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Abstract 

 

In this study we present simulation system based on Gillespie algorithm for generating 

evolutionary events in the evolution scenario of microbial population. We present 

Gillespie simulation system adjusted to reproducing experimental data obtained in 

barcoding studies – experimental techniques in microbiology allowing tracing 

microbial populations with very high resolution. Gillespie simulation engine is 

constructed by defining its state vector and rules for its modifications. In order to 

efficiently simulate barcoded experiment by using Gillespie algorithm we provide 

modification – binning cells by lineages. Different bins define components of state in 

the Gillespie algorithm. The elaborated simulation model captures events in microbial 

population growth including death, division and mutations of cells. The obtained 

simulation results reflect population behavior, mutation wave and mutation 

distribution along generations. The elaborated methodology is confronted against 

literature data of experimental evolution of yeast tracking clones sub-generations. 

Simulation model was fitted to measurements in experimental data leading to good 

agreement. 

1. INTRODUCTION  

Experimental evolution techniques for populations of microbial organisms is a fast-

developing area of scientific research, which provides important measurement data 

concerning scenarios and parameters of adaptive haploid evolution of microbes under 

different conditions. It has wide areas of applications both in cellular biology where it leads 

to advances in understanding adaptation mechanisms in microbial populations, and in appli-

cations of evolutionary genetics to other research fields such as epidemiology, virology or 

cancer research. Fast advances in molecular biology give impulses to extending volumes and 

resolutions of available measurement data in experimental microbial evolution. Implementing 

techniques, such as high throughput sequencing, labelling and barcoding in evolving 

microbial cultures allow obtaining detailed data on kinetics and dynamics of their evolution. 
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Recent publications in the field of experimental evolution of microbes (Bush et al., 2020; 

Kinnersley et al., 2021; Blundell et al., 2019; Nguyen Ba et al., 2019; Levy et al., 2015) 

provide datasets of significant size and accuracy enabling the study of genomic mechanisms 

and genetic forces behind their adaptation mechanisms to environmental conditions. Among 

the referenced experimental techniques an approach based on barcoding of microbial DNA 

(Blundell et al., 2019; Nguyen Ba et al., 2019) is of special interest due to possibility of 

tracing the large number of sub-populations/clones of microbial population over the whole 

experiment time range. 

Important aspects of the study of experimental microbial evolution is characterization of 

roles and strengths of genetic forces, replication, mutation, genetic drift and selection 

(Neher, 2013) in scenarios of their adaptation to external conditions (Beckman & Loeb, 

2005; Kvitek & Sherlock, 2013). In order to understand strengths, inter-plays between 

genetic forces and their dynamics, mathematical models of adaptive evolution of haploid 

populations are developed. Mathematics and computer modeling behind adaptive evolution 

lead to expressing the increase of adaptive potential of a microbial population as the result 

of propagation of the fitness wave, driven by emergence of favorable mutations in the DNA 

replication process and selection against less fitted species (Desai & Fisher, 2007). 

Mathematical modeling of dynamics of adaptive evolution is a wide area of research 

including approaches such as deterministic modeling using partial differential equations 

(Fisher-Kolmogorov equations) e.g., (Wang et al., 2019), or stochastic modeling of 

processes of cellular replication and death and occurrence of (driver) mutations, by using 

Markov birth - death processes (Baar et al., 2016; Castillo & Virgilio, 2015) branching 

processes (Wild, 2011; Yakovlev, Stoimenova & Yanev, 2008; Castillo & Virgilio, 2015) 

or multitype branching processes (Bozic et al., 2010; McFarland, Mirny & Korolev, 2014; 

Nguyen Ba et al., 2019; Levy et al., 2015). 

When laws describing probabilities of evolutionary events become complicated the 

approach to modeling by using stochastic simulations can be very useful (Foo, Leder & Michor, 

2011). Stochastic simulations are very flexible and can capture arbitrary scenarios of 

adaptation evolution. The basic approach to (forward) stochastic simulation of cellular 

evolution is by using Gillespie’s algorithm (Gillespie, 2001; Marchetti, Priami & Thanh, 

2017) where the state of the simulated process is defined by mutation profiles of cells and 

possible events are drawn randomly on the basis of probability distributions dependent on 

the state of the process. 

