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Partial wave analysis for central pions
produced in diffractive events with ALICE

at LHC

Thesis presented as a partial requirement for obtaining the degree of Master in
Science Applied Physics

Presented by

Irandheny Yoval Pozos

Supervised by

Ph. D. Mario Rodŕıguez Cahuantzi

Puebla , Mexico July 2022





Title: Partial wave analysis for central pions produced in diffractive

events with ALICE at LHC.

Student: Irandheny Yoval Pozos

COMMITTEE

Ph. D. Cristian Heber Zepeda Fernández

President
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Abstract

ALICE is an experiment designed primarily for the study of matter under extreme

conditions of temperature and energy density, located at one of the interaction points

of the LHC at CERN. Due to its design characteristics, with ALICE it is possible

to collect diffractive events in proton-proton collisions. In this work we present the

analysis of central production events with 2 and 4 pions. The technique known as

partial wave analysis is used to give an interpretation of the angular distributions of

2 and 4 pion events within the Collins-Soper reference frame for the diffractive events

collected by ALICE during the Run 2 of LHC for proton+proton collisions at 13 TeV

assuming a contribution of the f2(1270) resonance..
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Chapter 1

Introduction

ALICE is one of the four main experiments located at CERN’s LHC, located on the

French-Swiss border, which focuses on the study of the nuclear matter created in

proton-proton and heavy-ion collisions, i.e. extreme conditions of temperature and en-

ergy density [6]. The trigger of ALICE was configured to identify and collect, diffractive

processes in proton-proton collisions are experimentally characterized by pseudorapid-

ity gaps.

With data collected between 2009 and 2014, ALICE reported the measurement of the

cross sections for elastic, inelastic and diffractive in proton-proton collisions at centre

of mass energy
√
s = 0.9, 2.7and7 TeV [5]. The fractions of diffractive processes in

inelastic collisions were calculated from a detailed study of the space gaps (rapidity

gaps) in terms of the pseudorapidity distributions of particles produced in proton-

proton collisions. The cross sections for single and double diffraction reported by

ALICE are:

σSD = 12.2+3.9
−5.3(syst)mbyσDD = 7.8± 3.2(syst)mba

√
s = 2.76TeV

σSD = 14.9+3.4
−5.9(syst)mbyσDD = 9.0± 2.6(syst)mba

√
s = 7TeV

The determination of these cross sections was carried out by quantitative estimation

of the combination of the relative frequencies of the number of diffractive process

1



2 Chapter 1. Introduction

events identified by the ALICE trigger system with the inelastic cross sections. This

result showed the capabilities of the ALICE trigger system for the identification and

characterization of diffractive processes in proton-proton collisions at LHC energies.

Diffractive processes were introduced to high energy physics in the 1950’s by a group

of physicists including Robert Serber, Roy J. Glauber, Evgeniy L. Feinberg, Isaak

Pomeranchunk, among others. Hadronic cross sections at high energies are usually

described by Regge theory [9]. These phenomena in proton-proton collisions represent

more than 25% of the effective cross section of the collision [19]. These collisions are

dominated by a low transferred momentum, so the study of them shows an opportunity

to deepen the knowledge of the proton structure, as well as of the non-perturbative

processes of QCD.

The study of the central production (CEP) diffractive processes can be performed

with the partial wave analysis technique [13]. To make use of this tool it is necessary

to consider a reference system where the angular dependence of the differential cross

section is proportional to (1+cos2(θ)). This is the case of the Collins-Soper framework

[16], from which it is possible to study the decay processes ranging from two to N

bodies, as well as the resonances f0(980), f0(1710) and f0(1270).

Partial wave analysis (PWA) is a tool used to describe scatering process at quantum

level. We know the expansion of the total amplitude, which can be decomposed into

a sum of partial waves [10, 12, 20]. The PWA has a direct connection with the optical

theorem, which establishes the relationship between the cross-section and the scattering

amplitude. For this reason it is also possible to estimate the contribution of each partial

wave in terms of the cross section [13].

In this thesis an angular study of central production events in diffractive processes for

2 and 4 pions in the Collins-Soper reference frame is presented. A discussion of the

partial wave formalism is also discussed using the previous ALICE results for 7 TeV.



Chapter 2

Theoretical framework

2.1 Diffractive Processes

The study of diffractive processes was introduced by Robert Serber, Roy J. Glauber,

Isaak Pomeranchunk, Evgeniy L. Feinberg, to mention a few [19]. The precedent studies

in diffraction phenomena were carried out by Leonardo Da Vinci in 16th century and

Francesco Maria Grimaldi in 1665. The study of diffractive processes in high energy

physics is analogous to the phenomenon that occurs with the diffraction of light.

The diffractive processes in proton-proton collisions represent more than twenty-five

percent of the collision cross section [19], in addition to the fact that these collisions

are dominated by a low transferred momentum, so the study of them represents an

opportunity to deepen the knowledge of the proton structure, as well as of the non-

perturbative processes of QCD [19]. On the other hand, it is important to stress that

hadronic cross sections at high energies are usually described under the Regge theory

[9], through the exchange of pomerons.

The first definition of hadronic diffraction was established by Good and Walker, in 1960,

where they point out that “A phenomenon is predicted in which a high energy par-

ticle beam undergoing diffraction scattering from a nucleus will acquire components

corresponding to various products of the virtual dissociations of the incident parti-

3



4 Chapter 2. Theoretical framework

cle[...] These diffraction-produced systems would have an extremely narrow transverse

momentum distribution and would have the same quantum numbers of the initial par-

ticle” [8].

Hadronic diffraction is usually defined as a process where there’s not interchange of

quantum numbers in the collision. In addition, there must be a conservation of quantum

numbers between the incident and resulting particles, so this process occurs at high

energies [8], these diffractive reactions from the definition proposed by Good and Walker

can be classified as follows:

• Elastic Scattering, the incident and produced particles are the same.

P1 + P2 −→ P
′

1 + P
′

2

• Single Diffraction, in the final state of the collision one of the incident particles

leaves intact, while the other dissociates producing new particles, conserving the

same quantum numbers.

P1 + P2 −→ P
′

1 +X

• Double Diffraction, in the final state of the collision, the incident particles disso-

ciate, thus generating new particles that conserve the same quantum numbers as

the incident particles.

P1 + P2 −→ X1 +X2

• Central Diffraction, the resulting particles in the final state of the collision cor-

respond to the incident ones, but there is also a production of particles given by

the double pomeron exchange.

P1 + P2 −→ P
′

1 +X + P
′

2

where X represents the other particles produced by the dissociation of the initial par-

ticles, as well as, those originating from the double pomeron exchange.
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Diffractive processes have the characteristic of always conserving the quantum numbers

before and after the collision. The following image shows the four Feynman diagrams of

the diffractive processes that we can study in proton-proton collisions, it is important

to note that the present work focuses on the study and analysis of the central diffractive

processes.

Figure 2.1: Feynman diagrams for diffractive processes representing pomeron ex-
changes. From left to right, elastic scattering, single diffraction, double diffraction
and central diffraction. [24]

From the experimental point of view, the definition given by Good and Walker presents

a limitation, since the final state of the collision may not be reconstructed in its entirety,

we would not know if there is conservation of quantum numbers with respect to the

initial state, therefore, it is essential for the study of these phenomena to establish an

experimental definition that meets the requirements of these processes established in

1960.

The equivalent definition used for the experimental study of these processes states that:

”A diffractive reaction is characterized by a large, non-exponentially suppressed, rapid-

ity gap in the final state” [8], which indicates that a diffractive process is characterized

by the presence of rapidity gaps between the particles produced after the collision, in

the case of the central diffraction there is a double gap in the final state, as shown in

Figure 2.1 .

The theory that focuses on the study of diffractive phenomena is known as Regge

Theory, which explains in general terms how these phenomena are dominated by the

exchange of pomerons between the incident particles when interacting with each other.

To speak of diffraction within this theoretical framework is a direct reference to the

physics of pomerons, as well as to the exchange of vacuum quantum numbers.
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2.2 Kinematic Variables

The study of diffractive processes from the experimental point of view focuses on

the analysis of the final states of the collision, since these states present specific or

very particular kinematic considerations. In this chapter, generalities of the kinematic

variables of diffractive phenomena are presented.

2.2.1 Mandelstam’s variables

Mandelstam variables are commonly used for the description of processes in which we

have two incoming particles in the initial state and two particles in the final state, the

conservation of momentum is expressed as p1 + p2 = p3 + p4, where p1 and p2 refer to

the moments of particles 1 and 2 respectively before the collision, while p3 and p4 are

the moments of particles 3 and 4 respectively after the collision. From these 4-moments

it is possible to establish a relation between the momentum and the invariant mass of

the i-particle, given by p2
i = m2

i for i = 1, 2, 3, 4, from which we have 8 constraints.

