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Abstract 

Introduction: Exposure to herbicides poses a threat to aquatic biofilms by affecting their 

community structure, physiology and function. These changes render biofilms to 

become more tolerant, but on the downside community tolerance has ecologic costs. 

A concept that addresses induced community tolerance to a pollutant (PICT) was 

introduced by Blanck and Wängberg (1988). The basic principle of the concept is that 

microbial communities undergo pollution-induced succession when exposed to a 

pollutant over a long period of time, which changes communities structurally and 

functionally and enhancing tolerance to the pollutant exposure. However, the 

mechanisms of tolerance and the ecologic consequences were hardly studied up to 

date. This thesis addresses the structural and functional changes in biofilm 

communities and applies modern molecular methods to unravel molecular tolerance 

mechanisms.  

Methods: Two different freshwater biofilm communities were cultivated for a period of 

five weeks, with one of the communities being contaminated with 4 µg L-1 diuron. 

Subsequently, the communities were characterized for structural and functional 

differences, especially focusing on their crucial role of photosynthesis. The community 

structure of the autotrophs was assessed using HPLC-based pigment analysis and 

their functional alterations were investigated using Imaging-PAM fluorometry to study 

photosynthesis and community oxygen profiling to determine net primary production. 

Then, the molecular fingerprints of the communities were measured with meta-

transcriptomics (RNA-Seq) and GC-based community metabolomics approaches and 

analyzed with respect to changes in their molecular functions. The communities were 

acute exposed to diuron for one hour in a dose-response design, to reveal a potential 

PICT and uncover related adaptation to diuron exposure. The combination of apical 

and molecular methods in a dose-response design enabled the linkage of functional 

effects of diuron exposure and underlying molecular mechanisms based on a 

sensitivity analysis. 

Results/Discussion: Chronic exposure to diuron impaired freshwater biofilms in their 

biomass accrual. The contaminated communities particularly lost autotrophic biomass, 

reflected by the decrease in specific chlorophyll a content. This loss was associated 

with a change in the molecular fingerprint of the communities, which substantiates 
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structural and physiological changes. The decline in autotrophic biomass could be due 

to a primary loss of sensitive autotrophic organisms caused by the selection of better 

adapted species in the course of chronic exposure. Related to this hypothesis, an 

increase in diuron tolerance has been detected in the contaminated communities and 

molecular mechanisms facilitating tolerance have been found. It was shown that genes 

of the photosystem, reductive-pentose phosphate cycle and arginine metabolism were 

differentially expressed among the communities and that an increased amount of 

potential antioxidant degradation products was found in the contaminated 

communities. This led to the hypothesis that contaminated communities may have 

adapted to oxidative stress, making them less sensitive to diuron exposure. Moreover, 

the photosynthetic light harvesting complex was altered and the photoprotective 

xanthophyll cycle was increased in the contaminated communities. Despite these 

adaptation strategies, the loss of autotrophic biomass has been shown to impair 

primary production. This impairment persisted even under repeated short-term 

exposure, so that the tolerance mechanisms cannot safeguard primary production as 

a key function in aquatic systems. 
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Glossary on the different perspectives on function 

Perspective Description Terminology for 
this thesis 

Measuring 
Parameter 

Process* Measurable flux of matter or 
energy. 

• ecologic function  

• community function 

• molecular function 

 

O2 

Role* A characteristic of a community 
that indicates the presence of a 
function.  

• functional trait 

• KEGG function 

• functional genomics 

 

Chla, PS- 
genes 

Service* The transmitted value of one or 
more process(es) for downstream 
systems. 
 

• not used 

 
- 

Functioning* The interaction of different 
processes for the good of an 
overall system (e.g. organism, 
community). 
 

• community 
functioning 

• cellular functioning 

I-PAM 

 

Function 
 
Arises from the fusion of process and functioning: A measurable flow of matter 
or energy that maintains the wellbeing of a system (see Chapter 1.4 for a 
precise definition). 
 

* With reference to “Function and ‘‘functioning’’ in ecology: what does it mean?” by 

Jax (2005). 
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1. The effect of chemicals on organisms and their functions 

1.1 Welcome to the Anthropocene 

Since that moment mankind detached from its ecological niche, they have triggered a 

tremendous ecological transformation. In the course of this transformation, a mass 

extinction episode was initiated unparalleled for 65 million years (Ceballos et al., 2015). 

In the very beginning it was just the hunger for new sources of protein (Sandom et al., 

2014) or the loss of habitat due to the spread of agriculture and settlements 

(agricultural revolution) which put the ecosystems under stress. With the onset of 

industrialization human activity has triggered new stressors such as climate change, 

eutrophication or chemical pollution, which have exacerbated the problem that 

mankind poses to ecosystems. The recognition of the disastrous human environmental 

footprint is reflected in the concept of Planetary Boundaries (Rockström et al., 2009). 

This concept aims to define a safe operating space for safeguarding global functioning. 

The authors identified nine environmental boundaries that, if exceeded, “will trigger 

non-linear, abrupt environmental change within continental- to planetary-scale 

systems”.  

Among those boundaries chemical pollution is considered in the category “Novel 

entities”, which was defined by Steffen et al. (2015) as “new substances, new forms of 

existing substances and modified life forms that have the potential for unwanted 

geophysical and/or biological effects”. Today, about 350’000 chemicals and mixtures 

are registered on the global markets, while many chemicals remain publicly unknown 

because they are claimed as confidential (over 50’000) or ambiguously described (up 

to 70’000) (Wang et al., 2020). Many of these chemicals eventually end up in the 

environment, unless they were intentionally applied there anyway such as many plant 

protection products. According to a report of the Federal Office of Consumer Protection 

and Food Safety (BVL), domestic sales of plant protection products remained on a 

consistently high level in 2021. The sales of active substances were mostly herbicides 

(16114 tons) and, to a lesser extent, fungicides (9699 tons) and insecticides (1995 

tons). In the wake of chemical pollution, a number of negative effects on animal 

populations have been identified, such as the decline of raptors by DDT (Porter & 

Wiemeyer, 1969) and diclofenac (Oaks et al., 2004), disruption of the sex ratio in fish 

by ethinylestradiol (Purdom et al., 1994) and molluscs by tributyltin (Bettin et al., 1996) 

or the acute toxicity of 6PPD-quinone for salmon fish (Tian et al., 2021). This overview 
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illustrates the diversity of environmental impacts of chemicals, and thus assessing the 

planetary boundaries of novel entities requires a number of control variables. Persson 

et al. (2022) discussed several variables to control the unwanted impact of novel 

entities, based on production volume, trends in release or monitoring of unwanted 

impacts. They concluded that all control variables have an essential role in assessing 

the integrity of the biosphere, but the safe operating range is exceeded even “when 

annual production and releases increase at a pace that outstrips the global capacity 

for assessment and monitoring”. Hence, there are two priorities for dealing with the 

complexity of chemical pollution, I) production and release of novel entities to the 

environment needs to be reduced and II) efficient monitoring of environmental impacts 

must be ensured. Addressing the latter aspect requires consideration of the biological 

and chemical complexity. Release of chemicals to the environment initiates the 

formation of mixtures, which may have effects even if individual chemicals occur below 

critical thresholds (Walter et al., 2002). Managing mixtures requires incorporation of 

mixture toxicity into legislation (Kortenkamp et al., 2019), testing (real-life) chemical 

mixtures to humans and wildlife (Drakvik et al., 2020), and approaches to assess 

potential risks from environmental mixtures, like prediction of toxicity (based on read-

across approaches) or effect-directed analysis (Brack et al., 2018).  

However, chemical complexity is only half the battle. In nature, no species lives in 

isolation and the diversity of species and their sensitivity must be considered when 

looking at chemical pollution (biological complexity). Against this background, an 

expansion of current ecotoxicological testing from a single species to more complex 

and interacting communities is essential. Community ecotoxicology offers insights into 

pollution from an ecologic perspective by including species abundance, diversity and 

interactions as emerging properties beyond population-based analysis (Clements & 

Rohr, 2009). Thus, indirect effects of interactions (e.g. loss of prey or interspecific 

competition) are included in the assessment and improved protection of ecological 

integrity can be ensured. Tlili et al. (2016) proposed the Pollution-induced community 

tolerance (PICT) concept introduced by Blanck and Wängberg (1988) (see Chapter 

1.3) as a diagnostic tool for ecologically relevant risk assessment of chemical pollution. 

However, further standardization, validation and development of more advanced 

(molecular) endpoints is needed to enable retrospective risk assessment of chemicals 

based on PICT.  
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1.2 From cellular stress responses to ecosystem resilience 

1.2.1 The individual pursuit for homeostasis 

Organisms strive for homeostasis, the stable state of optimal physical and chemical 

condition that ensures the most efficient functioning of cellular processes. This desired 

optimal state is rarely reached under natural fluctuation conditions and the 

physiological state of the cell is more likely to oscillate around the idealized optimal 

state. The oscillation within certain pre-set limits can be defined as the homeostatic 

range (Davies, 2016). Organisms respond to any deviation from homeostasis by 

regulation, acclimation and adaptation (Borowitzka, 2018) which is shown 

schematically in Figure 1. The process of regulation represents the activation or 

deactivation of already existing cell structures during environmental fluctuations (e.g. 

the light-harvesting complex of photoautotrophic organisms) (Giordano, 2013). 

Regulation starts immediately after an environmental change occurs. It does not 

require substantial changes in cell metabolism, so this process is particularly relevant 

for setting the homeostatic range. If an environmental condition exceeds the 

homeostatic range, an organism faces macromolecular damages associated with a 

metabolic imbalance, which can be defined as a physiological state of stress. During 

stress, the biotic potential is reduced and resources are shifted from somatic growth to 

cellular stress responses and acclimation processes. The cellular stress response 

covers a universal set of functions to defend against macromolecular damage caused 

by environmental change. Involved functions, such as cell cycle control, repair or 

removal of damaged proteins or stabilization of DNA, aim to stabilize the physiological 

state temporarily (Kültz, 2005). Their action represents a non-specific response to the 

environmental stimulus. The processes of cellular stress response and acclimation 

overlap, however, acclimation involves a modification of the macromolecular structure 

to return to homeostasis. Thus, acclimation leads to transcription and translation of 

specific genes to synthesize crucial proteins that adjust cell metabolism to the new 

environment. If the genetic capacity and the available resources allow establishing 

homeostasis under the new environmental conditions, stress is relieved. Conversely, 

cell death occurs when the extent of environmental change surpasses the intolerance 

threshold or the duration of acclimation requires an energy budget that exceeds cellular 

capacity. The range of self-stabilization up to a maximum environmental change 

(intolerance) is termed homeostatic capacity. Another strategy to face stressful 

conditions is avoidance, for example by forming dormant, stress-resistant non-
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reproductive structures. Although there are different types of survival forms, such as 

endospores, aplanospores or cysts, they all have in common that the organisms have 

minimal metabolism during the dormancy phase. In this stage they can last for years, 

without contributing to environmental processes. 

Permanent environmental changes give rise to the process of adaptation, which 

consolidates the acclimated state in the genotype. During adaptation, advantageous 

mutations are selected that allow maintaining homeostasis at low metabolic cost. The 

selection of advantageous small scale mutations is also defined as micro-evolution 

(Medina et al., 2007). The result of acclimation and adaptation can create a favorable 

metabolic state called hormesis (Agathokleous et al., 2021), but also increase costs 

from altered metabolic processes (Medina et al., 2007).  

 

Figure 1 Simplified graph on the physiological state of a cell in response to environmental 
change (adapted from Borowitzka (2018)). The physiological optimum of a cell as a function of 
an environmental variable x is shown on y-axis and hypothetical thresholds for stress and 
intolerance are plotted with a dashed line. The skull pictogram marks an environmental 
stimulus (e.g. toxic exposure) upon which the cellular homeostasis starts declining. A cascade 
of cellular responses is triggered, which can be divided into regulation, stress response and 
acclimation. The moment the cellular state moves beyond homeostatic range of regulation a 
stress situation is initiated (red area). After acclimation, homeostasis is re-established in the 
new environmental situation, and if the environmental stimulus persists, adaptation can occur 
(gray area), consolidating the acclimated state in the genotype. 
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1.2.2 Stability from diversity 

Environmental communities are shaped by the coexistence of different species in 

space and time. Coexistence has been conceptualized by a scaling into nested levels 

of biological organization, ranging from populations to communities. A population is 

defined as a group of organisms of the same genotype on a given location. Genetic 

differences of small scales can exist both within and between populations at different 

sites. Genetic variance within species of the same population (intraspecific variation) 

stabilizes against environmental fluctuations, as there is higher chance of individual 

members of the population performing better under altered conditions. A community 

is an association of populations at the same temporal and geographic scale, which co-

exist due to differences in their niche and other external factors. The niche arises from 

the integration of all physiological requirements of an organism to the prevailing 

conditions. The populations within a community are intertwined in a complex network 

that includes interactions ranging from competition to mutualism. Compared to 

populations, communities show a higher stability, as they have additional genetic 

variance between species (interspecific variation). Intraspecific and interspecific 

variation can be summarised as genetic diversity, which is a cornerstone of 

biodiversity. High genetic diversity in communities is ensured by environmental factors 

and interactions such as predator-prey relationships, as these dampen the dominance 

efforts of individual species (McCann, 2000). McCann (2000) further argues that the 

loss of biodiversity increases the strength of interaction between remaining species, 

making a community more vulnerable to disturbance.  

On a higher level of abstraction, genetic diversity converges into shared metabolic 

pathways, which themselves contribute to community or ecosystem functions (see 

chapter 1.4). This is illustrated by the frequently observed phenomenon that the 

composition of functional genes remains relatively stable across comparable 

environments, while the taxonomical composition of the communities varies 

considerably (e.g. Louca et al., 2016). This stability in the functional composition arises 

from functional redundancy of a diverse set of species within the community, which 

is greater on basal functions with thermodynamically favorable pathways such as 

respiration (Louca et al., 2018). Naeem (1998) postulated functional redundancy as a 

critical feature of ecosystems and paved the way for the insurance hypothesis (Yachi 

& Loreau, 1999). The authors proved that biodiversity stabilizes (eco-) systems against 

declines in their functioning. Their modeling approach showed that diversity has two 
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main effects, such as I) a reduction in the temporal variance of a function (buffering), 

and II) an increase in the temporal mean of a function (stimulation).  

Both, functional redundancy and the insurance hypothesis are important aspects in 

microbial community ecotoxicology, as they form the basis of the concept of ‘Pollution-

induced Community Tolerance’ (PICT) of Blanck and Wängberg (1988), which is 

outlined in chapter 1.3. 

 

 

1.3 Community ecotoxicology - a step forward in monitoring the effects of 

chemical pollution? 

A community is more than the sum of its individual populations, as it includes 

interactions at different trophic levels. From an ecotoxicological perspective, 

communities reveal indirect effects that cannot be derived from the sum of the 

sensitivities of the individual populations to a chemical exposure. This has been 

illustrated by McClellan et al. (2008), who showed that chronic effects of the herbicide 

diuron at the community level could not be predicted from tests with individual algal 

species. Due to the combination of ecological complexity and ecological relevance, 

community ecotoxicology remains an important and challenging field of science 

(Clements & Rohr, 2009). A possible simplification of the experimental effort while 

maintaining ecological complexity is to focus on the ecotoxicology of microbial 

communities such as biofilms (Guasch et al., 2016; Sabater et al., 2007). The key 

advantage of microbial communities is the combination of genetic diversity and short 

generation time of the microbes. Therefore, focusing on microbial communities allows 

the investigation of a regulatory, acclimation and adaptation processes with respect to 

their potential to affect community structure and function on acute and chronic scale. 

In this thesis aquatic freshwater biofilms were used as model microbial communities, 

to tackle the aspects of structural and functional effects of chronic herbicide exposure 

(chapter 1.4) and unravel adaptation mechanisms (chapter 1.2.1). Aquatic biofilms 

can cover a wide range of phyla, such as unicellular microalgae, bacteria, archaea, 

fungi, and protozoa that share a delimited habitat on submerged surfaces. Attachment 

to surfaces is facilitated by a matrix of extracellular polymeric substances (EPS) 

excreted by algae and bacteria. Their diversity and ubiquitous occurrence makes 



  

7 
 

aquatic biofilms a hotspot of biogeochemical cycles that brings along a wide array of 

ecological functions ranging from respiration of organic matter, primary production or 

nutrient retention (Battin et al., 2016). However, microbial communities are often 

regarded as black-box systems with constant process rates (Allison & Martiny, 2008). 

In contrast, the authors' meta-study showed that microbial community composition is 

sensitive to changes in environmental parameters and recovery from disturbances can 

take up to years.  

The sensitivity of members of a community to a chemical can vary by several orders 

of magnitude, implying that exposure to a pollutant will affect the organisms differently. 

Chronic exposure to a chemical therefore triggers the process of toxicant-induced 

succession (Blanck, 2002). This process shapes the structural and physiological 

characteristics of a community by selecting for adapted species. A trait that arises from 

adaptations is tolerance, which can be quantified according to the concept of ‘Pollution-

induced Community Tolerance’ (PICT) introduced by Blanck and Wängberg (1988). 

However, community tolerance is no absolute measure, instead it becomes evident by 

comparing it with a reference value. Therefore, demonstrating PICT requires a short-

term exposure of a chronically exposed and a reference community (with the 

respective stressor) as well as an integrative measurement reflecting the physiological 

state in the communities (Blanck, 2002). This approach implies that a community is 

more tolerant and thus better adapted if it can tolerate a higher amount of toxicant while 

maintaining its functional state. The author summarized common metabolic endpoints 

for the quantification of PICT, including the photosynthetic yield (e.g. 14C-carbonate 

incorporation or pulse-amplitude modulated fluorescence analysis) and proxies of 

secondary production like nucleic acid or protein biosynthesis (e.g. 3H-thymidine or 3H-

leucine incorporation). So far the PICT-concept was tested for biofilm communities in 

the context of tolerance augmentation along environmental pollution gradients (Pesce 

et al., 2010; Rotter et al., 2011), co-tolerance development under multiple stressor 

conditions (Schmitt‐Jansen et al., 2016), restoration of community sensitivity after 

pollution (Dorigo, Bérard, Bouchez, et al., 2010; Rotter et al., 2011; Tlili et al., 2020) 

and to explore the molecular mechanisms of tolerance by analyzing target genes of a 

toxicant (Eriksson, Clarke, et al., 2009). 

An increase in tolerance of a community has three different mechanisms (Blanck & 

Wängberg, 1988; Grant, 2002): I) the replacement of species, II) replacement of 

individuals of a species and III) adaptation of the individuals (see chapter 1.2.1). 
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Factors I) and II) have been referred to as ‘genetic erosion’ (van Straalen & 

Timmermans, 2002), and, given a high functional redundancy in biofilms that can 

compensate these genetic losses it remains to be demonstrated that the insurance 

hypothesis applies (see chapter 1.2.2) and chemical-induced loss of the most 

sensitive species does not affect community functions as proposed by Tlili et al. (2016). 

Following this suggestion PICT should on the one hand strengthen a community and 

its ecological functions against future chemical exposure, but on the other hand could 

come along with community costs (I & II) and individual costs (III) may reduce the 

ecological functions of biofilms (Pesce et al., 2010). Mouneyrac et al. (2011) 

summarized individual costs into I) redistribution of energy from somatic growth and 

reproduction towards tolerance mechanisms (Calow, 1991), II) adverse genetic 

mutations and alterations of protein functions (Taylor & Feyereisen, 1996), and III) 

reduced adaptability of the community to future environmental conditions (Meyer & Di 

Giulio, 2003). 

 

Given the potential ecological costs of PICT, the tolerance trait of a community needs 

to be measured in conjunction with integrated functional parameters like net primary 

production or changes in biomass to enable conclusions on the role of PICT for 

community functioning (see chapter 1.4). To prove the assumption that PICT stabilizes 

the ecological functions of a community under repeated exposure, the functional 

assessment should be carried out in a reference approach. 
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1.4 Functional ecotoxicological assessment of microbial communities 

The protection of structure as a proxy for ecological functions is a central dogma of 

ecological risk assessment. Thus, water quality assessment in the Water Framework 

Directive (2000/60/EC), Annex V utilizes ecological indicators, which are mainly based 

on structural parameters like species composition, abundance and biomass. Structural 

parameters imply many advantages like their cost-effective examination, however 

these parameters lack diagnostic power in microbial communities, for several reasons:  

I) By January 2022 a number of 21’739 prokaryotes were documented in the “List of 

Prokaryotic names with Standing in Nomenclature” (Parte et al., 2020), which seems 

like a drop in the ocean compared to the estimated microbial diversity of one trillion 

species (Locey & Lennon, 2016). The sheer number of unknown prokaryotes and the 

lack of knowledge on the indicator value of already known species often limits the 

assessment of water quality based on microbial composition and is restricted to 

eukaryotic microbial organisms. Thus, the biological quality component of 

microphytobenthos has so far been the only microbial component for water quality 

assessment.  

II) Microbes can switch their metabolism to dormancy rendering their presence less 

important for ongoing processes.  

As the structural assessment comes to its limits, functional analysis of microbial 

systems might pose an alternative approach for the impact assessment of a stressor. 

Functional indicators respond fast and consistent across taxa. Their significance was 

illustrated with respect to the general ecological status of river ecosystems (Feio et al., 

2010; Young et al., 2008) and specifically to chemical pollution (Johnston et al., 2015; 

McMahon et al., 2012; Peters et al., 2013). In addition, functional assessment provides 

an integrated ecological insight into the effect of chemical pollution, an aspect that can 

be addressed in taxonomic analysis only in conjunction with functional traits (Krause 

et al., 2014).  

Structure and function are tightly bond entities which emerge from each other. 

Structure resembles a static physical information (e.g. genes or organisms), which 

can be seen as proxy of function with limited capacity to predict the realized extent of 

a function. During dormancy, for example, bacteria switch off their function while they 

still contribute to genetic structures (e.g. the metagenome). For this reason, structural 
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and functional measurements have different significance, with the latter being closely 

related to the physiological state of an organism, a community or ecosystem. Function 

has been interpreted in various ways and Jax (2005) identified four major notions of 

the term ‘function’ from an ecological perspective, as I) ‘process’ or interaction between 

two objects, II) ‘functioning’ of a system (e.g. an organism) as the result of a multitude 

of processes and interactions, III) ‘role’ within a system and IV) ‘service’ of a system 

for practical (anthropogenic) use. This multifaceted interpretation of functions is also 

evident in the glossary. The interpretation of a function as a process and service for a 

superordinate system is in line with this dissertation, although different levels (from 

molecular to ecosystem) can be considered in this context. To account for the different 

levels, Farnsworth et al. (2017) proposed a universal definition of function: 

 “A biological function is a process enacted by a biological system A at emergent level 

n which influences one or more processes of a system B at level n+1, of which A is a 

component part.” (Farnsworth et al., 2017, p. 1370) 

In that sense function is a dynamic variable (e.g. flux) with a specific impact on 

biological entities of higher levels. The authors refer to ‘emergent levels’ as nested 

structures of biological organization, which scales from molecules to ecosystems. With 

regard to functional redundancy, potentially several components of a system can 

support a function. Here, the concept of “functional equivalence classes” can be 

applied, although it was originally intended for biochemical networks (Auletta et al., 

2008). 

 “The concept of equivalence class … [is] a pure functional biological category, where 

different operations are considered functionally equivalent if they produce the same 

outcome for some functional purpose (the goal).” (Auletta et al., 2008, p. 1164) 

Accordingly, a functional equivalence class accounts for functional redundancy (see 

chapter 1.2.2) by grouping a set of processes that have the same effect with respect 

to a defined outcome. Functional equivalence classes may differ on lower emergent 

levels, but converge at a higher level into biogeochemical cycles. This functional 

redundancy has to be incorporated in the definition of  Farnsworth et al. (2017) to 

address the increasing redundancy in upscaling. Moreover, to operationalize the 

concept of function in ecotoxicology, a flow of matter or energy arising from a function 

must be measurable. Accordingly, the flow of information (e.g. transcription, 
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translation) cannot be included. Adapting the definition of Farnsworth et al. provides a 

basis for understanding function in this thesis.  

“A function arises from the activity of one or more processes enacted by a biological 

system A at emergent level n producing an equivalent flux of matter and energy which 

is essential for one or more processes of a system B at level n+1, of which A is a 

component part.” 

According to this definition, a function is characterized by a process rate; if this is 

missing, only a functional trait remains (such as the role of a gene in functional 

genomics). The essentiality of the process of system A (e.g. the performance of 

photosynthesis) emphasizes the importance of the function for the dependent system 

B, thus creating the basis for complex ecological hierarchies. 

