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ABSTRACT 

 

With the help of the Laplace and Fourier transforms, we arrive at the fractional kinetic equation's solution in this paper. Their respective solutions are 

given in terms of the Fox's H-function and the Mittag-Leffler function, which are also known as the generalisations and the Saigo-Maeda operator-based 
solution of the generalised fractional kinetic equation. The paper's findings have applications in a variety of engineering, astronomy, and physical 
scientific fields.  
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INTRODUCTION 
Astronomers and physicists are now paying more attention to the 

available mathematical techniques that may be used to effectively solve 

a variety of physics and astrophysics problems as a result of the 

tremendous importance of mathematical physics in distinct 

astrophysical.  

A symmetric gas sphere in thermal and hydrostatic 

equilibrium with negligible rotational and magnetic fields can be 

thought of as a star (much like the Sun). The mass, brightness, effective 

surface temperature, radius, core density, and temperature of the star 

are its defining characteristics. Based on the aforementioned traits as 

well as some additional data regarding the equation of state, nuclear 

energy generation rate, and opacity, the mathematical models of stellar 

structures and their properties are examined. These stellar models 

explain how the star's mass, pressure, temperature, and luminosity 

change as it moves away from its centre. The assumptions of thermal 

equilibrium and hydrostatic equilibrium show that the mathematical 

model, which uses equations to describe the star's interior structure, 

does not depend on time. Kourganoff (1973) [141 &25]. 

 

In a recent study, Ferro et al. (2004) [48] demonstrated that a very 

small deviation from the Maxwell-Boltzmann particle distribution and 

the use of simple statistical mechanics can be applied to describe the 

modified nuclear reaction rates in stellar plasmas. This is consistent 

with the need for modification to the nuclear reaction rates of stellar 

plasmas and their chemical makeup. Nonlinear reaction-type (kinetic) 

equations have few exact solutions that are known. For further 

information, read Kourganoff (1973) [91] and Haubold & Mathai 

(2000) [67], which illustrate how a linear kinetic equation's solution 

describes minor variations from the nonlinear kinetic equation's 

equilibrium solution. It is possible to determine the rate of change of 

by for any response that has a time-dependent characteristic.  

 

If an arbitrary reaction is characterized by a time dependent 

quantity 𝑁 = 𝑁(𝑡) then it is possible to calculate the rate of change of 

 𝑑𝑁
𝑑𝑡  by mathematical equation 

 
𝑑𝑁

𝑑𝑡
= −𝑑 + 𝑝                                                                                 

where d is the destruction rate and p is the production rate of N. In general, 

through feedback or other interaction mechanisms, destruction and 

production depend on the quantity N itself: 𝑑 = 𝑑(𝑁) or 𝑝 = 𝑝(𝑁) which 

is a complicated dependence since the destruction or production at time t 

depends not only on N(t) but also on the past history𝑁(𝜏), 𝜏 < 𝑡 of the 

variable N. This may be formally given by the following equation (Haubold 

& Mathai 2000)[67]. 

 

       
𝑑𝑁

𝑑𝑡
= −𝑑(𝑁𝑡) + 𝑝(𝑁𝑡)                                                                   

 

where the function 𝑁𝑡 is defined by 𝑁𝑡(𝑡
∗) = 𝑁(𝑡 − 𝑡∗), 𝑡∗ > 0  

Haubold & Mathai (2000) [67] studied a special case of this equation, 

when spatial fluctuations or In homogeneities in the quantity N(t) are 

neglected, given by the equation 

 

    
𝑑𝑁𝑖

𝑑𝑡
= −𝑐𝑖𝑁𝑖(𝑡)                                                                  (3)       

 
with the initial condition that 𝑁𝑖(𝑡 = 0) = 𝑁0 is the number density of 
species i at time t = 0 and constant  𝑐𝑖 > 0  known as the standard kinetic 
equation. A detailed discussion of the above equation is given in 
Kourganoff (1973) [91]. The solution of the above standard kinetic 
equation can be put into the following form: 
 