”Altogether, this gives us 4x4 − 8 = 8 independent momentum variables, and the

number of independent Lorentz-invariant combinations of these variables is only 8−6 =

2 ” [25], which correspond to the two degrees of freedom of the system that are related

to the energy of the center of mass and the scattering angle of the particles. It is

convenient to use three independent Lorentz variables, which are called Mandelstam

variables defined as follows:

s = (p1 + p2)2 = (p3 + p4)2

t = (p1 − p3)2 = (p2 − p4)2

u = (p1 − p4)2 = (p2 − p3)2

The Feynman diagrams corresponding to each of these variables are presented below

Where the variable s is related to “the square of the total center-of-mass (CM) energy

and t is the squared momentum transfer” [8], these variables satisfy the following
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Figure 2.2: The figure on the left corresponds to the s-channel, the one in the center
to the t-channel and the one on the right to the u-channel [25].

s+ t+ u = (p1 + p2)2 + (p1 − p3)2 + (p1 − p4)2

= 3p2
1 + p2

2 + p2
3 + p2

4 + 2 (p1p2)− 2 (p1p3)− 2 (p1p4)

= p2
1 + p2

2 + p2
3 + p2

4 + 2p1 × (p1 + p2 − p3 − p4 = 0)

= p2
1 + p2

2 + p2
3 + p2

4

= m2
1 +m2

2 +m2
3 +m2

4

Now, consider the center-of-mass reference frame, where p1 + p2 = p3 + p4 = 0 and the

variable s relates to the collision energy of the particles, where
√
s = E1+E2 = E3+E4,

while the variable t parametrizes the scattering angle of the particles, through the fol-

lowing expression t = − (p3 − p1)2 = −p2×(1− cos θ), as a consequence, “the Lorentz-

invariant definitions translate the CM-frame energy and the CM-frame scattering angle

to any other frame of reference” [25].

2.2.2 Rapidity and Pseudorapidity

In high energy physics experiments the collisions between hadrons consider a particle

of energy E that moves along the beam axis or z-axis, these processes, in a general way

expose how the longitudinal momentum can acquire any value, while the transverse

momentum usually takes only small values. The kinematic variable called rapidity (y)

is employed to expose the longitudinal momentum (pz).
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y =
1

2
ln
E + pzc

E − pzc
(2.1)

Equation 2.1 indicates that in the final state of a collision, if a relativistic particle results

with a direction perpendicular to the beam axis then the momentum component pz

will be very small so the rapidity will tend to zero, likewise, when the resulting particle

has a direction along the beam axis, the rapidity will acquire a value that tends to

±∞, this relationship is clearly related to the angle of emission of the particles after

the collision.

The rapidity is a kinematic variable that is transformed by the Lorentz boost along the

z-axis. To demonstrate this change we start from equation 2.1 and consider an increase

in β, so that E −→ γ (E + βpz) and pz −→ γ (pz + βE) where γ = 1√
1−β2

, thus

y −→ y +
1

2
log

(
1 + β

1− β

)
= y + yboost (2.2)

So that, “any rapidity difference is invariant under longitudinal boosts and remains

the same in all collinear frames” [8], likewise, in the non-relativistic limit when v � 1

occurs, we have that energy E −→ m and pz −→ mvz, so the rapidity decreases,

although for a particle without mass the energy E =| p |. This kinematic variable can

be expressed in terms of the angle θ, which is related to the dispersion of the particle

taking as reference to the z-axis, the rapidity can be expressed as:

y =
1

2
ln

1 + cos θ

1− cos θ
= −ln tan

θ

2
(2.3)

From 2.3 the pseudorapidity as

η = −ln tan
θ

2

If θ tends to zero the pseudorapidity of the particle approaches to infinity, this kinematic

variable is one of the most used in studies of collisions between hadrons, because its

angular dependence can be understood in terms of the phase space covered by the

particle detectors in collider experiments.
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It is important to note that rapidity and pseudorapidity coincide in the limit for mass-

less particles, so that, y ' η , although this can also happen when you have particles

where pT � m or pz � m .

2.2.3 Cross section

The cross section in high-energy physics refers to the probability that some phenomenon

or process will occur after a collision, and is represented by the letter σ and is measured

by effective areas (barns or millibarns), which are “are used to describe total yields of

reactions regardless of energies of emitted particles or of partial distributions” [21].

It should be noted that we can find differential and double differential cross-sections,

which will be discussed below.

The differential cross section, i.e., dσ
dE

or dσ
dθ

are used to study the particle production

in collider experiments by means of spatial and energy distributions. It is important

to highlight those spatial or angular distributions, whose relation are given in terms of

the solid angle (Ω) as follows dσ
dΩ

.

On the other hand, the double differential cross sections are expressed in terms of d2σ
dEdθ

and d2σ
dEdΩ

, whose units of measurement are mb
MeV−rad and mb

MeV−str respectively. These

cross sections are studied in terms of the energy spectra and angular distribution.

Experimentally, these cross sections are measured from the number of particles that

were produced after the collision within the angular interval of θ y θ+ dθ , and energy

range from E to E + dE .

Finally, it should be noted that the total cross section is invariant to the different

reference frames, while the differential cross sections may or may not be invariant

quantities, therefore, it is preferable to establish the differential cross sections in each

of the considered reference frames.
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2.3 Partial Wave Analysis

Partial Wave Analysis is a tool used to study scattering phenomena. This technique

allows the description of the total amplitude of elastic scattering, where the total

amplitude can be visualized as a decomposition of partial waves, from which one or

several components of the scattering process can be described, although it is possible to

decompose these waves into more partial waves, until obtaining a system that describes

even the smallest partial waves [23].

The development of this technique can be carried out in various reference frames such

as Collins-Soper and Gottfried-Jackson, from which it is possible to analyze decay pro-

cesses ranging from two to N bodies. It is important to point out that these frameworks

also allow the representation of phenomena in which the double pomeron exchange oc-

curs.

2.3.1 Partial Wave Analysis Formalism

The Partial Wave Analysis formalism arises by considering particles incident on a

spherically symmetric potential V(r), in which they conserve their angular momentum.

In particular, in the development of the Partial Wave Analysis technique we consider

that each of the waves associated to the particles is composed by a group of harmonic

waves which are multiplied by a radial function.

Now, we associate a wave function to the incident particle traveling along the z-axis,

which is given by

ψinc = eikz = eikr cos θ

This function can be expanded in terms of the coefficient l to establish an angular

component using spherical harmonics Y m
l (θ, φ) and a radial function R(r), as follows

ψinc =
∞∑
l=0

R(r)Y m
l (θ, φ) (2.4)
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It is important to note that the spherical harmonics are solutions of the angular part

of the Laplace’s equation, in this case, it is necessary to choose a polar symmetry,

therefore, it is essential to make the spherical harmonics independent of φ in order to

express them in terms of the Legendre polynomials., i.e., Y m
l (θ, φ) = Pl(cos θ) , where

Pl(cos θ) are the Legendre polynomials, on the other hand, the radial function can be

written as R(r) = AlJl(kr) where Jl(kr) represents the spherical Bessel functions and

Al is a normalization factor.

We proceed to substitute Y m
l and R(r) in the expression (2.4)

ψinc =
∞∑
l=0

AlJl(kr)Pl(cos θ)

Note that the spherical Bessel functions are being considered for very large values of

r, so that Jl is given by

Jl(kr) =
1

kr
sin

(
kr − l

2
π

)

Thus our incident wave function is as follows

ψinc =
1

kr

∞∑
l=0

Al sin

(
kr − l

2
π

)
Pl(cos θ)

Now, we calculate the value of the normalization factor, for this we change l to n

ψinc = eikr cos θ =
∞∑
n=0

AnJn(kr)Pn(cos θ)

We multiply both sides of the equality by Pl(cos θ) and integrate from 0 to π

∫ π

0
eikr cos θPl(cos θ)dθ =

∞∑
n=0

AnJn(kr)
∫ π

0
Pn(cos θ)Pl(cos θ)dθ

Let x = cos θ so that dx = − sin θdθ then dθ = − dx
sin θ

, so the integral takes the

following form

∫ 1

−1
eikrxPl(x)dx =

∞∑
n=0

AnJn(kr)
∫ 1

−1
Pn(x)Pl(x)dx (2.5)
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Note that in this last expression, we can make use of the orthogonality property of

Legendre polynomials, which establishes that

∫ 1

−1
Pn(x)Pl(x)dx =

2

2n+ 1
δnl

for n = l, substituting this property in equation (2.5), we obtain

∫ 1

−1
eikrxPl(x)dx =

∞∑
n=0

AnJn(kr)
2

2n+ 1
δnl (2.6)

As we can see in equation (2.3), we have two cases for the Kronecker delta

• First case: if n = l then δ = 1

• Second case: if n 6= l then δ = 0

For the following development, it is necessary to start from the first case of the Kro-

necker delta, then ∫ 1

−1
eikrxPl(x)dx =

∞∑
l=0

AlJl(kr)
2

2l + 1
(2.7)

Integrating by parts the left hand side of equation (2.7) gives

∫ 1

−1
eikrxPxdx =

1

ikr

[
eikrPl(1)− e−ikrPl(−1)

]
−
∫ 1

−1
P ′l (x)

eikrx

ikr
dx

=
1

ikr

[
eikrPl(1)− e−ikrPl(−1)

]
− 1

(ikr)2

[
eikrP ′l (1)− e−ikrP ′l (−1)

]
+ . . .