As structure comprises a hierarchical organization also function spans all levels of 

biological organization. In terms of the above definition of functions, this applies from 

the molecular to the ecosystem level (Farnsworth et al., 2017). In order to clarify the 

emergent level, the terms molecular, community or ecosystem function are used in this 

work. Thus, the energy conversion into ATP and NADPH via the light-dependent 

reaction resembles a molecular function and, building on this, primary production of a 

community resembles a community function (see Figure 2 for an example for primary 

production).  

 

 

 

 

 

 

 

 

 

 

Figure 2 Schematic representation of the emergent levels of function exemplified for primary 
production. The molecular function has a multitude of potential endpoints that converge in 
their output to oxygen and carbon dioxide as quantifiers for the process rate on apical 
functional levels. 
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However, a quantitative extrapolation among different emergent levels remains a major 

challenge, because the interaction of the components is largely unclear and concepts 

for aggregation are lacking. Thus, the scope of a functional measure is limited to the 

emergent level it was measured and only qualitative extrapolation (e.g. using sensitivity 

or correlation) is applicable. Due to the nested organizational principle of functions, 

reasons for a decline in functions must first be examined at the respective lower levels. 

Thus, at the molecular level, both individual and community functions can be studied, 

although molecular approaches for biofilm communities are still largely unexplored. In 

this thesis the functional impact of chronic diuron exposure on biofilm communities was 

examined, and the molecular function was addressed by exploring the functional role 

of responsive genes and metabolites in these communities. 

 

1.5 Molecular tools – the key to a mechanistic understanding of stressor 

effects from a functional perspective in microbial communities? 

In-vivo studies form the basis of ecotoxicology, as they provide essential data to ensure 

ecologic relevance. However, the results of in-vivo tests are not always conclusive for 

understanding underlying mechanisms, as they resemble a highly aggregated 

response. Especially with microbial communities, in-vivo studies mostly fail to unravel 

complex changes in community structure and their physiological state. Expanding the 

focus to sub-cellular regulation using integrative molecular methods promises a more 

differentiated insight. Molecular tools addressing the pools of ribonucleic acids 

(transcriptomics), proteins (proteomics) and metabolites (metabolomics) in a 

comprehensive manner, collectively referred to as OMICs or functional genomics, have 

become a crucial resource for the mechanistic understanding of chemical effects and 

provide a molecular functional perspective on stress responses of organisms (see 

chapter 1.4). However, a mechanistic understanding requires I) a suitable 

experimental design and II) anchoring of the molecular regulation into an apical effect 

(e.g. changes in phenotype or function).  

With respect to I), a paradigm shift from the traditional comparison of two conditions 

(hypothesis testing) to a gradual exposure design (Smetanová et al., 2015) is needed. 

The combination of OMICs and a dose-response design can provide causality by 

correlating molecular regulation and gradually increasing exposure concentrations of 
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a chemical. This approach strengthens mechanistic understanding, especially when it 

is combined with pathway analysis (e.g. Larras et al., 2018).  

Regarding II), the integration and extrapolation of molecular regulation towards 

organismal or even community effects remain a major challenge of OMICs-

technologies. Molecular processes form a complex network wherein regulatory 

changes can be disproportionate and non-linear compared to a highly aggregated 

apical effect. A review by Stitt and Gibon (2014) illustrates this discrepancy with respect 

to gene expression and protein activity. The authors argued that biological activity of 

proteins is modified by several factors such as the average half-life of RNA, alternative 

splicing, proteolysis, assembly into complexes, post-translational modifications and 

levels of substrates and effectors. Moreover, biomolecules can have multiple 

physiological roles in the organism and interpretation depends on the physiological 

state. Thus, OMICs-techniques are particularly diagnostic for toxic effects when being 

anchored to phenotypic or apical functional parameters such as changes in cell size or 

primary production (Grossmann et al., 2012; Sans-Piché et al., 2010; Viant, 2007) or 

even grounded on ecological concepts such as pollution-induced community tolerance. 

Anchoring provides a second level of causality to prove that regulation leads to 

changes in phenotype or function. 

Expanding the focus of OMICs-techniques to functional analysis has great 

opportunities but also challenges. On the one hand OMICs-techniques allow a 

qualitative, multifaceted assessment of biomolecules such as genes or proteins 

associated with functions, but on the other hand they fail to capture functions 

quantitatively. Thus, OMICs can be used to explore the functional diversity of a 

community (Dopheide et al., 2015; Störmer et al., 2013), link functional diversity to the 

chemical fingerprints (Fasching et al., 2020) or derive relative activity of functional 

genes (Hultman et al., 2015). These examples demonstrate that OMICs can 

comprehensively predict the presence and activity of functions. However, a review of 

Strzepek et al. (2021) highlights the inability of molecular methods to estimate process 

rates in the coming decades based on the currently available approaches and 

simultaneously underlines the central role of functional measurements to provide 

projections of global change. 
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2. Aims and Hypothesis 

2.1 Research question 

Chemical pollution is a major environmental concern, but the consequences on the 

biological level of communities, or ecosystems are still barely understood (Köhler & 

Triebskorn, 2013). Communities are an important piece of the puzzle of chemical 

effects assessments, as they integrate natural complexity and thereby provide a 

perspective on higher-level impacts (e.g. ecosystem services). Reducing biological 

complexity to single species and analyzing their responses on a biochemical or 

molecular level can improve mechanistic understanding and specificity, while 

expanding complexity brings ecological relevance but often lacks mechanistic 

explanations (Clements & Rohr, 2009). This dissertation therefore combines ecological 

relevance of the community approach and the mechanistic power of molecular 

methods to unravel the effect of chronic chemical exposure from both perspectives.  

To address the ecologic perspective, natural microbial communities (freshwater 

biofilms) were exposed to a model herbicide of environmental concern (see chapter 

2.3.2 for herbicide selection). Biofilms can be regarded as early warning systems for 

chemical pollution (Sabater et al., 2007). Chronic exposure of biofilms was shown to 

initiate ‘Pollution-Induced Community Tolerance’ (PICT) in laboratory experiments 

(Corcoll et al., 2019; McClellan et al., 2008) and along environmental pollution 

gradients (Pesce et al., 2010; Rotter et al., 2011). Before PICT is detectable, biofilm 

communities undergo adaptation and selection processes (see chapter 1.2). The 

induction of community tolerance was postulated to have a stabilizing effect on 

community functions (Tlili et al., 2016). However, even genetically inherited tolerance 

by micro-evolution can have fitness cost from altered physiological processes (Medina 

et al., 2007), and the significance of PICT for periphyton functions remains to be 

demonstrated. Therefore, the aim of this thesis is to identify the adaptive mechanisms 

of biofilm communities resulting in PICT and to assess whether PICT supports an 

important community function, namely net primary production. 
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2.2 Hypothesis and outline 

Related to the above mentioned aims of this thesis, the following hypotheses are 

addressed: 

H1 Chronic exposure affects communities in structure resulting in PICT towards 

diuron. 

H2 Induced community tolerance following chronic exposure (PICT) imposes 

costs that impact key ecological functions. 

H3 Functional measures on molecular scale facilitate the identification of 

adaptation mechanisms that maintain homeostasis under diuron exposure 

conditions and form the basis for PICT. 

For a graphical outline of this work, see Figure 3. The individual chapters include the 

following focal points: 

The consequences of chronic diuron exposure for community structure are discussed 

in chapter 3. This chapter particularly addresses the autotrophic part of the biofilm 

communities, by focusing on changes in photosynthetic pigments, photosynthesis and 

primary production. These parameters are evaluated with regard to the physiology, 

tolerance and function of the biofilm communities in the ecologic context. 

Adaptation to a stressor can be identified in the molecular fingerprint of the organisms 

that compose a community. Modern molecular tools such as meta-transcriptomics 

promise mechanistic insights into stressor action, however, they are rarely applied to 

complex natural communities. Chapter 4 examines the molecular adaptation of 

communities with and without chronic exposure from the perspective of gene 

expression and explores responsive genes based on their functional traits. 

Chapter 5 advances towards the realized adaptation, by analyzing the consequence 

of adaptation in the community metabolome. This chapter specifically addresses the 

question of which tolerance mechanisms were induced in the course of chronic 

exposure.  

Chapter 6 integrates the results of the previous chapters into a sensitivity-based 

synthesis. This synthesis examines the strength of the different methods with respect 

to mechanistic understanding of the pollutant effects and PICT, places the molecular 
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effects in a functional context with the communities and summarizes the results of all 

chapters into a final conclusion. 

 

Figure 3 Workflow on the outlined steps in this thesis. A detailed illustration on the cultivation 
and sampling is presented in Figure 5. 

 

2.3 Experimental approach & concept 

2.3.1 Aquatic freshwater biofilms as model community 

To address the outlined questions and hypotheses, a microcosm experiment covering 

different exposure scenarios of freshwater biofilm communities was chosen. 

Freshwater biofilms were selected as model community for their high content of 

autotrophic organisms and their significant contribution to primary production. To 

approximate the natural complexity of biofilms, the communities were cultivated from 

a natural inoculum of a local stream. Thus, the communities comprised a variety of 

species with different sensitivities to herbicides. In this thesis, all organisms embedded 

in the EPS matrix are considered to be part of the biofilm (see chapter 1.3). To 

specifically address the autotrophs within the biofilm community, the term periphyton 

is used. Biofilms are treated as one functional entity, which implies an integrating 

perspective on the biological processes taking place in the biofilm (similar to a supra-

organism). As a result, processes carried out by a subfraction of biofilm species are 

attributed to the entire biofilm entity. In line with this perspective, selection of adapted 

species and intrinsic adaptation to contaminant exposure also converge to a joint 
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adaptive response, rendering the biofilm more tolerant. For this reason, the term 

adaptation in the following includes both selection and adaptation processes, which 

were defined in chapter 1.2.1. 

 

2.3.2 Diuron as model herbicide 

Herbicides have gained an increasing importance in worldwide crop production 

(Gianessi, 2013), especially when combined with genetically modified herbicide-

tolerant crops (Bonny, 2016). Due to their ubiquitous use, herbicides burden aquatic 

ecosystems where they are commonly found (Malaj et al., 2014; Villeneuve et al., 

2011). Among them, the phenylurea herbicide diuron (3-(3,4-dichlorophenyl)-1,1-

dimethylurea) takes a prominent role. The herbicide is partially banned in the European 

Union and listed in Annex II of Directive 2008/105/EC on Priority Substances and 

Certain Other Pollutants. However, diuron was among the 13 substances commonly 

found in European rivers with environmental concentration of 1 to 1000 ng L-1 (Busch 

et al., 2016) indicating a potential hazard of diuron exposure in aquatic systems. This 

assumption is supported by studies of the French river Morcille, which receives a 

constant load of diuron from local vine farming. The local biofilms adapted to diuron 

pollution, which is indicated by increased tolerance (Dorigo et al., 2007; Pesce et al., 

2010). For the above mentioned reasons, diuron was selected as model herbicide for 

the present thesis.  

This herbicide is a potent photosystem inhibitor, which displaces the plastoquinone QB 

at the D1 protein (gene psbA) in the Photosystem II reaction center (Battaglino et al., 

2021). The binding interrupts the electron transfer from QA to QB (Figure 4) and thus 

the downstream synthesis of ATP and NADPH. The inhibition triggers increased 

chlorophyll fluorescence and favors the formation of reactive oxygen species (ROS) 

by transferring electrons to O2 (Krieger-Liszkay & Rutherford, 1998; Rutherford & 

Krieger-Liszkay, 2001). 
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Figure 4 Schematic representation of photosystem II: The electron flow is indicated by arrows 
and the receptor of the diuron molecule on the D1 protein is located where QB is highlighted. 
The dashed lines represent the molecular actions blocked by diruon. Adapted from: Kaidor, CC BY-

SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, Wikimedia Commons 

 

 

2.3.3 Experimental design 

The mechanistic analysis as well as management of chemical pollution requires effect 

thresholds as markers for unwanted adverse effects. Such thresholds can be 

determined by gradient exposure such as a dose-response analysis. Especially when 

working with destructive snapshot methods such as omics-technologies, where 

continuous measurement of in-vivo responses is impossible, gradient analysis can 

provide a suitable method for mechanistic understanding (see chapter 1.5). Focusing 

on response patterns along driver gradients rather than exploring differences among 

treatment groups can capture non-linear cellular responses and help to determine 

causality between observed responses (Kreyling et al., 2018). In contrast, replicated 

designs test the difference between limited numbers of groups (e.g. exposure 

concentrations), which allows quantification of statistical variation.  
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According to the PICT-methodology, this experiment was divided in two phases, a 

selection phase with replicated design and a detection phase with gradient design 

(Figure 5). The selection phase comprises the cultivation and chronic exposure of half 

of the biofilm cultures. Chronic exposure was designed to model a polluted site, where 

a contaminated community is formed by pollution induced succession. In contrast, the 

other half of the microcosms was not polluted, thus creating a reference community. 

Cultivation was carried out under constant conditions (Annex 1), whereas the medium 

(water from a nearby river) was exchanged weekly to guarantee sufficient supply of 

nutrients and a diverse set of inoculating organisms.  

In the detection phase, contaminated and reference communities were short-term 

exposed to the selecting stressor, using a dose-response design. This gradient 

exposure ranged from 0.0001 to 100 µg L-1 diuron and was designed to range from no 

measurable effects to a maximum inhibition of the photosystem. The acute exposure 

should reveal an altered stress response of the two communities due to the different 

exposure histories of the communities. In the detection phase, communities were 

exposed for 1 h, which was proven sufficient for diuron to reach the target site (< 5 

min) in biofilms (Morin et al., 2018). Upon the arrival at the target-receptor, a multistage 

toxicodynamic process is initiated, covering early (primary) and late stage (secondary) 

effects. By limiting the exposure time to 1 hour, the primary effects of diuron were 

addressed. 

This multi-phased exposure design addresses adaptation by comparing the 

acclimatory responses of the two communities. In this experiment, the acclimation 

effort of the reference communities corresponds to the non-adapted response which is 

assumed to be MoA specific. Contrary, the contaminated community refers to the 

adapted response. However, specific adaptations only become apparent in the 

difference between the acclimation responses of these two communities. Therefore, in 

this thesis, any difference in response between communities is referred to as 

adaptation and it is assumed to have a genetic background. 
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Figure 5 Graphical representation of the experimental design and the PICT concept. The first 
panel shows the selection phase, in which half of the microcosms were contaminated with 4 
µg L-1 diuron. The second panel illustrates the detection phase, where both communities were 
challenged with a diuron concentration gradient. The sampling procedure is explained in the 
center of the lower panel.   
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3. Structural and physiological changes in microbial communities 

after chronic exposure - PICT and altered functional capacity 

3.1 Introduction 

Pollution induced community tolerance (PICT) is a tool to infer chemical-induced 

alterations in a microbial community that translate into tolerance (Blanck & Wängberg, 

1988). But before PICT is detectable, biofilms undergo adaptation and selection 

processes induced by chronic exposure. These processes bring about structural and 

physiological changes, which finally translate into the function a community supports 

in an ecological context. Tolerance is usually addressed by assessing an integrative 

physiological or functional parameter, such as photosynthetic yield (McClellan et al., 

2008), b-glucosidase activity (Corcoll et al., 2014), respiration (Tlili et al., 2011) or 

primary and secondary production (Blanck, 2002) in acute short-term exposure 

experiments. Ideally, the selection of this integrating metabolic parameter should 

correspond to the MoA of the respective chemical, as this provides the highest 

sensitivity for the tolerance detection. Increased tolerance may stabilize a physiological 

or functional parameter against chemical stress (Tlili et al., 2016), but as noted above, 

PICT is also associated with structural changes. However, structural changes can be 

associated with costs and therefore reduce the net output of a community function. 

Community structure is determined by taxonomic composition of biofilms, or by a 

proxy such as a genetic or biochemical fingerprint. The tools for assessing structural 

community changes vary in effort and significance and range from classical taxonomic 

analyses to chemotaxonomy and genetic methods. Porsbring et al. (2007) suggested 

HPLC-based chemotaxonomy of community pigment profiles as robust measure to 

assess community shifts after toxic exposure. This method combines two major 

advantages, such as the quantification of the autotrophic part of the community by 

chlorophyll a, which is a highly conserved component of the photosystem of a vast 

majority of microalgal species and the qualitative assessment of the community 

composition based on marker pigments. Marker pigments such as chlorophyll b, 

fucoxanthin or divinyl chlorophyll a' have evolved in distinct algal lineages, as a 

consequence of endosymbiosis (Jeffrey et al., 2011) and can be used to estimate 

community composition quantitatively. However, concentrations of pigments and 

pigment ratios are also altered in response to environmental factors, such as changes 

in light, temperature or even chemical stressors (Schlüter et al., 2000; Southerland & 
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Lewitus, 2004).This alteration must be addressed by controlled experimental 

conditions or adequate referencing so that pigment analysis as a surrogate for shifts 

in community structure is indicative for stressor effects. When appropriate referencing 

is considered, the sensitivity of pigments to environmental factors can become a 

valuable asset that can be used to characterize the physiological state of autotrophic 

organisms. This potential was used, for example, to investigate the effects of polycyclic 

aromatic hydrocarbons on phytoplankton (Southerland & Lewitus, 2004). 

Community functions of biofilms are determined by the metabolic processes of their 

taxonomic components (see chapter 1.4). An essential function of freshwater biofilms 

is primary production (Battin et al., 2016), which is particularly significant in well-

illuminated streams as it relies on the process of photosynthesis. Chronic exposure to 

agricultural herbicides can pose a risk to this function (Pesce et al., 2022) and thus to 

overall ecological functioning. Photosynthetic pigments can also facilitate the analysis 

of photosynthetic processes by means of in-vivo fluorescence. Here, fluorescence is 

used as marker for the efficiency of photochemistry by pulse-amplitude-modulation 

technique (Schreiber et al., 1986). This fluorescence data is converted into the 

photosynthetic yield, a direct measure of photosynthetic functioning. Photosynthesis-

related endpoints like the photosynthetic yield and chlorophyll a have been shown to 

be sensitive in detecting chronically exposed biofilms (e.g. Ricart et al., 2009). A direct 

proxy of oxygenic photosynthesis is the monitoring of dissolved oxygen as a waste 

product of the process. In conjunction with community respiration, oxygen metabolism 

is a useful estimate of primary production and trophic conditions in the community. 

The structural and functional characterization of biofilms undergoing chronic diuron 

exposure has a long tradition (McClellan et al., 2008; Molander & Blanck, 1992; Pesce 

et al., 2006; Pesce et al., 2010; Ricart et al., 2009; Tlili et al., 2010; Tlili et al., 2008). 

In many of these studies PICT was proven, however implications for community 

functions like primary production have hardly been studied. This chapter examines the 

structural and functional changes associated with chronic diuron exposure, with 

particular attention to the role of tolerance in stabilizing community functioning and 

addresses hypothesis H1 and H2 from the overall hypothesis of this thesis (Chapter 

2). The following questions will be specifically addressed.  

I) Is there a toxicant-induced succession in the structure of chronically exposed 

communities?  
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II) Does chronic exposure alter physiological processes related to the function 

of primary production? 

III) Does chronic exposure affect primary production and does tolerance 

stabilizes this function against repeated exposure? 

 

3.2 Methods 

3.2.1 Biofilm cultivation 

Cultivation and chronic exposure of periphyton was performed for five weeks in 20 L 

glass microcosms. The inoculum was taken from a local stream (see Annex 1 for more 

details). Periphyton was grown on microscope glass slides as artificial substrate for 

five weeks and half of the microcosms were contaminated with 4 μg L−1 diuron, starting 

from the second week of cultivation. The addition of diuron should induce the growth 

of contaminated communities, whereas the uncontaminated microcosms represent the 

reference communities. The inoculum and exposure concentration of diuron were 

renewed by weekly water exchange. A monitoring of the diuron chronic exposure 

confirmed a mean concentration of 3.4 ± 1.0 μg L−1 before and 4.0 ±0.9 μg L−1 after 

the diuron addition (see Annex 13 A). Before tolerance analysis, periphyton slides 

from parallel microcosms were used for an initial characterization of the communities. 

 

3.2.2 Dry weight and autotrophic index 

The dry weight was analyzed from each community using 57 replicates each. The 

communities were snap-frozen in liquid nitrogen and freeze dried for 24 hours. The 

biofilm was scrapped off the glass surface and weighed immediately. The dry weight 

was used to calculate the autotrophic index, a ratio of chlorophyll a and dry weight that 

indicates the relative abundance of autotrophic species in biofilms. 

 

3.2.4 Pigment analysis of periphyton 

A non-invasive pigment assessment (in-vivo) was conducted using the multi-

wavelength pulse-amplitude modulation technique (PAM), and an ex-vivo analysis was 

compiled using a high-pressure liquid-chromatography system (HPLC). 

 



 

24 
 

3.2.4.1 In-vivo pigment analysis for community characterization 

A fiber chlorophyll fluorometer PHYTO-PAM equipped with an Emitter Detector 

Fiberoptics Unit PHYTO-EDF (Heinz WALZ GmbH, Effeltrich, Germany) was used to 

analyze the periphyton component of the biofilms. The emitter-detector features four 

different LED excitation wavelengths (435, 500, 550 and 630 nm) and one actinic light 

source (660 nm) for simultaneous excitation and deconvolution of algae groups. The 

(default) reference excitation spectra of the species Anacystis nidulans, 

Ankistrodesmus braunii and Phaeodactylum tricornutum was used for deconvolution 

between cyanobacteria, chlorophytes and diatoms. Those algae groups differ 

substantially in the absorbance spectra of their antenna pigments. Thus, the total 

fluorescence was deconvoluted into relative portions of phytoplankton groups. A 

quantification of deconvoluted fluorescence to chlorophyll concentrations (as marker 

of biomass) is inappropriate for a multi-species community, as the fluorescence 

method is not specific to chlorophyll, but rather a measure of the concentration of all 

antenna pigments that participate to energy transfer. Therefore, chlorophyll conversion 

requires specific calibration factors covering the relative chlorophyll content of a 

reference species.  

Algal class composition of the reference and contaminated community was analyzed 

on 19 slides each. Periphyton was dark-acclimated for three minutes and acclimated 

to the measurement light for one minute. Then, the automatic gain control was 

performed and a measuring frequency of 32 (PAR: 20 μmol m-2s-1) was used. The 

fiber-optic sensor (Ø 4 mm) was positioned within a distance of 1 to 2 mm above the 

biofilm surface and pigment fluorescence was determined at three points across each 

slide 

 

3.2.4.2 In-vivo pigment analysis based on Imaging-PAM fluorometry 

The photochemical quantum yield of photosystem II (PS II) in periphyton was 

measured with an Imaging-PAM M-series chlorophyll fluorometer equipped with LED-

Array illumination unit (IMAG-MAX/L, 450 nm, WALZ GmbH, Effeltrich, Germany) and 

a CCD camera (IMAG-K6, WALZ GmbH, Effeltrich, Germany). The method is based 

on pulse-amplitude modulation (PAM) (Schreiber et al., 1986), which measures light 

utilization of the available PS II acceptor pool by fluorescence emission. Due to the 

discovery of the dark-light induction effect, called the "Kautsky effect" (Kautsky, 1931), 
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the yield analysis can be performed at different physiological states. The authors found 

that after dark acclimation, the PS II must rearrange the electron-accepting reaction 

centers and the transport chain for photochemical quenching, and during this process 

incident light quanta are re-emitted as fluorescence. The dark-adapted state is 

characterized by a fully oxidized acceptor quinone (QA) and the absence of a proton 

gradient in the thylakoids, which maximizes photochemical quenching (Schreiber, 

2004). The photochemical quantum yield after dark acclimation is termed ‘optimal 

quantum yield’ (ΦII max), which was defined by Genty et al. (1989) as [1]. 

 
Φ𝐼𝐼 𝑚𝑎𝑥 =

(𝐹𝑚 − 𝐹0)

𝐹𝑚
 

[1] 

F0 is defined as base fluorescence intensity of chlorophyll at a low, non-actinic 

measuring light. Fm is the maximum fluorescence induced by a saturation pulse. This 

pulse is a short but strong flash of light (PAR > 1250 μmol m-2s-1) that completely 

reduces QA, but at the same time is too short for photochemical metabolization 

(Maxwell & Johnson, 2000). Thus, the pulse is emitted as fluorescence, which is a 

proxy for the maximum quantum yield of the energy conversion in PS II. From these 

parameters, ΦII max can be defined as a (relative) measure of the maximal quantum 

yield of PS II. In this experiment ΦII max was estimated after five minutes of dark 

acclimation.  

