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A B S T R A C T

Caries and periodontitis affect the majority of adults during their lifetime. Piezoelectric ultrasonic scalers
offer great benefits during the prevention and treatment of periodontal diseases. Our group developed a
novel ultrasonic periodontal scaler based on a planar piezoelectric transducer. However, similar to other
piezoelectric configurations, the transducer’s characteristics are strongly influenced by operation conditions.
In this study, we investigated the influence of driving voltage amplitude and loading force applied using
physical calculus models on the novel planar transducer’s input impedance and vibration. Our results show
that the resonance frequency, i.e. the frequency at which maximal deflection of the tip occurs, decreases with
increasing driving voltage amplitude while it increases with increasing force. Additionally, decreasing driving
voltage amplitudes and increasing force both increase the minimal magnitude and reduce the maximal phase
of the input impedance near resonance. Based on these observations, we developed a procedure to extend the
Butterworth–Van-Dyke (BVD) Model. The extended BVD models allow to simulate the transducer in realistic
scenarios and may facilitate the development of dedicated control systems for planar piezoelectric transducers.
1. Introduction

Caries and periodontal disease are widespread problems and af-
fect most adults during their lifetime [1]. They are caused by dental
biofilm and calculus formation and can impair an individual’s quality
of life by causing bad breath, swollen or bleeding gums, pain, or
even loss of teeth or bone. Furthermore, they may increase the risk
of systemic diseases and even mortality [2]. Apart from good oral
hygiene, scaling by a periodontist is part of the routine prevention
and treatment of periodontal disease. While manual scalers, such as
curettes, are still prevalent worldwide, power-driven scalers could offer
major advantages, such as reduced operator fatigue, facilitated removal
of calculus and biofilm, and efficient protection of the gingiva and the
teeth of the patient [3]. Contemporary systems comprise piezoelectric
or magnetostrictive ultrasonic transducers, an electronic driver, and
eventually a controller to adjust the driving frequency and ensure
constant amplitude of vibration of the tip.

Until now, piezoelectric periodontal power-scalers are based on
Langevin-style transducers. In 1994 Amit Lal et al. developed a novel
concept for an ultrasonic transducer based on a planar construction [4,
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5]. This concept may drastically reduce the number of components and
improve the scaling performance while reducing production costs. More
recently, an ultrasonic scalpel based on a planar transducer configu-
ration has been investigated [6,7]. This transducer showed promising
results concerning the vibration amplitude. However, fast mechani-
cal load variations during cutting through tissue (e.g., pork muscle)
considerably altered the transducer characteristics. Consequently, the
feedback control system could not control the vibration satisfactorily,
which limited the cutting ability [7] and even contributed to the
breakage of the transducer [6].

In previous work, a promising planar piezoelectric transducer for
use in periodontal scalers has been developed by our group [8]. Al-
though the design and prototyping were driven by extensive finite
element model simulations [9], the novel ultrasonic transducer has not
been characterized under realistic operating conditions so far.

Likewise to the ultrasonic scalpel, however, detailed knowledge
about the transducer’s characteristics is crucial to develop an appropri-
ate feedback control system. Moreover, a mathematical model repro-
ducing the influence of operating conditions, such as driving voltage
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Fig. 1. Prototype of a planar ultrasonic transducer for a periodontal scaler developed
by our group in previous work [8]. Two piezoelectric elements (1) are glued to a
titanium sheet comprising two mounting flanges (2), a section acting as a sonotrode
(3), and a tip (4).

Fig. 2. Physical calculus models. Model-A (a) represents hard calculus, while Model-B
(b) represents comparatively soft calculus.

Fig. 3. Transducer (1) mounted on the measurement system. Three stepper-motor-
based linear axes (2) apply a force at the tip of the transducer (3) using a physical
calculus model (4) mounted on a three-axis load cell (5). The white double-arrow
indicates the main axis of vibration of the tip.

amplitude and load would greatly facilitate the control design. To the
author’s best knowledge, such a model for planar ultrasonic transducers
has not been investigated yet.

The main objective of this study was to gather fundamental knowl-
edge required to develop performant control systems for planar ul-
trasonic periodontal scalers. Our goal was to investigate the electro-
mechanical characteristics of the novel transducer [8] under realistic
operating conditions and to derive a suitable mathematical model.

This paper is structured as follows: After an overview of relevant
existing literature in Section 2, the system and concept to analyze the
electro-mechanical characteristics of a planar ultrasonic transducer at
varying driving voltage amplitudes and loads and to derive a math-
ematical model, respectively, are summarized in Section 3. The re-
sults of the measurements and the mathematical models are presented
in Section 4, followed by a discussion (Section 5) and a conclusion
(Section 6).

2. Literature review

2.1. Control systems for ultrasonic piezoelectric transducers

In most applications of ultrasonic transducers, feedback control
systems aim to track the mechanical resonance frequency 𝑓0 (frequency
of maximal displacement) to maintain high efficiency and produce
2

sufficiently strong vibrations [10–14]. Moreover, the control systems
try to keep the displacement amplitude 𝑑 at the desired level. Since a
direct measurement of the vibration is difficult or impossible to achieve
in many applications, control systems can only rely on measurements
of the input impedance or admittance magnitude |𝑍𝑖𝑛| and phase ∠𝑍𝑖𝑛.

Various feedback control algorithms to achieve this task are de-
scribed in scientific literature, such as phase-locked loops [12,15,16],
oscillator circuits [17,18], or ‘‘hill-climbing algorithms’’ [19,20].

However, most algorithms are designed based on a simple linear
model (see Section 2.4) of the ultrasonic transducer and consequently
do not take realistic operating conditions into account.

