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Abstract: We conducted this study to determine the potential cryopreservative effects of different
hesperidin (vitamin P; H) doses on ram semen after freeze-thawing. Semen samples were obtained
from Sönmez rams using an artificial vagina. The samples were divided into six groups: control, 10,
50, 100, 250, and 500 µg/mL H (C, H10, H50, H100, H250, and H500, respectively). At the end of
the study, sperm motility and kinetic parameters, acrosome integrity (AI), mitochondrial membrane
potential (MMP), viability, lipid peroxidation levels (LPL), chromatin damage, oxidant parameters,
and antioxidant parameters were assayed. None of the doses of H added to the semen extender
showed any enhancing effects on progressive motility compared to C (p > 0.05). In fact, H500 had
negative effects (p < 0.05). Moreover, AI was the highest at the H10 dose, while LPL values were the
lowest at the same dose (p < 0.05). The doses of H10 and H50 added to the Tris extender medium
showed positive effects on sperm cell chromatin damage. Consequently, we can say that H doses
used in this study are not effective on semen progressive motility, but the H10 dose is effective on AI
and chromatin damage by reducing LPL.

Keywords: semen; hesperidin; cryopreservation; oxidative stress; antioxidant; ram

1. Introduction

In Turkey, studies have been conducted on the crossbreeding of suitable genotypes
for the breeding of domestic sheep. One of these domestic breeds is Sönmez. The Sön-
mez breed was obtained by crossing the Chios (25%) and Tahirova (75%) genotypes. To
ensure the genetic continuity of these special breeds, the most practical technology for
rapid genetic improvement at appropriate times is artificial insemination [1]. The success
of this technique depends on the long-term protection of sperm cells from factors that
affect their fertilization capacity negatively [2]. Cryopreservation has been developed with
technological advancements and scientific studies and is still widely used today for the
optimum preservation of the properties of cells and tissues. During the cryopreservation
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process, the freeze-thaw process may cause oxidative damage, decreased sperm cell motil-
ity, deterioration of sperm cell morphology, and consequently, a decrease in fertilization
capacity [3]. Adding or removing substances with cryoprotectant properties to the semen
may cause disruption in the intracellular osmotic balance and damage the genetic ma-
terial of sperm cells [4]. Both seminal plasma and sperm cells are highly prone to lipid
peroxidation (LPO) because they contain rich polyunsaturated fatty acids [5]. LPO triggers
many chains of chemical reactions [6] and can damage important biological molecules
such as proteins, DNA, and RNA [7]. Various enzymatic and non-enzymatic detoxification
mechanisms attempt to eliminate the harmful effects of reactive oxygen species (ROS).
These mechanisms are generally referred to as antioxidants [8].

Seminal plasma antioxidants play a crucial role in protecting spermatozoa against
oxidative stress [9]. Oxidative stress in semen results from either the depletion of seminal
antioxidants or excessive free radical formation by the sperm themselves. Therefore,
increasing the antioxidant activity in the seminal plasma is extremely important in the
cryopreservation of semen [10]. The application of antioxidants to semen diluents has
received great interest in assisted reproductive technology applications. To protect sperm
cells against various shocks during processing or storage, different diluents are designed,
often on a testable basis. While natural additives added to diluents have been examined
in the relevant literature, it was determined that there was no research on hesperidin
(vitamin P; H) in the context of this subject. H (5,7,3′-trihydroxy-4′-methoxy flavanone), a
flavonoid, is naturally found in citrus fruits such as lemons, oranges, and grapefruit [11].
Additionally, the protective effect of H on reproductive functions against toxicities caused
by different chemicals has been reported by previous studies [12,13]. It was reported that
H significantly reduces LPO in testicular tissue, has positive effects on sperm parameters
and biochemical parameters, and improves epididymal functions [12]. Several mechanisms
emerge to explain the biological effects of H on reproductive functions. The first is that
it affects the secretion and activity of hormones. H was reported to have both estrogenic
(at low concentrations) and anti-estrogenic (high concentrations) effects, depending on
its concentration in the organism [14]. These hormones modulate the action mechanisms
of hormones, such as the thyroid hormone [15]. Secondly, it was explained that H affects
reproductive functions by inhibiting enzymes, such as aldose reductase, xanthine oxidase,
phosphodiesterase, Ca2+-ATPase, lipoxygenase, and cyclooxygenase [16]. This study was
designed to evaluate the protective effect of H on ram semen by reducing the damage that
may occur after freeze-thawing and determine oxidative stress, chromatin damage, sperm
motility, LPO levels, and certain antioxidant parameters.