During the illumination state, photochemical quantum yield is lowered due to closed 

reaction centers (the electron acceptor plastoquinone QA is “occupied”) and by 

stimulated heat release (increased non-photochemical quenching). This yield is termed 

‘effective quantum yield’ (ΦII) and is defined by Genty et al. (1989) as [2]. 

 
Φ𝐼𝐼 =

(𝐹𝑚′ − 𝐹)

𝐹𝑚′
 

[2] 

Thus, ΦII measures the proportion of the light absorbed by chlorophyll for 

photochemistry. The parameters are very similar to [1], where F is the chlorophyll 

fluorescence under actinic illumination of 111 μmol m-2s-1 in this study (the state of 

reduced electron acceptor quinones). Again, Fm’ is maximal fluorescence yield after 

the application of a saturation pulse, but under illuminated conditions. In summary, ΦII 

measures the fraction of light effectively used by chlorophyll of PS II for 

photochemistry. The biofilms were acclimated to light for 5 minutes, before the ΦII 

measurement started. 
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3.2.4.3 In-vivo pigment fluorescence for tolerance detection 

Both photochemical quantum yields were measured twice, after the selection phase of 

reference conditions or chronic exposure (t0) and after the acute exposure (t1h) in order 

to reveal a potential PICT. The acute exposure was performed for 1h in a concentration 

gradient ranging from 0.0001 to 100 µg L-1 (dilution factor 10). The slides were placed 

in 500 mL petri dishes containing equilibrated diuron solution and controls were 

triplicated, the exposed samples duplicated. The exposure conditions were consistent 

to the selection phase using a phytotron (MultitronPro, IFORS, Einsbach, Germany). 

Diuron exposure concentrations of the detection phase were monitored by LC-MS/MS 

(see Annex 13 B). The exposure concentrations 0.0001 and 0.001 µg L-1 were 

superposed by the background concentration of diuron and showed additional high 

variation. The dosing required DMSO as solvent and the spiked amount was kept 

below 0.25%, which is supposed not to cause effects to biofilms (McClellan et al., 

2008). 

The relative inhibition of the PSII yield was calculated by comparing both 

measurements according to: 

 
𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 (%) = 100 −

100 ∗ Φ𝑡1ℎ

Φ𝑡0
 

[3] 

The inhibition data was modelled using a four-parameter log-logistic function [4] of the 

R package ‘drc’ version v3.0-1 (Ritz et al. 2015). 

 
𝑓(𝑥) = 𝑐 +  

𝑑 − 𝑐

1 + 𝑒𝑏∗(log(𝑥)−log(𝑒))
 

[4] 

 

The parameters c and d were fixed and determine the minimum (0) and maximum 

(100) range of the model, b is the slope and e is the model inflection point. The 

inflection point corresponds to the half-maximum inhibitory concentration (in case of 

fixation of the parameters c and d to 0 and 100, respectively) (EC50).  

Moreover, a benchmark dose (BMD) was calculated for the inhibition of the 

photosynthetic yield of each community using the automatized dose-response 

modelling R package ‘DRomics’ version 2.2 (Larras et al., 2018; Muller et al., 2021). A 

BMD represents the concentration that causes an effect different from the control, 

taking into account the residual standard deviation of the fitted dose-response model. 
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For increasing the significance of the BMD, a multiplication factor can be used for the 

residual standard deviation. In this thesis a factor of 1 was applied.  

 

3.2.4.4 Ex-vivo pigment analysis by high-pressure liquid-chromatography 

The pigment composition of 12 slides of the contaminated and 21 slides from reference 

communities was analyzed. The pigments were extracted and analyzed according to 

a modified protocol of Woitke et al. (1994). Periphyton was scraped off the slides, 

filtered onto a glass microfiber filter (LABSOLUTE, 1.20 µm, 47 mm), placed in 90 % 

acetone, sonicated for four minutes at 56 °C and subsequently frozen at - 80 °C for 10 

h. The extracts were filtered (Spartan 13/0.2 RC, Schleicher & Schuell, Dassel, 

Germany) and the extraction was repeated on the residual biomass. The extracts were 

analyzed on a high-pressure liquid chromatography system (HPLC BIO-TEK Kontron) 

equipped with a C18 RP column (Knauer; Superspher; 250 x 4 mm) coupled to a diode 

array detector. The injection volume was 30 µL, the flow rate 1 mL and the 

quantification of the pigments was performed at 430 nm. A polarity gradient from the 

polar IPR eluent to acetone:acetonitrile was applied along the 34-minute run (see 

Table 1 for more information). Identification and quantification of pigments was 

performed using the reference standards chlorophyll a, chlorophyll b, β-β-carotene, 

chlorophyll c2, alloxanthin, lutein, echinenone, monadoxanthin, neoxanthin, 

fucoxanthin and zeaxanthin (DHI LAB Products, Denmark). To overcome retention 

time shifts, a relative retention time with respect to chlorophyll a was calculated, which 

facilitated pigment alignment across the different samples. The repeated extractions 

were aggregated (in peak area and quantified concentration) in the aligned data and 

normalized to the chlorophyll a content of the sample (as proxy of biomass). The 

aggregated and normalized peak area data was subjected to a principal component 

analysis with prcomp() including the center and scaling option and visualized using the 

‘factoextra’ R package v1.0.7 (Kassambara & Mundt, 2017). The quantified pigment 

content was used for ratio calculation of marker pigments (see Annex 12). In addition, 

the chlorophyll-a content was used to calculate the autotrophy index. To this end, the 

quantified chlorophyll a content was divided by dry weight.     
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Table 1 Settings of HPLC pigment analysis. 

 

 

3.2.5 Community oxygen metabolism measurements 

Community oxygen metabolism was measured in 40 mL custom-made borosilicate 

glass containers. The containers were placed in an incubator (MultitronPro, IFORS, 

Einsbach, Germany) at 200 RPM and a biphasic illumination regime. During the first 

phase light was switched off for six hours (dark phase), afterwards biofilms were 

illuminated at 150 µmol m-2 s-1 for two hours (light phase). Dissolved oxygen 

concentrations were monitored every minute by an optical oxygen meter (FSO2-C4, 

Pyroscience, Germany) and contactless oxygen sensor spots (OXSP5, Pyroscience, 

Germany), which were glued to the inner surface of the glass container. Alterations in 

water temperature were compensated by a temperature probe (TSUB21-NC, 

Pyroscience, Germany). The containers were filled with sterile-filtered river which was 

spiked with 0.01, 10, 100 µg diuron L-1 or was left unpolluted. The containers were 

filled below water surface to avoid air pockets. The obtained data was converted to 

absolute oxygen values by multiplying the chamber volume to carbon equivalents by 

the atomic mass factor 0.375 and converted to carbon turnover rates by the R function 

diff(). The factor derives from the stoichiometric ratio of oxygen and carbon in 

photosynthesis and aerobic respiration. A lag phase of one hour in the dark phase and 

30 minutes in the light phase was chosen to guarantee a linear trend in the 

measurements. All values beyond the lag phase were averaged, and measurements 

during the dark phase determined community respiration (Resp) in the same way the 

Parameter Settings 

Eluent A (8.316 g ammonium acetate, 
1.62 g tetrabutylammonium acetate, 216 
mL water (HPLC-grade), 384 mL 
methanol, 1400 mL acetonitrile)  
 
Eluent B (10 % acetone, 90 % 
acetonitrile) 
 
Eluent C (80 % acetone, 20 % 
acetonitrile) 

Time 
[min] 

Eluent A Eluent B Eluent 
C 

1 100 % - - 

2.5 50 % 50 % - 

9.5 25 % 70 % 5 % 

15.5 - 59 % 41 % 

20.5 - 29 % 71 % 

25.5 - - 100 % 

34 Acquisition Off 

Runtime 40 min 

Injection volume 30 µL 

Flow rate 1 mL min-1 

Temperature 25 °C 

DAD Channel for integration 430/5 
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light phase represented net primary production (NPP). The ratio of respiration and net 

primary production reflects the productivity of the community and can be considered 

an indicator of autotrophy. The parameters Resp and NPP represent the net functional 

output of the community, whereas normalization to biomass units (e.g. dry weight or 

chlorophyll a content) captures specific oxygen metabolism. Normalization accounts 

for chronic effects on biomass and facilitates uncovering potential tolerance benefits. 

 

 

3.3 Results and discussion 

3.3.1 Comparison of the structural community parameters  

Structural parameters indicated a clear difference between reference and 

contaminated communities after four weeks of exposure. Biomass (dry weight) was 

significantly reduced (p < 0.001) to 2.2 ± 0.7 mg cm-2 in the contaminated community, 

compared to 3.3 ± 1 mg cm-2 in the reference. The deconvolution of the multi-

wavelength in-vivo pigment fluorescence analysis into algal classes indicated a 

significant shift in contaminated periphyton with an increase in chlorophytes (p < 0.05) 

and decrease in diatoms (p < 0.001) (Figure 6). The relative abundance of 

cyanobacteria remained unchanged. 

 

Figure 6 Relative community composition based on in-vivo pigment analysis by PHYTO-PAM 
fluorescence measurements after 5 weeks of exposure to diuron. 
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The HPLC pigment analysis revealed 17 pigments, whereas 13 could be identified 

based on reference substances. The most essential photosynthetic pigment, 

chlorophyll a, showed a significant difference (p < 0.001) among the communities with 

3.5 ± 1.9 µg cm-2 in the reference and 1.0 ± 0.5 µg cm-2 in the contaminated one. The 

specific chlorophyll a content matched this decline (p < 0.001) with 5.2 ± 3.4 ng mg-1 

DW in the reference and 2.1 ± 1.3 ng mg-1 DW in the contaminated community. This 

reduction indicates a general loss of autotrophic biomass from the biofilm community 

as a result of chronic exposure. Other studies have shown that low doses of diuron of 

1 µg L-1 can also induce the chlorophyll a content or biomass, which indicates a 

hormesis effect or a ‘shade-adaptation’ (Ricart et al., 2009; Tlili et al., 2008). During 

shade-adaptation, an increased amount of chlorophyll is observed in the cells, which 

is interpreted as a compensatory mechanism for the diuron effect. A hormetic response 

was also observed by Molander and Blanck (1992), who found a stimulation of marine 

periphyton at diuron concentrations below PICT was initiated. Based on the reduction 

of chlorophyll a and biomass it can be concluded that in this study the intensity of the 

stressor during chronic exposure may have exceeded the cellular threshold for 

hormesis or shade-adaptation and triggered a toxicant-induced selection of species in 

the biofilm.  

Moreover, a principal component analysis of the normalized pigment data revealed a 

toxicant-induced pigment pattern (Figure 7). The first three components explained 

69 % of the variance and the community pattern was very distinct on these 

components. The first principal component explained about 33 % of the variance in the 

data and was mainly constructed from the pigments echinenone, beta-carotene, 

chlorophyll b, lutein, neoxanthin, zeaxanthin and two unknown pigments. The pigments 

lutein, chlorophyll b and neoxanthin are predominantly found in the green lineage of 

algae and lutein is a particular marker pigment of chlorophytes (Annex 12). A 

significant increase (p < 0.01) in the lutein:chl a ratio from 1.8 %Chla in the reference to 

3.4%Chla in the contaminated community was observed. Also the chlorophyll b:a ratio 

increased in a similar manner, albeit the increase (4.9 %Chla to 8.5 %Chla) was not 

significant. In agreement with the in-vivo pigment analysis, PC1 shows an increase in 

green algae content that occurred in response to chronic exposure. The pigments 

chlorophyllide a, fucoxanthin, chlorophyll-c2 and diadinoxanthin significantly 

contributed to the second principal component. The latter three pigments occur 

preferentially in diatoms, with fucoxanthin and diadinoxanthin as marker pigments for 
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this group of algae. For this reason, PC2 is considered to be relevant in indicating 

changes in the diatom fraction in the community. A slight reduction in the 

fucoxanthin:chl a and diadinoxanthin:chl a ratio was observed in the reference 

community (34 %Chla and 6 %Chla) towards the contaminated community (32 %Chla and 

5 %Chla). Thus, chronic exposure reduced relative diatom abundance in the 

contaminated community. In accordance to these findings previous microcosm 

experiments demonstrated that chronic exposure to diuron at environmental realistic 

concentrations (0.08 to 2 µg L-1) can affect the photoautotrophic composition of the 

community by lowering the diatom abundance and their biovolume (McClellan et al., 

2008; Ricart et al., 2009). Even short pulses of 48 hours of diuron at 13 µg L-1 were 

shown to affect the diatom abundance by inducing diatom mortality up to 79 % (Proia 

et al., 2011).  

The third PC explained 12.3 % of the variance and was dominated by the pigments 

neoxanthin, violaxanthin, chlorophyll-b, zeaxanthin and the unknown carotinoid. The 

violaxanthin:chl a ratio differed significantly (p < 0.001) between the communities, with 

2.5 %Chla in the reference and 3.6 %Chla in the contaminated community. No difference 

was found for neoxanthin and zeaxanthin. However, the loading vector of zeaxanthin 

and violaxanthin points in opposing directions, suggesting a counteracting effect in 

these pigments. The pigments violaxanthin and zeaxanthin are the main pigments of 

the xanthophyll cycle, which is one of the most important photoprotection mechanisms 

in green algae and vascular plants (Goss & Jakob, 2010). Violaxanthin is located 

nearest to the special chlorophyll a in the reaction center of the antenna and only 

violaxanthin is able to transfer a photon to the special chlorophyll a (Baker, 2008). The 

conversion of violaxanthin to zeaxanthin minimizes the amount of energy reaching the 

reaction center and stimulates energy dissipation within the light- harvesting antenna 

proteins through non-photochemical quenching. The xanthophyll cycle contains two 

conversion steps that convert violaxanthin to zeaxanthin via ascorbate as co-substrate 

(Hager, 1969). The violaxanthin:zeaxanthin ratio (normalized to chl a) in the 

communities indicates a higher amount of violaxanthin in the contaminated community 

(1.5) compared to reference (0.9). The increased amount of violaxanthin (Annex 8) in 

the contaminated community could indicate an improved energetic balancing 

mechanism between the absorption of light and the impaired electron transport 

(Latowski et al., 2011).  
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The results based on HPLC-based analysis of community pigment profiles confirmed 

toxicant-induced shifts in the autotrophic composition of biofilms on a qualitative and 

quantitative basis. Moreover, the pigment pools involved in the xanthophyll cycle 

revealed information on the physiological status of the photosystem (Latowski et al., 

2011), indicating that the contaminated community has adapted to the chronic diuron 

exposure. This confirms the findings of Porsbring et al. (2007), who found that 

community pigment profiling is able to distinguish between different communities with 

a resolution similar to microscopic species counting, and demonstrated the added 

value of pigments for gaining insights into physiological status of a community. The 

authors observed changes in the proportions of diadinoxanthin and diatoxanthin 

related to diatom xanthophyll cycle, after igarol (another PSII) inhibitor was applied. 

Unfortunately, diatoxanthin was not identified in this thesis and the exploration of the 

xanthophyll cycle in diatoms remains a future perspective.  

 

 

Figure 7 Principal component analysis of the pigment content (normalized to chl a). The PCA 
scores of the samples are plotted by circles (reference) and triangles (contaminated) and the 
loadings (arrows) indicate how strongly each pigment affects the principal components. 
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3.3.2 Photosynthetic activity and primary production of the communities after 

selection phase 

The optimal quantum yield (ΦII max) of the reference communities ranged at 0.46 ± 0.04, 

whereas the level of the contaminated communities was significantly (p < 0.001) lower 

at 0.36 ± 0.06. The effective quantum yield (ΦII) under illumination conditions also 

differed (p < 0.001) with 0.27 ± 0.03 for the reference and 0.23 ± 0.02 for contaminated 

community. In both states the yield of the contaminated communities was 20 % percent 

below the reference communities, indicating an adverse effect of chronic diuron 

exposure on the photosynthetic capacity. ΦII max is determined by physiological 

conditions and taxonomic identity, but a value of ~ 0.8 for healthy plant leaves 

(Schreiber, 2004), ~ 0.6 for the green algae culture S. vacuolatus and 0.4 to 0.3 for 

autotrophic biofilms can be assumed (Tlili et al., 2020), thus the measured ΦII max 

values, found in this study are characteristic for biofilms.  

Under laboratory conditions, there is a linear correlation between the ΦII and CO2 

assimilation (Fryer et al., 1998; Sjollema et al., 2014) or algal growth rate (Magnusson 

et al., 2008). However, ΦII max and ΦII are relative measures of light conversion that do 

not allow any quantifiable prediction on primary production. For more detailed 

assessments of the function of the communities in primary production, oxygen 

metabolism was measured in gas-tight containers. As described in chapter 3.2.5, the 

oxygen data was analyzed with respect to the net output of the communities (e.g. 

Resptot or NPPtot) and normalized to dry weight (NPPDW) or chlorophyll (NPPchla). 

Normalization accounted for chronic effects on biomass and facilitated uncovering 

potential tolerance effects. 

Overall respiration of the communities was comparable, while normalization to 

biomass (dry weight) revealed twice as much respiration in the contaminated 

community (Table 2, initial measurements). A similar result was found for NPPtot, 

where the reference community had a slightly higher rate of 287.2 µgC cm-2 d-1 

compared to 266.1 µgC cm-2 d-1. Normalization of NPPtot resulted in a higher specific 

NPP of the contaminated community of 140 % for NPPDW and 120 % for NPPchla higher 

compared to the reference community. The NPP:Resp. ratio showed a higher 

autotrophy of 24.5 in the reference compared to 17.9 in the contaminated community. 

In summary, both NPPtot and NPP:Resp ratio were higher in the reference community, 

suggesting a decrease in autotrophy in the contaminated community. The increase of 

NPPDW and NPPChla in the contaminated community may indicate the acquisition of 
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tolerance at the expense of overall productivity. However, a causal relationship 

between the tolerance gained after chronic exposure and primary production can only 

be established under re-exposure to diuron, which is assessed in the following section. 

 

3.3.3 Acquisition of photosynthetic tolerance  

A short-term exposure to diuron of 1 h (detection phase) was performed to investigate 

tolerance to diuron originating from the selection phase. The quantification of tolerance 

was performed using an endpoint close to the MoA of diuron by measuring the 

inhibition of the photochemical quantum yield of PS II. Towards this end, a gradient of 

diuron concentrations ranging from 0.001 to 100 µg L-1 was applied to the communities. 

The diuron concentration causing 50 percent inhibition in ΦII max was 44 µg L-1 in the 

contaminated and 15 µg L-1 in reference communities (Figure 8). The confidence 

intervals of both curves diverged at 6 µg L-1, and a significant difference of the EC50 

values is demonstrated. The benchmark dose-1SD (BMD) for the inhibition of ΦII max 

derived by ‘DRomics’ revealed a diuron threshold of 1.8 µg L-1 for the reference and 

4.4 µg L-1 for the contaminated communities. This threshold expresses the 

concentration at which the treatment effect becomes distinguishable compared to the 

control, based on one standard deviation as the confidence interval. This shows that 

the contaminated communities required at least 4 µg L-1 diuron for showing an effect, 

which corresponds to the diuron level they were exposed during chronic exposure. The 

100 µg L-1 diuron treatment caused inhibition of ΦII max up to 74 % and ΦII of 90 %. The 

PS II includes a fraction of unconnected QA plastoquinones that were shown to be 

insensitive to diuron (Lavergne & Briantais, 1996), thus no inhibition is possible. In 

contrast to ΦII max, the inhibition of ΦII does not differ between communities, indicating 

that no tolerance induction has taken place. This result is discussed with regard to 

possible measurement errors in Fm and Fm' the following section. 

The threefold increase in the diuron tolerance threshold in the ΦII max of the 

contaminated communities underpins the development of PICT. A similar increase of 

diuron tolerance was documented in a comparable setting using ΦII max (Tlili et al., 

2010) and ΦII (McClellan et al., 2008). A much higher tolerance was detected in a 

contaminated river (ΦII max EC50 up to 500 µg L-1), however there was no 

uncontaminated reference biofilm grown for comparison (Pesce et al., 2010). The high 

tolerance in natural streams might result from the continuous inoculation with a diverse 
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set of species, while in microcosm studies the inoculum is renewed to a much lesser 

extent. Thus less species potentially more tolerant are available during the process of 

toxicant-induced succession. 

 

 

Figure 8 Inhibition of the photochemical quantum yield of photosystem II after 1 h of diuron 
exposure. A) Inhibition of optimal quantum yield (ΦII max) of dark-adapted biofilms and B) 
effective quantum yield (ΦII) at constant illumination. The x axis is displayed on log scale. The 
models were computed with a confidence level of 95 % and the CI is provided in brackets. 

 

Both yields have different significance for determining tolerance based on the 

physiological state they cover. Diuron tolerance manifested in optimal quantum yield 

(ΦII max), which requires a photosystem adapted to darkness. At this state the 

photosystem is in resting mode, the electron transport chain has run empty and the 

primary electron acceptor plastoquinone QA is assumed to be fully oxidized (reaction 

centers ‘open’). In the presence of diuron, electron transfer at plastoquinone QA to QB 

is blocked (effect size depends on amount of substance), which affects the QA re-

oxidation (Schreiber et al., 2007). The basal chlorophyll fluorescence F0 in the 

reference communities increased from their initial state (after chronic exposure) to 

50 µg L-1 diuron by a factor of 1.7 and compared to 100 µg L-1 diuron exposure by 2.5 

times. In contrast, F0 fluorescence in the contaminated communities maximally 

increased by factor of 1.5 under the same conditions (Annex 2). The Fm fluorescence 

remained largely unaffected by the acute diuron exposure. In conclusion, the 

contaminated communities may have acquired a tolerance mechanism to maintain the 

oxidation status of QA, resulting in an Fm and F0 fluorescence after acute exposure 
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similar to the original values. The general increase of chlorophyll fluorescence (200 to 

500 %) at higher diuron concentrations is a typical phenomenon of PSII-specific 

inhibitors (Schreiber et al., 2007). A study of Kim Tiam et al. (2015) confirms the 

observed increase in F0 fluorescence for chronically exposed biofilms, however the 

authors did not test for a tolerance mechanism using the PICT concept. McClellan et 

al. (2008) explored the temporal dynamic in the F0 fluorescence of polluted and 

unpolluted biofilms, found an increase in F0 fluorescence in the polluted biofilms from 

5 weeks on and related the different F0 fluorescence to tolerance. Unfortunately, the 

authors did not show the F0 fluorescence of the acute exposure in the detection phase, 

with the result that the F0 values from Annex 2 cannot be compared. 

In contrast, this indicative quality disappeared with illumination. At illuminated 

conditions, the plastoquinone QA pool is reduced by photochemical electron transfer 

and, in case the sample is exposed, also by the effect of diuron. Again, F fluorescence 

of the reference and contaminated communities increased in a similar manner to F0. 

However, compared to the dark-adapted condition, also the maximum fluorescence 

Fm’ intensified after the saturation pulse, particularly in the reference communities 

(Annex 4). At the 100 µg L-1 diuron treatment Fm' of the reference communities even 

increased to the initial Fm, which compensated the effect in F0 and resulted in similar 

effective quantum yields (ΦII) across the communities. In the physiological normal 

state, the value of Fm decreases towards Fm' by non-photochemical quenching (like 

heat dissipation) (Schreiber, 2004). Since the Fm' was not supposed to be influenced 

by the acute chemical exposure, ΦII was not considered in the tolerance analysis (cf. 

Schreiber et al., 2007 Fig. 3 C). 

 

3.3.4 Primary production at exposure conditions 

The tolerance induction in ΦII max in the contaminated community raises the question if 

primary production as the key function of autotrophs benefits from an improved energy 

supply under short-term diuron conditions. Towards this end oxygen metabolism of the 

reference and contaminated communities was monitored at 0.01, 10 and 100 µg L-1 

diuron exposure and compared to the initial measurement (chapter 3.3.2) after the 

selection phase. Again, the overall and the specific (per biomass unit) oxygen 

metabolism was examined.  
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First, community respiration was tracked during a 6 hour dark period (Table 2). Overall 

respiration increased in the reference communities with increasing diuron 

concentration and remained on a stable level at 10 µg L-1 and 100 µg L-1 treatment. In 

contrast, the respiration of the contaminated communities was already higher than 

reference in the initial state and only increased at 10 µg L-1.  

