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C L I M A T O L O G Y

Prolonged drying trend coincident with the demise 
of Norse settlement in southern Greenland
Boyang Zhao1*†, Isla S. Castañeda1*, Jeffrey M. Salacup1, Elizabeth K. Thomas2, William C. Daniels1, 
Tobias Schneider1‡, Gregory A. de Wet1,3, Raymond S. Bradley1*

Declining temperature has been thought to explain the abandonment of Norse settlements, southern Greenland, 
in the early 15th century, although limited paleoclimate evidence is available from the inner settlement region 
itself. Here, we reconstruct the temperature and hydroclimate history from lake sediments at a site adjacent to a 
former Norse farm. We find no substantial temperature changes during the settlement period but rather that the 
region experienced a persistent drying trend, which peaked in the 16th century. Drier climate would have notably 
reduced grass production, which was essential for livestock overwintering, and this drying trend is concurrent with a 
Norse diet shift. We conclude that increasingly dry conditions played a more important role in undermining the 
viability of the Eastern Settlement than minor temperature changes.

INTRODUCTION
Norse settlers developed the Eastern Settlement on southern Green-
land in 985 CE, and other settlers subsequently expanded the settle-
ments on the shores of the fjords to the south and southwest of 
Narsarsuaq (fig. S1) (1, 2). The inhabitants relied primarily on rais-
ing livestock on cleared pastureland for sustenance (3), and the 
estimated population reached about 2000 people (4). Despite the suc-
cess of the settlements, the region was largely abandoned by the early 
15th century (1, 2). As some previous investigations note, this aban-
donment could have resulted from multiple issues, including climate 
change, management failure, economic collapse, or social stratifica-
tion (1, 5, 6). Nevertheless, climate change has long been considered 
an important contributing factor (1). Southern Greenland was al-
ways near the limit of agriculture for the Norse settlers, although 
they had experience in stock-raising and farming in similarly chal-
lenging environments in Iceland and Norway (2, 7). For example, in 
wintertime, cattle and some sheep and goats had to be kept in the 
warm dark byres, and by spring, many cattle were too weak to move 
and the Norse farmers had to carry them out to pasture (2). There-
fore, it is likely that a changing climate would have imposed consid-
erable stress on the entire Eastern Settlement community (7).

Temperature change has often been cited as an explanation for 
the demise of the Eastern Settlement, on the basis of the notion that 
the Norse arrived during a relatively warm interval and were able to 
survive until temperatures declined during the Little Ice Age (1). 
However, most paleotemperature reconstructions from southern 
Greenland do not have sufficient temporal resolution to capture 
such a transition, are not directly calibrated to temperature, or 
are located relatively far from the inner settlement region (8–13). 
Furthermore, modern Greenlandic agricultural production is sen-
sitive to rainfall variability (14, 15), but there is currently little 

information on hydroclimate during the Norse Period. To address 
this matter, we report records of past temperature and hydroclimate 
at a multidecadal (~30-year) resolution, using branched glycerol 
dialkyl glycerol tetraethers (brGDGTs) and leaf wax hydrogen iso-
topes (2H) in lake sediments, from Lake 578, which is adjacent to a 
former Norse farm and is only ~9 km from Qassiarsuk (Brattahlíð), 
where the Norse had some of the largest farms in the Eastern Settlement 
(fig. S1) (2). On the basis of our temperature and hydroclimate 
reconstructions, we show that there was no abrupt temperature 
decline around the time when the Norse settlements were abandoned 
but that summers became increasingly dry throughout the entire 
Norse occupancy period.

RESULTS AND DISCUSSION
Southern Greenland temperature variability during 
the Late Holocene
brGDGTs, membrane lipids produced by bacteria (16, 17), are used 
to reconstruct temperature (Supplementary Materials). With a 3-year 
sediment trap experiment in Lake 578, situated in the Eastern 
Settlement with Norse ruins within the catchment (Supplementary 
Materials), the MBT′5ME index (methylation of branched tetra-
ethers) (18) is shown to be significantly correlated with summer 
water temperature (19). This allows us to apply MBT′5ME to a well- 
dated sediment core (fig. S5) to reconstruct summer water tempera-
ture extending back to ~375 CE (Supplementary Materials). Our 
summer temperature reconstruction shows an overall gradual cool-
ing trend (−0.07°C/100 years) over the entire time span, tracking 
changes in summer insolation (Fig. 1). Superimposed on the overall 
cooling trend are several short-lived subcentury scale oscillations.