2. Materials and Methods
2.1. Animals and General Experimental Procedure

In the study, semen samples were taken from six Sönmez breed rams (2–3 years
old; Kapucuoğlu sheep farm, Afyonkarahisar, Turkey) using an artificial vagina. These
procedures were carried out in the same breeding season and at different times as ten
replications for each group. The ejaculates were used individually for each replication to
eliminate the effects caused by different rams. A volumetric cup and a photometer were used
to determine semen volume and concentrations. The mass activity (≥+++ 3 [scale 1–5]), sperm
concentrations (≥0.8 × 109/mL, volume ≥ 0.8 mL), and motility (80%) of the ejaculates
were used to qualify the sources of semen. Tris (3.63 g Tris, 0.5 g fructose, 1.82 g citric acid,
100 mL double-distilled water, 7% glycerol (v/v) and 15% egg yolk) was used as the main
diluent, and H was dissolved in dimethyl sulfoxide (DMSO; 1 g H, 1 mL DMSO). The
extender osmolarity of the solutions was adjusted to 310 mOsm. After a preliminary study
was done from the doses calculated based on the molecular weight of H, the treatment
doses were decided. The semen samples were divided into six groups, and 0, 10, 50, 100,
250, and 500 µg/mL H were added separately to the groups (control (C), H10, H50, H100,
H250, and H500, respectively). After these procedures, the samples that were injected
(15 × 106) into French straws were stored until they reached an equilibrium temperature
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(approximately 2 h at 4 ◦C). After providing the optimum cooling conditions, all samples
were frozen at five programmed rates (0 ◦C/min from +4 ◦C to +4 ◦C 3 min, −3 ◦C/min
from +4 ◦C to −7 ◦C 3.67 min, 0 ◦C/min from −7 ◦C to −7 ◦C 1 min, −37.67 ◦C/min from
−7 ◦C to−120 ◦C 3 min, 0 ◦C/min from−120 ◦C to−120 ◦C 5 min). Afterwards, they were
stored at −196 ◦C for 6 months. Ethics committee approval for the study was provided by
Afyon Kocatepe University Faculty of Veterinary Medicine Animal Care Committee with
the decision numbered 49533702/333.

2.2. Sperm Motility and Kinetic Parameters

The motility and kinetic parameters of ram semen were evaluated with a computer-
assisted semen analyzer (CASA) in a phase contrast microscope using special software
Sperm Class Analyzer (Microptics, Barcelona, Spain). Frozen semen was thawed at 37 ◦C
for 30 s just before the evaluations. CASA was pre-adjusted for ram sperm analysis. A
semen sample was extended 1:4 in the Lactated Ringer solution, and the extended semen
samples were placed onto a pre-warmed 20-mm chamber slide (Leja 4, Leja Products
BV, Nieuw-Vennep, The Netherlands). Characteristic analyses of motility were carried
out with the aid of a green filtered negative phase contrast lens (100× magnification, at
37 ◦C). Curvilinear velocity variations for motile spermatozoa were categorized as fast
(>75 µm/s), medium (45–75 µm/s), slow (10–45 µm/s), and static (<10 µm/s). Sperm with
≥75% flatness were considered progressive. In addition to these parameters, the values for
kinetic calculations were quantified as follows: total motility (%), progressive motility (%),
curvilinear velocity (VCL, µm/s), average path velocity (VAP, µm/s), straight line velocity
(VSL, µm/s), amplitude lateral head displacement (ALH, µm/s), beat cross frequency
(BCF, Hz), linearity (LIN %) [(VSL/VCL) × 100], yaw (WOB %) [(VAP/VCL) × 100], and
straightness (STR %) [(VS/VAP) × 100]. In the evaluation of these parameters, a total of
200–400 sperm were recorded per sample in six microscopic zones.