Second, community net primary production (NPP) was tracked during a 2 hour light 

period. NPPtot and NPPDW of the communities showed an increase at 0.01 µg L-1 and 

a subsequent concentration dependent decline. Both NPPtot and NPPDW were higher 

for the reference communities under exposure conditions. The NPP parameters of the 

contaminated communities ranged between 40 to 90 % of the reference communities 

and only at 100 µg L-1 diuron exposure they converged to a similar value. In the 100 

µg L-1 treatment only 3 % of the initial NPPtot was left indicating that photosynthesis of 

both communities was almost completely inhibited at this concentration. The higher 

NPP of the reference communities is also evident in the NPP:Resp. productivity ratio, 

which was always higher in the reference, except when treated with 100 µg L-1 diuron, 

which resulted in a similar ratio below 1 in both communities. At the initial state and the 

0.01 µg L-1 treatment, the reference community productivity was more than 20% higher 

than in the contaminated counterpart and more than 50% at 10 µg L-1. This indicates 

an overall higher autotrophy in the reference, which was maintained even under re-

exposure to diuron.  

In conclusion, tolerance in ΦII max did not maintain NPPtot or NPPDW under re-occurring 

exposure conditions as the NPP parameters of the contaminated community were 

consistently below the reference. Most striking was the overall NPP loss of the 

contaminated community at a diuron concentration of 10 µg L-1. This concentration was 

still below the respective tolerance threshold of the ΦII max, but the productivity of the 

contaminated community was only 40% of the reference. 

 

3.3.5 Tolerance detection in primary production 

Normalization of NPP to dry weight may be biased by a variable proportion of 

autotrophic organisms. Hence, NPPtot was additionally normalized to the chlorophyll a 

content, which exclusively describes the autotrophic biomass. This normalization 

revealed that the NPPchla of the contaminated community was higher than in the 

reference along the entire concentration range of exposure. However, the exposure 
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time altered the chlorophyll a content, which was determined at the end of exposure. 

For this reason, the derived NPPchla for the diuron treatments is biased towards the 

terminal chlorophyll a amount. Therefore, relative comparisons instead of absolute 

values were used in the following to derive a general tendency towards tolerance. The 

lowest diuron treatment slightly stimulated NPPchla in the reference and contaminated 

communities to 109 and 115 %, respectively (Figure 9). At 10 µg L-1 diuron, 72 % and 

62 % inhibition of primary production of reference and contaminated communities was 

found, and at 100 µg L-1 an inhibition of 90 % was observed. Comparing the inhibitory 

levels obtained from the optimal quantum yield ΦII max, a value of 100 µg L-1 diuron is 

obtained for an equivalent inhibition of 72 % in the reference and 30 µg L-1 for 62 % in 

the contaminated communities. Hence, community oxygen metabolism was less 

sensitive than ΦII max and the PICT is less pronounced. Moreover, normalization to 

chlorophyll a was key to the comparability of the communities in terms of tolerance 

formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Inhibition of the net primary production normalized to chlorophyll a at different 
diuron treatments (red contaminated; blue reference communities). 
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Table 2 Results of the community oxygen profiling in gas-tight containers. The upper part of 
the table shows respiration and net primary production (NPP) normalized to biomass, which is 
listed as dry weight (NPPDW) or chlorophyll a (NPPChla). The lower part with a grey shading 
displays the unnormalized values. The respiration was monitored for 6 hours and net primary 
production for 2 hours. For the calculation of the NPP:Resp. ratio the non-normalized values 
were used. 

 Parameter Initial 0.01 µg L-1 10 µg L-1 100 µg L-1 

B
io

m
a
s
s

 (
D

W
) 

n
o

rm
a
li

z
e

d
 

d
a
ta

 

Respiration [µgC mgDW
-1  d-1]     

Reference 3.6 5.2 6.0 6.1 

Contaminated 6.7 5.9 8.8 5.3 

NPPDW [µgC mgDW
-1  d-1]     

Reference 88.3 145.1 34.5 3.4 

Contaminated 120.2 130.9 21.0 3.7 

NPPChla [µgC µgChla
-1  d-1]     

Reference 55.8 61.1 15.4* 2.9* 

Contaminated 65.6 76.1 24.8* 7.5* 

N
o

n
-n

o
rm

a
li
z
e
d

 d
a
ta

 

Respiration [µgC cm-2  d-1]     

Reference 11.7 17 19.6 19.7 

Contaminated 14.9 13 19.5 11.8 

Net Primary Prod.  [µgC cm-2  d-1]     

Reference 287.2 471.8 112.2 11.1 

Contaminated 266.1 289.9 46.5 8.1 

Net Primary Prod. / Resp [-]     

Reference 24.5 27.7 5.7 0.6 

Contaminated 17.9 22.3 2.4 0.7 

*Chlorophyll a content was affected by herbicide exposure and the values may be biased. 
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3.4 Summary and Conclusion 

The chronic exposure to 4 µg L-1 diuron caused a toxicant-induced succession which 

was characterized by a general reduction in autotrophic biomass as indicated by the 

reduced specific chlorophyll-a content and a shift in the autotrophic community 

composition. Diatoms decreased in abundance and were replaced by green algae. 

Apart from the structural changes, also functional changes occurred. The 

contaminated communities differed from the reference communities concerning 

photosynthesis, as their photosynthetic yields were lowered and the pigment profile 

revealed a potential mechanism of photo-protection, which might represent an 

adaptation to chronic diuron exposure. The contaminated communities had lower net 

primary production rates unless normalized to biomass or chlorophyll a.  

The net primary production to respiration ratios showed a lower autotrophy in the 

contaminated communities, potentially translating to the lower dry weight. The 

contaminated communities acquired a higher tolerance in the optimal photosynthetic 

yield, which was three times higher than the reference. This induction is consistent with 

the higher specific NPP in the contaminated community and suggests that a pollution-

induced community tolerance has developed.  

The tolerance of the contaminated community did not pay off when exposure to diuron 

was repeated, as the specific net primary production and the NPP:Resp. ratio was 

always below the reference community. The depletion of autotrophic species from the 

contaminated biofilms seems to dominate primary production, and acquired tolerance 

cannot compensate for this loss of autotrophic function. It can be concluded that the 

decline in autotrophic biomass and eventually also biodiversity has reduced the 

insurance effect (buffering against chemical exposure) for the autotrophic function of 

the contaminated communities. This finding shed light on the "selection process" as a 

critical aspect of PICT that can influence the ecological functioning of biofilm 

communities and also increase their vulnerability to future disturbances.   
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4. Community gene expression analysis by meta-transcriptomics 

4.1 Introduction to meta-transcriptomics 

As outlined in chapter 3, chemical exposure of natural biofilm communities above 

critical concentration leads to toxicant-induced succession, which can manifest in 

increased community tolerance. Based on this observation, the 'Pollution-induced 

community tolerance' concept (PICT) was developed by Blanck and Wängberg (1988) 

and confirmed by various studies (Blanck, 2002). The mechanisms of tolerance 

induction are often related to a shift in taxonomic structure in the community and its 

association with known traits like species sensitivity (Schmitt-Jansen & Altenburger, 

2005). Nowadays, sequencing analysis of microbial communities provides an efficient 

alternative to structurally classify toxicant-induced succession in biofilms. A variety of 

methods have emerged that either target individual target genes (metabarcoding) such 

as ribosomal subunits like 16S rRNA or 18S rRNA (Carles et al., 2021; Woese & Fox, 

1977), rbcL (Hollingsworth et al., 2009; Wolf & Vis, 2020) or examine the entire genome 

of a community (metagenomics) (Pu et al., 2021; Sanli et al., 2015). However, none of 

the mentioned approaches provides mechanistic insights into responses of a 

community to a stimulus, as these approaches use changes in genetic structures as 

proxies for their effects. Considering dormant members of a community or (rapid) 

environmental changes these approaches fail in diagnosing effects, nor do they help 

detecting the variety of cellular processes taking place. Analyzing the activity of a gene 

(transcription) can fill this gap and provide a readout of the molecular changes in a 

biological system at a certain point of metabolic activity. In the conventional technique 

of gene expression analysis, the polymerase chain reaction (PCR), the analysis is 

limited to a few, pre-selected target genes. However, recent advances in molecular 

techniques have paved the way for the detection of the full spectrum of active genes 

(transcriptomics). Parallelization in Next-generation sequencing has revolutionized 

transcriptomics, introduced application to communities (meta-transcriptomics) and 

inspired novel applications in the field (Shakya et al., 2019). In other words, meta-

transcriptomics represents an integrating analysis across a large number of organisms 

and as such can represent an average community response for many genes. The 

technique has been recently applied for several scientific purposes, e.g. to characterize 

active microbes in a community (Bashiardes et al., 2016; White et al., 2016), study 

interactions in the human microbiome or plant and bacterial species (Bikel et al., 2015; 
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Crump et al., 2018) and evaluate the response to toxicants on molecular scale 

(Bergsveinson et al., 2020; Yang et al., 2019; Yao et al., 2022). The focus has primarily 

been on the study of the intestinal microbiome, while in recent years more and more 

attention has been paid to aquatic environmental transcriptomics (Shakya et al., 2019). 

To facilitate the interpretation of the extensive data in an environmental context, it is 

an ultimate goal to fully annotate genes in their functional traits. This step would allow 

the assessment of functional redundancy (see chapter 1.2.2) and indicate potential 

functional changes in a community. 

A rather understudied subject are freshwater microbial biofilms, which is the most 

common life form for microorganisms in the upper- and middle reaches of streams 

(Battin et al., 2016). Meta-transcriptomics is a promising method to study the ecology 

of biofilms with respect to their metabolic pathways and trophic interactions. The 

potential was illustrated in a meta-transcriptomic comparison of sessile and planktonic 

biofilm communities indicating differences in their physiological states and metabolism, 

although 16S phylogeny did not reveal a significant difference in the bacterial 

community (Nakamura et al., 2016). In a study by Yergeau et al. (2012), the 16S 

composition of the river biofilm community also remained constant, although low 

concentrations of antibiotics altered the expression of genes associated with important 

functions of photosynthesis, carbon utilization and N and P metabolism. Unfortunately, 

the authors did not provide complementary measurements of associated apical 

functions, implying that an ecological anchoring of their results was not possible. A 

promising topic for meta-transcriptomics is the analysis of molecular mechanisms of 

stress regulation and adaptation. A first step in this direction was the study of Eriksson, 

Antonelli, et al. (2009), who explored the phylogenetic diversity of the PsbA - gene, the 

target protein in photosystem II for several herbicides including Irgarol. The authors 

assessed PICT after chronic irgarol exposure, which was associated with a decreased 

taxonomic diversity and lowered PsbA diversity, compared to a reference community. 

A particular mutational signature became evident among the more tolerant 

communities, which was assigned to diatoms by phylogenetic analysis of PsbA from 

databases. The authors suggest that the chosen mutation confers higher tolerance due 

to differences in non-conserved amino acids in the so-called PEST region, which favor 

high turnover of the protein (Eriksson, Clarke, et al., 2009). This study proves that 

molecular methods bear great potential for elucidating tolerance mechanisms, 

although they focused on a targeted, pre-selected gene. Extending the focus to meta-
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transcriptomics could help identify the adaptation mechanisms underlying PICT. Thus, 

this work aims at a comprehensive characterization of adaptations to chronic diuron 

exposure using meta-transcriptomics and pursues a broader analysis of community 

tolerance mechanisms. Towards this end, the different communities were short-term 

exposed to a diuron gradient and untargeted ribonucleic acid sequencing (RNA-seq) 

analysis was used to uncover molecular mechanisms of stress adaptation. With 

respect to the increased tolerance of the contaminated community and the MoA of the 

applied herbicide (see chapter 3.3.3) a different gene expression pattern of the 

communities with respect to photosynthetic processes is hypothesized.  

 

4.2. Methods 

4.2.1 Sampling and RNA extraction 

Biofilms were sampled after short-term exposure to diuron and immediately transferred 

to RNAlaterTM Solution (Invitrogen, Thermo Fischer Scientific, Inc., Waltham, MA). 

Biofilms were scraped off the glass surface into a cryovial within 2 minutes and then 

quenched in liquid nitrogen. The RNA was extracted using the RNeasy Plant Mini Kit 

(QIAGEN, Inc., Valencia, CA). Contrary to the manufacturers protocol the frozen pellet 

was transferred into a mortar filled with liquid nitrogen and grinded with a pre-cooled 

pestle until a fine powder was produced. The tissue powder was transferred into a new 

2 ml microcentrifuge tube filled with 450 µL buffer RLC and vortexed for 10 seconds. 

Starting at step 4 the RNeasy Plant Mini Kit protocol was followed afterwards. In brief 

the lysate was cleared from cell debris in the QIAshredder spin column and short 

nucleic acids were adsorbed and washed in the RNeasy spin column. After the 

washing steps were completed the RNA was eluted from the column in two steps using 

30 µL and 10 µL of nuclease free water. The nuclease free water was heated to 60°C, 

in order to increase desorption efficiency. An aliquot of 30 µL of the final RNA extract 

was cleared from DNA impurities which were co-extracted by the RNeasy spin column 

due to their similar characteristics. The DNA was digested using the Turbo DNA-free™ 

Kit (Thermo Fisher Scientific, Inc., Waltham, MA). The rigorous DNase treatment 

including the optional two-step incubation of the Turbo DNase enzyme was applied. 

The samples were kept on ice until the 10x Turbo DNase Buffer and the Turbo DNase 

were added. After DNA digestion the upper, aqueous phase was transferred into a new 

1.5 mL safeLock Tube where the RNA got precipitated and washed. In brief, 140 µL 
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RNase-free water, 4 µL of 5 mg/mL glycogen, 20 µL 3M sodium acetate and 600 µL of 

pure ethanol were mixed with each sample. Then the samples were stored at -20 °C 

for 12 hours and centrifuged at 4°C on 16,900 x g for 30 minutes. The supernatant was 

discarded and the RNA pellet was washed twice. In detail, 500 µL of ice-cold 70 

percent ethanol was added, vortexed briefly and centrifuged at 4°C on 16,900 x g for 

5 minutes. The supernatant was removed each step and finally the pellet air dried, 

dissolved in 20 µL RNase-free water and incubated for 8 minutes at 58°C. RNA was 

quantified on a Qubit 2.0 fluorometer using the Qubit RNA HS Assay kit (Thermo Fisher 

Scientific). RNA integrity was determined with an Agilent Bioanalyzer using the RNA 

6000 Pico Kit (Agilent Technologies, Inc., Santa Clara, CA). Two samples (0.001 µg L-

1 of the reference and 10 µg L-1 of the contaminated community) were removed from 

downstream analysis due to RNA deficits. 

 

4.2.2 RNA sequencing analysis 

100 ng total RNA was used for rRNA depletion. Ribosomal RNAs were removed from 

total RNA using the Ribo-Zero Magnetic Kit (Illumina, San Diego, CA, USA) according 

to the manufacturer`s low input instructions. To improve rRNA depletion, rRNA probes 

from Ribo-Zero bacteria kit (MRZMB126) and plant kit (MRZPL1224) were combined. 

A strand-specific library for transcriptome sequencing was prepared using the 

ScripSeqv2 Kit (Illumina) following the manufacturer`s instructions. The library was 

checked by using the Agilent 2100 Bioanalyzer system with a High Sensitivity DNA Kit 

(Agilent) according to the manufacturer`s instructions. Library concentration was 

determined by using the Qubit 2.0 instrument using the Quant-iT dsDNA High 

Sensitivity kit (Thermo Fisher Scientific) according to the manufacturer`s instructions.  

Single libraries were normalized by equimolar pooling. The library pool was size-

selected in a range of 150-600 bp using a preparative agarose gel in combination with 

MinElute gel extraction kit (Qiagen) according to the manufacturer’s protocol. 12 pmol 

of the library pool were clustered on 7 lanes of an Illumina paired-end flow cell and 

2x100 bp were sequenced according to the manufacturer’s instructions using the v3 

Cluster Generation and SBS Sequencing Kits (Illumina, San Diego, CA, USA) on a 

HiSeq2000 system. 
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4.2.3 Data assembly and processing 

The assembly of the demultiplexed sequencing data was facilitated by Philippe Veber 

using Trinity version 2.9.1 and default options (Grabherr et al., 2011). Trinity features 

three modules: Inchworm, Chrysalis and Butterfly applied sequentially to process large 

volumes of RNA-Seq reads. The Inchworm module assembles short reads from the 

sequencing into unique sequences of transcripts. Then, Chrysalis clusters the 

Inchworm results to similar sequences, representing the full transcriptional complexity 

for a given sequence. Such a transcript cluster is very loosely referred to as a 'gene'.  

A de Bruijn graph is constructed for each cluster, which reflects the overlaps between 

the clustered variants. In a last step, the Butterfly module reconstructs distinct full-

length transcripts for spliced isoforms and differentiates transcripts that belong to 

paralogous genes. Trinity encodes the processing information in the accession number 

of a contig. For example ‘TRINITY_DN16831_c0_g1_i2’ (the psbA contig) contains 

information the Trinity read cluster 'TRINITY_DN16831_c0, the gene 'g1', and isoform 

'i2'. The combination of read cluster and the corresponding gene results in a unique 

gene identifier and the isoform number associates gene variants with this identifier. 

This approach allows Trinity to de novo assemble transcriptomes independently of a 

metagenome template, which is the key to any meta-transcriptome analysis. However, 

Trinity assembly without reference genomes can produce several contigs even for the 

same gene (notably in case there are several isoforms). This technical limitation 

complicates biological interpretation, as several contigs with the same annotation may 

derive from the same or from different species. For example, a species can have 

several paralogous psbA genes, such as cyanobacteria, which contain up to 5 variants 

conferring different functional properties the PS (e.g. for light adaptation) (Mulligan et 

al., 1984; Vrba & Curtis, 1990). 

After assembly, the scientific results have in part been computed at the High-

Performance Computing (HPC) Cluster EVE, a joint effort of both the Helmholtz Centre 

for Environmental Research - UFZ (http://www.ufz.de/) and the German Centre for 

Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (http://www.idiv-

biodiversity.de/). The compute environment was set up using conda (conda-forge and 

bioconda channels) installing DESeq2 v1.34 (Love et al., 2014) and Seqinr v4.2_8 

(Charif et al., 2021). The raw counts matrix of each community was imported to R using 

DESeqDataSetFromMatrix(). To enable multivariate statistics on the raw counts data 

of both communities was merged and transformed to log 2 scale by the rlog() command 

http://www.idiv-biodiversity.de/
http://www.idiv-biodiversity.de/
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of ‘DESeq2’. This transformation removes the experiment-wide trend of variance over 

mean.  

Furthermore, gene expression was evaluated calculating the ratio between I) a treated 

sample to its corresponding control (acute effect) and II) a treated sample to the same 

treatment in the other community (chronic effect). However, ratios do not intuitively 

reflect a change in gene expression, since, for example, a doubling of gene expression 

gives an induction of 2 and an equivalent halving gives a reduction of 0.5. To scale the 

ratios symmetrically, the log2 fold change of the ratio was calculated (Quackenbush, 

2002). Based on these considerations, the DESeq() command of the ‘DESeq2’ 

package was used, which calculates the log2 fold change while accounting for library 

size variations (potential initial sample biases) by normalizing the raw data count. The 

comparison of the diuron effect within a community from I) was achieved using the 

following formula [5]: 

Control-referencing 𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖 = 𝑙𝑜𝑔2 (
𝑁𝑇,𝑖

𝑁0,𝑖
) [5] 

 

The expression change of a contig i was formed by dividing the read count (N) of a 

treatment NT against the respective read quantity of that contig in the control N0. The 

parameter NT covered all treatments from 0.0001 to 100 µg L-1 and this formula was 

applied for the reference and the contaminated communities individually. Calculating 

the log2 fold change based on the respective control N0 (control-referencing) allows to 

focus on the effect of the short-term exposure (acute effect). To focus on the difference 

between community responses as a result of chronic exposure, the following formula 

[6] was applied: 

 

Cross-referencing 𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖 = 𝑙𝑜𝑔2 (
𝐶𝑇

𝑅𝑇
) [6] 

 

In this cross-referencing approach, CT represents a condition in the contaminated 

community (a control or a treatment of the 0.0001 to 100 µg L-1 diuron gradient) and 

RT is the same condition in the reference community. Thus, log2 fold change was 

calculated from the ratio of contaminated to reference community for each treatment. 
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4.2.4 Prioritization of contigs and annotation 

The complexity of the data set with more than three million contigs required a reduction 

to responsive contigs. To this end the data was filtered and prioritized based on the 

exposure design of the chronic and acute exposure. This selection was facilitated by 

principal component analysis (PCA) in the ‘vegan’ package version 2.5-7 (Oksanen et 

al., 2013) and dose-response analysis with ‘DRomics’ using the R package version 2.2 

(Muller et al., 2021). PCA was performed by prcomp() using the rlog data of DESeq2. 

This analysis facilitated an unsupervised analysis of variance to test whether the 

exposure conditions induced variance in a systematic manner. The analysis in 

DRomics was specifically addressed to the short-term exposure. Responsive contigs 

were identified and sensitivity thresholds derived by estimating dose-response models. 

To capture the diversity of response trends in gene expression DRomics features 

linear, Hill, exponential Gauss-probi and log-Gauss-probit models to evaluate 

monotonic and biphasic responses (Larras et al., 2018). The analysis was carried out 

by Larras et al. (in prep) by processing the reference and contaminated community 

data set independently. Specifically, contigs were imported to DRomics with 

RNAseqdata() by selecting the ‘rlog’ option, filtered with itemselect() using a quadratic 

trend test and an FDR of 10%, and models were fitted with drcfit() using the Akaike 

information criterion (AIC) for model fit selection. In a final step, the BMD was 

determined using bmdcalc(). All BMD values beyond the tested concentration range 

were replaced by the lowest concentration of 0.0001 µg L-1.  

The responsive and prioritized contigs were annotated using the DIAMOND - high 

throughput protein alignment tool (Buchfink et al., 2015) on the EVE Cluster (UFZ). 

DIAMOND makes use of the Non-redundant protein sequences database of NCBI and 

outputs Reference Sequence (RefSeq) accession numbers for the matched genes and 

taxonomic identifiers (TaxID) for the respective corresponding species. The RefSeq 

was used to annotate the sequences using the UniProt protein database (The UniProt 

Consortium, 2020). Beside information on the protein identity UniProt is also linked to 

the Gene Ontology (GO) database (The Gene Ontology Consortium, 2021), which 

contains classified meta-information of genes. The GO classification of a biological 

process was used as representative of the molecular function in the sensitivity analysis 

of the contigs for this thesis. The TaxID was used to access the taxonomic 

classification of the RefSeq gene species in the NCBI taxonomy database (Federhen, 

2011). 
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4.2.5 Sensitivity analysis of biological processes  

In a last step the log2 fold change data was filtered for annotated biological processes 

of the GO classification with BMD’s up to the EC50 of photosynthesis inhibition (ΦII max), 

assuming that these processes might reveal molecular adaptations stemming from 

chronic diuron exposure. Anchoring the analysis of the molecular GO annotation to the 

apical functional analysis should guarantee that the cells were within homeostatic 

capacity and exclude apoptosis processes which might occur beyond 50% inhibition of 

a vital process like photosynthesis. To determine the sensitivity of a biological process, 

the 25th percentile was calculated from all BMD values of that respective GO process. 

Only processes with more than four BMDs in one of the two communities were 

considered in the subsequent steps. The EC50 of photosynthesis inhibition of the 

reference community (14.6 µg L-1) was set as maximal sensitivity threshold for the 25th 

percentile of the GO processes. After identification of the sensitive biological 

processes, all responsive contigs belonging to these processes were extracted from 

both communities (regardless of their BMD) and visualized in heatmaps using the 

Heatmap () function of the R package ComplexHeatmap v2.6.2 (Gu et al., 2016). In 

the interest of a clear arrangement, the biological processes were presented in 

individual panels. Within a panel, the contigs were clustered to generate a logical order 

of representation.  

 

4.3 Results and discussion 

The assembly of the 30 million reads per sample resulted in 3’502’153 contigs in both 

communities which represent 2’376’397 genes and 1’125’756 isoforms. A total of 66% 

of the contigs had sizes of less than 500 nucleotides and 12% more than 1000 

nucleotides. The contigs were imported in DRomics using the the rlog transformation 

option and responsive items were picked by a false discovery rate of 0.1. This reduced 

the amount of contigs to 691 in the reference and 2’804 in contaminated communities. 