Mathematical Prerequisites: 
 
A generalization of the Mittage-Leffler function (Mittage-Leffler, 
1903,1905)[124 ][125] 
 

         𝐸𝛼(𝑧) =  
𝑧𝑛

Γ(𝑛𝛼 + 1)
 , (𝛼 ∈ 𝐶, 𝑅𝑒(𝛼) > 0)    (4)  

∞

𝑛=0

 

 

was introduced by wiman(1905) [189] in the general for 
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           𝐸𝛼,𝛽(𝑧) =  
𝑧𝑛

Γ(𝑛𝛼 + 𝛽)
 , (𝛼, 𝛽 ∈ 𝐶,𝑅𝑒(𝛼) > 0)  (5)  

∞

𝑛=0

 

The main result of these functions are available in the handbook of 

Erdelyi Magnus. Oberhettinger and Tricomi 

(1955,Section18.1)[42][43] and the monographs written by 

Dzherbashyas(1966,1993)[32][33], Prabhakar(1971)[143] 

introduced a generalization of (5) in the form 

 

  𝐸𝛼,𝛽
𝛾 (𝑧) =  

(𝛾)𝑛𝑧𝑛

Γ(𝑛𝛼 + 𝛽)𝑛!
 , (𝛼, 𝛽, 𝛾 ∈ 𝐶, 𝑅𝑒(𝛼) > 0) (6) 

∞

𝑛=0

 

 

Where 

 (𝛾)0 = 1, (𝛾)𝑘 = 𝛾(𝛾 + 1)(𝛾 + 2) ……… …(𝛾 + 𝑘 − 1) (𝑘 = 1,2… . . )    

𝛾 ≠ 0                                                                         (4.2.4)   
 

For 𝛾 = 1 
𝐸𝛼,𝛽

1 (𝑧) = 𝐸𝛼,𝛽(𝑧),     

For 𝛾 = 1, 𝛽 = 1 
                                      𝐸𝛼,1

1 (𝑧) = 𝐸𝛼(𝑧)                                   (7)      

 
The Mellin-Barnas integral representation for this function follows 
from the integral 
 

           𝐸𝛼,𝛽
𝛾 (𝑧) =

1

Γ(𝛾)

1

2𝜋𝜔
  

Γ(−ξ)Γ(γ+ξ)(−z)ξ

Γ(𝛽+𝜉𝛼)

⬚

Ω
𝑑𝜉                   (8)  

 

where 𝜔 = (−1)
1

2  The contour Ω is straight line parallel to the 
imaginary axis at a distance ‘c’ from the origin and separating the poles 
of Γ(−ξ) at the point 𝜉 = 𝜈(𝜈 = 0,1,2… . ) from those of Γ(γ + ξ) at the 
points 𝜉 = −𝛾 − 𝜈(𝜈 = 0,1,2… . ). If we calculate the residues at the 
poles of Γ(γ + ξ) at the points 𝜉 = −𝛾 − 𝜈(𝜈 = 0,1,2… . ) then it gives 
the analytic continuation formula of this function in the form  
 

          𝐸𝛼,𝛽
𝛾 (𝑧) =

(−𝑧)−𝛾

Γ(𝛾)
 

Γ(𝛾+𝜈)

Γ(𝛽−𝛼𝛾−𝛼𝜈)
 
(−𝑧)−𝜈

𝜈!
,  𝑧 > 1     (9) ∞

𝜈=0   

 
From (2.7) it follows that for large z its behavior is given by 
 
   𝐸𝛼,𝛽

𝛾 (𝑧)~Ο( 𝑧 −𝛾),  𝑧 > 1                                                     (10)    

 
The H-function is defined by means of Mellin-Barnes type integral in the 
following manner (Mathai and Saxena,1978 p-2) [114] 
 

          𝐻𝑝,𝑞
𝑚,𝑛(𝑧) = 𝐻𝑝,𝑞

𝑚,𝑛  𝑧  
 𝑎𝑝,𝐴𝑝 

 𝑏𝑞,𝐵𝑞 
 = 𝐻𝑝,𝑞

𝑚,𝑛  𝑧  
(𝑎1,𝐴1)….
(𝑏1,𝐵1)….