The Lake 578 temperature reconstruction shows a general agree-
ment with other local records and with a pan-Arctic summer tem-
perature reconstruction (20), indicating a prominent cooling trend and 
coinciding with decreasing summer insolation at 61°N (Fig. 1, A to C) 
(21). The Lake 578 record also tracks southern Greenland ice sheet 
fluctuations, which advanced around 1450 to 1750 CE (22) (Fig. 1D). 
One outlet glacier, the Kiagtût Sermiat, reached its late Holocene 
maximum between approximately 440 and 610 CE (23). However, 
this is considered as an exception and is unlike the general pattern 
of other ice margins in southern Greenland. It is possible that the 
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Kiagtût Sermiat was influenced by local topographic conditions or 
internal dynamics and is not representative of regional glacier fluc-
tuations in southern Greenland (22).

Unlike the long-term cooling trend shown in our study and 
from Lake Igaliku in the inner fjords (Fig. 1E) (8), two records from 

the outer coastal region show a general warming trend during the 
Late Holocene (Fig. 1, F and G) (10, 11). This is likely due to the 
coastal influence of the Eastern Greenland Current (EGC) and 
Irminger Current (IC). The EGC is a cold, low-salinity current that 
exports sea ice from the Arctic along the eastern coast of Greenland. 
The IC is a branch of the North Atlantic Current that brings rela-
tively warm water southwestward toward southern Greenland. The 
two currents mix around Cape Farewell and then move northwest-
ward along the coast of western Greenland, where the sea ice quickly 
melts (10). Diatom-based August sea surface temperatures (SSTs) 
from marine sediment cores (fig. S1) suggest warming of both the 
EGC and IC in the past ~2000 years (Fig. 1, H and I) (24, 25), which 
is thought to have caused the warming along the outer coast of 
southern Greenland (10, 11). However, at more inland parts of the 
Eastern Settlement, the climate is more continental, the influence of 
the ocean is reduced, and summer insolation played a more important 
role, as seen in other Holocene records from Greenland (26, 27).

It is worth noting that August SSTs of the EGC were anomalously 
warm during the Medieval period (24), and similar warmth is also 
seen in the two outer fjord records (10, 11). However, Lake 578 in 
the inner settlement region shows only moderate warmth at this time, 
so the Norse settlements did not experience a particularly warm 
Medieval period. Although there is evidence for a long-term cool-
ing trend in our record, temperature did not decline during the pe-
riod of the Norse settlement, and there is no evidence of unusually 
low temperatures around the time when the Eastern Settlement was 
abandoned (fig. S7). The late 14th century was one of the warmest 
periods of the entire record.

Southern Greenland hydroclimate reconstruction 
and the linkage to the North Atlantic Oscillation
To estimate changes in hydroclimate, we measured the deuterium 
isotopic composition (2H) of both long- (nC29) and mid-chain 
(nC23) n-alkanes (Fig. 2A), which are sourced predominantly from 
terrestrial higher plants and aquatic plants, respectively (28, 29). Plant 
wax 2H reflects the hydrogen isotope composition of the source 
water the plant uses to make its leaf waxes with an offset due to 
biosynthetic fractionation (30). Here, we specifically target aquatic 
and terrestrial wax isotopes that are influenced by the same processes, 
but the evaporative enrichment of terrestrial plant leaf water allows 
us to investigate summer relative humidity (RH) with a dual- 
biomarker model (31, 32). We note that although the sedimentary 
leaf wax source attributions are ambiguous in some west Greenland 
lakes (33), in Lake 578, multiple lines of evidence suggest that the 
mid- and long-chain n-alkanes in sediments are mainly sourced 
from submerged and terrestrial plants, respectively. For example, the 
dominant submerged plant, Myriophyllum sibiricum, has abundant 
C23 n-alkanes. Detailed proxy interpretations are provided in the 
Supplementary Materials. Because they share the same ultimate water 
source, both the 2H of C23 and C29 are generally in accordance with 
the oxygen isotopes of the DYE-3 ice core (Fig. 2B) (34).