2.3. Sperm Chromatin Damage

Chromatin damage in semen was analyzed using the single cell gel electrophoresis
(COMET) assay method under intensively alkaline conditions. Semen was thawed at 37 ◦C
in 30 s. The thawed semen was washed twice with PBS (Ca and Mg Free). Approximately
15 × 106 (10 mL) washed sperm cells were mixed with low melting point agarose (LMA)
at 37 ◦C. They were then spread on slides pre-coated with 1% normal soluble agarose
(NMA). Lysis solution (Trevigen Inc. Cat. No. 4250-010-01) added to Triton X-100 (1%)
in a vertical jar was immersed in the Triton X-100 and incubated at 4 ◦C for one h. Then,
DL-Dithiothreitol (DTT) (4 mM) (Sigma Aldrich Chemical Co., Darmstadt, Germany) was
added and incubated at 4 ◦C for another hour. Then, 60 µL of proteinase K (1 mg/mL)
(Sigma Aldrich Chemical Co.) was added. The slides were then incubated at 37 ◦C
overnight to dissolve the DNA. After being placed in an electrophoresis tank containing a
previously prepared and cooled electrophoresis solution containing 300 mM NaOH and
1 mM Na-EDTA (pH 13), it was left to adapt to the solution for 15 min. An electric field
(300 mA, 25 V) was applied for 20 min at 25 ◦C to pull the negatively charged DNA towards
the anode. The slides were washed three times in neutralizing buffer (0.4 M Tris, pH 7.5)
for 5 min at 25 ◦C and stained with 5 µg/mL Ethidium Bromide (Sigma-Aldrich Chemical
Co.). They were then examined under a fluorescent microscope (Olympus CX31, Tokyo,
Japan). Then, the Comet Score Freeware v1.5 software (The TriTek Co., Sumerduck, VA,
USA) was used to evaluate the slides [17].

2.4. Flow Cytometric Analyses

The flow cytometric analyses were performed by using a CytoFLEX flow cytome-
ter (Beckman Coulter, Brea, CA, USA) equipped with 525 ± 40 nm, 585 ± 42 nm, and
610 ± 20 nm emission filters and a 50-mW laser output (488 nm laser beam). All frozen
semen was thawed at 37 ◦C 30 s just before the evolutions. In each analysis, ~10,000 events
were examined. A side scatter area (SSC-A) versus forward scatter area (FSC-A) pseudo
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plot was used to exclude debris from the analysis, and duplicates were excluded by using
forward scatter height (FSC-H) and forward scatter area (FSC-A) [18]. Working solu-
tions of fluorescein isothiocyanate-conjugate peanut agglutinin (FITC-PNA) [100 µg/mL,
Sigma, L7381], Sybr-14 and propidium iodide (PI) solution [1:10 Sybr-14, 2.99 mM PI,
L7011, molecular probes, Invitrogen], 5,5′,6,6′-tetrachloro-1,1′3,3′-tetramethylbenzimidazolyl-
carbocyanine iodide (JC-1) [0.153 mM T3198, molecular probes, Invitrogen], and BODIPY
(5 µM, D38611, molecular probes, Invitrogen) were prepared with DMSO, divided into
50 µL portions, and stored at −20 ◦C until use.

Acrosome integrity (AI) values were determined using the FITC/PNA-PI staining
kit according to the method described in a previous study [19]. The frozen-thawed sperm
sample was diluted to 5 × 106 sperm in 492 µL of PBS. Subsequently, 5 µL of FITC and
3 µL of PI were added, followed by incubation in a water bath at 37 ◦C for 15 min in a
dark room. After incubation, the debris (non-sperm) was gated out, and sperm PMAI
(FITC/PNA-PI-) analyses were performed using the CytExpert 2.3 software (Beckman
Coulter, Brea, CA, USA).