2.2. Influence of operating conditions on ultrasonic piezoelectric transducers

Several studies [21–25] have shown that the electro-mechanical
characteristics of ultrasonic transducers are strongly influenced by the
driving voltage, the load material, and the magnitude of force applied
to the transducer. The sensitivity to these operating conditions depends
on the construction of the transducer, as well. However, detailed knowl-
edge about this influence on transducers used in medical applications
is limited and primarily based on Langevin-style transducers [21].

S. Bussier studied the influence of driving voltage amplitude on
a Langevin transducer. An increasing driving voltage amplitude re-
duced the resonance frequency but did not measurably influence the
magnitude or phase of the input impedance at resonance [25].

Ying et al. studied the influence of various tissues on an ultrasonic
surgery scalpel (Exploiter™, Beyonder Co., Ltd., Beijing, China). The
contact with soft tissue decreased the resonance frequency of the ul-
trasonic scalpel, while contact with spongy or compact bone increased
the resonance frequency as compared to operation in air. Contact
with tissue also increased the magnitude of the input impedance at
resonance [21]. These results were also confirmed by other studies that
investigated the influence of various plastic materials as well as solid
and liquid loads on Langevin transducers for ultrasonic cleaning and
machining [22–25].

Nevertheless, the influence of driving voltage amplitude and the
influence of load acting on ultrasonic periodontal scalers, outlined
in Section 2.3 in more detail, have yet to be investigated for planar
piezoelectric transducers.

2.3. Load acting on ultrasonic periodontal scalers

The mechanical load acting on ultrasonic periodontal scalers changes
considerably during use: The scaler’s tip may be in free air or in contact
with calculus, and the force applied by the operator may change during
operation.

M. Ruppert et al. measured forces applied by professionals during
treatment using a modified magnetostrictive ultrasonic scaler ranging
from 0.2 N up to 1.34 N [26]. These results are in line with other stud-
ies, which confirm that the applied force can vary considerably [27–
29].

Additionally, the mechanical properties of dental calculus can vary
greatly [30–33]. In a comprehensive study, D.J. White measured the
Vickers hardness of calculus on extracted teeth. Typical values ranged
from 20 HV to 40 HV [31], although values of almost 0 HV up to 190
HV had also been observed.

However, the influence of contact with dental calculus on planar
ultrasonic transducers has not been investigated so far.

2.4. Models for ultrasonic piezoelectric transducers

To model ultrasonic piezoelectric transducers, the so-called
Butterworth–Van-Dyke (BVD) model is recommended by the IEEE
standard on piezoelectricity [34] and used in many control approaches
for piezoelectric transducers [14,17,35–38].
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Fig. 4. Procedure to derive an extended BVD model: Frequency responses (a), as shown in Fig. 5, are analyzed to extract values of key parameters in dependence of driving voltage
amplitude and force applied at the transducer’s tip (b), as shown in more detail in Fig. 6. Then, the dependence of the key parameters on operating conditions is approximated
by polynomials (c), as shown in Fig. 7. Finally, these approximations are used to calculate equations for the electrical equivalent circuit parameters of an extended BVD model
(d), as outlined in Table 3.
The BVD model consists of four electrical equivalent circuit pa-
rameters 𝐶0, 𝐶𝑚, 𝐿𝑚, and 𝑅𝑚 (as depicted in Fig. 4(d)) [39–41]. The
capacitance 𝐶0 models the dielectric capacitance of the piezoelectric
elements and parasitic capacitances of cables and driver electronics
and dominates the impedance of the transducer at frequencies outside
resonance. The coefficients 𝐶𝑚, 𝐿𝑚, and 𝑅𝑚 model the transducer’s me-
chanical oscillation. The capacitance 𝐶𝑚 corresponds to the compliance
of a mechanical oscillator, while the inductance 𝐿𝑚 corresponds to
the mass and the resistance 𝑅𝑚 to the dissipation. The driving voltage
represents a driving force applied to the mechanical oscillator. The
current through 𝐶𝑚, 𝐿𝑚, and 𝑅𝑚 is related to the velocity of the tip’s
oscillation by a coupling factor, also known as force factor in its inverse
form [42], denoted by 𝛼 in this paper. In its standard form, the BVD
model does not reproduce the influence of operating conditions on the
transducer’s characteristics.

3. Materials and methods

3.1. Piezoelectric transducer

A prototype of a planar piezoelectric ultrasonic transducer for use
in periodontal scalers [8,9] is depicted in Fig. 1. The transducer is
based on a planar arrangement of two piezoelectric elements and a
titanium sheet. The piezoelectric elements are electrically connected in
parallel and driven in transverse piezoelectric mode (𝑑31) to induce a
longitudinal vibration in the titanium sheet. The piezoelectric elements
are made of NCE41 (CTS Corp., Albuquerque, USA) and have a size
of 18 mm 𝑥 10 mm 𝑥 1 mm. They are oppositely bonded to the
titanium sheet made of Ti–6Al–4V (Thyssenkrupp Materials Schweiz
Ag, Bronschhofen, Switzerland) with a size of 8 mm 𝑥 127.8 mm 𝑥
1 mm (without flanges) using a high-strength epoxy adhesive (DE-
LOMONOPOX GE785, DELO Industrie Klebstoffe, Windach, Germany).
The titanium sheet also comprises two mounting flanges, a section
acting as a vibration-amplifying sonotrode, and a tip that further en-
hances the vibration and facilitates supra- and sub-gingival scaling. The
transducer is designed to have a resonance frequency of approximately
28 kHz.

3.2. Physical models for calculus

Two physical models were used to apply forces at the tip of the
transducer.

