair of switching sequence and time instants that is globally

optimal, i.e., {U∗, t∗}, is chosen. In a last step, according

to the receding horizon policy [3], only the switch positions

that correspond to the first sampling interval are applied to

the converter at the corresponding time instants. The block

diagram of the proposed direct MPC scheme is shown in

Fig. 8, and the pseudocode is provided in Algorithm 1.

IV. PERFORMANCE EVALUATION

This section presents the simulation results of the direct

MPC scheme with optimized sampling intervals Tk. The

examined system is a three-phase two-level voltage source

inverter driving an IM (Fig. 1) with 380V rated voltage, 5.73A

rated current, 3 kW rated power, 50Hz nominal frequency and

0.11 per unit (p.u.) total leakage reactance. The inverter is

supplied by a stiff dc source with the constant dc-link voltage

Vdc = 600V. The number of modulation half-cycles, i.e.,

sampling intervals, within one fundamental period was set to

n = 42 so that a switching frequency of 1050Hz results,

assuming operation at rated speed. All results are shown in

the p.u. system.

The steady-state performance of the direct MPC scheme

is shown in Fig. 9. For comparison purposes, FOC with PI

controllers and conventional SVM, i.e., with fixed sampling,

was implemented, as shown in Fig. 10. As can be seen from

Figs. 9(a) and 10(a), both controllers achieve accurate stator

current tracking without any steady-state error. The resulting

current harmonic spectra are shown in Figs. 9(b) and 10(b).

FOC with SVM, due to its symmetric switching pattern and

fixed switching frequency, produces discrete current harmonics

concentrated only at the odd and non-triplen integer multiples

of the fundamental frequency. As for the proposed direct MPC

scheme, although the sampling intervals are no longer of

fixed length, the symmetrical switching pattern is maintained,

thus the harmonic energy is still concentrated at the odd and

non-triplen integer multiples of the fundamental frequency.

Moreover, the current THD with the direct MPC scheme is

smaller, i.e., 15.27%, compared to that from FOC (16.88%).

Finally, Figs. 9(c) and 10(c) show the three-phase switch

position for direct MPC and FOC, respectively. It is observed

that the direct MPC scheme with the optimized sampling

intervals, similar to FOC, operates the converter at the constant

switching frequency of 1050Hz, despite the varying length of

sampling intervals.

Finally, the transient performance of the two control

schemes is shown in Figs. 11 and 12, where torque reference

steps of magnitude 1 p.u. are imposed. As can be seen in

Figs. 11(a) and 11(b), the direct MPC scheme, being a direct

controller, achieves fast and accurate torque reference tracking

during both the torque step-down and step-up transients.

This happens even though the optimized sampling intervals

are computed offline assuming steady-state operation. As for

FOC, its dynamic response is much slower, as observed in

Figs. 12(a) and 12(b). This is due to the smaller control

bandwidth of the linear PI controllers.
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Fig. 11: Simulation results of direct MPC with optimized sampling intervals during torque reference step changes.
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Fig. 12: Simulation results of FOC with conventional SVM during torque reference step changes.

V. CONCLUSIONS

In this paper we proposed a direct MPC scheme with

optimized sampling intervals that achieves superior steady-

state and transient performance. To achieve this, the sampling

intervals that result in minimal current ripple are calculated

offline in an optimal manner and are subsequently stored in a

look-up table. Following, a direct MPC scheme is employed

that utilizes the stator current gradients within a horizon of

optimized time intervals, and aims for the minimization of

the rms of the stator current ripple. As shown, by dropping

artificial limitations that are imposed by the concept of a

fixed modulation cycle, the direct MPC scheme can produce

lower stator current THD and exhibit faster transient response,

compared to FOC with conventional SVM.
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