Our reconstructed quantitative RH from southern Greenland, 
normalized over 1950 to 2016 CE, indicates a persistent wet interval 
during 600 to 950 CE (Fig. 2C), before the arrival of the Norse. After 
~950 CE, the Lake 578 record shows a long-term drying trend until 
the 16th century, becoming relatively stable thereafter. The hydro-
climate variability is accompanied by changes in lake productivity 
(Fig. 2, E and F). Wetter periods are associated with higher concen-
trations of organic carbon and chlorins, and vice versa. On the basis 
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Fig. 1. Temperature profiles from southern Greenland and the related driving 
factors. (A) Summer insolation anomaly at 61° N (21). (B) Arctic summer temperature 
anomaly based on a synthesis of multiple Arctic records (20). (C) Our brGDGT- 
inferred summer water temperature from Lake 578. Gray shading represents the 
calibration errors of ±0.52°C (19). The dashed line represents the linear trend. Note 
that the temperature reconstruction is truncated at 7 cm because of the unconstrained 
“core-top cooling” for the sedimentary MBT′5ME index (Supplementary Materials). 
(D) Southern Greenland region glacier extent. The solid squares are 10Be-dated 
moraine age near Narsarsuaq (23), and the thick line indicates the readvanced period 
of the south Greenland ice margin (22). (E) Principal component analysis (PCA) 
scores of the Lake Igaliku chironomid samples (8). (F) 18O values of Scoop Lake 
chironomids (11). (G) Biogenic silica from Lake N14 (10). (H) Diatom-based August 
SSTs from core MD99-2322 from the SE Greenland shelf (24). (I) Reconstructed 
August SSTs from core Rapid 21-COM, the Reykjanes Ridge (25). Orange bar indi-
cates the time span of Norse settlement. The red lines are 5-point running mean. 
See fig. S1 for site locations.
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of observations from modern Arctic lakes, we speculate that this 
relationship arises from variations in nutrient transport from the 
catchment to the lake as moisture conditions vary. The drying trend 
we observe at Lake 578, from ~950 CE to the 16th century, is similar 
to hydroclimate shifts in west Greenland (Fig. 2D) (35). The average 
snow accumulation of the Nuussuaq ice cap decreased up to 20% 
during the transition from the Medieval period to the Little Ice Age 
(35). However, accumulation in west Greenland greatly increased 
since the early 18th century (35), while such a trend is not identified 
in the Lake 578 hydroclimate record. This suggests that the hydro-
climatic conditions in west Greenland and southern Greenland have 
responded differently from anthropogenic warming. The North Atlantic 
Oscillation (NAO) is largely accountable for hydroclimate variabil-
ity in southern Greenland (Fig. 3), but this influence does not ex-
tend to the location of the Nuussuaq ice cap. The NAO is defined in 
terms of air pressure differences between Iceland and the Azores, 
with a positive NAO index indicating anomalously high pressure 
over the Azores and vice versa (36). Although the NAO is most 
pronounced in the winter, it is a characteristic of all months of the 

year (37). In southern Greenland, precipitation amounts in June, 
July, and August are significantly correlated with the corresponding 
monthly NAO index (Fig. 3, A and B). The Greenland Blocking 
Index (GBI) describes the high-pressure blocking over Greenland 
and is broadly negatively correlated with the NAO (38). Under a 
positive GBI, the polar jet stream migrates northward, resulting in a 
negative precipitation anomaly in southern Greenland (38). In gen-
eral, a negative summer NAO phase is associated with reduced pre-
cipitation in summer, with the opposite conditions in a positive 
summer NAO phase, contributing to a wet climate (Fig. 3, A and B). 
If the same teleconnection pattern prevailed in the past, this suggests 
that the wet interval (600 to 950 CE) was associated with a per-
sistently positive NAO (39).