Model-A, shown in Fig. 2(a), represents comparatively hard calcu-
lus. It was developed by E.M.S SA (Nyon, Switzerland) and consists
of a mixture of ten weight parts of ‘‘Neukadur Multicast 15’’, twenty-
three weight parts of ‘‘Neukadur Härter ISO3’’ (Altropol Kunststoff
GmbH, Stockelsdorf, Germany), and thirty-three weight-parts CaCO3
‘‘Omyacarb 30um’’ (Omya AG, Oftrigen, Switzerland) applied as a
thin layer (approximately 0.05–0.1 mm) on a circular glass plate. Our
measurements showed that the Vickers hardness of Model-A is 24 HV
on average. Furthermore, multiple dentists consistently reported that
this artificial calculus is very similar to calculus encountered in patients
who did not receive professional cleaning for one or more years.
3

Model-B, shown in Fig. 2(b), represents comparatively soft calculus.
It was also developed by E.M.S SA (Nyon, Switzerland) and consists of a
mixture of ten weight-parts of ‘‘Miocolor Aqua Hartgrund Farblos’’ (Mi-
gros Genos-senschafts Bund, Zürich, Switzerland) and six weight parts
‘‘Krone Gips’’ (Hilliges Gipswerk GmbH, Osterode am Harz, Germany)
applied as a thin layer (approximately 0.1–0.15 mm) on a specimen
slide. Measurements showed that the Vickers hardness of Model-B is
4.6 HV on average. Dentists reported that this artificial calculus is
comparable to calculus encountered during regular recalls of patients
every few months.

3.3. Measurement system

A customized measurement system was developed, partially de-
picted in Fig. 3. The transducer (1) is mechanically mounted to the mea-
surement system using the transducer’s mounting flanges (see Fig. 1).
A force of desired magnitude and direction is applied at the tip of the
transducer (3) using a physical calculus model (4). The calculus model
is mounted on a three-axis force sensor (5) and moved by a custom-
built mechanic consisting of 3 linear axes driven by stepper motors
(2) (X-XYZ-LSM025 A, Zaber Technologies Inc, Vancouver, Canada).
The force components in all axes can be adjusted individually. A DAQ-
Module (USB-6366, National Instruments Corp., Austin, USA) and a
power amplifier (‘‘PX200-100,100’’, PiezoDrive, Shortland, Australia)
generate a sinusoidal voltage of adjustable amplitude and frequency to
drive the transducer. The tip’s vibration velocity, the driving voltage,
the driving current, and the force applied at the tip are measured
using a laser Doppler vibrometer (PSV-500, Polytec GmbH, Waldbronn,
Germany), the three-axis force sensor (ZM3DW-AL 10N, Anhui Zhimin
Electrical Technology, Bengbu, China), and corresponding electronic
modules by the DAQ-Module, respectively.

The execution of the numerous individual measurements is au-
tomated using a script for MATLAB (MathWorks Inc., Natick, USA)
running on a personal computer. First, a driving voltage of desired
frequency and amplitude is applied to the transducer. Then, the force
acting on the tip of the transducer is adjusted. Thereafter, the system
waits for a settling time of 100 ms to ensure that the transducer’s
oscillation reaches a steady state. Subsequently, data is recorded during
30 ms. After the measurement, the amplitudes and phases of the driving
voltage, the input current, and the tip’s vibration are calculated by
fitting sine waves of the given driving frequency to the measure-
ments using the least squares method. Finally, the input impedance
is calculated, and the sequence is repeated for another combination
of operating conditions. The driving voltage frequency varied from 27
kHz to 29 kHz to cover the resonance of the transducer and nearby
frequencies. The driving voltage amplitude varied between 15 Vp and
35 Vp, since voltages in this range result in sufficient vibration of the
transducer. The components of the force parallel to the main axis of
the tip’s vibration (x-axis illustrated in Fig. 3) and perpendicular to the
transducer’s plane (y-axis illustrated in Fig. 3) varied between 0 N and
0.4 N, as indicated in the introduction.
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(2)

𝐿𝑚 =
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Box I.
v

4

d

.4. Mathematical modeling

As illustrated in Fig. 4, the following procedure is used to derive
n extended BVD model, in which the electrical equivalent circuit
arameters vary with driving voltage amplitude and force applied at
he tip of the transducer using a physical calculus model.

1. Key parameters at mechanical resonance (Fig. 4(b)) are ex-
tracted from frequency responses (Fig. 4(a)) at varying operating
conditions:

• 𝑓0: The resonance frequency (frequency of maximal tip
displacement amplitude).

• 𝑑𝑓0 : The amplitude of the displacement of the tip at 𝑓0.
• |𝑍𝑖𝑛,𝑓0 | and ∠𝑍𝑖𝑛,𝑓0 : The magnitude and phase of the input

impedance of the transducer at 𝑓0.
• |𝑍𝑖𝑛,𝑓0+𝛥𝑓 | and ∠𝑍𝑖𝑛,𝑓0+𝛥𝑓 : The magnitude and phase of the

input impedance of the transducer at a frequency 10 Hz
above 𝑓0.

• |𝑍𝑖𝑛,𝑓𝑚𝑖𝑛 |: The magnitude of the input impedance of the
transducer at 27 kHz. This frequency is sufficiently be-
low 𝑓0, such that the influence of the resonance can be
neglected.

2. Polynomials are used to approximate the influence of operating
conditions on the key parameters (Fig. 4(c)) by minimizing the
root mean square error defined by Eq. (10). Polynomials of
increasing order are compared to trade-off the complexity and
the accuracy of the approximation.