And making use of the asymptotic approximation in the second term of the right side

of the equality we have that this tends to zero, so the integral is equal to

∫ 1

−1
eikrxPl(x)dx =

1

ikr

[
eikrPl(1)− e−ikrPl(−1)

]

Remembering that Pl(1) = 1 and Pl(−1) = (−1)l = eiπl ,

∫ 1

−1
eikrxPl(x)dx =

1

ikr

[
eikr − e−ikr(−1)l

]
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=
1

ikr

[
eikr − e−ikreiπl

]
Thus equation (2.4) can be expressed as

1

ikr

[
eikr − e−ikreiπl

]
=
∞∑
l=0

AlJl(kr)
2

2l + 1

Substituting the spherical Bessel function in the previous expression

1

ikr

[
eikr − e−ikreiπl

]
=
∞∑
l=0

Al

[
1

kr
sin

(
kr − l

2
π

)]
2

2l + 1

=
1

kr

∞∑
l=0

Al sin

(
kr − l

2
π

)
2

2l + 1

Multiplying both sides of the equality by eiπ
l
2

eiπ
l
2

ikr

[
eikr − e−ikreiπl

]
=

1

kr

∞∑
l=0

eiπ
l
2Al sin

(
kr − l

2
π

)
2

2l + 1

=⇒ eiπ
l
2

ikr

[
eikr−iπ

l
2 − e−ikr+iπ

l
2

]
=

1

kr

∞∑
l=0

Al sin

(
kr − l

2
π

)
2

2l + 1

=⇒ eiπ
l
2

i

[
ei(kr−π

l
2

) − e−i(kr−π
l
2

)
]

=
∞∑
l=0

Al sin

(
kr − l

2
π

)
2

2l + 1

=⇒ 2eiπ
l
2

ei(kr−π l2 ) − e−i(kr−π l2 )

2i

 =
∞∑
l=0

Al sin

(
kr − l

2
π

)
2

2l + 1

Making use of the sin x = eix−e−ix
2i

property, we have

2eiπ
l
2 sin

(
kr − π l

2

)
=
∞∑
l=0

Al sin

(
kr − l

2
π

)
2

2l + 1

=⇒ 2eiπ
l
2 =

∞∑
l=0

Al
2

2l + 1

We proceed to clear the normalization factor

Al = (2l + 1)eiπ
l
2
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Note that

eiπ
l
2 =

(
ei
π
2

)l
=
(

cos
(
π

2

)
+ i sin

(
π

2

))l
= il

Thus the normalization factor is given by

Al = (2l + 1)il

Since we know the normalization factor it is possible to write to the total wave function

at long distances as

ψ = ψinc + ψscatt = eikr cos θ + f(θ, φ)
eikr

r

=
∞∑
l=0

AlJl(kr)Pl(cos θ) + f(θ, φ)
eikr

r

=
∞∑
l=0

(2l + 1)ilJl(kr)Pl(cos θ) + f(θ, φ)
eikr

r

=
1

kr

∞∑
l=0

(2l + 1)il sin

(
kr − l

2
π

)
Pl(cos θ) + f(θ, φ)

eikr

r

=
1

kr

∞∑
l=0

(2l + 1)il
(
eikr(−i)l − e−ikril

2i

)
Pl(cos θ) + f(θ, φ)

eikr

r
(2.8)

Phase shifts

We proceed to calculate the total wave function, for this we have to solve the Schrödinger

equation independent of time

(
− h̄2

2m
∇2 + V (r)

)
ψ = Eψ (2.9)

Where ψ is given by

ψ =
∞∑
l=0

R(r)Y m
l (θ, φ)

On the other hand, let us remember that the Laplacian in spherical coordinates is

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
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Now, let’s consider a specific value of l and introducing the wave function and the

Laplacian in equation (2.9) we have

(
− h̄2

2m
∇2 + V (r)

)
R(r)Y m

l (θ, φ) = ER(r)Y m
l (θ, φ)

=⇒
[
− h̄2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

)
+ V (r)

]
R(r)Y m

l (θ, φ)

= ER(r)Y m
l (θ, φ)

=⇒ − h̄2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

))
R(r)Y m

l (θ, φ)

− h̄2

2m

[
1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
R(r)Y m

l (θ, φ)

+V (r)R(r)Y m
l (θ, φ) = ER(r)Y m

l (θ, φ) (2.10)

From this last expression we can simplify the angular part, we know that the square

of the angular momentum in spherical angular coordinates is

L2 = −h̄2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

)

Previously we have mentioned that the functions Y m
l are called spherical harmonics,

of which the eigenvalue is

L2Y m
l = l(l + 1)h̄2Y m

l

Which we substitute in the equation (2.10)

− h̄2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

))
R(r)Y m

l (θ, φ)− h̄4

2mr2
l(l+ 1)R(r)Y m

l (θ, φ) + V (r)R(r)Y m
l (θ, φ)

= ER(r)Y m
l (θ, φ)

=⇒ − h̄2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

))
R(r)− h̄4

2mr2
l(l + 1)R(r) + (V (r)− E)R(r) = 0

=⇒ − h̄2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

))
R(r) +

[
(V (r)− E)− h̄4

2mr2
l(l + 1)

]
R(r) = 0 (2.11)
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Now, we make the following variable change

u(r) = rR(r)

So that the Radial part can be expressed as

R(r) =
u(r)

r
=⇒ R =

u

r

This last relation allows us to calculate the terms related to the radial part of equation

(2.8).

∂R

∂r
=

∂

∂r

(
u

r

)
=
r
(
∂u
∂r

)
− u

r2
=

1

r

∂u

∂r
− u

r2

=⇒ r2

(
∂R

∂r

)
= r2

(
1

r

∂u

∂r
− u

r2

)
= r

∂u

∂r
− u

=⇒ ∂

∂r

[
r2

(
∂R

∂r

)]
=

∂

∂r

[
r
∂u

∂r
− u

]
=

∂

∂r

(
r
∂u

∂r

)
− ∂u

∂r

=
∂u

∂r
+ r

∂2u

∂r2
− ∂u

∂r
= r

∂2u

∂r2

We proceed to substitute the calculated terms in equation (2.11)

− h̄2

2mr

(
∂2u

∂r2

)
+

[
(V (r)− E)− h̄4

2mr2
l(l + 1)

]
u

r
= 0

=⇒ 1

r

[
− h̄2

2m

(
∂2u

∂r2

)
+

[
(V (r)− E)− h̄4

2mr2
l(l + 1)

]
u

]
= 0

− h̄2

2m

(
∂2u

∂r2

)
+

[
(V (r)− E)− h̄4

2mr2
l(l + 1)

]
u = 0 (2.12)

Now, let V (r) = 0

− h̄2

2m

(
∂2u

∂r2

)
+

[
E − h̄4

2mr2
l(l + 1)

]
u = 0

Note that the above expression is similar to Bessel’s equation, so that the solution to
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this differential equation is given by

u = AJl(kr) +Bnl(kr)

Where A and B are constants. And from the asymptotic behavior it follows that

Jl(kr) =
1

kr
sin

(
kr − l

2
π

)

nl(kr) =
1

kr
sin

(
kr − (l + 1)

2
π

)

Substituting in the radial function

R(r) =
u(r)

r
=

1

r
[AJl(kr) +Bnl(kr)] =

A

r
Jl(kr) +

B

r
nl(kr)

=
A

r

[
1

kr
sin

(
kr − l

2
π

)]
+
B

r

[
1

kr
sin

(
kr − (l + 1)

2
π

)]

And substituting A0 = A
r

and B0 = B
r

, we obtain

R(r) = A0

[
1

kr
sin

(
kr − l

2
π

)]
+B0

[
1

kr
sin

(
kr − (l + 1)

2
π

)]

We introduce the phase shift A0 = Al cos δ and B0 = −Al sin δ

R(r) =
1

kr

[
Al cos δ sin

(
kr − l

2
π

)
− Al sin δ sin

(
kr − (l + 1)

2
π

)]

=
Al
kr

[
cos δ sin

(
kr − l

2
π

)
− sin δ sin

(
kr − (l + 1)

2
π

)]
(2.13)

On the other hand

sin

(
kr − (l + 1)

2
π

)
= sin

(
kr − l

2
π − π

2

)
= − sin

(
π

2
−
(
kr − l

2
π

))

= −
[
sin

(
π

2

)
cos

(
kr − l

2
π

)
− sin

(
kr − l

2
π

)
cos

(
π

2

)]
= − cos

(
kr − l

2
π

)
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We substitute the above in equation (2.13)

R(r) =
Al
kr

[
cos δ sin

(
kr − l

2
π

)
+ sin δ cos

(
kr − l

2
π

)]

=⇒ R(r) =
Al
kr

sin

(
δ + kr − l

2
π

)

Thus we have that the incident wave function is

ψinc =
∞∑
l=0

R(r)Y m
l (θ, φ)

=
∞∑
l=0

Al
kr

sin

(
δ + kr − l

2
π

)
Y m
l (θ, φ)

=
1

kr

∞∑
l=0

(2l + 1)il sin

(
δ + kr − l

2
π

)
Pl(cos θ)

Where Al = (2l + 1)il and Y m
l (θ, φ) = Pl(cos θ). Therefore, the total wave function is

ψinc =
1

kr

∞∑
l=0

(2l + 1)il sin

(
δ + kr − l

2
π

)
Pl(cos θ) + f(θ, φ)

eikr

r

=
1

kr

∞∑
l=0

(2l + 1)il

ei(δ+kr− l
2
π) − e−i(δ+kr−

l
2
π)

2i

Pl(cos θ) + f(θ, φ)
eikr

r
(2.14)

Note that

e±i
l
2
π =

(
±ei

π
2

)l
= ±

(
cos

(
π

2

)
+ i sin

(
π

2

))l
= ±il

Knowing this, we can write the total wave function as follows

ψtotal =
1

kr

∞∑
l=0

(2l + 1)il
(

(−i)lei(δ+kr) − (i)le−i(δ+kr)