In this study we present the implementation of the Gillespie’s algorithm for evolutionary 

simulations tailored to the scenario of experimental yeast evolution with adaptation to 

external conditions, quantified by using the barcoding technique (Nguyen Ba et al., 2019; 

Levy et al., 2015). Novelty of our approach is adjusting (fitting) Gillespie simulation 

algorithm to the barcoded evolution experimental scenario by suitable changes of its 

construction. We describe the approach to fitting evolutionary parameters, intensities of 

cellular/microbial birth and deaths, intensities of mutations and mutations evolutionary 

advantage/fitness parameter to observational data. We show results of simulation algorithm 

versus published data on baker yeast (saccharomyces cerevisiae) growth (Levy et al., 2015). 
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2. MODEL DESCRIPTION 

Elaborating simulation system for microbial evolution relies on defining stochastic 

models of events in the cellular lifetime: cell death, cell division or mutation, which occur 

during cell division. Methodology for obtaining timing and orderings of events relies on the 

use of the Gillespie algorithm, which provides a way to obtain suitable probability 

distributions of times of events on the basis of the state of the processes. Basic approach is 

to simulate events cell by cell, iterating through whole ( Marchetti, Priami & Thanh, 2017). 

First improvement is considering all cell events with occurring time less than tau (tau leap 

algorithm (Nguyen Ba et al., 2019)) (Cao, Gillespie & Petzold, 2006). However, tau leap 

modification still does not significantly improve simulation time for larger populations. The 

binned version of Gillespie algorithm, elaborated in this study, makes possible to consider 

microbial population size above one million of cells/microbes/viruses/bacteria with 

reasonable simulation times.  

2.1. Binned Gillespie algorithm 

Tab. 1. Simulation parameters assumed as (Levy et al., 2015) 

experiment conditions. Whole population is divided into 

groups which represents barcoded cells 

Model parameters 

mutation effect 2.5 – 15% by Poisson distribution 

initial population 50’000 × 100 cells 

population capacity 5∙106 

mutation probability 20% 

simulation cycles 1000 

The basic Gillespie’s algorithm modification by binning means grouping microbial cells 

by one independent characteristic which can describe a group of cells. For that purpose, 

number of mutations in the cell was chosen. Simulation begins with large population of cells 

with no mutation. In each cycle some of them can obtain new mutation which cause cells 

differentiation. Every cycle of simulation consists of three steps: generating random number 

of dying and dividing cells based on accurate probabilities and tau step, calculating number 

of mutating cells and population actualization. Probabilities are given by exponential 

distribution (1), (2). 

 𝑃(𝑑𝑒𝑎𝑡ℎ) = 1 − 𝑒𝑥𝑝(−𝑡𝑎𝑢 ∗ 𝑠𝑢𝑚(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)/𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) (1)   

 𝑃(𝑑𝑖𝑣𝑖𝑑𝑒) = 1 − 𝑒𝑥𝑝(−𝑡𝑎𝑢/(1 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠)) (2)   

Each mutation provides a change in fitness coefficient which has impact on the intensity 

of cellular division process. Calculation of fitness for single cell is easy – mutation provides 

percentage change in cell structure. To calculate it for one bin we assume that one mutation 

has impact on mean bin fitness (3). Mutating cells have the same fitness in the bin, new 

mutations have additional effect. Change of cells adjustment is obtained on the basis of 

probabilities in the Poisson distribution. 
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡 + 1) = (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) ∗ 𝑛𝑐𝑒𝑙𝑙𝑠 +𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

∗ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 effect)/𝑛𝑐𝑒𝑙𝑙𝑠 
(3)   

2.2. Simulating barcoding experimental data 

In barcoding experiments DNA strands acquire markers allowing for their unique 

identification. At present, barcoding technique allows introducing hundreds of thousands of 

markers to populations of microorganisms to trace their evolution. Barcoding is particularly 

useful in studies of clonal evolution. To track separate clones lineages, it is assumed that 

population is grouped by clone reference barcodes introduced to the microbial population. 

In (Levy et al., 2015) experiment was performed based on tracking specific barcodes firstly 

inserted into microbial cell genomes.  