3. Equations for the electrical equivalent circuit parameters 𝐶0, 𝐶𝑚,
𝐿𝑚, 𝑅𝑚, and for the coupling factor 𝛼 are calculated (Fig. 4(d))
from the approximations of the key parameters using Eqs. (1),
(2), (3), (4), and (5) in Box I., which were derived from Eqs. (6),
(7), (8), and (9) listed in Appendix.

4. Results

4.1. Influence of driving voltage amplitude

The graph in Fig. 5(a) illustrates the influence of a varying driving
voltage amplitude �̂�𝑖𝑛 on the frequency response of the tip displacement
and the input impedance of the transducer using Model-A to apply
a loading force. The measurements show that an increased driving
voltage amplitude results in a stronger tip vibration. The resonance
4

t

frequency is reduced with increasing driving voltage amplitude. The
magnitude of the input impedance at resonance decreases while the
phase of the input impedance at resonance increases with increasing
voltage.

4.2. Influence of loading force

Fig. 5(b) illustrates the influence of a varying force applied on the
tip of the transducer using Model-A on the frequency responses of the
tip displacement and the input impedance of the transducer. An increas-
ing force reduces the displacement of the tip. In contrast to increased
voltages, the resonance frequency is increased with increasing force.
The magnitude of the input impedance at resonance increases while
the phase decreases with increasing force.

4.3. Combined influence of driving voltage amplitude and loading force

The combined influence of driving voltage amplitude and loading
force applied using Model-A is depicted in Fig. 6. Empirically we found
that the values measured at various forces applied parallel to the main
axis of the tip’s vibration 𝐹𝑥 and perpendicular to the transducer’s
plane 𝐹𝑦 correlate when these two force components are combined as
𝐹 = 𝐹𝑥 + 0.5 ⋅ 𝐹𝑦.

As can be seen in Fig. 6(a), the resonance frequency 𝑓0 decreases
with increasing driving voltage amplitude �̂�𝑖𝑛 and increases with in-
creasing force 𝐹 .

The influence of load and voltage amplitude on the maximal am-
plitude of tip displacement is depicted in Fig. 6(b). The displacement
amplitude at resonance 𝑑𝑓0 increases with increasing driving voltage
�̂�𝑖𝑛 and is reduced by higher forces 𝐹 .

The influence of these operating conditions on the input impedance
at resonance is illustrated in Fig. 6(c) and (d). The magnitude of
the input impedance at resonance |𝑍𝑖𝑛,𝑓0 | decreases with increasing
driving voltage amplitude �̂�𝑖𝑛 and increases with increasing force 𝐹 ,
especially at higher driving voltage amplitudes. The phase of the in-
put impedance at resonance ∠𝑍𝑖𝑛,𝑓0 increases with increasing driving
oltage amplitude �̂�𝑖𝑛 and decreases with increasing load 𝐹 .

.4. Influence of calculus hardness

Measurements using Model-B to apply force at the tip of the trans-
ucer manifest a similar influence of operating conditions as compared
o Model-A.
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Fig. 5. Examples of frequency responses of the tip displacement amplitude and the
input impedance for varying driving voltage amplitude (a) and for varying force (b)
applied using Model-A. Values at resonance are marked with an x.

In particular, an increasing driving voltage amplitude also increases
the tip displacement while the resonance frequency is reduced. The
magnitude of the input impedance at resonance decreases as well, while
the phase of the input impedance increases. However, the reduction of
the tip displacement is slightly smaller, while the influence on reso-
nance frequency and the input impedance is more substantial compared
to Model-A.

An increasing force applied using Model-B also reduces the tip
displacement and the input impedance phase at resonance. In contrast,
the resonance frequency and the magnitude of the input impedance at
resonance are increased.

4.5. Extended BVD models

The root mean square errors of approximations of the influence of
the driving voltage amplitude and the combined loading force applied
using Model-A by polynomials of increasing order are listed in Table 1.
For the mathematical model polynomials of type 𝑃13 as defined in
Table 2 are selected. These polynomials considerably reduce the root
mean square error of 𝑑𝑓0 , |𝑍𝑖𝑛,𝑓0 |, ∠𝑍𝑖𝑛,𝑓0 , and ∠𝑍𝑖𝑛,𝑓0+𝛥𝑓 as compared
to lower order polynomials. Using higher order polynomials is not
justified since they only marginally further reduce the error of some
values while greatly increasing the computational complexity. The
5

Table 1
Root mean square error 𝑒 of approximation of influence of driving voltage amplitude
and loading force applied using Model-A on key parameters by polynomials of
increasing complexity. Errors of selected polynomials are marked by bold text.

𝑃00 𝑃11 𝑃12 𝑃21 𝑃13 𝑃31 𝑃22 𝑃23 𝑃32 𝑃33

𝑒(𝑓0) [Hz] 227 123 117 117 114 116 116 111 111 111
𝑒(𝑑𝑓0 )[μ𝑚] 6.58 4.93 3.10 4.18 2.25 4.11 3.04 2.09 2.44 2.09
𝑒(|𝑍𝑖𝑛,𝑓0 |) [Ω] 209 162 127 146 113 146 127 112 122 112
𝑒(∠𝑍𝑖𝑛,𝑓0 ) [°] 17 12 8 11 6 11 8 6 7 6
𝑒(|𝑍𝑖𝑛,𝑓0+𝛥𝑓 |) [Ω] 145 123 109 114 102 113 109 102 106 101
𝑒(∠𝑍𝑖𝑛,𝑓0+𝛥𝑓 ) [°] 18 13 9 12 7 12 9 7 8 7
𝑒(|𝑍𝑖𝑛,𝑓𝑚𝑖𝑛 |) [Ω] 29 26 25 26 24 25 25 24 24 23

resulting empirically extended BVD model approximating the influence
of driving voltage amplitude and loading force applied using Model-A
is specified in Table 3.