Lipid peroxidation level (LPL) values were determined using BODIPY-SYBR staining
according to the method reported in a previous study [20] with some modification. The
frozen-thawed sperm sample was diluted to 5 × 106 sperm in 492 µL of PBS. Subsequently,
5 µL of BODIPY and 3 µL of SYBR were added, followed by incubation in a water bath at
37 ◦C for 15 min in a dark room. After incubation, the debris (non-sperm) was gated out,
and sperm cell LPL (BODIPY) analyses were performed using the CytExpert 2.3 software.

Sperm cell mitochondrial membrane potential (MMP) values were determined using
5,5′,6,6′ tetrachloro-1,1′3,3′-tetramethyl benzimidazolyl-carbocyanine iodide (JC-1). The
frozen-thawed sperm sample was diluted to a concentration of 5 × 106 sperm in 495 µL
of PBS. Subsequently, 5 µL of JC-1 was added to the sample, followed by incubation in a
water bath at 37 ◦C for 15 min in a dark room. After incubation, the debris (non-sperm)
was gated out, and MMP analyses were performed using the CytExpert 2.3 software [21].

Sperm cell viability was determined using the SYBR and PI protocol reported in a
previous study [19] with some modification. The frozen-thawed sperm sample was diluted
to 5 × 106 sperm in 492 µL of PBS. Subsequently, 5 µL of SYBR-14 and 3 µL of PI were
added to the sperm sample, followed by incubation in a water bath at 37 ◦C for 15 min in a
dark room. After incubation, the debris (non-sperm) was gated out, and sperm viability
analyses were performed using the CytExpert 2.3 software.

2.5. Oxidant and Antioxidant Parameter Determination

For the determination of oxidative stress parameters after thawing (37 ◦C 30 s), the
semen samples were washed three times with PBS by centrifugation at 800× g for 20 min
with a refrigerated centrifuge to separate them from the diluent. The supernatant was
then completed up to 0.5 mL with PBS. The specimens were taken to falcon tubes in ice
for homogenization. The sonication treatment was repeated six times by keeping them
in the ice for 30 s after a ten-second sonication process. The level of malondialdehyde
(MDA), indicative of lipid peroxidation, was measured in accordance with a previously
reported method [22]. In this method, lipid peroxides react with thiobarbituric acid and
absorb at 532 nm. The amount of MDA was calculated in units of nmol/mL. According
to Ellman’s method, Glutathione (GSH) was measured spectrophotometrically at 412 nm,
and the amount was calculated in units of mg/dL [23]. We used a colorimetric test kit
(Rel Assay Diagnostics, Gaziantep, Turkey) for the measurement of total antioxidant
status (TAS; as mmol/L in 660 nm). In this method, the oxidized radical 2,20 -azino-bis-
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the kit is reduced by the antioxidant
compounds in the samples examined, and color changes are observed [24]. A colorimetric
test kit (Rel Assay Diagnostics, Gaziantep, TR) was used for the measurement of total
oxidant status (TOS). The oxidation of the Fe2+ in the kit reduced to Fe3+ by oxidizing com-
pounds was determined spectrophotometrically at 660 nm, and the results were calculated
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in units of µm/L. The oxidative stress index (OSI) was calculated according to the formula
OSI = [(TOS)/(TAS × 100)]. TOS (as µmol/L in 660 nm).

2.6. Statistical Analysis

The number of repetitions in the study was ten. The homogeneity of variances was
determined by using the obtained numeric data, the Shapiro-Wilk normality test, and
Levene’s test. The results are expressed in tables as mean (X) ± standard deviation (SD).
Spermatological parameters were modulated to the GLM procedure of SPSS 22.0 (SPSS
Inc., Chicago, IL, USA). Post hoc testing was performed for identifying the sources of
significant interactions between parameters. All statistical analysis results were inter-
preted with a minimum margin of error of 5% (p < 0.05), and this rate was considered
statistically significant.

3. Results
3.1. Sperm Motility and Kinetic Parameters

Although the highest total motility results were obtained in H10 and H50, it was
determined that the doses of H added to the sperm extender did not have a statistically
significant preservation effect on progressive motility in comparison to the control group
(Table 1; p > 0.05). Additionally, it should be noted that the dose of H500 had a negative
effect on motility. Except for STR, spermatozoon kinetic parameters were found to be
significantly different in all treatment groups (p < 0.05), but an advantageous result was
not obtained compared to C (Table 1). In particular, VAP, VSL, and VCL values were found
to be greater in the C group than those in the treatment groups. It was determined that the
treatment did not have positive effects on kinetic parameters.