 𝑎𝑝,𝐴𝑝 

 𝑏𝑞,𝐵𝑞 
   

                           =
1

2𝜋𝑖
 𝜃(𝑠)𝑧−𝜉 𝑑𝜉                             (11)       

  

   where 𝜃(𝜉) =
 Γ 𝑏𝑗+𝐵𝑗𝜉 𝑚

𝑗=1  Γ 1−𝑎𝑗−𝐴𝑗𝜉 𝑛
𝑗=1

 Γ 1−𝑏𝑗−𝐵𝑗𝜉 
𝑞
𝑗=𝑚+1

 Γ 𝑎𝑗+𝐴𝑗𝜉 
𝑝
𝑗=𝑛+1

         (12)  

𝑚, 𝑛, 𝑝, 𝑞 ∈ 𝑁0 𝑤𝑖𝑡ℎ 1 ≤ 𝑛 ≤ 𝑝, 1 ≤ 𝑚 ≤ 𝑞, 𝐴𝑗 , 𝐵𝑗 ∈ 𝑅+ 𝑎𝑗 , 𝑏𝑗 ∈ 𝑅 

(𝑖 = 1,2… . . 𝑝, 𝑗 = 1,2 ……𝑞)                                      (13)    
𝐴𝑖 𝑏𝑗 + 𝑘 ≠ 𝐵𝑗(𝑎𝑖 − 𝑙 − 1)  (𝑘, 𝑙 ∈ 𝑁0 ; 𝑖 = 1,2… . 𝑛, 𝑗 = 1,2…𝑚) 

Where we employ the usual notations 𝑁0 = (0,1,2… ) 𝑅 =
(−∞,∞)  𝑅+ = (0, ∞) and C defines the complex number field. Ω is a 
suitable contour separating the poles of Γ 𝑏𝑗 + 𝐵𝑗𝜉  from those of 

Γ 1 − 𝑎𝑗 − 𝐴𝑗𝜉 . 

 
A detailed and comprehensive account of the H-function along with 
convergence condition is available from Mathai and Saxena (1978) 
[114] 
 
It follows from (4.2.7) that the generalized Mittag-Leffler function  
 

 𝐸𝛼,𝛽
𝛾 (𝑧) =

1

Γ(𝛾)
𝐻1,2

1,1  −𝑧  
(1−𝛾,1)

(0,1)(1−𝛽,𝛼)
 (𝛼, 𝛽, 𝛾 ∈ 𝐶, 𝑅𝑒(𝛼) > 0))   

                                                                                                        (14) 
Putting 𝛾 = 1 in(14) 
 

   𝐸𝛼,𝛽(𝑧) = 𝐻1,2
1,1  −𝑧  

(0,1)

(0,1)(1 − 𝛽, 𝛼)
                         (15) 

 
If we further take 𝛽 = 1 in (15) we get 
 

      𝐸𝛼(𝑧) = 𝐻1,2
1,1  −𝑧  

(0,1)

(0,1)(0, 𝛼)
                                     (16)   

 

 
From Mathai and Saxena (1978,p.49) [11] it follows that the cosine 
transform of the H-function is given  

 𝑡𝜌−1
∞

0

cos 𝑘𝑡 𝐻𝑝,𝑞
𝑚,𝑛  𝑎𝑡𝜇  

 𝑎𝑝, 𝐴𝑝 

 𝑏𝑞 , 𝐵𝑞 
 𝑑𝑡 

                            =  
𝜋

𝑘𝜌
𝐻𝑞+1,𝑝+2

𝑛+1,𝑚  
𝑘𝜇

𝑎
 

 1−𝑏𝑞,𝐵𝑞  
1

2
+

𝜌

2
,
𝜇

2
 

(𝜌,𝜇) 1−𝑎𝑝,𝐴𝑝  
1

2
+

𝜌

2
,
𝜇

2
 
     (17)  

 
The Riemann-Liouvile fractional integral of order 𝜐 ∈ 𝐶 is defined by 
Miller and Ross(1993,p.45;) [32] see also Srivastva and saxena,2001) 
[180].  
 