2i

)
Pl(cos θ) + f(θ, φ)

eikr

r

=
1

2ikr

∞∑
l=0

(2l + 1)il
(
(−i)lei(δ+kr) − (i)le−i(δ+kr)

)
Pl(cos θ) + f(θ, φ)

eikr

r

On the one hand, the incident wave function can be developed as follows

ψinc = −e
−ikr

2ikr

∞∑
l=0

(2l + 1)i2le−iδPl(cos θ) +
eikr

2ikr

∞∑
l=0

(2l + 1)(il)(−il)eiδPl(cos θ)
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= −e
−ikr

2ikr

∞∑
l=0

Ali
le−iδPl(cos θ) +

eikr

2ikr

∞∑
l=0

Al(−il)eiδPl(cos θ) (2.15)

We take from equation (2.8) the expression corresponding to the incident wave function

and we develop it

ψinc =
1

2ikr

∞∑
l=0

(2l + 1)il
(
(−il)eikr − ile−ikr

)
Pl(cos θ)

= −e
−ikr

2ikr

∞∑
l=0

(2l + 1)i2lPl(cos θ) +
eikr

2ikr

∞∑
l=0

(2l + 1)(il)(−il)Pl(cos θ)

We can see that this last expression has a similar form to equation (2.15), so we proceed

to compare them and obtain the following result

(2l + 1)i2l = Ali
le−iδ

=⇒ Al = (2l + 1)ileiδ (2.16)

We substitute equation (2.16) into equation (2.15) to obtain the incident wave function

ψinc = −e
−ikr

2ikr

∞∑
l=0

(2l + 1)ileiδile−iδPl(cos θ) +
eikr

2ikr

∞∑
l=0

(2l + 1)ileiδ(−il)eiδPl(cos θ)

= −e
−ikr

2ikr

∞∑
l=0

(2l + 1)i2lPl(cos θ) +
eikr

2ikr

∞∑
l=0

(2l + 1)il(−il)ei2δPl(cos θ) (2.17)

Thus we obtain the total wave function

ψtotal = −e
−ikr

2ikr

∞∑
l=0

(2l+ 1)i2lPl(cos θ) +
eikr

2ikr

∞∑
l=0

(2l+ 1)il(−il)ei2δPl(cos θ) + f(θ, φ)
eikr

r

= −e
−ikr

2ikr

∞∑
l=0

(2l + 1)i2lPl(cos θ) +
eikr

r

[
1

2ik

∞∑
l=0

(2l + 1)il(−il)ei2δPl(cos θ) + f(θ, φ)

]

On the other hand, we equal the terms of the equations (2.17) and (2.8) that contain

the coefficient eikr

r

=⇒ eikr

r

[
1

2ik

∞∑
l=0

(2l + 1)il(−il)Pl(cos θ) + f(θ, φ)

]
=
eikr

r

[
1

2ik

∞∑
l=0

(2l + 1)il(−il)ei2δPl(cos θ)

]
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=⇒ f(θ, φ) +
1

2ik

∞∑
l=0

(2l + 1)il(−il)Pl(cos θ) =
1

2ik

∞∑
l=0

(2l + 1)il(−il)ei2δPl(cos θ)

We clear the scattering amplitude

f(θ, φ) =
1

2ik

∞∑
l=0

(2l + 1)il(−il)Pl(cos θ)(ei2δ − 1)

Note that

e2iδ

2i
= eiδ sin δ

and

il(−il) = 1

So the scattering amplitude is in terms of the phase shifts as shown in the following

expression.

f(θ, φ) =
1

k

∞∑
l=0

(2l + 1)eiδ sin δPl(cos θ)

The total cross-section

The cross-section can be expressed in terms of the scattering amplitude, as well as in a

sum over the angular momentum of the partial cross-sections. Thus we have that the

differential cross-section is given by

∂σl
∂Ω

=| f(θ, φ) |2=

∣∣∣∣∣1k
∞∑
l=0

(2l + 1)eiδ sin δPl(cos θ)

∣∣∣∣∣
2

=
1

k2

∣∣∣∣∣
∞∑
l=0

(2l + 1)eiδ sin δPl(cos θ)

∣∣∣∣∣
2

Thus the total cross-section is

σ =
∫ ∂σl
∂Ω

dΩ =
∫ π

0

∫ 2π

0

∂σ

∂Ω
sin θdθdφ =

∫ π

0
|f(θ)|2 sin θdθ

∫ 2π

0
dφ

= 2π
∫ π

0
|f(θ)|2 sin θdθ
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Note that

|f(θ)|2 =
1

k2

∞∑
l=0

∞∑
l′=0

(2l + 1)(2l′ + 1)ei(δ−δ
′) sin δ sin δ′Pl(cos θ)Pl′(cos θ)

Therefore, the total cross-section is given by

σ =
2π

k2

∞∑
l=0

∞∑
l′=0

(2l + 1)(2l′ + 1)ei(δ−δ
′) sin δ sin δ′

∫ π

0
Pl(cos θ)Pl′(cos θ) sin θdθ (2.18)

Using the following expression

∫ π

0
Pl(cos θ)Pl′(cos θ) sin θdθ =

2

2l + 1
δll′

and substituting the above expression in the equation (2.18) and considering l = l′, we

have

σ =
2π

k2

∞∑
l=0

(2l + 1)2 sin2 δ
(

2

2l + 1

)
=

4π

k2

∞∑
l=0

(2l + 1) sin2 δ

Thus

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 δ (2.19)

Optical Theorem

The optical theorem within wave scattering theory establishes a relationship between

the imaginary part of the scattering amplitude with the total cross section. “The the-

orem follows from very general considerations of the conservation of energy and power

flow, and has its counterpart in the quantum-mechanical scattering of particles through

the conservation of probability” [14]. For establishing this theorem, we consider the

scattering amplitude

f(θ, φ) =
1

k

∞∑
l=0

(2l + 1)eiδ sin δPl(cos θ)

We must consider that θ = 0 , so that, Pl(cos θ) = Pl(1) = 1 so we can write the
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scattering amplitude as

f(θ, φ) =
1

k

∞∑
l=0

(2l + 1)eiδ sin δ =
1

k

∞∑
l=0

(2l + 1) (cos δ + i sin δ) sin δ

=
1

k

∞∑
l=0

(2l + 1)
(
cos δ sin δ + i sin2 δ

)
Taking the imaginary part

f(θ, φ) =
1

k

∞∑
l=0

(2l + 1) sin2 δ

It should be noted that the cross-section can be related to the dispersion amplitude as

follows

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 δ

=
4π

k
[Im(f(θ, φ)]

This last equation describes the optical theorem.

2.4 Collins-Soper frame of reference

There are different reference frames used to analyze particle decays, in this section we

focus on the study of the Collins-Soper (CS) reference frame [16], for this, we consider

the angular distribution of a pair of particles produced in high energy hadron collisions.

The CS reference frame is measured in the rest frame of the resulting particle, so, from

the experimental perspective, a double Lorentz transformation from the laboratory

system to CS frame is needed.

From the classical point of view, we must apply a Lorentz boost from the laboratory

frame to the center of mass of the particle we are interested to study, “followed by

a pure rotation such that the new z axis forms equal angles with the initial-state

beams/partons” [18]. Another way to move from the laboratory frame to the CS

system is to employ two consecutive boosts, first a longitudinal boost, which brings
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the particle into the system where its momentum in the z-component is zero pz = 0,

followed by a transverse boost to the center of mass where the transverse momentum

of the particle is equal to the total transverse momentum, which is equal to zero.

Let us consider the central process pa + pb −→ p1 + X + p2 where X ≡ X3 + X4

refers to a pair of particles. We can assume that the 4-momentum is composed of the

energy and each of the projections of the tri-momentum vector onto the x, y and z

axes. Establish the matrix transformation that takes us from the laboratory system to

the Collins-Soper frame of reference as follows:

Λ (LAB −→ CS) =



rE −r 0 −rz

− rEr√
1+r2

√
1 + r2 0 rzr√

1+r2

0 0 1 0

− rz√
1+r2

0 0 rE√
1+r2


(2.20)

Where rE ≡ EX

M
, rz ≡ pXz

M
and r ≡ pT

M
[18]. From this notation, it must be specified

that pXz denotes the longitudinal momentum of the pair of particles, while pT and M

are the transverse momentum and mass of the system X.

Note that this reaction leads us to establish the axes of the CS system from a set of

unit vectors

e3 =
p̂a − p̂b
| p̂a − p̂b |

e2 =
p̂a × p̂b
| p̂a × p̂b |

e1 =
p̂a + p̂b
| p̂a + p̂b |

”This satisfy the condition e1 = e2 × e3. Here p̂a = pa
|pa| , p̂b = pb

|pb|
, where pa, pb are the

three-momenta of the initial protons in the π+π− rest system. There we have p34 = 0

and pa + pb = p1 + p2” [16].

Now that the axes are established, we set the polar angle for the X3 particle relative
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to the axes, i.e.

cos θx3 = p̂3 · e3

In Fig. 2.3 an illustration of the Collins-Soper frame is shown.

Figure 2.3: Collins-Soper framework reference diagram [3]

2.5 Regge Theory

The Regge theory emerged in 1959 when Regge demonstrated that in order to solve

the Schrödinger equation for a non-relativistic scattering potential it is necessary to

consider the angular momentum as a complex variable. Regge proved that for a vast

set of potentials there are unique singularities related to the scattering amplitude which

he called ”poles”, these poles are located in the complex plane and can take positive

values for the angular momentum which correspond to resonances or bound states.