Table 1. Sperm motility and kinetic parameters.

Parameters C H10 H50 H100 H250 H500 p

Prog. mot. (%) 13.73 ± 1.80 a 16.99 ± 3.87 a 16.08 ± 0.96 a 13.13 ± 1.25 a 11.35 ± 1.85 ab 7.34 ± 0.83 b *
Total mot. (%) 51.92 ± 3.68 c 67.70 ± 1.32 a 63.59 ± 3.23 ab 55.85 ± 3.72 bc 53.85 ± 4.86 bc 38.14 ± 3.80 d *
VAP (µm/s) 44.31 ± 4.89 a 36.52 ± 0.99 b 34.85 ± 2.07 b 33.94 ± 1.63 b 38.51 ± 1.67 ab 31.96 ± 1.44 b *
VSL (µm/s) 26.85 ± 3.16 a 22.24 ± 0.85 b 20.39 ± 1.32 b 20.87 ± 1.31 b 23.94 ± 0.82 ab 19.99 ± 1.54 b *
VCL (µm/s) 64.45 ± 4.42 a 58.21 ± 0.98 b 56.97 ± 2.12 bc 53.17 ± 1.63 bc 57.59 ± 1.89 bc 51.47 ± 1.21 c *
ALH (µm/s) 2.37 ± 0.11 ab 2.43 ± 0.07 a 2.43± 0.08 a 2.15 ± 0.03 b 2.19 ± 0.06 ab 2.18 ± 0.10 ab *

BCF (Hz) 8.76 ± 0.99 ab 8.19 ± 0.26 ab 8.04 ± 0.22 ab 8.51 ± 0.29 ab 9.14 ± 0.32 a 7.73 ± 0.40 b *
LIN (%) 41.71 ± 2.63 a 37.26 ± 1.17 ab 35.57 ± 1.37 b 37.81 ± 1.48 ab 40.58 ± 0.83 ab 38.41 ± 2.79 ab *
STR (%) 59.20 ± 1.37 57.71 ± 0.73 56.84 ± 0.54 58.20 ± 0.93 59.38 ± 0.83 59.15 ± 2.19 -

pOB (µm s−1) 66.71 ± 2.99 a 61.67 ± 1.23 ab 59.97 ± 1.86 b 61.85 ± 1.54 ab 65.11 ± 0.83 ab 60.86 ± 2.28 b *
a, b, c, d Different superscripts within the same row demonstrate significant differences (* p < 0.05). - No significant
difference (p > 0.05), mean (±SE).

3.2. AI, MMP, Viability, and LPL Evaluation

Table 2 shows the results of the application of different H doses on AI, MMP, viability,
and LPL after freeze-thawing in ram semen. These data indicated that AI and LPL were
positively affected by the H10 dose (p < 0.05). No dose of H caused a positive change in
MMP (p < 0.05). Additionally, the viability parameter indicated that the highest dose of
H500 caused toxic effects, because it was above the threshold (Table 2).
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Table 2. AI, MMP, viability, and LPL values.

Parameters C H10 H50 H100 H250 H500 p

AI (%) 26.20 ± 2.36 b 32.78 ± 1.82 c 23.56 ± 1.43 ab 25.94 ± 1.10 b 20.67 ± 0.43 b 13.66 ± 0.99 a *
MMP (%) 30.11 ± 2.88 c 34.45 ± 1.36 c 20.30 ± 2.16 ab 15.17 ± 3.70 ab 21.64 ± 2.60 b 13.27 ± 0.21 a *

Viability (%) 62.50 ± 3.07 b 66.39 ± 0.97 b 61.52 ± 1.46 b 60.74 ± 1.03 b 57.12 ± 2.70 b 43.92 ± 8.72 a *
LPL (%) 77.97 ± 7.91 bc 64.95 ± 2.78 a 71.21 ± 3.23 b 73.64 ± 6.21 b 85.09 ± 9.85 bc 94.29 ± 1.58 c *

a, b, c Different superscripts within the same row demonstrate significant differences (* p < 0.05), mean (±SE).