   𝐷𝑡
−𝜈

0
⬚ 𝑓(𝑡) =

1

Γ(𝜈)
 (𝑡 − 𝑢)𝜈−1

𝑡

0

𝑓(𝑢)𝑑𝑢                     (18)  

  
where 𝑅𝑒(𝜈) > 0 following Samko, S.G., Kilbas, A. A. and Marichev, O.I. 
(1993,p.37) [159] we define the fractional derivative  for 𝛼 > 0 in the 
form 
 

    𝐷𝑡
𝛼

0
⬚ 𝑓(𝑡) =

1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑡𝑛  
𝑓(𝑢)

(𝑡−𝑢)𝛼−𝑛+1

𝑡

0
𝑑𝑢, (𝑛 =  𝑅𝑒(𝛼) + 1)            (19)  

 
where  𝑅𝑒(𝛼) means the integral part of 𝑅𝑒(𝛼). 
In particular, if 0 < 𝛼 < 1 
 

   𝐷𝑡
𝛼

0
⬚ 𝑓(𝑡) =

𝑑

𝑑𝑡
 

𝑓(𝑢)𝑑𝑢

(𝑡−𝑢)𝛼

𝑡

0
                                                                           (20)   

 
And in 𝛼 = 𝑛 ∈ 𝑁 then  
 

       𝐷𝑡
𝛼

0
⬚ 𝑓(𝑡) = 𝐷𝑛𝑓(𝑡)                                                                             (21)  

 
is the usual derivative of n. 
 
From Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G 
(1954,p.182) [42] we have  
 

   𝐿 𝐷𝑡
−𝜈

0
⬚ 𝑓(𝑡) = 𝑠−𝜈𝐹(𝑠)                                                        (22) 

      𝐹(𝑠) = 𝐿 𝑓(𝑡); 𝑠 =  𝑒−𝑠𝑡 𝑓(𝑡)𝑑𝑡
∞

0

                                 (23)  

where 𝑅𝑒(𝑠) > 0 
   
The Laplace transform of the fractional derivative is given by Oldham 
and spanier(1974,p.134,eq 8.1.3;) [133] see also (srivastva and saxena 
2001) [180]. 
 

  𝐿 𝐷𝑡
−𝜈

0
⬚ 𝑓(𝑡) = 𝑠𝛼𝐹(𝑠) −  𝑠𝑘−1 𝑛

𝑘=1 𝐷𝑡
𝛼−𝑘

0
⬚ 𝑓(𝑡) 𝑡=0                            (24)  

        
From among the numerous operators of fractional calculus studied in 
mathematical literature in one context or the other. We find it convenient 
to recall here the definition of the fractional calculus operator for a 
complex valued function 𝑓(𝑧). 
 
MAIN RESULTS  

 
 In this section we present the solution of fractional kinetic 

equation with Laplace and Fourier transform in the form of following 
theorem 

 
Theorem 1: Consider the fractional diffusion equation 
 

𝑁(𝑥, 𝑡) − 𝑁0𝑡
𝜇−1 = −𝑐𝜈 𝐷𝑡

−𝜈 0
⬚ 𝐷𝑥

𝜈
0
⬚  𝑁(𝑥, 𝑡)  ,  

 
with initial condition 

 

𝐷𝑡
𝜈−𝑘 0

⬚ 𝑁(𝑥, 𝑡) 𝑡=0 = 0  𝑎𝑛𝑑 𝐷𝑡
−𝜈−𝑘 0

⬚ 𝑁(𝑥, 𝑡) 𝑥=0 = 0,         𝑘 = 1,2…𝑛   

  𝑁(𝑥, 𝑡) =
𝑁0Γ(𝜇)