As illustrated in Fig. 7, these approximations result in a good overall
reproduction of the operating conditions’ influence on the transducer’s
characteristics at resonance. As depicted in Fig. 8, the extended BVD
model also approximates the influence of the driving voltage amplitude
and force on the frequency response of the transducer. While the model
generally reproduces the measured values at resonance reasonably well,
the reproduction of the magnitude of the input impedance outside
resonance is limited. Furthermore, the displacement amplitude con-
siderably differs from the measured values for some combinations of
operating conditions.

The resulting extended BVD model approximating the influence of
driving voltage amplitude and loading force applied using Model-B is
also specified in Table 3.

The extended BVD models allow simulations of the transducer in
realistic scenarios, including variations of the driving voltage ampli-
tude, loading force, and hardness of calculus, as illustrated in Fig. 9.
As shown in Fig. 9, the extended BVD models reproduce the measured
influence of these operating conditions on the resonance frequency, the
tip displacement and the input impedance of the transducer, while the
standard BVD model does not reproduce these effects.

5. Discussion

5.1. Influence of operating conditions

Applying force using physical models for soft and hard calculus
reduces the displacement of the tip and increases the resonance fre-
quency. Additionally, the magnitude of the input impedance at reso-
nance is increased, and its phase is reduced.

While a reduction of the displacement amplitude is expected when
a force is applied at the tip of the transducer, the increase in the reso-
nance frequency is not apparent. However, this effect is in agreement
with other studies in which Langevin transducers were in contact with
a comparatively hard material, such as bone or PTFE [21–24].

The increased resonance frequency can most probably be explained
by an increased average stiffness when a force is applied to the trans-
ducer by hard material [43]. In this case, the tip of the transducer
is in contact with the load material during one part of the ultrasonic
oscillation, which results in a considerably increased stiffness of the en-
tire system during this phase. Simultaneously, the comparatively hard
load material only adds little additional mass that is jointly accelerated
during this phase. As the effect of increased stiffness dominates over
the effect of additional mass coupled to the system, the resonance
frequency increases [43]. Our measurements indicate that hard (Model-
A) and comparatively soft artificial calculus (Model-B) both cause this
effect.

In addition, contact with dental calculus increases the system’s
damping, resulting in an increased input impedance magnitude and a
decreased phase and displacement amplitude.
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Fig. 6. Measured values of the resonance frequency 𝑓0 (a), the tip displacement amplitude 𝑑𝑓0 (b), the magnitude |𝑍𝑖𝑛,𝑓0 | (c), and the phase ∠𝑍𝑖𝑛,𝑓0 (d) of the input impedance at
resonance for varying driving voltage amplitude and force applied at the tip using Model-A. The components of the force parallel to the main axis of the tip’s vibration 𝐹𝑥 and
perpendicular to the transducer’s plane 𝐹𝑦 are combined on a single axis 𝐹 = 𝐹𝑥 + 0.5 ⋅ 𝐹𝑦.
Fig. 7. Approximation of the influence of driving voltage amplitude and force applied at the tip using Model-A on the resonance frequency 𝑓0 (a), the tip displacement amplitude
𝑑𝑓0 (b), the magnitude |𝑍𝑖𝑛,𝑓0 | (c), and the phase ∠𝑍𝑖𝑛,𝑓0 (d) of the input impedance at resonance by the extended BVD-model defined in Table 3.
Table 2
Polynomials tested to approximate key parameters.

Identifier Equation

𝑃00 𝑝00
𝑃11 𝑝00 + 𝑝10�̂�𝑖𝑛 + 𝑝01𝐹
𝑃11 𝑝00 + 𝑝10�̂�𝑖𝑛 + 𝑝01𝐹
𝑃12 𝑝00 + 𝑝10�̂�𝑖𝑛 + 𝑝01𝐹 + 𝑝11�̂�𝑖𝑛𝐹 + 𝑝02𝐹 2