The model fitting further reduced the selection of contigs to 559 for the reference and 

2’372 for the contaminated communities. Of the total of 2931 contigs modelled, 547 

could be annotated with at least one biological GO process.  
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4.3.1 Characterization of the meta-transcriptomic fingerprints 

The 3’502’153 contigs were rlog transformed and subjected to a principal component 

analysis. The first principal component (PC) explained 13.7 % of the variance in the 

data and discriminated between the two communities in their exposure history (Figure 

10). A total of 3,059,922 contigs were identified that contributed significantly to the first 

PC. This finding highlights the clear difference in the fingerprints, which rests on the 

great majority of contigs. The large difference between the meta-transcriptomes of the 

community could indicate artificially induced variance (e.g. by sample processing), 

which was addressed by the following steps: I) the initial RNA extracts were compared 

for significant differences (p > 0.05), II) the libraries were pooled equimolar to add the 

same amount of RNA of each sample, and III) potential sequencing differences in the 

library size were normalized in-silico by the DESeq 2 package. For this reason, the 

pattern in PCA is considered as a unique meta-transcriptomic fingerprint resulting from 

chronic exposure. 

A subset of 518 contigs was extracted from the data set based on their significant 

contribution to PC1, which were more than 3000 times higher than average. This 

subset was aligned to the NCBI nr database, which resulted in 330 protein matches 

and the results were filtered for biofilm specific organisms. These were subjected to 

the UniProt database for a functional annotation. Annotation revealed 156 putatively 

characterized proteins that significantly drive community separation on PC1. Among 

the characterized proteins 13 were crucial for maintaining protein homeostasis like 

heat-shock proteins (3) and ubiquitin regulation (10). Others were ribosomal proteins 

participating in translation (7) or ATP-binding cassette transporters (4) involved in 

translocation of many substrates such as nutrients, primary- and secondary 

metabolites or the extrusion of xenobiotics. The large number of unknown (in NCBI: 

188) and uncharacterized proteins (in UniProt: 217) suggests that chronic exposure 

induced changes in transcriptomic fingerprints beyond the extensively studied proteins 

of the central metabolism which are mostly available in databases for annotation. 

Another factor explaining this result is that working with biofilms involves many 

unknown species in addition to the typical model organisms. The large number of 

contributing contigs indicates that chronic herbicide exposure may have affected large 

parts of the community apart from the autotrophic species, which might result from 

indirect effects, e.g. from species interacting with the autotrophs like trophic 

interactions or usage of algal exudates by bacteria. As the annotated contigs have a 
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particularly high share in the PCA pattern, these can be assumed to reflect relevant 

chronic adaptations to the stressor. This proofs the effect of the chronic exposure, 

which shaped the communities in their individual meta-transcriptomic fingerprints. 

The second and third PCs explained 7 and 6 % of the variance and the remaining axes 

did not contribute significantly to the result. The variance explained by PC2 and PC3 

was not associated with acute diuron exposure and was therefore not considered in 

the further analysis. Therefore, the acute gradient exposure of one hour did not induce 

a systematic variance in transcriptomic fingerprints of the communities. This finding 

suggests that further analyses must filter for primary effects in the context of the 

exposure design, as eventually only a few genes were responsive. Trend analysis, e.g. 

with the DRomics tool, could therefore provide a filter option for responsive genes in 

terms of gradient exposure. 

 

 

 

 

Figure 10 Principal component analysis based on the rlog transformed meta-transcriptome 
fingerprints (n = 3’502’153 contigs). The different concentrations of the acute 1h exposure are 
presented based on a color gradient ranging from red (high exposure) to yellow (low exposure), 
whereas blue depicts controls. The contaminated community is marked by the triangle ▲ and 
the reference community by the filled circle ●.  
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4.3.2 Insights into community stress response mechanisms using trend analysis 

(DRomic’s) 

The inhibited photosynthetic electron transfer by diuron (see Chapter 2.3.2 for a 

detailed description of the MoA) can be determined very precisely on the basis of 

chlorophyll fluorescence using PAM-fluorometry (Schreiber et al., 2007). PAM-

fluorescence analysis measures the optimal quantum yield inhibition ΦII max and this 

revealed a clear increase in the inhibitory concentration in the contaminated 

communities, which was therefore considered to be more tolerant towards diuron 

exposure (see Chapter 3.3.3 for details). To gain insights into the molecular 

mechanisms leading to community tolerance, the EC50 of ΦII max inhibition of the 

reference communities was set as threshold for functional effects. By filtering the 

biological processes of the GO annotation, the molecular responses preceding a 

breakdown in photosynthetic function were prioritized. This linkage to apical functional 

effects aimed to focus on adaptation mechanisms of the chronic exposure, whereas 

GO processes with a sensitivity beyond this level were considered less specific. 

Filtering narrowed down the total of 259 GO processes to a selection of 23 that met 

the criteria (see Table 3). A comparison of the results revealed a higher sensitivity 

(lower 25th percentile) in the reference biofilms for the majority of GO-processes 

compared to the contaminated biofilms. This may indicate an adaptation of the 

contaminated communities after the chronic exposure. However, also a persistent 

chronic exposure to diuron dissolved in the EPS matrix seems possible, as the acute 

exposure started directly after the chronic exposure. According to this assumption, an 

effect would only become detectable at a significantly higher exposure level compared 

to chronic exposure. Since a respective control without additional diuron addition was 

included and referenced in each community, an increased adaptation of the 

contaminated biofilms can be assumed, even though the exact internal exposure 

concentration remains unclear.  

All GO processes were plotted in heatmaps and are discussed below for their 

similarities and differences. Since there were overlaps between the contigs of some of 

the GO processes and the assignment of the contigs to a GO processes was 

ambiguous in some cases, some GO processes were combined into a supergroups 

and plotted in a joint heatmap (see Table 3 for details).  

The most comprehensive GO process was “translation” featuring 93 unique contigs. 

However, the contigs mainly comprised the small (40S) and large ribosomal subunit 
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(60S) expressing a rather non-specific need for acclimation. Both subunits belong to 

the eukaryotic domain, suggesting that eukaryotic cells had a higher need to acclimate 

to diuron exposure than other biofilm compartments and is also reflecting the MoA of 

the stressor. The non-specific assignment of ribosomal subunits did not allow a deep 

analysis of the differences between the communities. Nevertheless, with regard to the 

sensitivity the reference communities revealed more sensitive contigs involved in 

“translation”, which might indicate that they were affected already at lower 

concentrations (see Table 3). Moreover, the responses of the GO-processes “protein-

chromophore linkage”, “photosynthesis” and “reductive pentose-phosphate cycle” 

comprising 33 unique contigs, indicated a high acclimation effort within the autotrophic 

part of the communities, which is largely composed of eukaryotes. These three GO-

processes were summarized into "pooled photosynthesis" and mapped in Figure 15. 

Processes of the carbohydrate and fatty acid metabolism, which are strongly linked to 

photosynthesis, also proved to be particularly sensitive in this analysis and related GO 

processes were collectively mapped in Figure 11.  

 

Table 3 Results of the sensitivity analysis of the GO processes. The 25th percentile was 
calculated from all BMD’s assigned to a respective GO process in the reference (Ref.) and 
contaminated (Conta.) communities. The number of contigs contributing to the respective 25th 
percentile is listed in last two columns.  

Gene Ontology GO 

number 

25th perc. 

Ref. [µg L-1] 

25th perc. 

Conta. [µg L-1] 

Contigs 

Ref. 

Contigs 

Conta. 

gluconeogenesis 0006094 11.1 26.0 5 1 

carboxylic acid metabolic process 0019752 8.0 25.2 6 1 

protein-chromophore linkage* 0018298 4.6 33.1 4 11 

reductive pentose-phosphate cycle * 0019253 1.3 10-4 43.5 6 1 

lipid metabolic process 0006629 3.8 1.0 10-4 8 8 

ATP synthesis coupled electron 

transport 

0042773 5.25 37.5 5 2 

translation 0006412 2.5 10-4 24.6 12 81 

protein folding 0006457 0.6 4.2 6 8 

fatty acid biosynthetic process □ 0006633 2.6 1.7 16 6 

cell cycle  ‡ 0007049 0.5 62.4 4 1 

regulation of cell shape ‡ 0008360 0.5 62.9 4 1 

peptidoglycan biosynthetic process  ‡ 0009252 0.5 62.9 4 1 

cell wall organization ‡ 0071555 0.6 62.9 9 1 
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cell division ‡ 0051301 0.6 36.3 5 4 

carbohydrate metabolic process 0005975 9.5 14.0 6 3 

tricarboxylic acid cycle 0006099 7.9 47.0 4 4 

glutamine metabolic process 0006541 0.1 52.9 24 1 

glycolytic process + 0006096 8.0 10-2 3.0 10-4 7 4 

acetyl-CoA biosynthetic process from 

pyruvate 

0006086 2.2 34.2 6 5 

photosynthesis * 0015979 2.9 10-4 49.7 10 5 

glucose metabolic process + 0006006 1.2 15.6 5 1 

arginine biosynthetic process 0006526 13.9 2.2 10-4 7 1 

malonyl-CoA biosynthetic process □ 2001295 5.1 12.0 5 2 

The biological processes marked were individually pooled to * pooled photosynthesis, + pooled 

glycolysis, □ pooled fatty acid biosynthesis and ‡ pooled cellular processes based on overlaps in their 

contigs and a better representation in a heatmap. 

 

Regulated genes showing similar responses in both communities  

The gene expression of GO processes ‘pooled glycolysis’, ‘pooled fatty acid 

biosynthesis’ and ‘lipid metabolic process’ showed very similar patterns in both 

communities (Figure 11). The TaxID’s of the sequences associated with these 

processes matched diatoms references for a majority of the contigs (> 60 %), but also 

proteobacteria, ciliophora and cyanobacteria were among the highest matches. Hence, 

it can be concluded that the gene expression pattern discussed below applies mostly 

to the autotrophic part of the biofilm. 

High diuron concentrations above 10 µg L-1 mostly reduced the gene expression, e.g. 

of desaturase enzymes, fatty acid elongation enzymes and glycolytic/glyconeogenic 

enzymes (Figure 11, first three panels). The median gene expression for these 

processes in the 50 and 100 µg L-1 diuron treatments was at a similar level of -2.5 / -

2.6 and -3.3 / -4 fold in the reference and contaminated community. This reduction also 

occurred in the de novo fatty acid synthesis from acetyl-CoA via pyruvate 

dehydrogenase and coincides with a downregulation of contigs involved into ‘ATP 

synthesis coupled electron transport’ (Figure 12, lower panel). The contigs involved in 

this GO process include NADH dehydrogenases, which are involved in various 

biochemical processes, such as oxidative phosphorylation or the mitochondrial 

respiratory chain, which could become co-regulated due to their close biochemical 

relation to the carbohydrate metabolism. A comparable reduction of genes involved in 
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the glycolysis and lipid metabolism was also observed in the transcriptome of the 

marine diatom P. tricornutum exposed to 75 µg L-1 simazine, another PSII inhibitor 

(Osborn & Hook, 2013). In addition, some contigs were also induced at high diuron 

concentrations, such as a contig of glyceraldehyde-3-phosphate dehydrogenase or 1-

phosphatidylinositol phosphodiesterase. This may indicate a small proportion of 

organisms that were oppositely affected by the high diuron concentration.  

In contrast to the observed reduction, isocitrate lyase (which occurred in 7 isoforms) 

and malate synthase were consistently upregulated as soon as most of the other 

enzymes of the aforementioned processes were downregulated (Figure 12, upper and 

middle panel). The expression level of isocitrate lyase in the 50 and 100 µg L-1 diuron 

treatments ranged from 1.4 to 4.7 in the reference and 0.5 to 4.0 in the contaminated 

communities. An induction of isocitrate lyase was reported in response to oxidative 

stress and an increased metabolic fluxes through the so called ‘glyoxylate shunt’ was 

anticipated (Ahn et al., 2016). Isocitrate lyase and malate synthase form the backbone 

of the glyoxylate and dicarboxylate metabolism, which performs the conversion of 

acetyl-CoA to succinate and thus represents an alternative metabolic pathway for the 

synthesis of carbohydrates. However, this cycle uses also enzymes associated with 

the tricarboxylic acid cycle such as aconitate hydratase. This enzyme was also 

upregulated in contaminated communities at 50 and 100 µg L-1. In conclusion, the 

glyoxylate shunt seems a probable alternative source of carbohydrates for the 

autotrophic organisms in the biofilm at high diuron concentrations.  

Below the 10 µg L-1 treatment the reference communities showed a regulation pattern 

with expression levels ranging from no regulation to a slight induction (Figure 11, top 

three panels). Only enzymes from ‘pooled glycolysis’ showed a weak reduction in gene 

expression even at lower diuron concentrations (especially from 0.1 µg L-1), which may 

point on particular sensitive species. The contaminated communities revealed a higher 

and more consistent induction of gene expression at diuron concentrations below 10 

µg L-1, which was particularly pronounced in the ‘lipid metabolic process’, ‘pooled 

glycolysis’ (Figure 11, top three panels) and ‘ATP synthesis coupled electron transport’ 

(Figure 12, lower panel). This increased induction in comparison to the control 

communities could indicate an adaptive mechanism to cope with chronic diuron 

exposure. 
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The similarity in the expression pattern of the carbohydrate and fatty acid metabolism 

might relate to their close metabolic linkage. Glycolysis is the first important step in the 

conversion of carbohydrates into fatty acids, which in turn are the main component of 

lipids. The down-regulation of genes involved in fatty acid and lipid anabolism at high 

diuron concentrations might be related to an energy shortage, which in turn may have 

triggered a switch from fatty acid anabolism to catabolism by beta-oxidation. 

Unfortunately, none of the responsive contigs selected by DRomic’s relates to beta-

oxidation and a specific blasting of a target sequence of acyl-CoA dehydrogenase, 

which initiates the first step of beta-oxidation merits future consideration to evaluate 

this hypothesis. In addition, expression analysis of genes involved in carbohydrate 

metabolism does not provide information about the stock of proteins available to 

continue catabolism (e.g. glycolysis). Protein synthesis requires an energy input that 

may exceed the cellular energy budget for de novo synthesis (especially at high diuron 

concentrations), limiting the cell to the available protein stock and reducing 

transcriptional activities. In conclusion both communities showed comparable patterns 

at low doses (below the EC50 of ΦII max inhibition), but at high doses the diuron effect 

converges to a predominant reduction in gene expression. Moreover, at high doses, 

an alternative synthesis of carbohydrates could occur via the ‘glyoxylate shunt’, which 

bypasses the carbon dioxide-generating steps of the tricarboxylic acid cycle and 

conserves carbon atoms for gluconeogenesis. The reduction of genes in glycolysis and 

fatty acid synthesis with simultaneous induction of the glyoxylate cycle could indicate 

an insufficient carbon supply from the primary metabolic sources (e.g. reductive 

pentose phosphate pathway), which corresponds to the effect of the herbicide diuron. 
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Figure 11 Heatmap of the GO-processes related to the carbohydrate and fatty acid metabolism (pooled glykolysis = ‘glycolytic process [GO:0006006]’ + ‘glucose metabolic process 
[GO:0006096]’; pooled fatty acid synthesis = ‘malonyl-CoA biosynthetic process [GO: 2001295]’ + ‘fatty acid biosynthetic process [GO:0006633]’; ‘lipid metabolic process 
[GO:0006629]’; ‘gluconeogenesis [GO:0006094] ’).
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Figure 12 Heatmap of the GO-processes related to the acetyl-CoA metabolism (‘tricarboxylic acid cycle [GO: 0006099]’, glyoxylate cycle (‘carboxylic 
acid metabolic process [GO:0019752]’) and  ‘ATP synthesis coupled electron transport [GO:0042773]’). 
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Genes differentially regulated in both communities 

The clearest difference among the communities was observed in the GO processes 

related to amino acid metabolism (Figure 14) and photosynthesis (Figure 15). The 

reference communities revealed a concentration dependent decline in the expressions 

of isoforms of the enzyme carbamoyl-phosphate synthase and citrulline – aspartate 

ligase, while the contaminated communities showed an almost constant high induction 

pattern. Both enzymes are linked in the synthesis pathway of L-arginine from L-

ornithine and carbamoyl phosphate in the chloroplast, which serves as a nitrogen 

storage, regulates developmental processes, and responses to biotic and abiotic 

stressors (Winter et al., 2015). Further evidence for L-arginine biosynthesis is the 

enzyme acetylglutamate synthase (Figure 14, lower panel), which facilitates the 

conversion of glutamate to L-ornithine in the cyclic pathway and shows an analogous 

expression pattern to the before mentioned enzymes. The role of L-arginine in 

maintaining homeostasis remains to be clarified, but conversion to other amino acids 

such as proline, a multifunctional amino acid in stress responses, also seems possible 

(Verslues & Sharma, 2010).  

A reduction of contigs involved into photosystem I (PS I), cytochrome b6f complex and 

the reductive pentose-phosphate cycle (RPP) was observed in the reference 

communities (Figure 15). In comparison, the contaminated communities showed 

induction or no expression in the same contigs. Most striking was the difference in the 

photosystem II (PS II) genes, which were higher expressed in contaminated and barely 

expressed in the reference communities. The PSII contigs switched from no regulation 

in the treatments below 10 µg L-1 to a clear induction of up to 2.8 fold in the 50 and 100 

µg L-1 diuron treatments of the contaminated communities. The expression profile of 

PS II contigs in reference communities was inconsistent, and a clear trend in regulation 

across the concentration gradient was not observed. The contigs involved in RPP 

remained unregulated below 0.01 µg L-1 diuron treatment in the reference 

communities, but above this concentration a reduction in gene expression occurred. 

This may point on the effect progression of diuron in the reference communities, which 

could limit the energy availability for carbon fixation and the need for further ribulose-

bisphosphate carboxylase enzymes. In contrast to this observation, the contaminated 

community showed an inconsistent expression pattern dominated by a weak induction 

of the same RPP genes. Figure 13 schematically illustrates the differential expression 

profile on genes related to photosynthesis. 
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Upon the inhibition of PSII, the stoichiometry of the photosynthetic complex and 

subsequent metabolic processes needs adjustments to maintain homeostasis. In the 

reference community contigs involved in PSI and the RPP were downregulated in 

response to diuron, while contigs related to the PSII were barely regulated. This 

downregulation points to a balancing of the PSI/PSII ratio and the downstream 

metabolism (e.g. RPP), to adapt to the shortages of PSII under the given exposure. 

The downregulation of PSI contigs in the presence of diuron is widely documented, 

and a redox regulation was anticipated in higher plants (Allen et al., 2011; 

Pfannschmidt et al., 1999), and was now illustrated for microbial autotrophic 

communities in this study. The PSI and the RPP of the contaminated community 

responded heterogeneously, but slight upregulation of PsaJ in the higher diuron 

concentrations was observed. Especially the treatments above EC50 of ΦII max inhibition 

Figure 13 Schematic representation of the expression of genes involved in the photosynthetic 

apparatus. The expression profile of A) the reference community and B) the contaminated 

community is illustrated based on genes related to photosystem I (PsaA, PsaJ), cytochrome b6f 

complex (petA, petN) and calvin cycle (rbcL, rbcS), while photosystem II related genes (PsbA, 

PsbB, PsbC, PsbZ). Red color indicates upregulation and blue color downregulation of related 

genes and the gradient from left to right illustrates their expression pattern along the diuron 

gradient (see Figure 15 for a detailed perspective). 
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revealed an induction of the majority of the PSI, PSII and RPP contigs. The differences 

in the expression profile of PS-related contigs in the two communities indicates a 

potential adaptation to the chronic stressor. In addition to the transcription of PS genes, 

the posttranscriptional regulation (e.g. splicing and translation), the mRNA half life time 

(Baginsky & Link, 2008) and the repair of PS proteins (Nishiyama et al., 2006) are also 

dependent on the redox state of the chloroplast. Thus, adaptations that contribute to 

the maintenance of the cellular redox state have the potential to maintain 

photosynthetic activity and related gene expression.
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Figure 14 Heatmap of the GO processes related to amino acid metabolism (‘glutamine metabolic process [GO:0006541]’; ‘arginine biosynthetic 

process [GO:0006526]’).
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Figure 15 Heatmap of the pooled photosynthethic GO processes (‘protein-chromophore linkage [GO:0018298]’; ‘photosynthesis [GO:0015979]’ and 
‘reductive pentose-phosphate cycle [GO:0019253]’). 
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4.3.3 Response pattern in the isoform PS genes 

Filtering with DRomic's selected contigs that match the gradient exposure design. Most 

of these prioritized contigs had isoforms that were functionally identical, but showed 

no trend in their expression levels and were thus not recognized by DRomic's. In 

addition, further contigs related to photosynthesis were identified by annotating 

suspect genes in the dataset and querying their GO classification. In order to analyze 

whether the proposed tolerance mechanism (see chapter 4.3.2) is restricted to the 

responsive contigs or whether it can also be observed in the isoforms of the responsive 

contigs and further photosynthesis related contigs, all contigs belonging to the GO 

processes ‘protein-chromophore linkage’, ‘photosynthesis’ and ‘reductive pentose-

phosphate cycle’ were evaluated using the cross-reference log2 fold change data. 

Using the cross-reference data, the focus of the analysis was shifted from responsive 

genes to overall differences in isoform expression between communities resulting from 

chronic exposure. The log2 fold changes of all treatments were subjected to a boxplot 

(Figure 16) showing higher expression of the isoforms associated with PSI, RPP and 

PSII in the contaminated community. In particular, contigs related to PSI were 

expressed up to 4 fold more in the contaminated communities, while the majority of 

contigs belonging to RPP and PSII were expressed equally in both communities. This 

observation leads to the conclusion that the regulation pattern shown in Figure 13 can 

be extended to the isoform genes. But, instead of being regulated in response to the 

diuron gradient, these isoforms were already expressed at a consistently higher level 

in the contaminated communities compared to the reference counterpart. Based on 

the chronic exposure history, it can be assumed that the contaminated communities 

had a higher internal exposure to diuron, which might have a long-lasting effect on its 

gene expression profile. In conclusion, the contaminated communities might have 

established a balanced PSI / PSII stoichiometry, which remains stable even at an 

additional diuron exposure. This finding also illustrates that unbiased analysis of the 

comprehensive data set results in hypothesis which need to be further reflected by 

targeted approaches. 
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Figure 16 Boxplot of the cross-reference gene expression analysis between the communities 
of the contigs related to photosynthesis. The cross-reference analysis is based on the ratio of 
the gene expression of the contaminated (CT) to the reference community (RT). Thus, positively 
regulated contigs were more strongly expressed in the contaminated community. 
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4.5 Summary and conclusion 

Chronic exposure for 5 weeks with 4 µg L-1 diuron resulted in the formation of a 

contaminated community, which differed considerably in its transcriptomic fingerprint 

from an unexposed reference community. The fingerprints showed large differences, 

but exposure to a diuron gradient in a short-term response test of 1 h only affected the 

expression of a small subset of 2’931 genes in both communities. By prioritizing the 

analysis to regulated contigs and subsequently ranking the sensitivity of the metabolic 

processes associated with the contigs, photosynthesis, glycolysis, lipid and arginine 

metabolism were identified as most sensitive pathways affected by the short-term 

exposure. While the expression of glycolysis, lipid and fatty acid metabolism related 

contigs similarly declined with increasing diuron concentration, contigs related to the 

glyoxylate cycle increased in their expression. This pointed to the activation of an 

alternative pathway for carbohydrate synthesis in both communities. Contigs related to 

photosynthesis and arginine metabolism showed differential expression in the different 

communities. The photosynthetic gene regulation involved a reduction of photosystem 

I in the reference and an induction in the contaminated community. In contrast, the 

primary target of diuron, photosystem II, remained largely unregulated, and only at high 

diuron exposure upregulation occurred in the contaminated community. A mechanism 

for balancing the stoichiometry between the two photosystems is assumed for the 

reference community, which has already been demonstrated using algal cultures. The 

up-regulation of photosystem I and also photosystem II at higher diuron concentrations 

is a potential adaptation resulting from chronic exposure that confers tolerance to 

diuron in the contaminated community. As the expression of photosystem-related 

genes depends on the oxidation status of the ubiquinone pool, a deeper analysis of 

the binding site of diuron at the psbA gene needs to be performed to identify potential 

genetic factors that might favor the observed tolerance mechanism. Furthermore, the 

different behavior of the arginine metabolism in the different communities could be 

related to their tolerance. However, further studies particularly addressing the amino 

acid metabolism are needed to support this finding. Thus, meta-transcriptomics 

facilitated the identification of photosystem and amino acid metabolism related 

adaptations to maintain homeostasis under diuron exposure conditions. The use of 

DRomics enabled the successful prioritization of contigs from the extensive data pool 

and the formulation of hypotheses that must finally undergo testing in a targeted 

approach (e.g. using Blast for searching specific genes). 
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5. Community metabolome analysis 

5.1 Introduction to community metabolomics 

Chemical pollution drives selection for species while favoring certain physiological 

traits that enable homeostasis under the given environmental conditions. Identification 

of these traits can be done at different molecular levels like transcriptomics (see 

chapter 4), proteomics or metabolomics, although integrated analysis of metabolites 

is the closest molecular readout towards the phenotype and the related ecologic 

outcome. On the level of the metabolites the activity of 5 million protein coding genes 

of the earth's proteome (Perez‐Iratxeta et al., 2007) converges to changes in the pools 

of about than 250’000 primary and secondary metabolites (HMDB retrieved 03/2022; 

Wishart et al., 2021). Hence, metabolites act as an integrating element of the preceding 

transcription, translation and other regulatory steps. Especially primary metabolites like 

sugars, amino acids or fatty acids span a range of cellular functions as they control 

normal growth, development and reproduction in the vast majority of organisms. On 

the one hand, the integrating character of metabolites in processes of cellular 

regulation poses a challenge for mechanistic understanding; on the other hand, 

studying metabolites holds great potential to identify biochemical changes close to the 

phenotype. Since a single metabolite often has multiple molecular functions in 

acclimation and overcoming stressful conditions in a cell, it is difficult to assign a 

protective role to a specific metabolite. Therefore, the interpretation of metabolites 

must be linked to other physiological data, which is called phenotypic anchoring (Viant, 

2007). Only by anchoring molecular patterns in physiological processes it is possible 

to evaluate metabolite changes in terms of their community function. Another strategy 

to approach this difficulty is the relative comparison of the metabolome of I) stressed 

and non-stressed and II) stress-adapted and non-adapted organisms.  