𝑐𝑡
 𝐻1,1

1,0  
 𝑥 𝜈

(𝑐𝑡)𝜈
 
(𝜇+𝜈,𝜈)
(1+𝜈,𝜈)  

 

Proof:  𝑁(𝑥, 𝑡) − 𝑁0𝑡
𝜇−1 = −𝑐𝜈 𝐷𝑡

−𝜈 0
⬚ 𝐷𝑥

𝜈
0
⬚  𝑁(𝑥, 𝑡) 

 
Apply Laplace and Fourier transform with time variable and space 
variable respectively to (1) we get 
 

𝑁∗(𝑘, 𝑠) − 𝑁0

Γ(𝜇)

𝑠𝜇
= −𝑐𝜈𝑘𝜈𝑠−𝜈𝑁∗(𝑘, 𝑠) 
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𝑁∗(𝑘, 𝑠) 1 + (𝑠 𝑐 )−𝜈𝑘𝜈 = 𝑁0𝑠

−𝜇Γ(𝜇) 

𝑁∗(𝑘, 𝑠) = 𝑁0𝑠
−𝜇Γ(𝜇)  1 +  𝑠 𝑘𝑐  

−𝜈

 
−1

 

= 𝑁0𝑠
−𝜇Γ(𝜇) 

(1)𝑟  − 𝑠 𝑘𝑐  
−𝜈

 
𝑟

𝑟!

∞

𝑟=0

 

= 𝑁0Γ(𝜇)  
(1)𝑟(𝑘𝑐)𝑟𝜈(−1)𝑟

𝑟!

∞

𝑟=0

𝑠−𝜈𝑟−𝜇 

 
where 𝑁∗(𝑘, 𝑠) Laplace and Fourier transform of 𝑁(𝑥, 𝑡) 
Taking inverse Laplace transform 
 

𝑁(𝑘, 𝑡) = 𝑁0Γ(𝜇)  (𝑘𝑐)𝑟𝜈

∞

𝑟=0

(−1)𝑟𝐿−1 𝑠−𝜈𝑟−𝜇  

𝑁(𝑘, 𝑡) = 𝑁0Γ(𝜇)  (𝑘𝑐)𝑟𝜈

∞

𝑟=0

(−1)𝑟
𝑡𝜇+𝑟𝜈−1

Γ(𝑟𝜈 + 𝜇)
 

= 𝑁0Γ(𝜇)𝑡𝜇−1 𝐸𝜈,𝜇(−𝑐𝜈𝑘𝜈𝑡𝜈) 

 
which  can we expressed in terms of H-function 
 

= 𝑁0Γ(𝜇)𝑡𝜇−1𝐻1,2
1,1  𝑐𝜈𝑘𝜈𝑡𝜈  

(0,1)

(0,1)(1 − 𝜇, 𝜈)
  

 
Now take inverse Fourier transformation 

𝑁(𝑥, 𝑡) =
1

𝜋
 cos𝑘𝑥 𝑡𝜇−1𝑁0Γ(𝜇)𝐻1,2

1,1  𝑐𝜈𝑘𝜈𝑡𝜈  
(0,1)

(0,1)(1 − 𝜇, 𝜈)
 𝑑𝑘 

∞

0

 

=
 𝑡𝜇−1𝑁0Γ(𝜇)

𝜋

𝜋

 𝑥 
𝐻3,3

2,1  
 𝑥 𝜈

(𝑐𝑡)𝜈
 
(1,1)(𝜇, 𝜈) 1, 𝜈 2  

(1,1)(1, 𝜈) 1, 𝜈 2  
  

 
Applying a result of Mathai and Saxena (1978,p.4.eq1.2.1)[114] the 
above expression becomes 
 

𝑁(𝑥, 𝑡) =
𝑁0Γ(𝜇)

