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ABSTRACT

Accurate lesion segmentation in retinal imagery is an area of vast research. Of the many segmentation methods

available very few are insensitive to topological changes on noisy surfaces. This paper presents an extension to

earlier work on a novel stopping mechanism for level sets. The elementary features scheme (ELS) in [5] is

extended to include shape entropy as a feature used to ’look back in time’ and find the point at which the curve

best fits the real object. We compare the proposed extension against the original algorithm for timing and

accuracy using 50 randomly selected images of exudates with a database of clinician demarcated boundaries as

ground truth. While this work is presented applied to medical imagery, it can be used for any application

involving the segmentation of bright or dark blobs on noisy images.
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1 INTRODUCTION

The diagnosis of diabetic retinopathy is based upon visually recognizing various clinical features. Retinal lesions

are among the first visual indicators suggestive of diabetic retinopathy. The threat to visual loss increases with

the frequency of retinal lesions combined with their encroachment into the macula. To enable early diagnosis,

it is necessary to identify both frequency and position of retinal lesions in relation to the fovea and other major

structures (such as the optic nerve). In [5] a lesionness measure was introduced and defined as a combination

of perimeter size constancy shp and compactness c = p2/a, where p is the perimeter and a is the area [3]. The

lesionness measure was the core of the stopping mechanism and upon further analysis we discovered a more

direct approach by tracking the entropy of the shape of the region of interest (roi). In this work we introduce the

notion of using a multivariate histogram to describe the changing shape of the roi and track the shape entropy

to determine the best fit. The correlation between the change in shape entropy and the perimeter size constancy

indicates the point where the curve best fits the lesion (or region of interest).

2 BACKGROUND

Retinal exudates are an interesting challenge for segmentation algorithms as they vary in appearance, conforming

to one of three structures: dot exudates, fluffy exudates and circumscribed plaques of exudate. Dot exudates

consist of round yellow spots lying superficially or deep in the sensory retina [9]. Exudates are usually reflective

and may appear to have a rigid, multifaceted contour, ranging in color from white to yellow [1]. With varying
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shapes, sizes, patterns and contrast, exudate segmentation is a demanding problem, complicated by lighting

variation over the image, natural pigmentation, the intrinsic color of the lesion, and decreasing color saturation at

lesion boundaries [2].

We compare our current work to the novel scheme presented in [5], along with three other well known segmen-

tation algorithms. Sinthanayothin et al., [11], Wang et al., [12] and Osareh et al.,[6].

3 PROPOSED MODEL

3.1 Curve Propagation

For our work in lesion segmentation, level set methods provide the capability to determine not just the coarse

shape of an object, but are extremely useful to tease out the fine delicate boundary fissures and curves that give a

deeper look into the overall shape of a lesion candidate. From the well known definition of level sets [7]:

φt + F0 |∇φ|+ ~U(x, y, t)∇̇φ = εK |∇φ| (1)

where: φt is the propagating function at time t, F0 |∇φ| is the motion of the curve in the direction normal to the

front, ~U(x, y, t)∇̇φ is the term that moves the curve across the surface and εK |∇φ| is the speed term dependent

upon curvature. ~U(x, y, t)∇̇φ is the gradient map, described in section 3.2 and εK |∇φ| is approximated using a

central differencing scheme.

Our numerical implementation takes insights from [10]. Let φn
i be the value of φ at a point (pixel) i at time n.

The curve evolves over a given time step thus:

φn+1
ij = φn

ij −4t[max(−βij , 0)4+ +min(−βij , 0)4−] (2)

where: β(k) = 1 + εk is the velocity function, un
ij is the ’current’ level set zero, 4t is the time step (or scaling

factor) and the [max...min] describes the normal component, and where:

4+ = [max(D−x , 0)2 + min(D+
x , 0)2 + max(D−y , 0)2 + min(D+

y , 0)2]1/2 (3)

4− = [max(D+
x , 0)2 + min(D−x , 0)2 + max(D+

y , 0)2 + min(D−y , 0)2]1/2

and D−x , D+
x , D−y , D+

y are the forward and backward difference approximations in the x and the y directions,

respectively.