Except bin sizes fitness parameter based on (3) and mutation wave in the form of mean 

mutation number were calculated. In figure 1 basic information about population evolution 

in time is presented. In the left side single lineage sizes (a) and sizes distributions (c) are 

presented. In the right-side mutation (d) and fitness wave (b) (the track of population 

adjustment) are presented. Model parameters are presented in table 1. For simulation 

parameters described in (Levy et al., 2015) were implemented. 

 

 
Fig. 1. Lineage binned algorithm result according to one generation, a) linages sizes with highlighted 

maximum value, b) whole population fitness wave, c) linage sizes distribution, d) mean numbers of 

mutations along population lineages. 

Simulation time is greater for that modification than binned by mutation number because 

of greater number of separate bins. The complexity of algorithm is about O(n) because 

number of iterations depends on bin number. The basic algorithm complexity was about 

O(n3) cause of multiple iterations and comparisons through whole population cell by cell. 

For binning by mutation number simulation time is flexible because of changing number of 

bins. For binning by lineage characteristic number of bins are steady - one cycle time is 

approximately same. 
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Two separate simulations were made. First one with assumed parameters in table 1, 

second one with different initial population and population capacity. Lineages size were 

providing as experimental data from (Levy et al., 2015) as like simulation parameters were 

based on. 

Pseudocode of our algorithm which shows its basic construction is listed below. 

 

 

Listing 1. Binned Gillespie algorithm pseudocode 
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3. RESULTS AND DISCUSSION 

Two simulation experiments were made: 

1. Simulation basing on 50’000 lineages consisting of 100 clones and parameters 

described in table 1 – similar to (Levy et al., 2015), 

2. Simulation basing on data provided by (Levy et al., 2015) – 500’000 lineages with 

different initial clones number. 

3.1. 1st Experiment 

To estimate model accuracy several simulations were pursued and the best suited 

parameters where chosen. In figure 2 simulated trajectories of lineages evolution are 

presented. Red, blue and white colors correspond to calculated fitness of single bins. From 

50’000 introduced bins about 10% became extinct and few grew to much larger groups. For 

adaptive lineages the growth rate was almost about 1 magnitude in small time step – about 

100 seconds. In theory cell fitness should provide more division events – as results show. 

Because of no initial differentiation between lineages, small amount of them adapt gaining 

sufficient value of fitness coefficient. 

 

 

Fig. 2. Simulated lineages trajectories (for lineages greater than 100 cells): red color – lineages with good 

adaptation, blue color – bad fitness lineages; white color explains neutral fitness effect lineages 

Growth of adaptive lineages causes increase in cell death probability. Cells with lower 

fitness mostly die, which results in lineages extinction. Some clones dominate population 

imposing smaller genetic variety inside the whole population. In figure 3 linage size 

distributions, with fitness factor of lineage marked by blue/orange colors, are presented. 

Adaptive lineages are growing as shown in the figure - lineages distribution changes its mean 

value from 102 to about 102.5. The high value bars on figure near zero value represents extinct 

lineages. 
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Population differentiation proceeds as assumed. Few lineages gathered beneficial 

mutation (adaptive lineages) which results in higher fitness factor and rise in lineage size. 

Some of clones mutations had small effect on its fitness causing lineage extinction. Mostly 

mutation provided group adjustment establishing lineage size at steady level. 

Further simulations should cause more lineage extinctions because of fast growth of 

adapted ones. Death probability, which depends, by logistic relation, on the whole 

population size, will be shaped mostly by the biggest groups. Extended simulation time 

could provide information about dominant clones. Fast lineage growth would cause 

extinction of small clones. Genetic variety should be very small and population should be 

composed of genetic clones. 

 

Fig. 3. Lineage size distribution in simulated data: blue part means neutral and regressing lineages,  

red part represents adaptive lineages 

3.2. 2nd Experiment 

Basing on data provided by (Levy et al., 2015) simulation was performed assuming that 

initial lineages are varied. Initial lineage size and its fitness was set according to 

experimental data. Mutation effect on group fitness was same as in 1st experiment –  

2.5-15% described by Poisson distribution. Provided data is not reflection of simulation. 