 𝑥 
𝐻2,2

2,0  
 𝑥 𝜈

(𝑐𝑡)𝜈
 
(𝜇, 𝜈) 1, 𝜈 2  

(1, 𝜈) 1, 𝜈 2  
  

 
If we employ the formula Mathai and Saxena (1978) [114] 
 

𝑥𝜎𝐻𝑝,𝑞
𝑚,𝑛  𝑧  

 𝑎𝑝, 𝐴𝑝 

 𝑏𝑞 , 𝐵𝑞 
 = 𝐻𝑝,𝑞

𝑚,𝑛  𝑧  
 𝑎𝑝 + 𝜎𝐴𝑝, 𝐴𝑝 

 𝑏𝑞 + 𝜎𝐵𝑞 , 𝐵𝑞 
  

𝑁(𝑥, 𝑡) =
𝑁0Γ(𝜇)

𝑐𝑡
𝐻2,2

2,0  
 𝑥 𝜈

(𝑐𝑡)𝜈
 
(𝜇 + 𝜈, 𝜈) 1, 𝜈 2  

(1 + 𝜈, 𝜈) 1, 𝜈 2  
  

𝑁(𝑥, 𝑡) =
𝑁0Γ(𝜇)

𝑐𝑡
𝐻1,1

1,0  
 𝑥 𝜈

(𝑐𝑡)𝜈
 
(𝜇 + 𝜈, 𝜈)

(1 + 𝜈, 𝜈)
  

 
Theorem 2: Consider the fractional diffusion equation 

𝐷𝑡
𝜈

0
⬚  𝑁(𝑥, 𝑡) − 𝐸𝜈(−𝑑𝜈𝑡𝜈) = −𝑐𝜈

𝜕2

𝜕𝑥2
𝑁(𝑥, 𝑡)              

 
with initial condition 

   𝐷𝑡
𝜈−𝑘 0

⬚ 𝑁(𝑥, 𝑡) 𝑡=0 = 0  𝑘 = 1,2. . 𝑛                                 
Where 𝑛 =  𝑅𝑒(𝜈) + 1; 𝑐𝜈  is diffusion constant. 
 
Then for the solution of (2) is given by 

1

2𝑑
𝜈

2 
sin 𝑑

𝜈
2 𝑥 ∗

1

(𝑐𝑡)𝜈
𝐻1,1

1,0  
 𝑥 2

(𝑐𝑡)𝜈
 
 1 − 𝜈

2 , 𝜈 

(0,2)
 

−
1

2𝑑
𝜈

2 
sin 𝑑

𝜈
2 𝑥 𝐻1,2 

1,1  𝑑𝜈𝑡𝜈  
(0,1)

(0,1)(0, 𝜈)
  

 
Proof:  

𝐷𝑡
𝜈

0
⬚  𝑁(𝑥, 𝑡) − 𝐸𝜈(−𝑑𝜈𝑡𝜈) = −𝑐𝜈

𝜕2

𝜕𝑥2
𝑁(𝑥, 𝑡) 

 
Applying the Fourier transform with respect to the space 

variable x and the Laplace transform with respect to the time variable t. 
we get 

                 𝑠𝜈𝑁∗(𝑘, 𝑠) −
𝑠𝜈−1

𝑠𝜈+𝑑𝑣
= −𝑐𝜈𝑘2𝑁∗(𝑘, 𝑠)  

                 𝑠𝜈+𝑐𝜈𝑘2 𝑁∗(𝑘, 𝑠) =
𝑠𝜈−1

𝑠𝜈+𝑑𝑣
  

       𝑁∗(𝑘, 𝑠) =
𝑠𝜈−1

 𝑠𝜈+𝑑𝑣  𝑠𝜈+𝑐𝜈𝑘2 
  

                           =
𝑠𝜈−1

𝑐𝜈𝑘2−𝑑𝜈
 

1

𝑠𝜈+𝑑𝑣
−

1

𝑠𝜈+𝑐𝜈𝑘2
                            

 