From the perspective of quantum mechanics, “the bound states for spherically symmet-

ric potential fall into families with increasing angular momentum and energy. These

bound states appear as poles of the partial wave amplitude with a given integer an-

gular momentum” [17]. It is important to point out that these poles in the presence

of a well-behaved potential are located in a straight line, which is known as Regge

trajectory, and is represented as follows

αR(t) = αR(0) + α
′

R(0)t

”Where αR(0) is called the intercept and α
′
R(0) the slope” [17], at this point it is
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convenient to establish that the Pomeron is related to the increase of the cross section

as the collision energy increases, in addition to this, it is also considered as one of the

trajectories of the present theory, which has an intercept value of αR(0) = 1.08 and a

slope of α
′
R(0) = 0.25GeV −2. In Fig. 2.4 some Regge trajectories are shown.

Figure 2.4: Regge Trajectories [17]

2.6 Resonances

A resonance usually refers short-lived particles, that exhibits a peak originated at a

specific energy related directly with the cross section. On the other hand, it is relatively

easy to know their energies, since it is enough to observe the maxima or peaks of the

cross sections.

Particle physics points out that after a collision, the particle formed during the process

can decay instantaneously into more stable particles and, taking up the definition of

resonance, it is possible to say that “the energy is a resonant state of the reaction

between the colliding particles, an energy at which the collision is more probable” [11].

2.6.1 Glueballs

Within the theory of Quantum Chromodynamics or by its acronym QCD, a particle

that acts as a carrier of the strong nuclear interaction, which is characterized by being a
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boson and having a color charge, is called a gluon. These particles have the particularity

of being able to interact and couple with other gluons or quarks, therefore, it is possible

that between them they form bound states of gluons, known as Glueballs.

The glueballs have the peculiarity of not having radiative decay but they usually decay

to a pair of pseudoscalars, such as π+π−, K+K−, ηη , among others. The predicted

mass of the glueballs is in the range of 1− 2 GeV [22].

2.7 ALICE experiment

A Large Ion Collider Experiment or ALICE is one of the four main detectors of the

Large Hadron Collider (LHC), it is devoted to the study of matter known as quark-

gluon plasma (QGP). ALICE, measuring 16×16×26m3 and with a mass of ten thousand

tons, located 56 meters underground on the French-Swiss border, it has a collaboration

of approximately 2000 scientists from 174 physics institutes in 40 countries around the

world [1].

The reference system of this detector is based on the Cartesian coordinate system,

whose origin (0,0,0) is located at the center of the central barrel of ALICE, based on

this, it is established that the x axis points to the center of the LHC ring, the y axis

is orthogonal to the xz plane and the z axis is along the beam line. It is important

to note, that this experiment has an excellent particle identification system (PID) and

“was designed to operate at very high multiplicity environment” [24], which occurs in

collisions between heavy ions.

The central barrel of the ALICE experiment consists of 7 subsystems or detectors:

ITS, TPC, TRD, TOF, PHOS, EMCal and HMPID, in addition to these it has a

Muon Spectrometer, located inside a solenoid magnet capable to generate a B = 0.5T,

which is parallel to the beam axis, whose function is to deflect the trajectory of the

particles. On the other hand, at the front and back of the barrel, the detectors PMD,

FMD, V0,T0,ZDC and AD are located.
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Figure 2.5: ALICE experiment [24]

2.7.1 The Time Projection Chamber (TPC)

“The Time Projection Chamber is the main detector of ALICE, used for tracking

and particle identification” [24], is a gas detector composed of a Ne-CO2-N2 (90-10-5)

mixture [2], with a cylindrical shape of approximately 90m3. The TPC has a pseudora-

pidity of | η |< 0.9 and an acceptability along the azimuthal angle of 2π. On the other

hand, the identification of charged particles is carried out from their energy deposition,

which is parameterized by the Bethe-Bloch equation.

2.7.2 The Inner Tracking System (ITS)

The Inner Tracking System, or ITS for its initials, this “is the nearest detector to the

interaction point , roughly 4 cm for the innermost layer, and 43 cm for the outermost”

[24]. The purpose of ITS is the determination and reconstruction of the primary and

secondary vertex, respectively, as well as the tracking and identification of low momenta

particles. The ITS is composed of three subsystems: the SPD, SDD and SSD, which

have concentric silicon detectors.

The SPD constitutes the first two layers of the ITS, this detector reconstructs the

secondary vertices. The next two layers (or intermediate layers of the ITS) are the

SDD detector and the two outermost layers of the detector correspond to the SSD
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whose objective is to align the trajectories obtained by the TPC and the ITS.

2.7.3 The Transition Radiation Detector (TRD)

It is a detector that focuses on electron identification and together with the TPC and

ITS provides the necessary information for the analysis and study of light and heavy

mesons, it is worth noting that the TRD is composed of 522 detectors and “it has 1.15

million of channels of readout, each sampling the signal in 20 time bins. The active

gas is a xenon-CO2 mixture” [2].

2.7.4 The Time of Flight (TOF)

This detector is composed of Multigap Resistive Plate Chambers or by its acronym

(MRPCs), its function is based on the identification of charged particles whose mo-

mentum is of an intermediate range and works as a trigger for events coming from

ultraperipheral collisions and cosmic rays. The TOF has a high precision to measure

the time of flight of each particle, from which it makes the identification of the species

to which they correspond.

2.7.5 The Forward Detectors

Previously, it was mentioned that ALICE has a set of detectors covering the regions

of acceptability in the front and back of the central barrel, they are used as a trigger

for minimum bias and diffractives events, among others, and to determine the event

reaction plane and centrality of the heavy-ion collisions.

The V0 detector aims to generate a fast level-0 trigger signal for minimum bias events.

It is used for event reaction plane and centrality determination in heavy-ion collisions.

This detector consists of two sets of plastic scintillator V0A and V0C located at 3.29

meters and 5.90 meters from the interaction point of ALICE.

The AD detector or ALICE Diffractive Detector, aims to increase the pseudorapidity of



the ALICE experiment, to contribute to the improvement of the minimum bias trigger

and selection of diffractive events in proton-proton collisions.

2.8 Partial Wave Analysis in ALICE at
√
s = 7TeV

During Run 1 of the ALICE experiment, the central production of the pion pair (π+π−)

in proton-proton collisions with center-of-mass energies of 7 TeV was studied from the

application of the double gap. Consequently, partial wave analysis was implemented on

the experimental sample, with the aim of studying the properties and the differential

cross section of the π+π− system, based on the f0(980) and f2(1270) resonances.

2.8.1 Experimental development of Partial Wave Analysis

The implementation of partial wave analysis for the decay of two pseudoscalars in the

final state begins with the translation of the Laboratory reference frame to the Collins-

Soper (CS) or Gottfried-Jackson (GJ) frame, where both frames only differ by an angle

in the xz plane. The CS and GJ framework refers to the rest frame of the pion pair,

which can be reached by making use of two Lorentz transformations. It is important to

note that for Run 1 of the ALICE experiment we worked under the Gottfried-Jackson

reference frame.

Subsequent to the establishment of this frame of reference, the decay angles θ and φ for

one of the pions of the system were established. The relevance of these angles is that

they can be used for the calculation of the decay amplitude, which will be discussed

later. The next step is to study the two-dimensional distributions of the pair of angles

mentioned, which can be represented from an intensity function described in terms of

the partial amplitudes and unnatural parity.

The intensity function can be expressed in terms of the spherical harmonics with which

the decay amplitudes with quantum numbers L and M can be indicated.
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I0(MX ,Ω) =
∣∣∣H−M(MX)

∣∣∣2 = ΣnLM tLM(MX)ReY M
L (Ω)

where MX is the mass of the pseudoscalar pair , Ω is the solid angle, tLM is the

momentum of the spherical harmonics and nLM is a normalization coefficient. They

subsequently established that the state with maximum spin is 2, from which the S, P

and D waves are obtained.

Having established the waves, they proceeded to implement partial wave analysis,

which can be done through two mechanisms. The first one consists in making use

of the moment of the spherical harmonics and the second one in employing JepsilonM .

The first mechanism allows us to suppress the number of partial waves by cancelling

some moments of the spherical harmonics, which can be used to represent the intensity

function, these tLM function as parameters that allow us to adjust the minimization

procedures in order to obtain a fixed value for each tLM .

On the other hand, it is important to note that the intensity function can also be

expressed in terms of the spin and parity amplitudes, likewise, these partial amplitudes

can be used as fitting parameters, with the difference that in this case eight complex

numbers would be obtained for each of the partial amplitudes which satisfy the tLM

for the S, P and D waves.

The second mechanism is related to J εM , which, like the first mechanism, consists of

suppressing the number of partial waves to obtain as a result, partial amplitudes given

by the following expression:

H−M = S−0 +D−0 +D−1 , H
+
M = D+

1

Consequently, they used minimization methods with which they obtained the first

minimized points that were used as reference to make the continuity of the partial

amplitudes, finally they calculated the Barrelet zeros from which the errors of these

zeros were quantified and several graphs were obtained, where the signals corresponding



to the resonances f0(980) and f2(1270) can be seen, having these physical solutions,

they proceeded to make a mass-dependent adjustment in order to know the mass and

widths of the particles produced in the collision.