It is unclear whether a shift in the NAO caused the prolonged 
drying trend between ~950 CE and the early 16th century, since 
there is conflicting evidence based on different NAO reconstructions 
(40, 41). The center of the NAO in the past may appear in different 
locations, making it challenging to assess the real NAO pattern with 
proxy-inferred NAO reconstructions (42). For example, some NAO 
reconstructions suggest persistent positive NAO mode during the 
Medieval period, while other studies contradict this notion (40, 41). 
Moreover, a North Atlantic zonal wind profile reconstruction does not 
show a distinct trend in terms of the jet stream position and intensity 
in the past 1250 years (43). Nevertheless, our finding of increasingly 
arid conditions from southern Greenland throughout the Norse 
settlement period is robust and supported by multiple proxies.

The impact of drought on the Norse farmers
Compared to the widely held theory that low temperatures led to 
the demise of the Eastern Settlements, our evidence shows a distinct 
hydroclimate shift during the Norse period, compared to only moder-
ate temperature fluctuations (Fig. 4, A and B). Although the climate in 
southern Greenland is not conducive to animal husbandry, according 
to our reconstructions, the Norse farmers experienced climate condi-
tions in the early years of Eastern Settlement that would have provided 
quite favorable growing conditions for agriculture in the region. 
Subsequently, increasingly dry conditions, as indicated by our RH 
record, would have decreased the available pasturage in the growing 
season and thus limited fodder yields that were essential for the sus-
tenance of animals during the winter (44). This challenge of limited 
water availability is illustrated by archeological evidence of irrigation 
channels in Igaliku (44, 45). In addition, there was a gradual change 
in the diet of the Norse farmers over time, toward reliance on marine 
food sources (Fig. 4, C and D). The Norse diet relied primarily on 
terrestrial sources at the beginning of the settlement era and transi-
tioned to marine-based food sources over time (46, 47). The prolonged 
drying trend (Fig. 4B), perhaps exacerbated by warmer temperatures 
toward the end of the settlement period, is a plausible reason for a 
decline in the availability of meat from animals raised on Norse farms, 
forcing the farmers to hunt sea mammals, which was a more danger-
ous and uncertain activity (2). Meanwhile, the increased sea ice during 
the later settlement period may have hindered their marine harvesting 
and interfered with connections between the Norse community and 
Europe (1, 2, 48). Last, an inability to manage increasingly drier 
conditions would have hampered the resilience of the community, 
possibly leading to social instability and eventual abandonment.

Notably, the threat of droughts has been underscored for the lo-
cal farmers from southern Greenland in the recent decades (15). In 
2008, drought in southern Greenland caused a 50% reduction in yield 
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of hay and silage, which was characterized as a national problem (14). 
Because of a lack of precipitation, a substantial hay yield decline occurred 
in the following years of 2010, 2011, 2012, and 2015 (15). All these 
severe drought summers (including 2019) had concurrent negative 
summer NAO, and they were the most anomalous in the past 70 years 
(Fig. 3C). While today, such conditions can be ameliorated by import-
ing hay, that option was not available to the Norse settlers, who were 
increasingly vulnerable to the persistently drier conditions. We ac-
knowledge that the causes of Norse settlement abandonment are com-
plex, and it is difficult to simply attribute them exclusively to climate 
change. Nevertheless, our results highlight that the hydroclimate 
changes were tightly tied to the destiny of the Eastern Settlement.

MATERIALS AND METHODS
Field sampling
We collected a 70-cm sediment core from Lake 578 (61°50′ N, 45°37′ W) 
in July 2016, using a UWITEC (Austria) gravity corer with a percussion 
hammer. Terrestrial and aquatic plant samples were obtained in 

July 2017. Lake water samples were collected in July 2018. All sam-
ples were shipped back to the University of Massachusetts Amherst. 
The sediment core was stored in a dark cold room (4°C) until anal-
ysis. Plant samples were frozen until analysis. Water samples were 
stored in a refrigerator until analysis. For more details, see the 
Supplementary Materials.

Age-depth model
The age-depth model of Lake 578 sediment core is developed on the 
basis of radiometric dating. The upper 15 cm of sediment core was 
subsampled at 1-cm resolution in the field. The 210Pb, 214Pb, and 
137Cs activity of these 15 samples was measured using Canberra 
GL2020R Low Energy Germanium Detector at the University of 
Massachusetts Amherst. Seven discrete terrestrial macrofossils were 
collected from the sediment core, and radiocarbon analysis was con-
ducted in W.M. Keck Carbon Cycle Accelerator Mass Spectrometer 
at the University of California, Irvine. Radiocarbon age estimates 
were calibrated using the “IntCal20” calibration in the R program 
“BChron.” For more details, see the Supplementary Materials.