To invert equation (2).It is convenient to first invert the Laplace 
transformation and Fourier transform. Apply inverse Laplace transform 
we obtain 
 

𝑁(𝑘, 𝑡) =
1

𝑐𝜈𝑘2𝑡𝜈
 𝐸𝜈(−𝑑𝜈𝑡𝜈) − 𝐸𝜈(−𝑐𝜈𝑘2𝑡𝜈)                   

 
Which can expressed in terms of H-function 
 

𝑁(𝑘, 𝑡) =
1

𝑐𝜈𝑘2−𝑑𝜈
 𝐻1,2 

1,1  𝑑𝜈𝑡𝜈  
(0,1)

(0,1)(0,𝜈) − 𝐻1,2 
1,1  𝑐𝜈𝑘𝜈𝑡𝜈  

(0,1)
(0,1)(0,𝜈)    

                                                                                                  
Invert the Fourier transform 

𝑁(𝑥, 𝑡)

=
1

𝜋
 𝑐𝑜𝑠𝑘𝑥

∞

0

1

𝑐𝜈𝑘2 − 𝑑𝜈
 𝐻1,2 

1,1  𝑑𝜈𝑡𝜈  
(0,1)

(0,1)(0, 𝜈)
 𝑑𝑘

−
1

𝜋
 𝑐𝑜𝑠𝑘𝑥

∞

0

1

𝑐𝜈𝑘2 − 𝑑𝜈
𝐻1,2 

1,1  𝑐𝜈𝑘𝜈𝑡𝜈  
(0,1)

(0,1)(0, 𝜈)
 𝑑𝑘  

= −
1

2𝑑
𝜈

2 
sin 𝑑

𝜈
2 𝑥 𝐻1,2 

1,1  𝑑𝜈𝑡𝜈  
(0,1)

(0,1)(0, 𝜈)
 +

1

2𝑑
𝜈

2 
sin 𝑑

𝜈
2 𝑥 

∗
1

 𝑥 
𝐻3,3 

2,1  
 𝑥 2

(𝑐𝑡)𝜈
 
(1,1)(1, 𝜈)(1,1)

(1,2)(1,1)(1,1)
  

= −
1

2𝑑
𝜈

2 
sin 𝑑

𝜈
2 𝑥 𝐻1,2 

1,1  𝑑𝜈𝑡𝜈  
(0,1)

(0,1)(0, 𝜈)
 

+
1

2𝑑
𝜈

2 
sin 𝑑

𝜈
2 𝑥 ∗

1

(𝑐𝜈𝑡𝜈)
1

2 
𝐻2,2 

2,0  
 𝑥 2

(𝑐𝑡)𝜈
 
 1 − 𝜈

2 , 𝜈  1 2 , 1 

(0,2) 1 2 , 1 
  

=
1

2𝑑
𝜈

2 
sin 𝑑

𝜈
2 𝑥 ∗

1

(𝑐𝑡)𝜈
𝐻1,1

1,0  
 𝑥 2

(𝑐𝑡)𝜈
 
 1 − 𝜈

2 , 𝜈 

(0,2)
 

−
1

2𝑑
𝜈

2 
sin 𝑑

𝜈
2 𝑥 𝐻1,2 

1,1  𝑑𝜈𝑡𝜈  
(0,1)

(0,1)(0, 𝜈)
  

 
The fractional kinetic equation has been extended to 

generalized fractional equation theorems (1) and (2). Their respective 
solutions are given in terms of Mittag-Leffler function and their 
generalization, which can also be represented as Fox’s H-function. 

 
CONCLUSION 
 
In this paper we derive the solution of fractional kinetic equation with 
Laplace and Fourier transform. Their respective solutions are given in 
terms of Mittag-Leffler function and their generalization, which can also 
be represented as Fox’s H-function.  and the solution of generalized 
fractional kinetic equation involving Saigo-Maeda operator .The result 
proved in this chapter are application to wide range of engineering, 
astrophysics and physical science. 
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