3.3. Chromatin Damage Evaluation

According to the data, sperm tail length, tail DNA, and tail moment were preserved at
the H10 and H50 doses compared to the control group. It was determined that chromatin
damage increased at high doses of H (Table 3; p < 0.05).

Table 3. Chromatin damage values.

Parameters C H10 H50 H100 H250 H500 p

Tail length (µm/s) 25.23 ± 0.92 b 14.00 ± 0.99 d 14.07 ± 0.83 d 18.46 ± 1.29 c 25.12 ± 1.12 b 35.03 ± 1.16 a *
Tail DNA (%) 36.67 ± 3.13 b 23.75 ± 2.17 a 22.72 ± 2.40 a 34.70 ± 0.96 b 39.00 ± 2.01 b 58.42 ± 3.57 a *

Tail moment (µm/s) 20.66 ± 1.86 b 15.51 ± 1.78 cd 12.36 ± 1.05 d 18.91 ± 0.75 bc 23.22 ± 1.18 b 35.67 ± 2.06 a *
a, b, c, d Different superscripts within the same row demonstrate significant differences (* p < 0.05), mean (±SE).

3.4. Oxidant and Antioxidant Parameters

As seen in Table 4, there were no significant changes in TOS and OSI (p > 0.05). While
it was expected that the high GSH activity at the H500 dose and the low MDA level at the
H100 and H500 doses would positively affect the quality of semen in these groups, this
expectation did not materialize.

Table 4. GSH, MDA, TAS, TOS, and OSI values.

Parameters C H10 H50 H100 H250 H500 p

GSH (mg/dL) 37.30 ± 0.83 ab 35.47 ± 0.45 a 37.46 ± 2.11 ab 36.26 ± 0.45 ab 37.30 ± 0.48 ab 39.36 ± 1.17 b *
MDA

(nmol/mL) 4.63 ± 0.08 a 4.42 ± 0.12 ab 4.45 ± 0.11 ab 4.15 ± 0.10 b 4.39 ± 0.10 ab 4.25 ± 0.06 b *

TAS (mmol/L) 17.02 ± 0.54 ab 17.20 ± 2.19 ab 17.24 ± 1.35 ab 16.22 ± 0.51 a 19.61 ± 1.28 b 17.09 ± 1.10 ab *
TOS (µmol/L) 8.66 ± 0.31 9.32 ± 0.31 9.07 ± 0.22 9.40 ± 0.24 9.17 ± 0.13 9.35 ± 0.18 -

OSI 5.12 ± 0.29 5.49 ± 0.35 5.52 ± 0.66 5.81 ± 0.17 4.74 ± 0.21 5.62 ± 0.48 -
a, b Different superscripts within the same row demonstrate significant differences (* p < 0.05). - No significant
difference (p > 0.05), mean (±SE).

4. Discussion

During the long- or short-term storage of semen, temperature, cooling rate, the chemi-
cal contents of diluents, the cryoprotectant ratio, ROS, and seminal plasma components
are the main determinants affecting the viability of sperm cell [25]. In previous studies,
it has been reported that sperm viability and motility, as well as the integrity of both
the plasma membrane and acrosome, are adversely affected after thawing during the
cryopreservation process [26]. The motility and kinetic parameters of the ram semen sam-
ples containing H doses added to Tris-egg yolk extender that were thawed are given in
Table 1. In the present study, it was determined that H applied at low doses did not have
a positive effect on progressive motility, while its application at high doses had a toxic
effect (p > 0.05). In studies conducted with different species, it has been revealed that H
improved some parameters, which contradicted our findings. Samie et al. [27] reported
that H (50 mg/kg/day) administered to rats contributed to an increase in sperm counts
and motility. In another study, 20 µM H treatment during the cryopreservation of human
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sperm significantly improved the motility ratios of sperm cells after cryopreservation [28].
Aksu et al. [29] also showed that the application of H (300 mg/kg/day) for 7 days against
reproductive damage in male rats caused an increase in the percentage of sperm motility. In
another study in contrast with our results, it was demonstrated that a 200 mg/kg/day dose
of H had a protective effect on the reproductive system by reducing degenerative changes
in sperm motility and density in male rats treated with methotrexate [30]. As a result of
an investigation of the effects of H on the toxicity of an anticancer drug, cisplatin, in the
reproductive system, it was reported that a dose of 7 mg/kg/day may be beneficial for
reproductive functions against cisplatin-induced toxicity by causing an increase in sperm
motility [12]. The common result of studies in which positive effects on motility have
been determined is that the negative effects of various sources of toxicity on reproductive
cells can be eliminated by dose-dependent supplements of H. In these studies, the main
reason for the increase in sperm motility was thought to be decreased lipid peroxidation.
Unlike the studies presented above, the reason why no positive improvement was observed
especially in terms of progressive motility in our study was thought to be the effect of the
cryoprotective substances already available in the diluent that was used.