3.2 Gradient Map

The boundary of a lesion can be characterized by the point of strongest intensity contrast between itself and the

background retina. Since retinal images are inherently noisy and the lesion edge pixels can look very much like

background pixels, we want a mechanism that smooths out the noise but preserves the edges in our gradient

map. Anisotropic filters address the issue of edge preservation [8]. We build our gradient map thus: gI(x, y) =
2∗(In)

(2−(In)2) where: In is a histogram equalized, normalized gray-scale (green channel) image I(x, y) and σ = 1.

3.3 Stopping Mechanism

A traditional use of level sets is to track a curve to an object’s boundary and then stop. In our case, it is more

interesting to ‘peek ahead’ by allowing the curve to move past the optimal boundary and then ‘look back’ and

measure how well-formed the accumulated region is as a lesion. We have found that when the curve begins

to hold its shape, or position in time, this is a potential boundary point. The curve may slow down and then

subsequently speed up as its moves over a surface. It is for this reason we use the shape entropy information from

one iteration to another to correlate the best stopping point with the slowing down of the curve.
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3.3.1 Histogram

Our histogram model is from [4] in which the third (skewness) and fourth (kurtosis) order moments are de-

fined for multi-dimensional surfaces. Mardia [4] defines a measure of skewness corresponding to: β1,p =

ΣΣSrr′

Sss′

Stt′M
(rst)
111 M

(r′s′t′)
111 where:

S−1 = Sij and M
(r′s′t′)
111 = 1

nΣn
i=1(Xri − X̄r)(Xsi − X̄s)(Xti − X̄t). We modify the M

(r′s′t′)
111 term to

address location of pixel intensities relative to the grid to retain the true shape of the bounded object thus,

M
(r′s′t′)
111 = 1

P

wΣn
i=1

∑
wi(Xri − X̄r)(Xsi − X̄s)(Xti − X̄t), where: X is a vector of x,y values, and X

is a vector of the means; p is the number of dimensions (p = 2), wi is the intensities at value i,
∑

w is the sum

of all the intensities in the region of interest, and S−1 is the Covariance Matrix (inverted).

The measure of kurtosis corresponding to B2,p is, with our modifications:

b2,p = (
P

w)+2
(
P

w2)p

n∑

i=1

wi{(Xi −X)′S−1(Xi −X)}2.

Although we do not use the values of these moments during this portion of the work, we do employ the full

covariance matrix from the output of the histogram generation, and apply it to calculate entropy H(X) =
1
2 ln [(2πe)n |det(S)|] where: n is the number of observations in the region of interest and S is the covariance

matrix. When no discernible change is detected from one iteration to another, the curve has found its ’most

informative’ boundary point.

3.3.2 Best Fit Features

From the original work in [5] we are looking for measurements that can give indicators of how well-formed a

region is as a candidate lesion. Thus, elementary features include 1) the number of iterations the curve held

its perimeter size: shp; 2) the minimum compactness value: c; 3) the number of iterations the curve held that

compactness value: chp; and 4) the gradient contrast: gc. After the curve has moved for a number of iterations

(we use P = 180) it is possible that the curve has evolved past the optimal point describing the object boundary.

Because of this possibility, the gathered measurement values are then used to ‘look back in time’ to find the point

at which the curve best fit the object boundary.

3.3.3 Correlation

Let q be the iteration number and h(q) be the count of the number of iterations for which the feature values have

held up to and including q. Let qshp be the iteration point where the perimeter holds its size for a h(q) > 2, and

qent the entropy value at each successive iteration. Let qc be the iteration with the smallest value of c, qgc be the

iteration with the largest contrast and qchp be the iteration where c held its value the longest. Let qµ and qσ be

the mean and standard deviation, respectively, of the iteration values for the gathered features. Let qub = qµ + qσ

be the upper bound and let qlb = qµ − qσ be the lower bound. Then let Z∗ be the collection of features that fall

within the (one)σ boundary. Those features that fall within (one)σ of qµ are used to calculate the best fit point.