𝑃21 𝑝00 + 𝑝10�̂�𝑖𝑛 + 𝑝01𝐹 + 𝑝20�̂� 2
𝑖𝑛 + 𝑝11�̂�𝑖𝑛𝐹

𝑃13 𝑝00 + 𝑝10�̂�𝑖𝑛 + 𝑝01𝐹 + 𝑝11�̂�𝑖𝑛𝐹 + 𝑝02𝐹 2 + 𝑝12�̂�𝑖𝑛𝐹 2 + 𝑝03𝐹 3

𝑃31 𝑝00 + 𝑝10�̂�𝑖𝑛 + 𝑝01𝐹 + 𝑝20�̂� 2
𝑖𝑛 + 𝑝11�̂�𝑖𝑛𝐹 + 𝑝30�̂� 3

𝑖𝑛 + 𝑝21�̂� 2
𝑖𝑛𝐹

𝑃22 𝑝00 + 𝑝10�̂�𝑖𝑛 + 𝑝01𝐹 + 𝑝20�̂� 2
𝑖𝑛 + 𝑝11�̂�𝑖𝑛𝐹 + 𝑝02𝐹 2

𝑃23 𝑝00 + 𝑝10�̂�𝑖𝑛 + 𝑝01𝐹 + 𝑝20�̂� 2
𝑖𝑛 + 𝑝11�̂�𝑖𝑛𝐹 + 𝑝02𝐹 2 + 𝑝21�̂� 2

𝑖𝑛𝐹 + 𝑝12�̂�𝑖𝑛𝐹 2 + 𝑝03𝐹 3

𝑃32 𝑝00 + 𝑝10�̂�𝑖𝑛 + 𝑝01𝐹 + 𝑝20�̂� 2
𝑖𝑛 + 𝑝11�̂�𝑖𝑛𝐹 + 𝑝02𝐹 2 + 𝑝30�̂� 3

𝑖𝑛 + 𝑝21�̂� 2
𝑖𝑛𝐹 + 𝑝12�̂�𝑖𝑛𝐹 2

𝑃33 𝑝00 + 𝑝10�̂�𝑖𝑛 + 𝑝01𝐹 + 𝑝20�̂� 2
𝑖𝑛 + 𝑝11�̂�𝑖𝑛𝐹 + 𝑝02𝐹 2 + 𝑝30�̂� 3

𝑖𝑛 + 𝑝21�̂� 2
𝑖𝑛𝐹 + 𝑝12�̂�𝑖𝑛𝐹 2 + 𝑝03𝐹 3
6
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Fig. 8. Simulation of the tip displacement amplitude and the input impedance
compared to measured frequency responses for varying driving voltage amplitude (a)
and for varying force (b) applied using Model-A.

Fig. 9. Results of measurements in comparison to simulations obtained using a static
BVD model and using the extended BVD models in a scenario where driving voltage
amplitude, loading force, and calculus hardness vary over time.

In contrast to loading force, increasing the driving voltage ampli-
tude has opposite effects on the transducer’s characteristics. Increasing
the voltage amplitude increases the displacement of the tip and re-
duces the resonance frequency. The magnitude of the input impedance
7

at resonance is reduced while its phase is increased. S. Bussier ob-
served the same behavior on a periodontal scaler based on a Langevin
transducer [25].

5.2. Mathematical models

Compared to the standard BVD model, the empirically extended
BVD models considerably improve the reproduction of the transducer’s
characteristics. They allow to take variations of the driving voltage
amplitude, loading force, and hardness of calculus into account, as
depicted in Fig. 9. The extended BVD models reproduce the influence
of driving voltage amplitude and load on the resonance frequency, the
displacement amplitude, and the input impedance at resonance with
sufficient accuracy to facilitate the development of control systems.

The approach to extend the BVD model by approximating key
parameters of the transducer’s main characteristics by polynomials is
simple and straightforward and can be applied to other transducers or
extended to other operating conditions.

Even more important, the polynomials used to approximate the key
parameters require a comparatively low computational effort compared
to equations to calculate them from electrical equivalent parameters.
Most feedback control systems for ultrasonic transducers require cal-
culation or estimation of the resonance frequency, tip displacement,
and input impedance and can thus be simulated efficiently using such
a model.

Last but not least, the presented approach allows to trade off the
accuracy and the complexity of the resulting model for different appli-
cations. To test the robustness of a control algorithm in the presence
of variations of load, linear approximations of the influence of the key
parameters may be sufficient. On the other hand, control algorithms
that integrate a plant model may profit from approximations using
higher order polynomials.

At high loading forces and low driving voltage amplitudes, a dis-
crepancy between the measured frequency response and the frequency
response of BVD models emerges, as can be seen in Figs. 5 and 8. Under
these conditions, the measurements of the displacement amplitude and
the input impedance become increasingly asymmetric with respect to
the resonance frequency. Below resonance frequency, the displacement
amplitude and the phase of the input impedance are considerably lower
than a BVD model predicts. Near resonance, both suddenly increase,
and above resonance, they do not decay as fast as predicted by a BVD
model.

This asymmetry can most probably be explained by the change
of stiffness during the ultrasonic oscillation when the tip touches the
loading material, as outlined by C. Duan et al. [44] and C. Comi
et al. [45]. As shown by B. D. Yang et al. nonlinear effects of the friction
between the tip and the physical calculus model may additionally
contribute to the effect [46]. Thus, the extended BVD models’ accuracy
is limited, especially outside resonance and at low voltage amplitudes
and high loading forces.

However, since feedback controllers for ultrasonic scalers track the
resonance frequency [10–20] accuracy of the model outside resonance
is rarely critical. Furthermore, manufacturing tolerances also cause
considerable variations in the characteristics of individual transducer
instances, such that control systems must tolerate a certain level of
model uncertainties in any case.

5.3. Strength and limitations

As outlined by A. M. Pattison, professionals remove calculus from
the edge of the deposit to avoid burnishing the calculus and to remove
calculus efficiently [47]. Thus, we adjusted the measurement setup such
that the transducer’s tip was in contact with the edge of the artificial
calculus during the measurements. Nevertheless, due to the elasticity
of the transducer’s sonotrode and tip, the transducer’s tip occasionally
slipped onto the surface of the artificial calculus. Therefore we visually
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Table 3
Extended BVD-Models when using Model-A and Model-B to apply loading force (coefficients rounded to 3 significant digits).