The comprehensive analysis of the small biomolecule pools (usually below 1000 Da) 

synthesized by a biological system is termed metabolomics (Fiehn, 2001). Currently, 

two complementary approaches – metabolic profiling and -fingerprinting – are in use. 

Metabolic profiling aims on a quantitative assessment of a selected set of metabolites, 

while the fingerprinting approach tries to capture as many metabolites as possible 

regardless their chemical annotation to compare patterns of metabolites that change 

in response to stress. This unbiased assessment poses a challenge for 

instrumentation, because of the diverse chemical nature of the metabolite compounds.  
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So far the application of gas-chromatography coupled to mass spectrometry (GC-MS) 

covers the widest range of metabolites and is clearly the best platform for untargeted 

metabolomic fingerprinting (Fiehn, 2016). Combined with a derivatization step, this 

technique enables the analysis of sugars (mono-, di- and trisaccharides), sugar 

alcohols/acids, amino and fatty acids, phosphorylated intermediates and many plant 

secondary metabolites such as phenolics, terpenoids, steroids and alkaloids (Rohloff, 

2015).  

So far, metabolomics has often been used as a screening tool to investigate adverse 

effects of chemicals in specific model organisms or to elucidate the mode of action of 

a chemical (Grossmann et al., 2012). But the vast potential of metabolomics gave rise 

to novel transdisciplinary fields of application like environmental metabolomics (Bundy 

et al., 2009; Viant, 2007) or community metabolomics (Jones et al., 2016; Llewellyn et 

al., 2015). The application of metabolomics in the respective context generally seeks 

to understand the biochemical mechanisms governing species interactions with their 

particular environment and its alteration at stressful conditions. Applying metabolomics 

to communities has the potential to assess their responses in an integrative way, 

although challenges such as complex data analysis or lower resolution of effects have 

to be considered. The potential of metabolomics for analyzing aquatic biofilms is rather 

unexplored. A study of (Gaubert-Boussarie et al., 2020) explored the methodological 

challenges in metabolic fingerprinting of intertidal mudflat biofilms. The authors proved 

that metabolomics in biofilms is technically feasible, however, they encountered 

problems with the annotation of metabolites and the low sensitivity of biofilms in their 

case study on light exposure. In contrast, a study by Serra-Compte et al. (2018) was 

able to demonstrate effects of chronic pharmaceutical pollution and desiccation in 

metabolic fingerprints of Mediterranean biofilms. They identified five respectively seven 

responsive fatty acids reflecting their exposure history. The most comprehensive 

metabolomics analysis of biofilms has been carried out by Creusot et al. (2022), who 

explored the effect of exposure duration and environmental factors such as light, 

temperature, and flow regime on the metabolic response to the model herbicide diuron. 

Even though this study does not allow any mechanistic conclusions due to 

inappropriate quenching during sampling, it could still be shown that biofilms are very 

sensitive to environmental variables. 

In the present thesis, metabolomics was used to characterize the metabolic fingerprint 

of the reference and contaminated communities and to identify potential adaptations 
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resulting from chronic exposure. Since the contaminated communities were shown to 

be more tolerant to diuron (chapter 3), and meta-transcriptomics revealed molecular 

mechanism that supports this tolerance (chapter 4), the question arises if these effects 

also manifest in the metabolome. To reveal such a mechanism, the communities were 

exposed to diuron in a dose response approach according to the PICT concept and 

subsequently subjected to a metabolomics workflow. 

 

5.2 Methods 

5.2.1 Sampling, metabolite extraction and derivatization 

Three colonized slides were quenched directly after acute exposure (see Annex 1 for 

details on the cultivation and exposure) in liquid nitrogen and kept at -80°C until further 

analysis. Then, the slides were freeze dried and alumina cold packs were used to retain 

the frozen status of samples until completely dry. Dried biomass was homogenized 

and a 20 mg subsample was transferred into a FastPrep® tube. Then 150 mg of glass 

beads (5 mm) and 1.2 mL of a solvent mixture containing methanol, chloroform and 

water (10:5:4, v/v/v) and ribitol as internal standard (10 mg L-1) was added to each 

sample. Cells were disrupted using a FastPrep®-24 (6.5 m s-1, MP Biomedicals, USA) 

for 35 sec in three cycles, while the samples were cooled down for two minutes after 

each run. Cell debris were centrifuged (6 min, 6°C, 20000 × g, r = 10.8 mm) and 1 mL 

of the supernatant, 0.8 mL milli-Q water and 1.6 mL chloroform were transferred into a 

10 mL glass tube. The hydrophilic and lipophilic metabolites were separated by 

vortexing and a subsequent centrifugation step (10 min, 5°C, 4000 x g, r = 196 mm). 

One milliliter of the upper hydrophilic methanol/water (=polar) phase was transferred 

into a 3 mL reaction glass vial and dried at 40°C and gentle nitrogen circulation. The 

dried sample was incubated with 200 µL MOXTM reagent (2% methoxyamine * HCl in 

pyridine, PIERCE Biotechnology, USA) for 2 h at 80°C. The methoxaminated samples 

were dried the same way as before, 100 µL of MSTFA reagent (N-Methyl-N-

trimethylsilyltrifluoroacetamide, PIERCE Biotechnology, USA) was added and they 

were incubated at 90°C for 20 min. Process blanks were included in the metabolite 

extraction and derivatization step to account and subtract the background 

contamination of the extraction and derivatization. An aliquot of all samples was pooled 

into a quality control sample (QC) for the assessment of the instrument performance. 
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5.2.2 GC-TOF-MS analysis 

The samples were randomly analyzed on a gas chromatograph (Agilent 7890, Agilent 

Technologies, USA) coupled to a time-of-flight mass spectrometer (Pegasus 4D, 

LECO, USA). The separation was performed with a DB5 column (30m + 10 m DG pre-

column, 0.25 mm, 0.25 µm, Agilent) and helium as carrier gas. A volume of 1 mL was 

injected in splitless mode and analytes were ionized by electron ionization (see Annex 

6 for instrument settings). Solvent blanks were run every fifth sample, QC samples 

were placed before and after each sequence and alkane (C7-C30, SIGMA) retention 

index samples (RI) were analyzed at the end of each sequence.  

 

5.2.3 Data processing and statistical analysis 

The chromatograms were aligned using the open source software ‘MS-DIAL’ version 

4.24. (Tsugawa et al., 2015) and the alignment parameters are listed in Annex 7. The 

final alignment of samples contained 1354 peaks which were exported and 

subsequently corrected by an in-house R-routine. First the alignment was quality 

checked for peaks that were divided into different alignment ID’s. Those peaks were 

merged if the EI spectrum similarity was above 80 percent, the retention time gap was 

below 8 seconds and the conflict between the aligned metabolites was below five 

percent. In total 57 of the 1354 aligned peaks were merged with their corresponding 

counterpart to correct for peak splitting in the alignment routine. Then the dataset was 

filtered for artifacts, which were introduced by the MS-DIAL alignment (automatically 

interpolated peak areas) and sporadically occurring peaks. To this end data were 

filtered for consistency by requiring a peak to occur at a minimum of 30 percent in the 

replicates of three subsequent treatments (consistency criterion). The filtering revealed 

601 sporadic peaks which were removed from the dataset. In a last filtering step, the 

blank contamination was removed by setting a five-fold threshold, which the mean 

peak area must exceed compared to the blank mean. The blank filtering step further 

reduced the dataset to a final selection of 190 metabolites. This selection was 

decomposed into sets of common and individual metabolites based on the consistency 

criterion and plotted in a Venn diagram. The final selection of metabolites was 

normalized to the internal standard ribitol and the replicates of each treatment were 

aggregated. The aggregated data was mean centered, auto-scaled and finally 

subjected to a principal component analysis (PCA). The metabolites were annotated 

by reference mass spectra of the ‘Golm Metabolome Database’ (Kopka et al., 2005).  
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5.3 Results and discussion 

5.3.1 Characterization of the metabolic fingerprints 

In total 40 % of the 190 metabolites were annotated until the stage of positional isomers 

and 20 % had a library match of more than 70% and their retention index was within 

an acceptable range of 15 units. The annotation revealed mono- and disaccharides 

(13.7 and 5.3 %), amino acids (4.2 %), carboxylic acids (3.7 %), fatty acids (1.6%) and 

other compounds in smaller quantity. The remaining 60 % of the metabolites were not 

covered by public libraries and remained unknown in their identity and classification. 

A PCA was carried out combining both, communities after succession in the selection 

phase as well as samples after short-term exposure to structure and prioritize the 

metabolic features in their response characteristics (Figure 17). In total 40 % of the 

variance of metabolites was explained by the first three principal components (PCs) 

and 65 % with the first six PCs. PC1 (21.3 %) separated the reference and 

contaminated communities while the contribution of individual samples to PC1 did not 

show a distinct pattern. The difference of the metabolic fingerprints of the communities 

is discussed in chapter 5.3.2. 

PC2 (8.2 %) and PC3 (7.8%) captured the short-term response to diuron of the two 

communities in the detection phase. The contribution to PC2 was mainly driven by 

opposing conditions such as controls and highest diuron treatments, while PC3 

represents samples with high diuron concentrations (10, 50 and 100 µg L-1). Moreover, 

PC3 describes a divergent stress response with high diuron stress striving to opposing 

directions in the PCA. PC2 and PC3 were unable to discriminate diuron treatments 

below 1 µg L-1, which occur close to the controls. The divergent metabolic response is 

discussed in chapter 5.3.3 in relation to a potential tolerance mechanism. The 

subsequent PCs were disregarded in the analysis because their explanatory power 

dropped to ≤ 5 %.  
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Figure 17 Principal component analysis of the metabolic fingerprints based on the 190 
autoscaled metabolites. The different concentrations of the acute 1h exposure are presented 
based on a color gradient ranging from red (high exposure) to yellow (low exposure), whereas 
blue depicts controls. The contaminated community is marked by the triangle ▲ and the 
reference community by the filled circle ●. 

 

5.3.2 Difference in the metabolic fingerprints 

The PC1 has revealed a general difference in the metabolic fingerprints of the two 

communities. This difference was further investigated in a Venn diagram, in which the 

final selection of metabolites was divided into shared and individual metabolites based 

on their occurrence (Figure 18). About 107 of the 190 metabolites were exclusively 

found in one of the respective communities (individual metabolites). The remaining 83 

metabolites were found in both communities equally (shared metabolites). The 

proportion of unannotated metabolites was 65% in the contaminated, followed by the 

reference communities with 57% and lowest in the shared fraction with 49%. Thus, the 

unknown metabolites were particularly involved in the discrimination of the 

communities on PC1. Specific marker metabolites were not identified in any of the 

communities to explain the community difference, but these may exist within the 

unknowns. A potential exception is the metabolite 785, which was tentatively identified 

as lumichrome, a photodegradation breakdown product of riboflavin. This metabolite 

was widespread in the contaminated communities and its content was twice as high 

as in reference. The vitamin riboflavin is a versatile secondary metabolite involved in 

regulation of energy metabolism, growth and development (Averianova et al., 2020) 

and pathogen resistance (Boubakri et al., 2016). Moreover, the unknown metabolites 
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748, 772 and 895 show a high contribution to community separation and indicate a 

molecular weight above 250 Dalton based on their retention time and fragmentation 

pattern. A large fraction of unknown metabolites was also reported by Gaubert-

Boussarie et al. (2020), who analyzed microphytobenthic biofilms in intertidal mudflats 

using a comparable method. Compared to tissues or dense cultures, biofilms have 

three main differences: I) biofilms contain organisms with different sensitivities and 

metabolic effects in a small portion of affected species might vanish in the pools of the 

non-affected ones, II) the diversity in species increases the diversity in metabolites that 

potentially co-elute and form ambiguous mass spectra, and III) the cellular biomass is 

low compared to the EPS and detritus. All factors affect the detection of changes in the 

metabolite pools and the annotation quality.  

I) Not all species in a diverse assemblage are equally affected by a stressor, so that 

small changes in metabolite pools can fall below the detection limit. Furthermore, the 

high diversity of species within the community brings along an additional variety of 

metabolites beyond the focus of classical research (such as secondary metabolites). 

Secondary metabolites of environmental communities have a limited representation in 

public libraries, as they are non-essential to the life of the producer and are only formed 

for specific functions such as protection against environmental stressors or competitive 

interactions. 

II) As biodiversity increases, so does biochemical diversity. However, in gas-

chromatography, the performance of the separation processes limits the resolution of 

the individual metabolite spectra. Complex mixtures of structurally similar compounds 

tend to produce co-eluting substances which affects the annotation based on the 

spectral identity as well as the quantification.  

III) Another factor that can dilute metabolites below the detection limit is the EPS 

fraction. A review on the poorly studied EPS compartment by Flemming and 

Wingender (2010) states that active cells in biofilms can have a low content of only 

10 % of the total dry weight. In contrast the EPS represents a large exo-metabolome 

of collectively released polysaccharides and other metabolites with largely unknown 

chemical composition. Since biofilms are inseparable from the EPS, metabolomics 

always provides an integrating profile of all compartments. Chronic exposure to 

pollutants can alter the composition of EPS, which may indicate a protective 
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mechanism (Gu et al., 2017; Polst et al., 2018) or altered species composition and may 

be persistent in the metabolic fingerprint even after exposure has subsided. 

In conclusion, the chronic exposure resulted in the selection of specific biochemical 

traits which could be related to changes in the structural composition (see Chapter 

3.3.1), physiology and EPS composition. Regardless of the different causes, the clear 

separation of the communities illustrates the strong power of the metabolic 

fingerprinting approach to detect the effects of chronic diuron exposure at the 

biochemical level. 

 

 

 

 

 

 

 

 

 

 

5.3.3 Differential metabolic responses of the communities to short-term exposure of 

diuron  

PC3 (Figure 17) was associated with a divergent metabolic response, and 

monosaccharides, sugar alcohols and orthophosphate had a particular high loading. 

Especially the metabolites 1146, 1100, 675, 1048 and 1113 represented the top 5 with 

a loading of more than 3%. The metabolites 1146 and 1100 were identified as pentose 

acid lactones, with lyxonic acid-1,4-lactone (1146; LAL) and arabinonic acid-1,4-

lactone (1100; AAL) having the highest library agreement (see Figure 19 for 

examples). Since the pentose acid lactones are stereoisomers of a larger group, their 

Figure 18 Venn diagramm of the 190 metabolites of the final alignment. The red fraction 

illustrates metabolites that were particularly present in the contaminated communities, while 

the blue represents the same finding for reference. 



 

74 
 

exact annotation cannot be guaranteed without a reference standard. Both metabolites 

decreased in reference communities by a log2 fold change of 1.3 whereas they 

increased in contaminated communities by 1.7. A similar pattern was observed for 

metabolite 1048, which was tentatively identified as threonic acid (TA). Contrary to this 

observation, the pools of metabolite 675 increased by 4.8 in the reference but 

decreased by 2.8 in the contaminated communities. The mass spectrum of this 

metabolite is similar to glycerol (GL) (similarity of 65 %), however some fragments like 

m/z 148 or 127 did not match the library reference. Other metabolites such as 670 

(phosphoric acid; PA), 1285/1286 (glycerolaldopyranosid; GAP) and 1152 (anhydro-

glycopyranose; AGP) showed a very similar response to metabolite 675, but with a 

less pronounced fold change.  

 

 

Figure 19 A, C) Boxplot of the normalized peak area of the metabolites 1048 (TA) and 1146 

(LAL) with the reference communities in blue and contaminated communities in red. B, D) 

Spectrum of the metabolites 1048 and 1146 (black) and the highest match of the Golm 

Metabolome Database (red). 
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Many carbohydrates switch between cyclic and open chain forms, and each of the 

various forms would lead to different peaks in gas chromatography. To avoid 

cyclization, the carbonyl groups of carbohydrates were methoximated, which should 

give two different peaks in the chromatogram (Engel et al., 2020). However, some of 

the metabolites were detected in a cyclic structure such as lactones and pyranose 

sugars. This implies that derivatization may have triggered the formation of multiple 

peaks from the same precursor due to anomerization (geometric variation in the cyclic 

molecules). This technical constrain was caused by an incomplete methoximisation 

step prior to GC analysis, which was also observed in the study by Gaubert-Boussarie 

et al. (2020). Whether this is an inherent property of the biofilm matrix or due to an 

unsuitable derivatization reagent remains to be explored. Despite this limitation, the 

dynamics of these metabolites are not affected by this effect, but some additional 

peaks may be suspected in the subsequent analysis. 

The prominent role of the metabolites LAL, AAL and TA in the differential response of 

the communities might indicate an adaptation to diuron in the contaminated 

communities. According to the KEGG PATHWAY database (see chapter 6.1 for more 

details) the metabolites LAL and TA are involved in ascorbate and aldarate metabolism 

(Kanehisa & Goto, 2000), where they are formed as degradation products from 

ascorbic acid. These products may have formed in-vitro (Parsons et al., 2011) or during 

extraction and derivatization (Dewhirst et al., 2020; Smuda & Glomb, 2013). Ascorbic 

acid in aqueous extracts undergoes degradation processes in the presence of oxygen 

atmosphere, pH changes, light and elevated temperature (Deutsch, 1997). Dissolved 

oxygen triggers the conversion of AA to dehydroascorbic acid (DHA), which in turn 

may undergo hydrolysis or amine-induced cleavage (Smuda & Glomb, 2013). 

Derivatization of the metabolite extracts with acidic methoxyamine may have favored 

the amine-catalyzed breakdown of DHA to carboxylic acid such as threonic acid, 

lyxonic acid and xylonic acid. In conclusion, there is evidence that the contaminated 

communities have increased their AA metabolism as a potential defense mechanism 

to the chronic diuron exposure. The ascorbate-glutathione cycle maintains the 

ascorbate pool on a stable level of more than 90 % reduced molecules under 

homeostatic conditions (Smirnoff & Pallanca, 1996). According to the MoA of diuron, 

the compound primarily suppresses the light-dependent reaction of photosynthesis 

and the formation of high-energy compounds such as adenosine triphosphate (ATP). 

Apart from the primary MoA, illumination of the herbicide-inhibited photosystem II 
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facilitates charge recombination reactions that form singlet oxygen radicals by 

transferring electrons to O2 (Krieger-Liszkay & Rutherford, 1998; Rutherford & Krieger-

Liszkay, 2001). The formation of reactive oxygen species (ROS) is part of the natural 

metabolism of autotrophic cells. Hence, cell compartments like the stroma hold up a 

pool of 10 to 50 mM of AA to prevent cellular damages (Smirnoff & Pallanca, 1996). 

The elevated amount of LAL, AAL and TA found in the contaminated communities 

might relate to an adaptation in the ascorbate-glutathione cycle acquired during the 

chronic exposure with 4 µg L-1 diuron. A diuron concentration of more than 10 µg L-1 

may have triggered the formation of AA in the contaminated communities, which was 

impossible in the reference communities due to diuron related metabolic shortages. In 

contrast, LAL, AAL and TA in the reference communities even fell below control values 

at diuron concentrations above 10 µg L-1, which could indicate enhanced catabolic 

processes due to energy deficiency. 

 

 

Figure 20 A, C) Boxplot of the normalized peak area of the metabolites 670 (GL) and 675 (PA) 

with the reference communities in blue and contaminated communities in red. B, D) Spectrum 

of the metabolites 670 and 675 (black) and the highest match of the Golm Metabolome 

Database (red). 
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In addition to the sugar acids, PA, GL, GAP and AGP also showed divergent response 

tendencies in the communities, with an increase in the reference and decrease in the 

contaminated communities (see Figure 20 for examples). The origin of the PA remains 

unknown, but its central role as an important intermediate metabolite in the energy 

metabolism points to a clear stress response mechanism. It is possible that a large 

amount of phosphate was derived from phosphorylation of e.g. sugars, lipids, or 

nucleotides. Comparable results were found in Kluender et al. (2008), who detected a 

decrease in phosphorylated sugars, after 4 h of exposure of an algal culture to a PSII 

inhibiting herbicide. Unfortunately, no phosphorylated compounds were detected in 

this study, which might result from a low pool size of the phosphorylated forms. 

Nevertheless, the increase of PA and GL pools in the reference communities indicates 

an increased sugar and lipid metabolism for reallocation of energy in the cells as a 

result of their photosynthetic energy shortage. A similar induction of PA and GL pools 

was observed in the metabolome of the diatom species Tabellaria flocculosa re-

exposed to 500 µg L-1 Zn (Gonçalves et al., 2018). The authors also concluded from 

the induction that the cells might have reached a low energy status due to catabolic 

process. In contrast, the abrupt decline in the contaminated communities might relate 

to their strategy to acquire energy at diuron concentrations above 10 µg L-1. Thus, the 

contaminated communities could invest free PA in their energy metabolism, which 

could explain the decrease. 
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5.4 Summary and conclusion 

In summary, community metabolomics revealed a distinct molecular fingerprint 

corresponding to the respective exposure history of the communities and acute 

exposure revealed a potential mechanism of diuron tolerance in the contaminated 

communities due to opposing responses in distinct metabolites. The annotation of 

these metabolites indicated an adaptation in the ascorbate-glutathione cycle, which 

may support cellular homeostasis against reactive oxygen species. The observed 

molecular response can be linked to the MoA of the herbicide, because the 

overproduction of ROS can be considered as a major effect of this PSII-inhibiting 

herbicide (Rutherford & Krieger-Liszkay, 2001). To confirm the suspected adaptation, 

the discussed metabolites should be validated with reference material or the structure 

should be elucidated by GC-APCI-TOF. In conclusion, metabolomics provides insights 

into molecular stress adaptations at the community level, although the quality and 

quantity of biogenic metabolites is lower than in tissues or cultures. Due to the higher 

taxonomic complexity, compound annotation is still a major challenge. Therefore, the 

mechanistic insight into complex community responses is very limited using untargeted 

GC-based metabolomics. 
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6. Synthesis  

6.1 Approaches and challenges for linking molecular data to functional 

measurements 

Molecular processes can be described as multidimensional networks of interconnected 

processes that have proven to be resilient against environmental fluctuations. Unless 

precise knowledge regarding a molecular endpoint is known, molecular methods are 

helpful in an integrative analysis (multi-OMICs approaches). However, such analysis 

generates large amounts of multivariate data and brings along the problem that is 

paraphrased by the 3 i’s - integration, interpretation and insights. Integration is the 

process of analysing multiple molecular and physiological datasets in a synergistic 

fashion, with the aim of gaining added knowledge from their combination. However, a 

major weakness of integration tools remains that they do not include higher aggregated 

measurements such as phenotypic, physiological or functional measurements in their 

analysis. However, these represent the final manifestation of the molecular changes 

and should therefore be considered in ecotoxicological studies (e.g. through anchoring 

approaches). Integration of data can be achieved with different approaches that can 

be divided into two categories: unsupervised methods such as (multivariate) statistics 

(e.g correlation, dimension reduction, clustering) and supervised methods (e.g. 

pathway analysis). Unsupervised statistical methods remain at the descriptive level of 

pattern recognition and require annotation of prioritized elements to allow 

interpretation, whereas supervised methods can only be applied to annotated data. 