As a result of this last adjustment they proceeded to calculate the cross sections of the

f0(980) and f2(1270) resonances with each of the partial waves. Finally they showed

the mass, width and cross section with their respective systematic errors for both

resonances, as well as, the differential cross section of the π+π− system obtained from

the partial wave analysis.
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Data Selection

The ALICE- LHC experiment collected diffractive events in proton-proton collisions at

13 TeV during 2017, where two and four pions were produced.

3.1 Run selection

To select the data sample we used the ALICE LogBook, where events triggered by

CCUP13-B-SPD1-CENTNOTRD and CCUP25-B-SPD1-CENTNOTRD were selected,

It is important to note that the B refers to having the beam from both sides, the SDP1

indicates that the SPD is used, in addition to assuring that the Bounch Crossings are

analyzed, and finally, the CENTNOTRD assures that it is central and that the TRD

is not used.

In addition to the two triggers, different beam parameters, detectors, among others,

were selected in order to have an experimental sample that can be analyzed for the

study of pion production in central diffractive processes. The selected criteria are listed

below:

• Beam: Yes

• Beam Type: p-p

• Beam Mode Filter: Stable Beams

32
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• Beam Energy (GeV): Min:6499

• Data Taking Quality Flag: Good Run

• Quality flag “ not bad run” for AD, SPD, TOF, TPC and V0

Consequently, for 2017, 717 runs were selected and analyzed with the CCUP13-B-

SPD1-CENTNOTRD trigger and 716 with the CCUP25-B-SPD1-CENTNOTRD trig-

ger, which belong to the LHC17 f,h,i,k,l,m,o,r periods.

It is important to note that for the two and four pion study the same runs reported

through the ALICE LogBook are used. The runs analyzed for 2017 are presented in

the following table:

It is important to note that there are runs that despite complying with the consid-

erations made in ALICE’s LogBook could not be downloaded, these runs are shown

below

3.2 Event Selection

From the selected sample described in previous session, we consider those events with

exactly 2 or 4 good reconstructed quality tracks in the TPC. To optimize the event

selection we applied the cuts described below:

• Particle Identification criteria (PID) is equal to σ2
π1

+ σ2
π2
< 4

• Pt < 0.5 (In the case of two pions) / Pt < 1.0 (In the case of four pions)

• !V0

• !AD

• | V tx |< 10
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Period Run Numbers

LHC17r 282704,282703,282702,282700,282677,282676,282673,282671,282670,
282667,282666,282651,282629,282622,282620,282618,282609,282608,
282607,282606,282580,282579,282575,282573,282546,282545,282544,
282528

LHC17o 281961,281956,281953,281940,281939,281932,281931,281928,281920,
281918,281916,281915,281895,281894,281893,281756,281755,281754,
281753,281751,281750,281741,281713,281709,281706,281705,281633,
281592,281583,281581,281580,281574,281569,281568,281563,281562,
281557,281511,281509,281477,281475,281450,281449,281446,281444,
281443,281441,281415,281350,281321,281301,281277,281275,281273,
281271,281244,281243,281242,281241,281240,281213,281212,281191,
281190,281189,281181,281180,281179,281081,281080,281079,281062,
281061,281060,281036,281035,281033,281032,280999,280998,280997,
280996,280994,280990,280947,280943,280940,280936,280897,280880,
280856,280854,280849,280848,280847,280844,280842,280793,280792,
280787,280786,280768,280767,280766,280765,280764,280763,280762,
280761,280757,280756,280755,280754,280753,280729,280706,280705,
280681,280679,280676,280673,280671,280650,280648,280647,280645,
280639,280637,280636,280634,280613,280583,280581,280575,280574,
280551,280550,280547,280546,280519,280518,280499,280490,280448

LHC17o 280447,280446,280445,280443,280419,280415,280412,280406,280405,
280403,280375,280374,280352,280351,280350,280349,280348,280312,
280310,280290,280286,280285,280284,280282

LHC17m 280140,280135,280134,280131,280126,280118,280114,280111,280108,
280107,280066,280052,280051,279855,279854,279853,279830,279827,
279826,279773,279749,279747,279719,279718,279715,279689,279688,
279687,279684,279683,279682,279679,279677,279676,279642,279641,
279632,279630,279559,279550,279491,279488,279487,279483,279441,
279439,279435,279410,279391,279355,279354,279349,279348,279344,
279342,279312,279310,279309,279274,279273,279270,279268,279267,
279265,279264,279242,279238,279235,279234,279232,279208,279207,
279201,279199,279157,279155,279130,279123,279122,279118,279117,
279107,279106,279075,279074,279073,279069,279068,279044,279043
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LHC17m 279041,279036,279035,279008,279007,279005,279000,278999,278964,
278963,278960,278959

LHC17l 278216,278215,278191,278189,278167,278166,278165,278164,278163,
278158,278130,278127,278126,278123,278122,278121,277996,277991,
277989,277988,277987,277952,277930,277907,277904,277903,277900,
277899,277898,277897,277876,277870,277848,277847,277845,277842,
277841,277836,277834,277805,277802,277801,277800,277799,277795,
277794,277749,277747,277746,277745,277725,277723,277722,277721,
277577,277576,277575,277574,277537,277536,277534,277531,277530,
277479,277478,277477,277476,277473,277472,277470,277418,277417,
277416,277389,277386,277385,277384,277383,277360,277314,277312,
277310,277293,277262,277257,277256,277197,277196,277194,277193,
277189,277188,277184,277183,277182,277181,277180,277155,277121,
277117,277091,277087,277082,277079,277076,277073,277037,277017,
277016,277015,276972,276971,276970,276969,276967,276920,276917,
276916,276762,276675,276674,276672,276671,276670,276669,276644,
276608,276557,276556,276553,276552,276551

LHC17k 276508,276507,276506,276462,276439,276438,276435,276429,276351,
276348,276302,276297,276294,276292,276290,276259,276257,276230,
276205,276178,276177,276170,276169,276166,276145,276141,276140,
276135,276108,276105,276104,276102,276099,276098,276097,276045,
276041,276040,275925,275924,275664,275661,275650,275648,275647,
275624,275623,275622,275621,275617,275614,275612,275559,275558,
275515,275472,275471,275467,275459,275457,275456,275453,275452,
275448,275443,275406,275404,275401,275395,275394,275372,275369,
275361,275360,275333,275332,275328,275326,275324,275322,275314,
275283,275247,275246,275245,275239,275150,275149,275076,275075,
275073,275068,274978,274889,274886,274884,274883,274882,274878,
274877,274822,274821,274815,274807,274806,274803,274802,274801,
274736

LHC17i 274442,274364,274363,274360,274357,274355,274352,274329,274283,
274281,274280,274279,274278,274276,274271,274270,274269,274268,
274266,274264,274263,274259,274258,274232,274212,274174,274148,
274147,274125,274094,274092,274063,274058,273986,273985,273946,
273943,273942,273918,273889,273887,273885,273825

LHC17h 273103,273101,273100,273099,273077,273010,273009,272985,272983,
272976,272949,272947,272939,272935,272934,272933,272932,272905,
272903,272880,272873,272871,272870,272836,272835,272834,272833,
272829,272828,272784,272783,272782,272764,272763,272762,272760,
272749,272747,272746,272712,272691,272690,272620,272610,272608,
272607,272585,272577,272575,272574,272521,272469,272468,272466,
272463,272462,272461,272417,272414,272413,272411,272400,272399,
272395,272394,272389,272388,272360,272359,272340,272335,272194,
272156,272155,272154,272153,272152,272151

LHC17f 270865

Table 3.1: List of runs analyzed for the year 2017.
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Period Run Numbers

LHC17r 282615
LHC17o 281946, 281919, 281634,281188,281187,281186,280418
LHC17m 279893,279889,279886,279884,279879,279561,279560,279125,279038,

279037,278994
LHC17l 278162,278095,278094,278093,278092,278091,278089,278082,278080,

278079,278077,278055,277748,277720,277718,277250,277088,277075,
276643

LHC17k 276500,276461,276434,276432,276107,275613,275473,275357,275070,
274945,274943,274901,274895,274892,274873

LHC17i 274057
LHC17h 272619

Table 3.2: Runs that could not be downloaded for the year 2017.

• V txChi2 < 100

The first consideration applied to the experimental sample corresponds to the PID,

from which it is possible to determine the probability that a particle belongs to a

certain species, in our case the PID indicates all possible pion pairs that are less than

2 σ. The second consideration used corresponds to the transverse momentum in which

values lower than 0.5 GeV/c (or 1 GeV/c) are requested, because in this range the

highest concentration of data is found.

The third and fourth considerations correspond to the vetoes in the V0 and AD de-

tectors respectively, which consist of not registering particle production when having a

valid event in these detectors. The penultimate consideration is related to the primary

vertex and applies to those particles whose vertex has been reconstructed between 10

cm and -10 cm from the interaction point, finally, the VtxChi2 consideration refers to

a quality cut in the selection of the track.



Chapter 4

Analysis and results

In this section we present the analysis of two and four pion events. The analysis was

done with the official offline framework of ALICE, AliRoot, and Root version 5.34/30.

4.1 Analysis for π+π−

The reconstructed histograms from the experimental sample were made by implement-

ing a quadrivector, which is composed of the transverse momentum, the pseudorapid-

ity, the azimuthal angle and the assumption that the particle has the pion mass of

139.57061± 0.00023 MeV.

It is important to note that from this quadrivector the ”Mother” particle can be re-

constructed as the sum of two quadrivectors corresponding to the ”Daughter” particle

π+ and π− respectively.