Symbols:

�̂�𝑖𝑛[𝑉 ]: Driving voltage amplitude
𝐹𝑥[𝑁]: Force applied parallel to transducer’s main axis
𝐹𝑦[𝑁]: Force applied perpendicular to transducer
𝐹 = 𝐹𝑥 + 0.5 ⋅ 𝐹𝑦: Combined force applied to transducer
𝑓0[𝐻𝑧]: Mechanical resonance frequency. Frequency of maximal displacement amplitude
𝑑[𝑚]: Displacement amplitude
𝑍𝑖𝑛[𝛺]: Complex input impedance of transducer

Approximation of key parameters for contact with Model-A (hard calculus):

𝑓0 = 4750.0 ⋅ 𝐹 + 12.3 ⋅ �̂�𝑖𝑛 − 165 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 + 198 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 − 3940 ⋅ 𝐹 2 − 498 ⋅ 𝐹 3 + 2.78 ⋅ 10−6

𝑑𝑓0 = 6.89 ⋅ 10−6 ⋅ 𝐹 + 2.44 ⋅ 10−6 ⋅ �̂�𝑖𝑛 − 1.12 ⋅ 10−6 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 + 1.28 ⋅ 10−6 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 + 1.65 ⋅ 10−6 ⋅ 𝐹 2 − 3.62 ⋅ 10−6 ⋅ 𝐹 3 − 2.9 ⋅ 10−6

|𝑍𝑖𝑛,𝑓0 | = 706 ⋅ 𝐹 − 57.8 ⋅ �̂�𝑖𝑛 + 250 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 − 269 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 − 1.04 ⋅ 10−6 ⋅ 𝐹 2 + 1.4 ⋅ 10−6 ⋅ 𝐹 3 + 2110
∠𝑍𝑖𝑛,𝑓0 = 0.0844 ⋅ �̂�𝑖𝑛 − 0.295 ⋅ 𝐹 − 0.402 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 + 0.476 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 + 11.9 ⋅ 𝐹 2 − 18 ⋅ 𝐹 3 − 2.02
|𝑍𝑖𝑛,𝑓0+𝛥𝑓 | = 68.9 ⋅ 𝐹 − 37.5 ⋅ �̂�𝑖𝑛 + 163 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 − 177 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 − 6470 ⋅ 𝐹 2 + 9460 ⋅ 𝐹 3 + 2040
∠𝑍𝑖𝑛,𝑓0+𝛥𝑓 = 0.092 ⋅ �̂�𝑖𝑛 − 0.227 ⋅ 𝐹 − 0.426 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 + 0.491 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 + 12.3 ⋅ 𝐹 2 − 18.3 ⋅ 𝐹 3 − 2.11
|𝑍𝑖𝑛,𝑓𝑚𝑖𝑛 | = 427 ⋅ 𝐹 − 2.78 ⋅ �̂�𝑖𝑛 + 8.79 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 − 4.87 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 − 1940 ⋅ 𝐹 2 + 1730 ⋅ 𝐹 3 + 1690

Approximation of key parameters for contact with Model-B (soft calculus):

𝑓0 = 4530 ⋅ 𝐹 − 2.97 ⋅ �̂�𝑖𝑛 − 13.8 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 + 24 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 − 8880 ⋅ 𝐹 2 + 5470 ⋅ 𝐹 3 + 2.79 ⋅ 10−6

𝑑𝑓0 = 2.57 ⋅ 10−6 ⋅ �̂�𝑖𝑛 − 2.85 ⋅ 10−6 ⋅ 𝐹 − 1.38 ⋅ 10−6 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 + 1.64 ⋅ 10−6 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 + 5.48 ⋅ 10−6 ⋅ 𝐹 2 − 7.56 ⋅ 10−6 ⋅ 𝐹 3 − 1.71 ⋅ 10−6

|𝑍𝑖𝑛,𝑓0 | = 4280 ⋅ 𝐹 − 35.5 ⋅ �̂�𝑖𝑛 + 254 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 − 290 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 − 1.86 ⋅ 10−6 ⋅ 𝐹 2 + 1.94 ⋅ 10−6 ⋅ 𝐹 3 + 1220
∠𝑍𝑖𝑛,𝑓0 = 0.0574 ⋅ �̂�𝑖𝑛 − 6.28 ⋅ 𝐹 − 0.39 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 + 0.433 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 + 34.6 ⋅ 𝐹 2 − 38.1 ⋅ 𝐹 3 − 0.963
|𝑍𝑖𝑛,𝑓0+𝛥𝑓 | = 3300 ⋅ 𝐹 − 12.1 ⋅ �̂�𝑖𝑛 + 95.2 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 − 98.4 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 − 9710 ⋅ 𝐹 2 + 8290 ⋅ 𝐹 3 + 1210
∠𝑍𝑖𝑛,𝑓0+𝛥𝑓 = 0.0798 ⋅ �̂�𝑖𝑛 − 6.79 ⋅ 𝐹 − 0.508 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 + 0.565 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 + 40 ⋅ 𝐹 2 − 44.8 ⋅ 𝐹 3 − 1.11
|𝑍𝑖𝑛,𝑓𝑚𝑖𝑛 | = 14.7 ⋅ 𝐹 ⋅ �̂�𝑖𝑛 − 2.14 ⋅ �̂�𝑖𝑛 − 434 ⋅ 𝐹 − 20.8 ⋅ 𝐹 2 ⋅ �̂�𝑖𝑛 + 1250 ⋅ 𝐹 2 − 853 ⋅ 𝐹 3 + 1720

Calculation of BVD-Model parameters (Note: 𝐶𝑚, 𝐿𝑚, and 𝑅𝑚 are complex numbers):

𝑓𝑚𝑖𝑛 = 27𝑘𝐻𝑧
𝛥𝑓 = 10 𝐻𝑧
𝑍0 ∶= |𝑍𝑖𝑛,𝑓0 | ⋅ 𝑒

𝑖⋅∠𝑍𝑖𝑛,𝑓0

𝑍1 ∶= |𝑍𝑖𝑛,𝑓0+𝛥𝑓 | ⋅ 𝑒
𝑖⋅∠𝑍𝑖𝑛,𝑓0+𝛥𝑓

𝐶0 =
1

2𝜋𝑓𝑚𝑖𝑛 |𝑍𝑖𝑛,𝑓𝑚𝑖𝑛 |

𝐶𝑚 =
𝐶0 ⋅𝛥𝑓 ⋅(𝛥𝑓+2⋅𝑓0 )⋅(

1
2⋅𝜋⋅𝑖⋅𝐶0 ⋅𝑍0

−𝑓0 )⋅(
1

2⋅𝜋⋅𝑖⋅𝐶0 ⋅𝑍1
−𝛥𝑓−𝑓0 )