Thus, the interpretation is based on the commonalities of the data and requires an 

annotation of the responsive elements. Insights, in turn, can only be derived from the 

larger context of the data and require relationships to phenotypic, e.g. ecological 

parameters.  

A special form of unsupervised analysis of molecular data is numerical aggregation, 

which does not meet the definition of integration as defined above, but is well suited 

for a reduction of data complexity to an index value and thus allows a comparison with 

other univariate measurements. For molecular items this idea was first introduced by 

Lobenhofer et al. (2004) who summed the number of significantly altered genes, 

subjected this parameter to dose-response modelling and estimating a No Observed 

Transcriptional Effect Level (NOTEL), at which the studied estrogenic compound did 

not alter gene expression in the investigated cells. However, this approach was not 
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quantitative in terms of the extent to which a gene was altered, and thus, Gou and Gu 

(2011) adopted their idea and designed a quantitative index, the Transcriptional Effect 

Level Index (TELI). This index reflects transcriptomic activity compared to a reference 

condition, assuming that any deviation from the reference conditions triggers gene 

expression that alters the TELI. The aggregation of gene expression in combination 

with a dose-response approach allowed Gou and Gu (2011) to compare effect 

thresholds (ECX) of gene expression with phenotypic endpoints such as cell growth 

inhibition. The same approach was transposed to the level of proteins (Proteomic 

Effect Level Index - PELI; Lan et al., 2016) and metabolites (Metabolic Effect Level 

Index - MELI; Riedl et al., 2015). However, the applicability of aggregated parameters 

in complex microbial communities has rarely been studied. To the author's knowledge, 

the TELI has not been applied in any community approach so far, while the MELI was 

recently tested in biofilms exposed to diuron (Creusot et al., 2022). The authors proved 

the MELI can be a sensitive tool to detect molecular changes even at lower 

concentrations than photosynthetic yield analysis of chlorophyll fluorescence and 

therewith confirmed the findings of Riedl et al. (2015). 

 

An approach that facilitates unsupervised data integration of different biological level 

is sensitivity analysis combined with the cumulative sensitivity distribution (CSD) 

analysis. The rationale of this approach is the integration and comparison of different 

biological entities based on their response sensitivity thresholds (e.g. BMD, ECX) 

derived from dose-response analysis. Dose-response analysis from molecular 

datasets is a challenging task that includes processing of very large datasets, in 

addition to requiring the implementation of a variety of biological response trends (e.g. 

linear, sigmoid or Gaussian models). For instance, the meta-transcriptome dataset of 

this thesis contained 36 treatments with 3.5 million contigs. Recently, these challenges 

have been addressed by an automated R application ‘DRomics’ that offers a wide 

range of different dose-response models for the sensitivity threshold estimation (Larras 

et al., 2018). Afterwards, the obtained sensitivity thresholds are ranked in into a CSD, 

which was originally developed to compare species sensitivities towards chemicals 

(e.g. Fox et al., 2021). In contrast to this original intention, the CSD in this study 

comprises thresholds of molecular and apical changes as illustrated by Larras et al. 

(2020). The CSD is classically used to estimate the concentration of a chemical that is 

hazardous to x percent of all species (HCX). Since gene regulation or metabolite 
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changes do not indicate a general hazard, the term molecular regulation concentration 

(MRCX) is used in this thesis instead of HCX. The MRCX indicates the concentration of 

a chemical that triggers the regulation of x percent of genes. 

However, aggregation to index values and CSD analysis only gives information about 

a general impact, whereas molecular data can provide insights up to the interpretation 

of cellular mechanisms. Towards this end molecular data needs to be annotated with 

respect to the molecular function, which will be addressed in the following and 

exemplified with the findings of this thesis. In recent years, a variety of integration and 

mapping tools have been introduced covering the different molecular data types (see 

Misra et al., 2019 for a recent review). One of the most comprehensive knowledge 

bases to support annotation, integration and biological interpretation of large molecular 

data sets across different molecular scales (genes, proteins and metabolites) is the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000). 

Compared to the Gene Ontology (see Chapter 4.2.4), KEGG combines in a single 

resource the cross-species annotation of genes and proteins using published complete 

genomes and links them to the level of metabolites using manually constructed 

networks of molecular interactions (Aoki-Kinoshita & Kanehisa, 2007). These networks 

are based on a hierarchical classification system that groups gene catalogues from 

sequenced genomes into metabolic pathways, which in turn are assigned higher-level 

systemic functions for the cell, organism and ecosystem. Thus, KEGG enables 

integration of the transcriptomic and metabolomics data of this thesis into associated 

molecular functions (e.g. Table 5 carbohydrate metabolism). This nested approach 

reduces complexity of datasets of different molecular data types in a similar manner -

as a cell converges in its processes towards the phenotype.  

The advantage of sensitivity analysis of functional classified molecular data was first 

demonstrated by Thomas et al. (2007), who explored gene expression changes in rat 

nasal epithelium following acute formaldehyde exposure from a risk assessment 

perspective. The rationale behind this approach is to derive a critical concentration for 

changes in molecular functions that can be used for mechanistic understanding of the 

MoA of a chemical or risk assessment of molecular impairment. However, not every 

change at the molecular level testifies an adverse effect on organismal or even 

community level. Rather, it demonstrates the need for molecular regulation in the face 

of changing environmental conditions. Therefore, risk assessment of chemicals at the 

molecular level is only meaningful if it is linked to adverse outcomes, as conceptualized 
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in the ‘phenotypic anchoring’ approach (see chapter 1.5) or the concept of ‘adverse 

outcome pathways’ (Ankley et al., 2010).  

Based on the classification into molecular KEGG functions, the sensitivity analysis in 

the CSD can be transformed into a functional cumulative sensitivity distribution 

(CSDfunc). Thus, a collective sensitivity for each KEGG function need to be computed, 

ranked and compared. This way, different molecular levels can be integrated and 

compared with sensitivities derived from traditional phenotypic observations. Larras et 

al. (2020) illustrated the power of this approach in combining and comparing data from 

different molecular origins (transcriptomics and metabolomics). Integrating molecular 

data to KEGG molecular functions allowed the authors to capture the primary MoA of 

their tested pollutant and to rank the molecular levels in their sensitivity. Through this 

approach, molecular impairments can be identified, which can be linked to the 

phenotype or ecologic functions using the same sensitivity threshold. The above-

mentioned examples are based on single species cell cultures, whereas integration of 

molecular data from multi-omics approaches on community level were not done, so 

far. 

In this work, the molecular data is classified according to the KEGG functional 

classification system, which is linked in a second step to the photosynthetic yield based 

on the sensitivity distribution analysis. This should facilitate a direct comparability of 

the different molecular and functional levels and address the following questions: Does 

a sensitivity-based integration of molecular fingerprinting approaches of freshwater 

biofilms allows to identify stressor-related adaptations? Is there a relationship between 

molecular and apical functional parameters in microbial community approaches?  
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6.2 Methods 

6.2.1 Summary on the data 

The sensitivity analysis, performed in this study, combines the physiological data from 

chapter 3 with the molecular data from chapter 4 (meta-transcriptomics) and chapter 

5 (community metabolomics). To enable comparison, these data were processed by a 

comparable workflow (DRomics) and BMD-1SD sensitivity thresholds were derived for 

each item and community. Table 4 summarizes the data available from the different 

analysis.  

Table 4 Summary on the data collected in the physiological and molecular analysis. 

Data type No. of elements BMD KEGG Annotation 

Photosynthesis 1 1 1 

Meta-Transcriptomics 3’502’153 contigs 2’931 626 

Community 
Metabolomics 

190 metabolites 18 6 

 

 

6.2.2 Aggregation of molecular data to index values (TELI and MELI) 

The processed molecular datasets (Table 4), which included 3.5 million contigs and 

190 metabolites, were each subjected to the aggregation as described by Gou and Gu 

(2011) and Riedl et al. (2015). In contrast to the Gou and Gu (2011) formula, the 

logarithm to base 2 was used in this work and normalization to exposure time was not 

performed, as all communities were exposed to an identical time. Instead, both indices 

were normalized to the number of aggregated elements. The validation of the indices 

was carried out manually to guarantee the exclusion of distorting extreme values. 

 

6.2.3 Functional annotation of contigs and metabolites using KEGG 

The sequence information of annotated genes helps to assign orthologous genes in 

non-annotated sequences based on sequence similarity. Towards this end, the filtered 

subset of 908 responsive and annotated contigs was processed on a web-based 

server called KEGG Automatic Annotation Server (Moriya et al., 2007), which 

automated the K number assignment. During data processing a similarity score of the 

query and the reference sequence set (taken from the KEGG GENES database) is 

computed, which facilitates to identify homologous genes. These are divided according 

their KO groups and the K number of the KO group with the highest similarity score is 
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assigned to the query sequence. KEGG comprises a classification database, called 

KEGG Orthology (KO) linking annotated genes with their molecular pathway and 

function (see Table 5). The functional annotation was downloaded and the BMDs of 

each molecular function were aggregated separately for each community using the 

median. For the calculation of the median, only functions with more than 3 BMD's were 

considered. The median was chosen to account for the diversity of sensitivities in the 

biofilm community, instead of prioritizing the most sensitive contigs by e.g. using the 

25th percentile. A total of 453 K numbers were assigned, deriving from 114 contigs for 

the reference communities and 339 from the contaminated communities. 

 

Table 5 Example of the hierarchical classification system of KEGG. There are six top categories 
(09100 to 09160) covering 34 molecular KEGG functions (e.g. 09101 carbohydrate metabolism) 
which contain 356 KEGG pathways (e.g. 00010 Glycolysis / Gluconeogenesis). 

▼09100 Metabolism   

        ▼09101 Carbohydrate metabolism (KEGG function)  

 ▼00010 Glycolysis / Gluconeogenesis [PATH:ko00010] (KEGG pathway) 

          ● K00844 HK; hexokinase [EC:2.7.1.1] 

           ● … 

►00020 Citrate cycle (TCA cycle) [PATH:ko00020] (KEGG pathway) 

►… 

 

 

        ►09102 Energy metabolism (KEGG function)  

 

 

The log transformed dataset covering the final set of 190 metabolites was processed 

in DRomic’s (similar to the meta-transcriptome data described in 4.2.4) using 

itemselect () with the quadratic trend test option and a false discovery rate of 10 % for 

selecting responsive elements. Models were fitted with drcfit() using the Akaike 

information criterion (AIC) and BMD’s were determined using bmdcalc() and a z value 

of 1. A total of 25 BMDs was assigned for 18 metabolites. The discrepancy between 

the number of BMDs and metabolites results from metabolites where a BMD was 

derived for both communities. Compared to the automated gene annotation with 

KAAS, metabolites needed a manual annotation before a KEGG Compound identifier 

(C number) was assigned. Due to the low annotation depth of the metabolites, only 25 

of the 190 metabolites could be assigned to a C number. The intersection of 
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metabolites with a C number and BMD was 6, which was the final set of metabolites 

that was joint to the meta-transcriptome data and subjected to the cumulative 

sensitivity distribution analysis. This involved the metabolites ID’s 670 (phosphoric acid 

(3TMS)), 675 (similar to glycerol (3TMS)), 1100 (arabinonic acid-1,4-lactone (3TMS)), 

1146 (lyxonic acid-1,4-lactone (3TMS)), 1147 (putrescine (4TMS)) and 1227 

(glucopyranose (5TMS)). 

 

6.3 Results and discussion 

6.3.1 Results of aggregation techniques 

The molecular data was aggregated into index values representing a quantitative 

measure of the global transcriptional and metabolic responses to establish 

comparability with the photosynthesis parameters. The calculation of the 

transcriptional index TELI revealed a high leverage of extreme values influencing the 

result (Annex 9). Between 9 and 27 extreme values of the 3.5 million contigs 

accounted for 13 up to 65% of the TELI. These contigs were examined for plausibility 

by filtering for consistent regulation patterns in the light of the exposure design e.g. by 

matching their identity to the contigs filtered by DRomics (see Chapter 4.3.2) and 

visual inspection. None of the contigs was included in the DRomics results, and the 

majority of the contigs only appeared as sporadic signals. Thus, the extreme values 

were removed and the TELI was re-calculated (Annex 10). The TELI does not show a 

concentration-dependent dynamic, but indicates an overall higher transcriptional 

activity in contaminated community. The TELI of the contaminated communities was 

higher than the TELI of reference communities, except for the treatments with 0.001 

and 1 µg L-1. This underlines the distinct fingerprints of communities revealed by the 

PCA analysis in chapter 4.3.1.  

The aggregation of the community metabolome into the MELI revealed the problem of 

large data gaps of about 20 % missing values in the peak tables. The data was reduced 

to complete records, leaving 78 and 87 metabolites for the reference and contaminated 

communities, respectively, for the calculation of the MELI. However, the MELI was also 

dominated by extreme values (cf. Annex 11 A and B), which were removed after a 

visual inspection. After removal of the extreme values, no concentration-dependent 

dynamics was found in the communities (Annex 11, B). Generally, the reference 

communities had a higher MELI than the contaminated in the low concentration range, 
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but at 10, 50 and 100 µg L-1 diuron treatment, the contaminated community exceeded 

the reference MELI. As the MELI does not provide any information about the type of 

change (i.e. increase or decrease of a metabolite), only a general metabolic activity 

can be deduced from this rise in MELI.  

In summary, aggregating community omics data is a delicate task that requires manual 

data curation and quality control. In particular, dealing with extreme values complicates 

application of aggregation approaches, as extreme values may indicate I) potential 

biomarkers or II) represent technical artefacts of the bioinformatic pipeline. Verification 

of extreme values is not in line with the goals of aggregation, which should enable a 

rapid assessment of effects. Aggregation techniques may have advantages when 

dealing with uniform responses of identical organisms e.g. in cultures or if the 

application is focused on the raw data before processing e.g. the use of fragments 

instead of peaks in mass spectrometry of metabolites (Creusot et al., 2022; Riedl et 

al., 2015). Similar to the results of the PCA (see Figure 10, Chapter 4.3.1), the TELI 

also failed to reveal the effect of the short-term exposure on the autotrophic part of the 

communities. This highlights the weaknesses of global unfiltered analysis of meta-

transcriptome data and reinforces the sensitivity-based approach as a viable way for 

prioritization and comparison of responsive items. The MELI performed slightly better, 

which may be due to the methodological focus on primary metabolites (e.g. sugars). 

Due to the methodological difficulties and the limited significance, the aggregation 

methods are not considered further in the following. 

 

6.3.2 Sensitivity analysis of the different molecular approaches and endpoints 

The BMD values of the different molecular approaches were ranked in a global 

cumulative sensitivity distribution (CSD) (Figure 21) according to their sensitivity in the 

different communities. The sensitivity distributions of both communities clearly differed 

in their pattern with the reference communities showing a steeper increase of 

responsive contigs with increasing diuron concentration. In contrast, the contaminated 

communities revealed a much weaker increase in activated molecular responses, 

which is also reflected in the molecular regulation concentration that affects 20% of 

genes (MRC20). The MRC20 differed between the communities by a factor of 1000 

(MRC20 conta = 8.2 µg L-1; MRC20 ref = 8 10-3 µg L-1). The initial steep increase in the 

CSD’s represents contigs that already showed a difference from the controls at the 
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lowest diuron concentrations. Another phase of steep increase in the CSD’s occurred 

above the diuron concentration that inhibits 50% of the photosystems (EC50). This 

phase is also characterized by detectable changes in the majority of the metabolites. 

One metabolite in each community had a higher sensitivity than the majority of all 

others. However, their annotation remained unsettled and the BMD’s of these 

metabolites were uncertain due to visual inconsistencies of the data and the modelled 

curve. Therefore, these metabolites were disregarded in the further consideration. The 

different response characteristics of the CSD’s and especially the different dynamics 

found in the range of the EC50 of photosynthesis inhibition with the remarkable increase 

in transcript and metabolite changes illustrates the difference in adaptation of the 

communities after chronic exposure. The sharp increase in responses occurred in the 

contaminated communities at higher concentrations compared to the reference 

communities, indicating their adaptation to chronic diuron exposure. This adaptation 

has already been identified in photosynthetic tolerance (see chapter 3.3.3) and could 

be confirmed here using molecular methods. The coincidence of the EC50 of 

photosynthesis inhibition and the strong increase in molecular regulation opens up the 

potential to use CSD curves and MRC thresholds as a molecular marker for PICT.  

Although the CSD’s revealed molecular regulation up to the ng L-1 range, this cannot 

be supported by apical effects in this study nor literature. A study of Nestler et al. (2012) 

confirmed regulation in the proteome of the microalgae C. reinhardtii exposed to 769 

ng L-1 diuron, with a majority of altered protein found in the photosystem and protein 

synthesis. In this study regulation in gene expression was revealed by modelling even 

at 0.1 ng L-1, which corresponds to a total of 51 109 diuron molecules in the solution. 

Even though this seems an appropriate amount for cellular effects, apical effects have 

not been reported so far. A query of the ECOTOX knowledgebase (keywords: diuron, 

aquatic, algae; date: 13.11.2021) yielded in lowest observed effect concentrations 

(LOEC) for photosynthesis between 0.1 and 5 µg L-1. As apical effects of diuron at the 

primary site of action occurred beyond a BMD of 1.7 µg L-1 in this thesis, molecular 

regulation at lower concentrations is considered effective in restoring homeostasis and 

no immediate impairment can be inferred. Thus, interpretation of molecular responses 

below the BMD may provide mechanistic insights into cellular regulation, but is not 

appropriate in the context of risk assessment. 

Before interpreting the sensitivity distribution with respect to cellular regulation, it is 

important to be aware of the sensitivity bias of the two molecular methods. Both, meta-
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transcriptomics and community metabolomics integrate the effects in the different 

organisms of the biofilm, but at a different resolution. Meta-transcriptomics allows 

differentiation of responses down to isoform genes, while metabolomics also 

incorporates changes (in small molecules) in the EPS matrix. This may reduce the 

sensitivity to small scale effects imposed to a subset of the biofilm species at acute 

exposure. Therefore, no mechanistic comparison of the sensitivity of stress responses 

at the different biological levels can be made, but the general sensitivity of each method 

for detecting effects in a complex biofilm community can be illustrated. Metabolomics 

has been shown to be very sensitive to detect effects in cultures of the chlorophyte 

Scenedesmus vacuolatus (Sans-Piché et al., 2010) or the macrophyte Myriophyllum 

spicatum (Riedl et al., 2015) even at sub-inhibitory concentrations of endpoints, close 

to the MoA of the toxicant. Creusot et al. (2022) argued that this sensitivity can also be 

transferred to biofilms communities under diuron exposure. The authors showed that 

at the BMD1SD value of the photosynthesis inhibition (1.13 μg L-1), already around 45 % 

of the metabolites have been altered. However, the annotation of their responsive 

metabolites revealed mostly fatty acid metabolism related compounds, but no relation 

to the MoA of diuron. Obtaining sensitive responses beyond the primary effect of the 

chemical raises methodological questions, which the authors discussed in relation to 

improper quenching during sampling. Thus, a direct comparison of the results remains 

challenging. Regarding methodology, there are two major differences: firstly Creusot 

et al. (2022) used ultra-performance liquid chromatography system coupled to high-

resolution mass spectrometry (UPLC-HRMS) and secondly their acute exposure time 

was twice as long. Using UPLC-HRMS allowed the authors to analyze underivatized 

samples, which on one hand narrows down the spectrum of potential analytes but on 

the other hand also reduces the interfering influence of EPS, which is partly dissolved 

by derivatization. The interfering properties of EPS in derivatization of GC-TOF 

samples and the abundance of the potential target organisms as a decisive factor for 

the sensitivity of community metabolomics were discussed in detail in chapter 5.3.2. 

In conclusion, the methodological differences between the studies do not allow for 

comparability and thus the lower sensitivity of the metabolome in this study needs to 

be validated in future studies. 
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Figure 21 Global cumulative sensitivity distribution of the contigs, metabolites and inhibition 

of the photosynthetic yield along the diuron gradient of the reference communities A) and the 

contaminated communities (B). The grey-shaded area illustrates the concentration range when 

50 % of the photosynthetic yield is inhibited. 

 

 

6.3.3 Mechanistic view of the molecular stress responses based on KEGG functions 

The global CSD allows insights into the cascaded efforts of exposed organisms to 

maintain cellular homeostasis. However, this approach does not allow a mechanistic 

perspective on the maintenance of homeostasis with increasing exposure 

concentration, because they are not related to molecular functions. For this reason, 

the elements of the global CSD were translated to their molecular functions using 

KEGG and a median BMD was assigned to each function. Filtering and aggregating 

BMD’s to KEGG functions reduced the complexity of incoherently regulated contigs 

and allowed to focus on general patterns and affected functions.  

The resulting functional cumulative sensitivity distribution (CSDfunc) (Figure 22) 

confirms the characteristic curves of the communities of the global analysis in Figure 

21. The reference communities showed a broad range of molecular KEGG functions 

regulated in response to increasing diuron concentration starting at 0.001 µg L-1 and 

ending at 31 µg L-1. In contrast, the molecular response in the contaminated 

communities occurred within a small concentration range of 27 to 51 µg L-1, which 

overlaps EC50 of photosynthesis inhibition. As the plotted thresholds for the molecular 
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functions are median values of the associated BMDs, a broader distribution of the 

underlying BMD's is conceivable. This is underlined by the standard distribution for the 

median BMD's which ranged from 12 to 21 µg L-1 in the reference and 18 to 28 µg L-1 

in the contaminated communities. Taking together the large range of medians and the 

high standard deviation in the responses of the reference communities, it can be 

concluded that they reacted very variably with respect to their molecular functions, 

while the contaminated communities responded rather homogeneously. Comparing 

the reference and the contaminated communities with respect to their median BMDs 

of a KEGG function (BMDref / BMDconta), the reference communities were particularly 

sensitive in transport and catabolism (log10 = -4.5), membrane transport (log10 = -2.9), 

folding, sorting and degradation (log10 = -2.4), energy metabolism (log10 = -2.3), cell 

growth and death (log10 = -2.1), nucleotide metabolism (log10 = -1.7) and amino acid 

metabolism (log10 = -1.1). This sequence of molecular functions could indicate the 

effect of diuron in the reference communities. As a primary effect these communities 

adjusted cellular transport and protein homeostasis to protect against diuron actions 

like increasing ROS formation due to disrupted electron transfer. Subsequently, energy 

metabolism is regulated as diuron increasingly reaches the receptor and inhibits 

photosynthesis. Moreover, growth and other metabolic pathways (e.g. nitrogen 

metabolism) were adapted to the novel cellular state as secondary effects. In contrast, 

transcription, lipid metabolism and nucleotide metabolism were the most sensitive 

KEGG functions in the contaminated communities. However, their responses were 

within a small concentration range, which does not imply a sequence in regulation 

given the small differences between thresholds. Rather, all molecular functions in the 

contaminated communities occurred immediately upon exceeding the EC50 for 

photosynthesis inhibition. This indicates a tipping point, where molecular responses of 

the contaminated communities were triggered.  