The application of H10 showed a significant effect on AI. This finding was supported
by the low LPL levels at the same dose, which showed that the mitochondrial structure
was preserved at the H10 dose of semen post-thawing. LPL is an important parameter
in determining mitochondrial oxidative damage. The experimental results showed that
the H10 dose was effective in maintaining sperm viability by reducing mitochondrial LPL
after thawing. This was probably because low doses (such as H10 and H50) reduced lipid
peroxidation, and high doses added to the diluent failed to maintain the pH and osmotic
pressure balance. Although the H10 dose showed protective effects against acrosome
membrane defects, cell death could not be prevented at high doses (H250 and H500). The
energy needed by sperm cells for their motility can be provided by high rates of glycolysis
or oxidative phosphorylation [31]. H can be used as a good exogenous antioxidant agent
for sperm cells because it appears to provide low AI and high MMP ratios for the protection
of the plasma membrane and acrosome of sperm cells. It was reported that toxic agents,
which have negative effects on sperm functions, disrupt mitochondrial function and cause
the depolarization of the mitochondrial membrane [32]. This situation in the membrane
potential causes the opening of the cytochrome gates escaping into the mitochondrial pores
and cytoplasm, and thus, the initiation of apoptosis [33]. Studies have shown that the
correlation between MMP and plasma membrane integrity is significant in the preservation
of frozen human [34], bovine [35], and ram [21] semen. In this study, the numerical decrease
in MMP in the frozen-thawed ram semen samples at doses other than H10 compared to
group C showed parallelism with the results of other studies. It was stated that a decrease
in temperature experienced during the freezing process of sperm causes some functional
and structural damage in viability, reducing fertility in rams [36] and bulls [37]. Unlike
our findings, İsmail et al. [38] reported that curcumin nanoparticles (100 µg) added to goat
semen extender preserved sperm viability and plasma membrane integrity. In another
study, Valipour et al. [28] found that 20 µM H treatment during the cryopreservation of
human sperm significantly improved the viability of the sperm after thawing. It was stated
that melatonin showed positive effects on viability by increasing oxidative phosphorylation
and facilitating the transition to the mitochondrial permeability transition pore [39]. While
curative results were obtained on AI and LPL at the H10 dose, the absence of a progressive
effect on viability and PMP in all treatment groups should be noted. These results were
interpreted as the insufficient reduction in oxidative stress in the environment.