1950 1960 1970 1980 1990 2000 2010 2020

2

1

0

−1

−2

N
A

O
 in

de
x

Annual mean

JJA mean

C

P < 0.005

Min = -0.26; max = 0.57

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
0

100

200

300

400

500

600

NAO

N = 59
R2 = 0.27
Adj. R2 = 0.26
P < 0.001

S
um

m
er

pr
ec

ip
ita

tio
n

(m
m

)

B

60°N

75°N

60°W 45°W 30°W

A

−0.4 −0.2 0.0 0.60.2 0.4

Lake 578

Fig. 3. NAO in southern Greenland and its connection to summer precipitation [June, July, and August (JJA)]. (A) Spatial correlation between summer NAO and 
precipitation from 1950 to 2020; dashed lines include areas of significant correlations (P < 0.005). The precipitation data are based on the CRU TS 4.04 precipitation dataset 
from the Climate Explorer (climexp.knmi.nl). (B) The correlation between summer NAO and measured precipitation from the Narsarsuaq weather station (1961–2020) (fig. 
S1B). The red line is the linear fit, and the shaded area represents the 95% CI. (C) Time series of the annual mean and JJA mean NAO index plotted from 1950 to 2020. 
Brown columns [corresponding to brown squares in (B)] indicate recently observed and documented summer droughts that led to a notable decrease in grass, crop, and 
hay production (15). NAO index in all figures is excerpted from the “NAO (rotated EOF of Z500, 1950-now, CPC)” dataset from the Climate Explorer (climexp.knmi.nl).

http://climexp.knmi.nl
http://climexp.knmi.nl


Zhao et al., Sci. Adv. 8, eabm4346 (2022)     23 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 8

Lipid biomarker analysis
Sediments at 1-cm resolution were freeze dried and homogenized. 
The total lipid extract (TLE) was acquired using a Dionex Accelerated 
Solvent Extractor 200 with a solvent mixture of dichloromethane 
and methanol (MeOH) (9:1, v/v). The TLE was further separated 
into apolar, ketone, and polar fractions with alumina oxide column 
chromatography.

To measure brGDGTs, the polar fractions were dissolved in 
hexane/isopropanol (99:1, v/v) and filtered through 0.45-m 
polytetrafluoroethylene (PTFE) syringe filters. A known amount of 
C46 GDGT internal standard was added to each sample to quantify 
the brGDGT concentrations. Subsequently, all samples were ana-
lyzed using an Agilent 1260 high-performance liquid chromatogra-
phy coupled to an Agilent 6120 Quadrupole mass selective detector 
with a method (49) that can differentiate the 5- and 6-methyl 
isomers. Mass scanning was conducted in selected ion monitoring 
mode for mass/charge ratios of 1302, 1300, 1298, 1296, 1292, 1050, 
1048, 1046, 1036, 1034, 1032, 1022, 1020, 1018, and 744.

To measure leaf wax hydrogen isotopes, all apolar fractions were 
purified with silver nitrate silica gel chromatography, and the n- 
alkane concentrations were determined using a gas chromatograph 
(GC) equipped with a flame ionization detector. As the n-alkane 
concentrations of the 1-cm interval samples were generally low, we 
combined every two adjacent samples yielding 35 isotopic measure-
ments. An additional 11 samples from ~600, ~1000, and ~1400 CE 
were processed following an identical protocol to increase the reso-
lution of the reconstruction in key time intervals. The 2H of C23, 
C25, C27, and C29 n-alkanes for a total of 46 samples were measured 
on Thermo Delta V Advantage isotope ratio mass spectrometer 

coupled to a Thermo Trace GC Ultra through a GCC III. All samples 
were measured in triplicate, bracketed by two or three injections of 
H2 reference gas, with laboratory internal standards injections be-
tween each sample and three times at the beginning and end of each 
sequence, to track and correct intersample drift. Sample 2H ratios 
are expressed in per mil (‰) relative to Vienna Standard Mean 
Ocean Water (VSMOW). The complete methods are detailed in the 
Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm4346
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