The reduced sensitivity of the contaminated communities could indicate both 

adaptation as well as a remaining internal exposure concentration lasting from the 

previous chronic exposure, rendering lower diuron applications meaningless compared 

to prevailing levels. The biofilms were taken immediately from chronic exposure and 

transferred to the gradient exposure, suggesting elevated diuron residues in cells and 

EPS. Therefore, a persistent effect of diuron residues seems likely, which combines 

with the acutely administered amount. Adaptations in the contaminated communities 

might offer a sufficient protection against internal concentrations and insignificant 
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diuron additions, which reduces the need for further gene regulation beyond 

established homeostasis during chronic exposure. These adaptations at low 

concentrations could already be present in the protein pool or occur via permanently 

highly expressed (non-responsive) genes and therefore do not fall within the focus of 

this work. Based on this assumption, non-responsive adaptations could be sufficient to 

maintain cellular homeostasis against increasing diuron exposure until the EC50 value 

of photosynthesis inhibition is reached. At this stage, an increasing amount of potential 

antioxidant degradation products was detected in the metabolome of the contaminated 

communities, which could indicate their adaptation to maintain cellular homeostasis at 

higher diuron levels. However, Figure 21 showed 445 regulated contigs with BMD’s 

below 4 µg L-1 in the contaminated communities, suggesting that gene regulation also 

occurred below the chronic exposure concentration. The majority (95 %) of these 

contigs were modelled with biphasic concentration response curves, for which two 

BMDs can be determined (Larras et al., 2018). How the biphasic responses were 

obtained, given the hypothesis of increased internal concentration in the contaminated 

communities, remains a future perspective. Dealing with biphasic responses such as 

bell-shaped and U-shaped models (which were equally represented in this study) in 

sensitivity analysis is controversial, as there are different opinions on which BMD better 

represents the cellular response. DRomic's uses the lower BMD, which forces a higher 

sensitivity in the global cumulative sensitivity distribution. Instead, the higher BMD 

threshold of the biphasic models could have been used for this analysis. To avoid 

skewing the sensitivity of the KEGG functions by a proportion of extreme values, the 

median was used as a robust method for data aggregation. The choice of BMD did not 

affect the focus of cellular regulation in the contaminated communities, which was 

robustly determined by the median at higher concentrations compared to the reference 

biofilms. In the absence of data on the internal concentration, there is no certainty on 

the acute exposure concentration that poses a relevant additional burden on the cell. 

However, each community was compared with controls from the respective culturing 

conditions, which includes possible residues in the assessment. Thus, any deviation 

from the control is considered an effect of acute exposure, and the potential residues 

from chronic exposure are considered part of the adaptation.  

In conclusion, reference communities were more sensitive in functions related to the 

MoA of diuron, whereas contaminated communities were less sensitive and responded 

abruptly when the EC50 of photosynthesis inhibition was reached. Even though the 
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diuron residues in the contaminated biofilms were not quantified, it can be said on the 

basis of this analysis that the contaminated communities were physiologically adapted 

to tolerate elevated diuron concentrations. However, not every molecular change 

correlates with an adverse outcome, and changes in transport and catabolism, 

membrane transport or folding, sorting and degradation may indicate successful 

acclimation to ambient diuron concentrations (see also chapter 6.3.2). Thus, 

anchoring the molecular data to apical effects in photosynthetic efficiency allows to 

compare the different sensitivities with respect to the primary effect of diuron and 

presents a first step towards an ecophysiologic interpretation of molecular data. 

Molecular responses that occur without measurable effect at the primary site of action 

fall in the homeostatic range, in which the acclimation of communities occurs without 

triggering stress. In conclusion, sensitive molecular responses can reveal the MoA of 

a chemical or the mechanism of tolerance, although they cannot prove efficacy. 

 

Figure 22 Cumulative sensitivity distribution of molecular KEGG functions (contigs and 

metabolites) in the reference community (A) and the contaminated community (B). The BMD’s 

of each KEGG function were aggregated using the median, thus only functions with more than 

3 BMDs were considered. The letters code for: a Transport and catabolism; b Membrane 

transport; c Folding, sorting and degradation; d Energy metabolism; e Cell growth and death; f 

Nucleotide metabolism; g Amino acid metabolism; h Lipid metabolism; i Carbohydrate 

metabolism; j Translation; k Glycan biosynthesis and metabolism; l Signal transduction; m 

Metabolism of cofactors and vitamins; n Biosynthesis of other secondary metabolites; o 

Transcription; p Xenobiotics biodegradation and metabolism; q Metabolism of other amino 

acids; r Cellular community - prokaryotes. 



  

93 
 

6.4 Consolidation of the results – holistic interpretation and discussion 

6.4.1 Adaptation to chronic diuron exposure - from molecular changes to community 

effects 

Exposure to herbicides poses a threat to aquatic biofilms by affecting their community 

structure, physiology and functioning. On the other hand, biofilms adapt to herbicide 

exposure, causing PICT. In this chapter, the adaptive processes of chronic diuron 

exposure are outlined from the molecular level to the effects on the community. 

For this purpose, the acclimatory responses of the communities were compared under 

the assumption that any difference in the acclimation behavior derived from adaptation 

(as defined in chapter 2.3.3.). At the molecular level, divergent patterns in 

photosynthesis and arginine metabolism related genes were identified. The 

contaminated communities increased their expression of photosystem-related genes 

at high diuron concentrations, whereas reference communities reduced the expression 

of genes involved in photosystem I, in order to balance the output of both photosystems 

(see Chapter 4.3.2). The expression of PS genes, the post-transcriptional regulation, 

the mRNA half life time (Baginsky & Link, 2008) and the repair of PS proteins 

(Nishiyama et al., 2006) depends on the redox state of the chloroplast. Community 

metabolomics  indicated an increased amount of breakdown products of ascorbic acid 

in the contaminated community (see Chapter 5.3.3), which might indicate an 

adaptation to compensate ROS generated from the inhibition of the photosystem and 

maintaining the redox state of the cell even at elevated diuron concentrations. As the 

gene expression is based on the redox status, the observed transcription of PS genes 

in the contaminated community may have resulted from the protective mechanism of 

ascorbic acid, which attenuated the diuron effect on the redox state of the cell. Another 

mechanism that depends on the ascorbic acid pool is the photoprotective xanthophyll 

cycle, which controls the amount of energy reaching the reaction center by converting 

the pigment violaxanthin to zeaxanthin (Goss & Jakob, 2010). The contaminated 

communities held a higher pool of violaxanthin and its ratio to zeaxanthin was much 

higher compared to the reference communities (see chapter 3.3.1; Annex 8), which 

also indicates an improved control of the redox state of the cells. Thus, the evidence 

regarding an adaptation in redox maintenance is high and ascorbic acid, one of the 

major antioxidant metabolites (in algae) is a very likely candidate. It has a central role 

in redox signaling, which controls cell growth up to the light-dependent regulation of 

photosynthesis. However, maintaining the cellular redox state of the cell via increased 
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ascorbic acid production is a costly adaptation that takes its toll. Chronic exposure to 

diuron might have selected for species capable of paying the price of adaptation, which 

on the other hand impaired the biofilms in their biomass accrual. The chronically 

exposed communities particularly lost autotrophic biomass, reflected by the decreasing 

specific chlorophyll content. Selection for adapted biochemical traits largely affected 

the molecular fingerprint, and the contaminated communities diverged from the 

reference communities in both their transcriptomic and metabolic fingerprints. As a 

result of the extensive adaptation processes of the contaminated biofilms, their diuron 

tolerance increased threefold, thus providing evidence of PICT.  

The sensitivity-based analysis of the fingerprints used in this thesis results in blind 

spots in the evaluation of potential adaptations, which can be addressed in future 

studies. Microevolutionary processes are particularly relevant in this respect, which 

might, for example, lead to a decrease in the receptor binding of diuron and thus to a 

reaction that is decoupled from the acute exposure. A first insight into 

microevolutionary processes was summarized in chapter 6.5.  

 

6.4.2 Assessment of the ecological costs of Pollution-induced community tolerance 

based on primary production 

Adaptations to pollutants serve as the basis for maintaining ecologic functions at 

chemical exposure. A trait that arises from adaptations is tolerance, which can be 

quantified according to the concept of pollution induced community tolerance (PICT; 

Blanck & Wängberg, 1988). In this study, PICT was detected in a contaminated biofilm 

that grew under diuron exposure for 5 weeks. This tolerance was also indicated in 

primary production, as the specific production per chlorophyll a was increased in the 

contaminated community. However, the tolerant community showed a reduced total 

net primary production and productivity (NPP/R ratio), compared to an unexposed 

reference community. This impairment persisted even under repeated short-term 

exposure, demonstrating that PICT cannot safeguard net primary production. On the 

contrary, the selection process associated with PICT decreased autotrophic biomass 

in the contaminated community and affected autotrophic diversity indicated by changes 

in the pigment pattern. The tolerance mechanisms described above, which involve the 

production of ascorbic acid, are associated with increased metabolic costs (Mouneyrac 

et al., 2011) that can lead to a further decline in metabolically susceptible organisms. 

The cost of compensating for oxidative stress, in addition to the energy shortages due 
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to inhibited photosynthesis, most likely reduced the productivity and ultimately the 

biomass of the contaminated community during the selection phase. The loss of 

autotrophic biomass is the main reason for the reduced productivity even during re-

occurring exposure. In contrast the reference community featured a higher autotrophic 

biomass, which compensated for the greater inhibitory effect. In summary, PICT was 

associated with ecological adaptation costs, and the price is reflected in the decline in 

function and biomass. These findings do not confirm the hypothesis of Tlili et al. (2016, 

p. 2144) who stated “…chemical-induced loss of the most sensitive species, one of the 

processes underpinning PICT, should not affect ecosystem functions, while PICT 

predicts community tolerance to increase…”. In line with the findings of this thesis PICT 

in sediment associated biofilms exposed to Cu was associated with a species shift and 

a decline in provision of functions (Ahmed et al., 2020; Mahamoud Ahmed et al., 2018). 

Moreover, also marine biofilms exposed to Cu for 18 days showed a similar increase 

in PICT, whereas autotrophic biomass and photosynthetic yield was decreased 

(Corcoll et al., 2019). In this context, the stressor intensity of the chronic exposure 

phase is particularly relevant, as a low intensity promotes a low PICT at a high 

structural diversity, while a high intensity promotes the opposite. Having this in mind, 

any exposure that stimulates PICT will affect the functional capacity of a community 

(Pesce et al., 2020).  

Given that PICT cannot safeguard function, the recovery potential of biofilms after 

chronic exposure is of crucial importance. A laboratory recovery experiment of Cu 

tolerant biofilms revealed, that biomass of exposed biofilms did not recover within a 6 

week absence of exposure (Lambert et al., 2012). Nevertheless, the authors also found 

that the presence of unexposed biofilms improved the recovery of diatom species, 

which immigrated into the previously exposed community. Thus, in the environment, 

the structural and functional recovery of biofilms after a certain duration of pollution 

(e.g. the herbicide application season) could be faster at a large inoculum for re-

colonization. This was tested in several translocation experiments in rivers, e.g. by 

Rotter et al. (2011) who found a recovery in community structure after 24 days, while 

the community tolerance did not recover within this time. Unfortunately, the authors did 

not address functional parameters such as primary production or the associated 

biomass. Translocation studies by Dorigo, Bérard, Bouchez, et al. (2010) and Dorigo, 

Bérard, Rimet, et al. (2010) in a stream contaminated with Cu and diuron yielded 

ambiguous results, as in one experiment recovery in structure and function was 
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observed within 5 weeks, while in another recovery was not yet complete after 9 weeks. 

The recovery process depends on external and internal factors, such as the flow 

regime or nutrient content, which can alter the trajectory of recovery, or internal 

exposure to EPS-adsorbed pollutants, which prologs the recovery phase (Dorigo, 

Bérard, Rimet, et al., 2010). In the light of multiple-stressors interactions (e.g. Romero 

et al., 2020), the loss of sensitive species poses a risk to community functions as the 

stabilizing aspect of diversity fades (Yachi & Loreau, 1999). Therefore, chemical 

exposure may not only alter functions, but also increase the vulnerability of microbial 

communities to further environmental disturbances. 

In summary, PICT does not protect primary production at diuron exposure and the 

decline of sensitive species may outweigh the tolerance benefit. However, due to the 

short generation time and the immigration of organisms, biofilms have a high recovery 

potential, allowing fast regeneration of structure and function at favorable 

environmental conditions. In combination with other stressors, a fast regeneration of 

biofilm structure and function remains to be demonstrated. 
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6.5 Outlook 

Pesticides can directly affect trophic interaction top down (e.g. by affecting a predator 

Foit et al., 2010) or bottom up by affecting the prey. This thesis has revealed a 

structural and functional decline in aquatic biofilms after chronic diuron exposure, 

which are the major prey in freshwater streams for e.g. grazing macroinvertebrates 

and gastropods. A decline in autotrophic species can alter the food quality of biofilms 

for grazers. An upscaling study exploring the effects of chronic diuron exposure of 

biofilms on primary consumers (represented by the gastropod Physella acuta) found 

that changes in the composition of biofilms and their fatty acid profile may also alter 

the fatty acid profile of the grazer and thus possibly its grazing behavior (Konschak et 

al., 2021). Given the decrease in autotrophic biomass and the metabolite alterations in 

the contaminated communities detected in this thesis a potential hazard for primary 

consumers was identified. Moreover, also symbiotic interactions might be affected by 

chronic exposure. Species that benefit from the provision of algal exudates might lose 

their food source and their decline could have promoted the strong deviation of the 

molecular fingerprints. A co-correspondence analysis of metagenome data could shed 

light on this aspect of interaction. 

In addition, the potential of Pollution-Induced Community Tolerance to maintain 

ecological functioning upon re-exposure to diuron was explored. It was found that 

the gain in tolerance does not outweigh the loss of autotrophic biomass and thus a 

reduction in net primary production of the contaminated biofilm occurred as a result of 

PICT. A reduction in net primary production can affect stream metabolism (e.g. 

increase the need for external carbon sources), but other stressors such as 

eutrophication, climate change or hydromorphological degradation must also be 

considered for a meaningful prediction.  

In addition, the molecular mechanisms underlying PICT were investigated and 

stimulated ascorbate metabolism and xanthophyll cycle were postulated in the 

contaminated communities. A further analysis of the gene expression related to the 

ascorbate and aldarate metabolism (such as ascorbate peroxidase (APX), 

dehydroascorbate reductase (DHAR) or glutathione reductase (GR)) may shed light 

on this hypothesis. Moreover, the meta-transcriptome dataset offers the opportunity to 

analyze genetic adaptations from a microevolutionary perspective. The tolerance 

detected by chlorophyll fluorescence analysis could also have a genetic origin, such 
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as adaptations that reduces diuron binding efficiency. The evolutionary perspective of 

diuron exposure can be studied by blasting a sequence of the diuron target (psbA) 

against the non-annotated contigs of this experiment. A preliminary amount of more 

than 7 gene clusters was identified by this approach. Aligning these and evaluating the 

amino acid region 197 to 291 containing the herbicide-binding niche revealed two 

aspects for future evaluation. First, the PEST region (from Arg225 to Arg238), which is 

typically associated with protein turnover contained up to 5 individual amino acid 

variants. Secondly, 6 other amino acid variants outside the PEST region were identified 

within the binding pocket. However, these differ from described ones (e.g. Val219 or 

Phe274) and a potential function is not known (Lu et al., 2019; Mengistu et al., 2000). 

Towards this end, a functional analysis is needed, e.g. by comparing expression level 

of certain variants at diuron stress. 
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Appendix 

Annex 1 Details on biofilm cultivation and exposure. 

Selection Phase Glass slides (15.25 cm²) were placed as artificial substrate in 20 L 

glass tanks and unfiltered river water from the Parthe river, a local stream (sampling 

point: 51°22'18.5"N 12°25'07.7"E) served as inoculum for biofilm growth. The 

inoculation started on 27.04.2018 and ended on 04/05.06.2018 with the detection 

phase of the respective communities. The slides were placed in holders with varying 

spatial position (up, mid, low), which were approximately 10 cm, 13 cm and 16 cm 

below water surface. Water was stirred permanently and exchanged weekly to 

guarantee sufficient supply of nutrients and a near-natural inoculum of species. 

Oxygen saturation, pH and temperature were monitored at each water exchange 

(data not shown). Water temperature was maintained at 22±1°C and the light cycle 

was set to 14/10 hours light/dark cycle. The photon yield of the LED plant lamps (C-

series, Valoya, Helsinki, Finland) above the water surface was approximately 150 

µmol photons m-2 s-1. Half of the microcosms were contaminated with 4 μg L−1 diuron, 

starting from the second week of cultivation. The addition of diuron should induce 

the growth of contaminated communities, whereas the uncontaminated microcosms 

represent reference communities. 

 

Detection Phase After the selection phase the slides were randomly sampled from 

the different tanks at varying spatial position (up, mid, low) to avoid a spatial bias in 

the microbial community. The slides were exposed for a second time in a controlled 

environment using a phytotron (MultitronPro, IFORS, Einsbach, Germany). Petri 

dishes were slightly agitated at 30 RPM and illuminated by LEDs. The temperature 

and light intensity were kept consistent to the selection phase. 
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Annex 2 Basal fluorescence (F0) of chlorophyll of the contaminated (▲) and reference 

community (●) at dark adapted state. The left plot shows F0 after selection phase and on the 

right the same communities are displayed after the detection phase. The analysis was 

conducted using an Imaging PAM (Heinz WALZ GmbH, Effeltrich, Germany). 

 

 
Annex 3 Maximum fluorescence (Fm) of chlorophyll of the contaminated (▲) and reference 

community (●) at dark adapted state. The left plot shows Fm after selection phase and on the 

right the same communities are displayed after the detection phase. The analysis was 

conducted using an Imaging PAM (Heinz WALZ GmbH, Effeltrich, Germany). 

 

 

 

  



  

101 
 

 

 

 

 

Annex 4 Maximum fluorescence (Fm’) of chlorophyll of the contaminated (▲) and reference 

community (●) after light adaptation. The left plot shows Fm’ after selection phase and on the 

right the same communities are displayed after the detection phase. The analysis was 

conducted using an Imaging PAM (Heinz WALZ GmbH, Effeltrich, Germany). 

Annex 5 Basal fluorescence (F) of chlorophyll of the contaminated (▲) and reference 

community (●) after light adaptation. The left plot shows F after selection phase and on the 

right the same communities are displayed after the detection phase. The analysis was 

conducted using an Imaging PAM (Heinz WALZ GmbH, Effeltrich, Germany). 
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Annex 6 GC-TOF/MS and CTC autosampler settings for the community metabolomics analysis. 

Autosampler-Parameters CTC PAL Dual Head Autosampler 

  Sample Volume 1 µL 

  Solvent A/B Post Wash 5 (n-hexane, isopropanol) 

GC-Parameters Agilent© 7890 Gas Chromatograph 

  Column DB5-DG (30 m + 10 m DG, 0.25 mm, 0.25 µm, 
Agilent) 

  Front Inlet Mode Splitless 

  Front Inlet & Transfer Line 
Temp. 

250 °C 

  Front Inlet Septum Purge 
Flow 

3 mL min-1 

  Front Inlet Purge Time 1 min 

  Front Inlet Purge Flow 40 mL min-1 

  Front Inlet Total Flow 42.2 mL min-1 

  Target Flow 2.2 mL min-1 (Constant Flow) 

  Oven Temperature Ramp Rate [°C min-1] Target Temp 
[°C] 

Duration [min] 

Initial 60 1.00 

10.00 325 10.00 

  GC Method Total Time 37.5 min 

MS-Parameters Pegasus 4D, LECO 

  Acquisition Delay 5.5 min 

  Scan-Range 50 – 600 m/z 

  Acquisition Rate 10 spectra second-1 

  Electron Energy -70 Volts 

  Ion Source 250 °C 

 

 

Annex 7 MS-DIAL data alignment settings of the community metabolome data. 

Data Processing Parameters MS-DIAL version 4.24 

Data type 

  Data type Centroid 

  Ion mode Positive 

  Accuracy type IsNominal 

Data collection parameters 

  Retention time begin 5.833 min 

  Rentention time end 37.5 min 

  Mass range 70 – 600 m/z 

Peak detection parameters 

  Minimum Peak Height 1000 amplitude 

  Smoothing Method Linear weighted moving average 

  Smoothing Level 2 scan 

  Average Peak Width 30 scan 

  Mass slice width 0.5 

  Mass accuracy 0.5 
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  Mass Exclusion List 73, 75, 89, 103, 116, 147, 205 (Mass Tolerance 
0.005 Da) 

MS1Dec Parameters 

  Sigma Window Value 0.4 

  EI spectra cut off 1 amplitude 

Identification 

  Retention Type RI (Index Type = Alkanes) 

  Retention Index Tolerance 20 

  m/z Tolerance 0.5 Da 

  EI similarity library tolerance 70 % 

  Identification score cut off 70 % 

  Use retention info for scoring TRUE 

  Use retention info for filtering FALSE 

  Use quant masses defined in 
… 

FALSE 

  Only report the top hit TRUE 

Alignment Parameter Setting 

  Reference file 20191108_C0_1_C7_1_3.abf 

  RI or RT RI 

  MSP file (library) GMD_20111121_VAR5_ALK_MSP_RI_corr.msp 

  Retention index tolerance 5 

  EI similarity tolerance 70 % 

  Retention time factor 0.5 

  EI similarity factor 0.5 

  Identification after alignment TRUE 

  Gap filling by compulsion FALSE 

  Choose base peaks m/z for … FALSE 

Filtering setting 

  Peak count filter 0 % 

  Remove features based on 
blank 

FALSE 

  Keep identified/annotated… FALSE 

  Keep removable features… FALSE 
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Annex 8 Comparison of the normalized pigment content of violaxanthin and zeaxanthin, the 

crucial pigments of the photoprotective xanthophyll cycle. The contaminated community is 

colored red, the reference community blue, and significant differences have been marked with 

asterisks (* < 0.05; *** < 0.001). The ratio of violaxanthin to zeaxanthin is illustrated on the 

right, indicated by a blue outline. 
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Annex 9 Contribution of extreme values to the Transcriptional Effect Level Index (TELI). The 

upper light grey bars show the contribution of extreme values to the TELI. The number of 

extreme values is indicated by the bar width and the grey value in upper part of the bar (nextr). 

The lower bars represent the contribution of the remaining contigs (3502153- nextr) to the TELI. 

 

 

 

Annex 10 Transcriptional Effect Level Index (TELI) after removal of extreme values (see Annex 

1, upper lightgrey bars). 
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Annex 11 Aggregation of the community metabolomics data to Metabolic Effect Level Index 
(MELI). A) MELI without removal of extreme values. B) MELI after visual inspection and removal 
of sporadic occurring extreme values (nconta = 10; nref = 13). 

 

Annex 12 Summary of the most abundant pigments in algal lineages of typical biofilm taxa. 
The symbols represent + present, + major pigment and v variable occurrence. Grey highlighted 
pigments were used as marker pigments in this study. The table was adapted after Werner 
(2022). 

Lineage blue green red 

Division Cyanophyta Chlorophyta Heterokontophyta 

c
a
ro

te
n
o

id
s
 

19’-butanoyloxyfucoxanthin    v 

diadinoxanthin    + 

diatoxanthin    v 

echinenon  v +  

fucoxanthin    + 

lutein  +  

neoxanthin   +  

violaxanthin  + + 

zeaxanthin + v v 

alpha-Carotene    

beta-Carotene + + + 

c
h
lo

ro
p

h
y
lls

 

chlorophyll a + + + 

chlorophyll b  +  

chlorophyll c1   + 

chlorophyll c2   + 

chlorophyll c3   + 
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Annex 13 A) LC-MS/MS results of the chronic exposure (selection phase) with a nominal 
concentration of 4 μg L-1 diuron. The measured diuron concentration is subdivided according 
to the exposure time. The box ‘before’ presents the diuron concentration in the microcosms 
before the renewal of water, while ‘after’ shows the exposure concentrations after the 
inoculation water was refreshed and new diuron was spiked. B) 1:1 Plot of the expected and 
measured exposure concentrations during the acute exposure (detection phase). The 
background contamination was assessed from the three control samples of the reference 
communities. The lower acute exposure concentrations (0.0001, 0.001 and 0.01) were affected 
by background levels of diuron, but also showed a high variation in concentration. The settings 
of the LC – MS/MS can be found in the following: 

Autosampler Agilent 1260 HiP Bio ALS 

Column compartment Agilent 1260 TCC 

Pump Agilent 1260 Bio Quat Pump 

Thermostat Agilent 1290 Thermostat 

Eluent A (water (HPLC-grade) + 

0.1% formic acid)  

 

Eluent B (methanol (LC-grade) + 

0.1% formic acid)  

Time [min] Eluent A Eluent B 

1 95 5 

8 10 90 

16 5 95 

16.4 95 5 

16.5 Acquisition Off 

Flow rate 350 μL min-1 

Injection volume 25 μL  

Column temperature 30 °C  
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Turbo VTM Ion Source 

Ion Source ESI (positive ion mode) 

Curtain gas 25 psi 

Ion Spray Voltage 4500 V 

Temperature 400 °C 

Ion source gas (GS1 & GS2) 50 psi 

AB Sciex 6500 (Qtrap) MRM 

MRM method for diuron 

Parent mass = 232.935 [m/z] 

Declustering potential = 96 [V] 

Entrance potential = 10 [V] 

Scan time = 100 [ms] 

Fragment 
[m/z] 

Collision Energy 
[V] 

Collision cell exit 
potential [V] 

71.9 47 8 

46.1 39 12 

159.9 35 18 

132.9 51 54 
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