𝑓 2
0 ⋅(𝛥𝑓+𝑓0 )⋅(

𝑍0−𝑍1
2⋅𝜋⋅𝑖⋅𝐶0 ⋅𝑍0 ⋅𝑍1

−𝛥𝑓 )

𝐿𝑚 = (𝛥𝑓+𝑓0 )⋅(𝑍0−𝑍1−2⋅𝜋⋅𝑖⋅𝐶0 ⋅𝑍0 ⋅𝑍1 ⋅𝛥𝑓 )
4⋅𝜋2 ⋅𝛥𝑓 ⋅𝐶0 ⋅𝑍1 ⋅(𝛥𝑓+2⋅𝑓0 )⋅(2⋅𝜋⋅𝑖⋅𝐶0 ⋅𝑍0 ⋅𝑓0−1)⋅(𝛥𝑓+𝑓0−

1
2⋅𝜋⋅𝑖⋅𝐶0 ⋅𝑍1

)

𝑅𝑚 = 𝑍0

1−2⋅𝜋⋅𝑖⋅𝑓0 ⋅𝐶0 ⋅𝑍0

𝛼 = |

2⋅𝜋⋅𝑓0 ⋅𝑑𝑓0 ⋅(𝑅𝑚+2⋅𝜋⋅𝑖⋅𝑓0 ⋅𝐿𝑚+
1

2⋅𝜋⋅𝑖⋅𝑓0 ⋅𝐶𝑚
)

�̂�𝑖𝑛
|

monitored the position of the transducer’s tip relative to the edge of
the artificial calculus and repeated measurements if necessary.

During the measurements, artificial calculus was removed. Thus,
it was necessary to continuously adjust the position of the physical
calculus model to maintain the desired force. This limited the precision
of the measurements and the range of forces and driving voltages that
could be applied, especially when the comparatively soft Model-B was
used as load.

However, due to the large number of measurements and since the
effects we observed are strong enough, they can clearly be identified
and quantified nonetheless, as documented in Section 4.

To validate the advantages of the extended BVD models, we plan to
develop and test a dedicated control system based on these models.
Furthermore, we plan to develop a procedure to estimate the force
applied at the tip of the transducer and, eventually, to estimate the
hardness of calculus in contact with the tip.

6. Conclusion

This study comprehensively analyzed the influence of driving volt-
age amplitude and load on a novel planar ultrasonic transducer. In-
creasing loading force increases the resonance frequency and decreases
the tip displacement at resonance. Furthermore, it decreases the phase
of the input impedance at resonance and increases its magnitude.
Increasing driving voltage amplitude causes opposite effects.

Based on the transducer characterization, extended BVD models
were developed. The empirical models reproduce the effects of varying
driving voltage amplitude and loading force applied by soft and hard
8

artificial calculus.
The gathered data considerably extends the knowledge about the
characteristics of planar ultrasonic piezoelectric transducers. The ex-
tended BVD models will facilitate the design and initial parameteriza-
tion of control systems by means of simulation.
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𝑑

Appendix

𝐶0 ∶= 𝐶0(�̂�𝑖𝑛, 𝐹 ), 𝐶𝑚 ∶= 𝐶𝑚(�̂�𝑖𝑛, 𝐹 ), 𝐿𝑚 ∶= 𝐿𝑚(�̂�𝑖𝑛, 𝐹 ),

𝑅𝑚 ∶= 𝑅𝑚(�̂�𝑖𝑛, 𝐹 ), 𝛼 ∶= 𝛼(�̂�𝑖𝑛, 𝐹 ) (6)

𝑍𝑖𝑛 =
𝐶𝑚 ⋅ 𝑅𝑚 ⋅ 𝑓 ⋅ 2𝜋𝑖 − 4 ⋅ 𝐶𝑚 ⋅ 𝐿𝑚 ⋅ 𝑓 2 ⋅ 𝜋2 + 1

2 ⋅ 𝑓 ⋅ 𝜋 ⋅ (𝐶0 ⋅ 𝑖 + 𝐶𝑚 ⋅ 𝑖 − 2 ⋅ 𝐶0 ⋅ 𝐶𝑚 ⋅ 𝑅𝑚 ⋅ 𝑓 ⋅ 𝜋 − 𝐶0 ⋅ 𝐶𝑚 ⋅ 𝐿𝑚 ⋅ 𝑓 2 ⋅ 𝜋2 ⋅ 4𝑖)

(7)

̂ =
𝛼�̂�𝑖𝑛

2𝑓𝜋|𝑅𝑚 + 𝐿𝑚𝑓2𝜋𝑖 − 𝑖∕(2𝐶𝑚𝑓𝜋)|
(8)

𝑓0 = |

1
2𝜋

√

𝐶𝑚𝐿𝑚
| (9)

𝑒(𝑝) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑝𝑚𝑜𝑑𝑒𝑙(�̂�𝑖𝑛,𝑖, 𝐹𝑖) − 𝑝𝑚𝑒𝑎𝑠(�̂�𝑖𝑛,𝑖, 𝐹𝑖))2,

where N is the number of combinations of voltage amplitudes �̂�𝑖𝑛 and forces 𝐹 ,

and p denotes the parameter that is evaluated e.g.

the mechanical resonance frequency 𝑓0.

(10)
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