Scientific data have shown that excessive ROS production leads to chromatin muta-
tions and reduces ATP production, resulting in slowing sperm motility [40]. The preserva-
tion of the chromatin integrity of sperm cells is one of the success criteria in transferring
genetic information to the next generations [41]. Oxidative degradation can cause chro-
matin base sequence degradation, fragmentation, and cross-link of proteins [42]. Structural
damage to sperm cell chromatin adversely affects oocyte penetration and fertilization
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ability [43]. Sperm chromatin is very easily affected by external factors, so it must be
packaged in a very dense state to protect DNA. In this process, oxidative stress caused
by ROS production may prevent chromatin packaging and cause the peroxidation of the
sperm plasma membrane [44]. Similar to our study, there are some studies reporting that
chromatin damage is prevented by antioxidant agents in ram sperm to ensure cryopreser-
vation after thawing [41,45]. In accordance with the conclusions reached here, Trivedi
et al. [46] determined that H doses of 25, 50, and 100 mg/kg daily had a protective effect on
tail length, tail moment, and tail DNA in rats in a testicular toxicity model. Vijaya Bharathi
et al. [47] explained that glucosyl H, a modified form of H, had a protective effect against
chromatin damage in the sperm cells of rats, in which reproductive toxicity was induced
by increasing cellular antioxidant levels. In accordance with this study, 50 and 100 µg/mL
thymoquinone added to Tris semen extender reduced chromatin damage in Sönmez rams
in a previous study by our research group [48]. Additionally, the ability of H to stabilize the
mitochondrial membrane was reported to protect sperm cells from apoptosis and increase
mitochondrial functions [28]. There is some evidence that H has a protective effect against
oxidative and nitrosative modifications in DNA induced by endogenous and exogenous
ROS production [27,45,49]. Our results revealed important data on the effects of adding H
during semen cryopreservation, such as the reduction or complete elimination of chromatin
damage, depending on the doses of H.

Polyunsaturated fatty acids in the spermatozoon membrane are exposed to excessive
ROS attacks during the freeze-thawing process, and thus, they are oxidized, which results
in increased LPO [50]. Contrary to our findings, Valipour et al. [28] showed that the level
of ROS formation increased during the freeze-thawing process, and 20 µM H treatment
significantly reduced ROS levels. In another study, the authors observed that testicular
damage caused by diabetes increased MDA levels, but with H (50 mg/kg/day) treatment,
MDA decreased, GSH increased, and TAS increased simultaneously [27]. Trivedi et al. [44]
stated that H (25, 50, and 100 mg/kg) treatment applied together with a chemotherapeutic
agent, doxorubicin, significantly reduced MDA in rat sperm, increased GSH levels, and
thus, significantly reduced oxidative stress. Unlike the findings obtained in this study,
Helmy et al. [51] reported that H showed positive effects in regulating the antioxidant
capacity of testicular tissue and reducing cell death, testicular histology, and oxidative
damage indicators. In another study, it was shown that H regulated testicular insults and
had a protective effect against oxidative stress in an experimental varicocele model [52].
However, our findings revealed that the GSH levels of the semen samples after thawing did
not show a significantly effective activity at any dose of H. Additionally, we cannot say that
the H doses that were used in our study had a significant effect on TAS levels compared to
the control group. The reason for this may be that these selected doses were not sufficient
for an endogenous enzyme activity or in the context of the semen samples of the selected
animal species. In line with our results, Kaneko et al. [53] reported that low GSH levels may
reduce spermatogenesis and TAS levels. Similarly, a study on human semen reported no
correlation between seminal parameters and ROS [54]. There was a negative relationship
between oxidative stress and sperm cell quality [55]. It was observed that antioxidant
molecules, especially low-weight molecules in the seminal plasma, can freeze and preserve
semen better [56]. Kovalski et al. [57] emphasized the importance of select substances with
low molecular weight in non-enzymatic exogenous antioxidant applications. It was shown
that H, the exogenous antioxidant agent chosen for this study, plays a relatively minor
role in increasing the antioxidant levels of semen in cryopreservation, depending on its
molecular weight.

5. Conclusions

The positive and negative effects of many endogenous and exogenous antioxidant
substances on cryopreservation have been documented by scientists in many regions of
the world. However, some plant extracts used in studies may have harmful effects on
reproductive functions, even if they have antioxidant activities. Therefore, it is important to
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elucidate the bioactive components, detailed chemical structures, animal species differences,
and effective doses of such agents. In this study, H that was added to ram semen was
directly supplied in pure form to determine its cryopreservative effects. For this reason, the
results of our study on the cryopreservative effects of H at the determined doses revealed
clearer information. Our results suggested that H doses are not very effective on semen
progressive motility, but the H10 dose is effective in protecting AI and preventing chromatin
damage by reducing lipid peroxidation levels. It was considered that it shows this effect by
eliminating oxidative stress products in the environment in a non-enzymatic manner.
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