SV =
P

q∈Z∗ q

#Z∗ is the average of these bounded features, where: q is a bounded feature and #Z∗ is the number of

bounded features. To determine the best fit point we use Pearson’s product-moment coefficient correlated between

the qshp feature and the shape entropy qent features. ρqshp,qent
=

E((qshp−µqshp
)(qent−µqent

))

σqshp
σqent

where: E is the

expected value, and µqent
, σqshp

and µqshp
, σqent

are the first and second moments for perimeter size constancy

and entropy, respectively. The images with high correlation of entropy H(X) to perimeter size constancy shp
use the max(shp) value - the iteration where the perimeter held its size the longest. Lower correlation values

require the SV calculation.

4 CONCLUSIONS

Table 1 shows the final segmentation result compared with other algorithms, and shows an increase in accuracy

and decrease in error rate for the proposed model. Sensitivity values can be increased with developments to the

gradient map generation. Algorithm names are as follows: ELSwE - Elementary Features Scheme w/Entropy
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Correlation; ELS - Elementary Features Scheme (orig); Fuzzy - Fuzzy C-means; RRG - Recursive Region Grow;

DC - Color Discriminant.

Table 1: Algorithm Performance Metrics.

Model Sens. Spec. Accuracy Error

ELSwE 96.53 99.28 99.13 22.38

ELS 96.94 98.97 98.87 29.35

Fuzzy 88.29 94.18 93.89 158.95

RRG 47.72 90.99 88.85 290.1

DC 64.67 75.77 75.21 644.75

A novel idea for automated segmentation and classification of candidate lesions using a new level set stop-

ping mechanism has been presented. Experimental comparisons have been conducted on five segmentation ap-

proaches. All algorithms were evaluated against a randomly-selected image set with ophthalmic lesion boundary

demarcation. The results shown in Table 1 demonstrate the advantage of allowing the curve propagation (region

growing) to run past the optimal boundary point, thus providing a ‘peek ahead’ to adjacent areas. Then using

gathered elementary features and correlating the strongest to shape entropy to ‘look back in time’ determines the

best fitting curve.

REFERENCES

[1] Hean-Choon Chen. Vascular Complications of Diabetes; current issues in pathogenesis and treatment, chapter 10, pages

97–108. Blackwell Publishing, 2002.

[2] M.H. Goldbaum, N.P. Katz, M.R. Nelson, and L.R. Haff. The discrimination of similarly colored objects in computer

images of the ocular fundus. Investigative Ophthalmology & Visual Science, 31:617–623, 1990.

[3] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice Hall, Upper Saddle River, NJ, 2001.

[4] K.V. Mardia. Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3):519–530, March

1970.

[5] E. M. Massey, J. A. Lowell, A. Hunter, and D. Steel. Lesion boundary segmentation using level set methods. In Advances

in Computer Graphics and Computer Vision, 2009. To be published.

[6] A. Osareh, M. Mirmehdi, B. Thomas, and Richard Markham. Automatic recognition of exudative maculopathy using

fuzzy c-means clustering and neural networks. In E Claridge and J Bamber, editors, Medical Image Understanding and

Analysis, pages 49–52. BMVA Press, July 2001.

[7] Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on

Hamilton-Jacobi formulations. Journal of Computational Physics, 79:12–49, 1988.

[8] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 12(7):629–639, July 1990.

[9] M. Porta and F. Bandello. Diabetic retinopathy a clinical update. Diabetologia, 45(12):1617–1634, December 2002.

[10] G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, 2001.

[11] C. Sinthanayothin, J.F. Boyce, T.H. Williamson, H.L. Cook, E. Mensah, and D. Lal, S. andUsher. Automated detection

of diabetic retinopathy on digital fundus images. Diabetic Medicine, 19:105–112, 2002.

[12] H. Wang, W. Hsu, K.G. Goh, and M.L. Lee. An effective approach to detect lesions in color retinal images. In

Proceedings IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages 181–186, 2000.

233