In the two-pion analysis, a total of 7.315326x107 events were recorded, to which each

of the above-mentioned considerations were gradually applied; the number of events

with respect to each applied cut is presented below.
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Cuts Number of events

Invariant Mass (IM) 7.315326e+07
IM+PID 5.082673e+07

IM + PID + Pt 2.091868e+07
IM + PID + Pt +!V0 1.124767e+07

IM + PID + Pt + !V0 + !AD 5250208
IM + PID + Pt + !V0 + !AD + Vtx 5163675

IM + PID + Pt+ !V0 + !AD + Vtx + VtxChi2 5056231

Table 4.1: Cuts applied to the experimental data sample for 2 pion events in central
diffractive processes.

One of the most significant histograms of this analysis is the one related to the invariant

mass distribution of π+π− system. The evolution of the invariant mass distribution for

π+π− events is shown below for each of the applied cuts.

Figure 4.1: Invariant mass of π+π− system.

Figure 4.2: Invariant mass of π+π− system, after PID selection (left) and PID selection
with a Pt cut (right).
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Figure 4.3: Invariant mass of π+π− system, after PID selection with Pt cut and V0
veto (left) and PID selection with a Pt cut and V0 and AD veto (right).

Figure 4.4: Invariant mass of π+π− system, after PID selection with Pt cut, V0 and
AD veto with primary vertex selection (left) and PID selection with Pt cut, V0 and
AD veto with primary vertex selection and quality track cut (right).

In each histogram, it is possible to observe a notorious reduction of events for the

different applied cuts, likewise, it is possible to observe the presence of some resonances,

such as: K0
s (500), ρ0(770) , f0(980) and f2(1270) .

On the other hand, the plots corresponding to the PID with the aforementioned cuts

are presented. It is important to point out that the PID, besides making reference to

the particle species, presents the opportunity to know the mass and the constitution

of them, this consideration acts in the experimental sample as a restriction to prevent

the contamination of particles belonging to other species.
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Figure 4.5: Reconstructed PID for π+π−. No cuts applied here.

Figure 4.6: PID of π+π− system, after PID selection (left) and PID selection with a
Pt cut (right).

Figure 4.7: PID of π+π− system, after PID selection with Pt cut and V0 veto (left)
and PID selection with a Pt cut and V0 and AD veto (right).

Figure 4.8: PID of π+π− system, after PID selection with Pt cut, V0 and AD veto
with primary vertex selection (left) and PID selection with Pt cut, V0 and AD veto
with primary vertex selection and quality track cut (right).
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In the previous plots, as well as in the mass spectra, it is possible to notice the decrease

of entries, as each of the considerations were made, in the same way, this decrease of

events can be noticed in the next plots of invariant mass versus transverse momentum.

Figure 4.9: Reconstructed invariant mass versus transverse momentum of π+π−. No
cuts applied here.

Figure 4.10: Invariant mass versus transverse momentum of π+π− system, after PID
selection (left) and PID selection with a Pt cut (right).

Figure 4.11: Invariant mass versus transverse momentum of π+π− system, after PID
selection with Pt cut and V0 veto (left) and PID selection with a Pt cut and V0 and
AD veto (right).
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Figure 4.12: Invariant mass versus transverse momentum of π+π− system, after PID
selection with Pt cut, V0 and AD veto with primary vertex selection (left) and PID
selection with Pt cut, V0 and AD veto with primary vertex selection and quality track
cut (right).

Subsequently, the plots of the V0 and AD offline decisions are shown, where each of

the four decisions has a different meaning:

• 0 −→ The detector is empty.

• 1 −→ Detector has signal in the beam window .

• 2 −→ Detector has signal at the beam-gas window.

• 3 −→ The signal reached the detector at a time different from the time windows

(beam and gas).

Based on these decisions, the plots corresponding to the offline decisions are shown

below

Figure 4.13: V0A versus ADA of π+π− system.No cuts applied here.
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Figure 4.14: V0A versus ADA of π+π− system, after PID selection (left) and PID
selection with a Pt cut (right).

Figure 4.15: V0A versus ADA of π+π− system, after PID selection with Pt cut and
V0 veto (left) and PID selection with a Pt cut and V0 and AD veto (right).

Figure 4.16: V0A versus ADA of π+π− system, after PID selection with Pt cut, V0
and AD veto with primary vertex selection (left) and PID selection with Pt cut, V0
and AD veto with primary vertex selection and quality track cut (right).
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4.2 Angular Analysis for π+π−

An angular analysis can be visualized from different reference frames such as Collins-

Soper, Gottfried-Jackson or Helicity . The purpose of this section is to study the

angular distribution π+ within the Collins-Soper (CS) reference frame.

The angular distributions of (φπ, cos θπ) presented below were made with the same

considerations that were applied to the plots of the previous section.

Figure 4.17: Angular distributions of π+π− system.No cuts applied here.

Figure 4.18: Angular distributions of π+π− system, after PID selection (left) and PID
selection with a Pt cut (right).

Figure 4.19: Angular distributions of π+π− system, after PID selection with Pt cut
and V0 veto (left) and PID selection with a Pt cut and V0 and AD veto (right).



4.2. Angular Analysis for π+π− 45

Figure 4.20: Angular distributions of π+π− system, after PID selection with Pt cut,
V0 and AD veto with primary vertex selection (left) and PID selection with Pt cut,
V0 and AD veto with primary vertex selection and quality track cut (right).

As can be noted, the two-dimensional distributions between φ and cos θ do not present

significant changes when performing each of the considerations. On the other hand,

further restrictions were made to the experimental sample in the mass and in η, for

this purpose we present such restrictions in two cases: the first case, consists of adding

a consideration just after the PID, this cut is based on establishing a region for the

invariant mass within the range of 0.6− 1.0GeV/c2), based on this the following plots

are shown.

Figure 4.21: Angular distributions of π+π− system.No cuts applied here (left) and PID
selection (right).

Figure 4.22: Angular distributions of π+π− system, PID selection with a Mass cut
(left) and PID selection with Mass and Pt cuts (right).



46 Chapter 4. Analysis and results

Figure 4.23: Angular distributions of π+π− system, after PID selection with Mass and
Pt cuts and V0 veto (left) and PID selection with a Mass and Pt cuts and V0 and AD
veto (right).

Figure 4.24: Angular distributions of π+π− system, after PID selection with Mass and
Pt cuts, V0 and AD veto with primary vertex selection (left) and PID selection with
Mass and Pt cuts, V0 and AD veto with primary vertex selection and quality track cut
(right).

Note that unlike the plots with the standard considerations, applying the cuts in the

mass causes a change in the two-dimensional distributions, the appearing structures

change immediately and exhibits the same behaviour for all the cuts.

Subsequently, the second case is presented, which consists of adding three more con-

siderations to those presented initially, these cuts consist of incorporating an invariant

mass region within the range of 1.0−1.5GeV/c2, establishing the transverse momentum

of a pion, which must be greater than 0.15 GeV ( Pt,π > 0.15 GeV) and | ηπ |< 0.7.

Implementing all considerations we obtain the following two-dimensional distributions

in (φπ, cos θπ)
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Figure 4.25: Angular distributions of π+π− system.No cuts applied here (left) and PID
selection (right).

Figure 4.26: Angular distributions of π+π− system, PID selection with a Mass cut
(left) and PID selection with Mass and Pt cuts (right).

Figure 4.27: Angular distributions of π+π− system, after PID selection with Mass and
Pt and η cuts (left) and PID selection with a Mass and Pt and η cuts and V0 veto
(right).

Figure 4.28: Angular distributions of π+π− system, after PID selection with Mass and
Pt and η cuts, V0 and AD veto (left) and PID selection with Mass and Pt and η cuts,
V0 and AD veto with primary vertex selection and quality track cut (right).
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Figure 4.29: Angular distributions of π+π− system, after PID selection with Mass and
Pt and η cuts, V0 and AD veto with primary vertex selection and quality track cut
(right).

It is possible to note that the structures presented in the previous graphs do not show

significant changes as the cuts are applied.

4.3 Monte Carlo for π+π−

For Monte Carlo analysis we used the /alice/sim/2016/LHC16c1b, c, d, e files which

were generated in DRgen for Run 1 of the ALICE experiment. The DRgen generator

aims to simulate a π+π− decaying X-system from the double pomeron exchange.

In this section the angular plots in the CS frame obtained from DRgen are presented,

it should be noted that not all standard considerations were implemented since for

Run 1 the AD detector was not installed in ALICE. The following two-dimensional

distributions for polar and azimuthal angles correspond to the standard considerations,

which were applied to the data collected for 2017.

Figure 4.30: Angular distributions of π+π− system.No cuts applied here (left) and PID
selection (right).
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Figure 4.31: Angular distributions of π+π− system, after PID selection with a Pt
cut(left) and PID selection with a Pt cut and V0 veto (right).

Similarly, angular plots were obtained from applying a cut in the mass 0.6−1.0GeV/c2

with the DRgen.

Figure 4.32: Angular distributions of π+π− system.No cuts applied here (left) and PID
selection (right).

Figure 4.33: Angular distributions of π+π− system, PID selection with a Mass cut
(left) and PID selection with Mass and Pt cuts (right).
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Figure 4.34: Angular distributions of π+π− system, after PID selection with Mass and
Pt cuts and V0 veto.

Finally, two-dimensional distributions of (φπ, cos θπ) are presented considering those

events with an invariant mass of the π+ − π− system between 1.0 − 1.5GeV/c2, a

Pt > 0.15GeV and | η |< 0.7 .