Research group was gathering information about cells by selecting random number from 

population. Our goal was to obtain similar characteristic of population growth. In figure 4 

simulated lineages trajectories are presented. Differences between figure 2 and figure 4 

follow from different initial model state. When groups are assumed to be equal at simulation 

beginning fitness of whole population is distributed as mutation factor. At simulation begin 

both division and death probability are dependent on whole population – in further cycles 

dependency changes. When initial size of lineages is randomized death probability is mostly 

dependent on high size lineages. More cells also provide more division and mutation events 

which causes lineage fitness increase. Big groups are growing, gaining good adaptation and 

causing extinction of smaller or less adapted lineages. 
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Fig. 4. Simulated lineages trajectories based on experimental data (for lineages greater than 100 cells): 

red color – lineages with good adaptation, blue color – bad fitness lineages; white color explains neutral 

fitness effect lineages 

 
Fig. 5. Lineage size distribution in experimental data: blue part means neutral and regressing lineages, 

red part represents adaptive lineages 

In figure 5 lineage size distribution and on figure 6 its fitness factor is presented to 

demonstrate that at initial stage of simulation the groups were different from each other. Real 

experiment shows that adaptive lineages should grow at exponential rate when gaining 

appropriate size and fitness factor. Further cycles of population evolution should show that. 

At the right-hand side of the picture the change of lineage sizes is shown. It creates some 

kind of evolution front so it is possible that population would rise much faster in next steps. 
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Fig. 6. Fitness change 

Changing in lineage size and in its fitness is caused by multiple mutations. Some of them 

could provide good adaptation and increase in fitness factor. Figure 6 describes how lineages 

adapt in simulation time. High fitness factor can be explained by gaining beneficial mutation 

by a lineage. Low value of fitness mostly occurs in lineages for which mutation effects were 

neutral or have no mutations at all. Differentiation inside population is visible and caused by 

multiple mutations in big groups and small number of mutations in small ones. 

3.3. Summary 

Computational experiments give insights into evolution of fitness of microbial 

population. Microbial populations are adapting to environmental conditions by the process 

of asexual evolution. Due to the lack of recombination force, the whole microbial population 

can be partitioned into clones – subpopulation of identical or similar genetic profiles. 

Adaptation is fast because of cell replications and advantageous mutation.  

The evolutionary process is studied by the clonal evolution theory. In this paper clonal 

evolution is numerically simulated by appropriately defined Gillespie simulation engine 

presented in subsection 2.2. Stochastic simulations reproduce clonal evolution scenarios 

with fast adaptation as observed in many biological systems, such as population of bacteria, 

some fungi, or in the processes of mitotic evolution of cellular subpopulations of organisms, 

importantly in cancer cellular populations development. Arising many genetic duplicates 

provides very fast, nearly chaotic, population growth with lack of genetic variety. Cell 

mutation causes differentiation between subpopulations. Mutations can cause positive, 

negative and neutral effect. Positive effect is observed when mutation persist in many cells, 

negative causes cell death. For good interpretation mutation effect valiant allelic frequency 

(VAF) coefficient is needed to be defined. Positive effect mutation is observed for high 

values of VAF, neutral and negative for low. 
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Population behavior is similar in both experiments pursued in this study – lineages sizes 

increase, some of them extinct and some stay on steady level. Gaining by lineage beneficial 

mutation causes good adaptation of clone as a result of fitness factor increase. Simulation 

parameters are dependent mostly on big groups of clones which are replacing smaller ones. 

Death probability increases while population growth, division probability changes because 

of mutations. Big clone groups easily compensate cells death because of good adaptation 

while smaller ones mostly regress and extinct. The beneficial mutations are visible because 

adaptive lineage size distribution moves to higher values. 

4. CONCLUSION 

The main conclusion of this study is that microbial experimental evolution traced with 

high resolution by using barcoding technique can be efficiently reproduced by using 

Gillespie simulation engine. In contrast to branching process from (Levy et al., 2015) our 

model contains direct mechanism of whole microbial population growth or decline. Our 

simulation algorithm is computationally efficient, it scales well with large population sizes. 

Our computations prove that results of simulations can easily reconstruct observations 

obtained in the microbial experimental evolution scenario. Results of our simulations 

algorithms shown in Figures 2-5 show good agreement with experimental data. Moreover, 

Gillespie simulation technique is very flexible, so it will easily cover possible variations in 

measurement scenarios in the future versions of experimental evolution researches. 
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