Figure 4.35: Angular distributions of π+π− system.No cuts applied here (left) and PID
selection (right).

Figure 4.36: Angular distributions of π+π− system, PID selection with a Mass cut
(left) and PID selection with Mass and Pt cuts (right).
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Figure 4.37: Angular distributions of π+π− system, after PID selection with Mass and
Pt and η cuts (left) and PID selection with a Mass and Pt and η cuts and V0 veto
(right).

4.4 Results for π+π−

Our invariant mass distribution is qualitatively compared with the one from COMPASS

experiment [7] and the previously obtained by ALICE for proton+proton collisions at

7 TeV. The comparison is shown in Fig. 4.38

Figure 4.38: The image on the left corresponds to the plot obtained from the COMPASS
experiment [7] and the one on the right is the invariant mass with PID selection with
Pt cut, V0 and AD veto with primary vertex selection.

From Fig. 4.38, it is possible to identify the presence of the resonances ρ0(770) ,

f0(980) and f2(1270), which are some glueball candidates. In Fig. 4.39 we present a

qualitatively comparison between our results and those from Run 1 for proton-proton

collisions at 7 TeV. The same resonances are identified in both, such as K0
s (500),

ρ0(770), f0(980) and f2(1270) within which we again find two glueball candidates, such

as f0(980) and f2(1270).
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Figure 4.39: The image on the left corresponds to the plot obtained in Run 1 of
the ALICE experiment [15] and the one on the right is the invariant mass with PID
selection with Pt cut, V0 and AD veto with primary vertex selection and quality track
cut (right).

4.4.1 Angular results for π+π−

On the other hand, we have the analysis of the two-dimensional distributions of the

azimuthal and polar angles, based on which we can compare some of the plots recon-

structed from the data collected with those reported in the paper Extracting the

Pomeron-Pomeron-f2(1270) coupling in the pp −→ ppπ+π− reaction through

the angular distribution of the pions by Lebiedowicks P. et al.

In this paper we show the two-dimensional distributions between the azimuthal and

polar angles, in which various structures are observed to be produced, starting from the

reaction pp −→ ppπ+π−. In addition, the different couplings are shown for ppf2(1270)

, as well as for the production of the continuum. It is important to note that the

couplings shown throughout this article generate different patterns, which must be

verified experimentally.

The first angular plot that we will compare with the previously described paper, is

the one reconstructed with the PID + Pt cut and the one generated with DRGen

without any consideration, where it can be observed that the plots present a very

similar structure between them.
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Figure 4.40: The image on the left is the one presented in the article by Lebiedowicks
P. et al, the one in the center corresponds to data sample (this thesis) and the image
on the right from Monte Carlo by DRgen.

The second plot to be compared is related to the one obtained after the PID cut, where

the invariant mass is within the range of 0.6−1.0GeV/c2, and the Monte Carlo sample

was treated as the experimental data. In these three plots, the mean value seems to

be of the same order.

Figure 4.41: The image on the left is the one presented in the article by Lebiedowicks P.
et al, the one in the center corresponds to the one reconstructed from the experimental
data (this thesis) and the image on the right is the one generated with DRgen.

Finally, we compare the plots corresponding to the PID + Mass cut applied to the

data, the one generated with DRgen without cuts and the one set out in Figure 7 of

the paper by Lebiedowicks P. et al.
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Figure 4.42: The image on the left is the one presented in the article by Lebiedowicks P.
et al, the one in the center corresponds to the one reconstructed from the experimental
sample (this thesis) and the image on the right is the one generated by DRgen.

It is important to note that the theoretical plot that most similar to the one recon-

structed from the data corresponds to the one presented for the pions continuum and

the one for the ppf2(1270) coupling given by j=2. These comparisons allow us to ob-

serve that to a large extent the shape of the distributions depends on the cuts made,

as well as on the range of the cuts.

4.5 Analysis for π+π−π+π−

In the analysis of four pions, a total of 3.260922 × 107 events were recorded. In the

same way as in the case of two pions, each of the cuts to the experimental sample were

applied in order to reduce the noise generated by other processes, it should be noted

that the same considerations used for two bodies were applied to this study, the only

difference lies in the range established for the cut of the transverse momentum, in the

case of four bodies it is established from 0-1 GeV/c. The following table shows the

number of entries per applied cut.

The change in the invariant mass spectrum for four pions with all considerations applied

to the experimental sample can be clearly seen in the following figures. Note that the

decrease in inputs in this case causes the change in the spectrum to be stepwise.
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Figure 4.43: Invariant mass of π+π−π+π− system.

Figure 4.44: Invariant mass of π+π−π+π− system, after PID selection (left) and PID
selection with a Pt cut (right).

Figure 4.45: Invariant mass of π+π−π+π− system, after PID selection with Pt cut and
V0 veto (left) and PID selection with a Pt cut and V0 and AD veto (right).

Figure 4.46: Invariant mass of π+π−π+π− system, after PID selection with Pt cut, V0
and AD veto with primary vertex selection (left) and PID selection with Pt cut, V0
and AD veto with primary vertex selection and quality track cut (right).
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Cuts Number of events

Invariant Mass (IM) 3.260922e+07
IM+PID 1.142995e+07

IM + PID + Pt 6117871
IM + PID + Pt +!V0 1744647

IM + PID + Pt + !V0 + !AD 680555
IM + PID + Pt + !V0 + !AD + Vtx 671226

IM + PID + Pt+ !V0 + !AD + Vtx + VtxChi2 8814

Table 4.2: Cuts applied to the experimental data sample to select 4 pions events in
central diffractive processes.

Similarly, we present the histogram corresponding to the mass of the lighter pair and the

recoiling, this type of graph is made with the purpose of visualizing the contributions

of both subsystems.

Figure 4.47: This figure shows the mass of the lightest pion pair (blue line) and the
reoiling (red line).

4.6 Angular Analysis for π+π−π+π−

In the same way as for two bodies, the two-dimensional distribution analysis was made

in (φ, cos θ) for the experimental sample of four bodies, in this case the study is focused

on the pair of lighter pions and the recoiling. It is important to point out that for this

case the cuts presented previously were applied, furthermore, it should be noted that
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from the reconstruction of these two plots it was possible to rehearsal a study of angular

distributions for the 4 pion sample.

We applied the same analysis as before to the lightest and recoiling pairs from the 4

pion sample.

Figure 4.48: The figure above represents the angular distribution of the lighter pion
pair and the figure below the angular distribution of the recoiling.

Finally, it should be noted that these last two plots were carried out with the standard

four-pion considerations, which give us the opportunity to implement in the future a

study of two-dimensional distributions in the azimuthal and polar angles within the
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Collins-Soper frame of reference.

4.7 Results for π+π−π+π−

Our invariant mass distribution for pi+pi-pi+pi- is comparable with the reported by

STAR experiment [4] in ultra-peripheral collisions at RHIC energies.

Figure 4.49: The image on the left corresponds to the graph obtained by the STAR
detector [4] and the one on the right is the invariant mass spectrum with the IM +
PID + Pt + !V0 + !AD + Vtx + VtxChi2 cut.

From both spectra we can highlight the clear similarity between both distributions

with a clear visible peak around 1.5 GeV.
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Summary and Reflections

The analysis elaborated from the experimental sample has obtained good results in

both studies, in the case of the two pions it was possible to establish a qualitative

comparison between the invariant mass spectra and the results obtained by the COM-

PASS experiment in 2009 and Run 1 of the ALICE experiment, where, in addition to

finding similarities between them, some resonances were identified as ρ0(770) , f0(980)

and f2(1270) which are considered as possible glueball candidates.

On the other hand, the study of the angular distributions for the azimuthal and polar

angles allowed us to compare qualitatively with those proposed in the article Extract-

ing the Pomeron-Pomeron-f2(1270) coupling in the pp −→ ppπ+π− reaction

through the angular distribution of the pions by Lebiedowicks P. and others,

from them it was possible to observe the similarity that exists between those recon-

structed with the experimental sample and those presented for the pions pair continuum

and for the coupling of ppf2(1270) given by j=2, where the latter could be compared

with the angular distributions obtained with the considerations in mass, transverse

momentum and in the eta variable. It is important to note that the changes in the

angular distributions were more appreciated when the cut was performed in the mass

range and in the eta variable.

The four-pion analysis performed for 2017 shows a similar invariant mass spectrum as

59
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the one reported by STAR experiment, with the difference that the STAR detector re-

ported its four-pion spectrum for ultraperipheral collisions, while the one reconstructed

and presented in this thesis obtained from central production diffractive processes col-

lected in proton-proton collisions at 13 teV. In addition, it is important to note that

the angular distributions presented for the light pion pair and recoiling provide the

opportunity to implement a study of four-body angular distributions in the future.

The next steps in the scopus of this analysis are the study of the whole 2018 data

sample for 2 and 4 pion events. Our results suggest that with the forthcoming data

from LHC Run 3, ALICE will be in an excellent position to increase the statistics

to improve the analysis presented in this thesis. Furthermore, our results shows that

the 2 pion system reconstructed by ALICE (this work) could be comparable with the

theorical prediction that assumes the production of f2(1250) resonance via a double

pomeron exchange in diffractive processes at LHC energies.
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at CERN. Tesis Doctoral. Benemérita Universidad Autónoma de Puebla.Puebla,

2019.

[25] Zinonos, Z. Tests of the Standard Model of Particles. Max-Planck-Institut fur

Physik, TUM, 2017.


