

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-833160

Rihan Hai, Vasileios Theodorou, Maik Thiele, Wolfgang Lehner

SCIT: A Schema Change Interpretation Tool for Dynamic-Schema Data
Warehouses

Erstveröffentlichung in / First published in:

Databases Theory and Applications: 26th Australasian Database Conference. Melbourne,
04.-07.07.2015. Springer, S. 323–327. ISBN 978-3-319-19548-3.

DOI: http://dx.doi.org/10.1007/978-3-319-19548-3 28

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-833160
http://dx.doi.org/10.1007/978-3-319-19548-3_28

SCIT: A Schema Change Interpretation Tool
for Dynamic-Schema Data Warehouses

Rihan Hai1(B), Vasileios Theodorou2, Maik Thiele1, and Wolfgang Lehner1

1 Technische Universität Dresden, Dresden, Germany
{rihan.hai,maik.thiele,wolfgang.lehner}@tu-dresden.de

2 Universitat Politècnica de Catalunya, Barcelona, Spain
vasileios@essi.upc.edu

Abstract. Data Warehouses (DW) have to continuously adapt to evolv-
ing business requirements, which implies structure modification (schema
changes) and data migration requirements in the system design. How-
ever, it is challenging for designers to control the performance and cost
overhead of different schema change implementations. In this paper, we
demonstrate SCIT, a tool for DW designers to test and implement differ-
ent logical design alternatives in a two-fold manner. As a main function-
ality, SCIT translates common DW schema modifications into directly
executable SQL scripts for relational database systems, facilitating design
and testing automation. At the same time, SCIT assesses changes and rec-
ommends alternative design decisions to help designers improve logical
designs and avoid common dimensional modeling pitfalls and mistakes.
This paper serves as a walk-through of the system features, showcasing
the interaction with the tool’s user interface in order to easily and effec-
tively modify DW schemata and enable schema change analysis.

1 Introduction

Data Warehouses (DW) have traditionally been designed to work on carefully
modeled, predefined schemata, developed in the first phase of the overall sys-
tem design. However, in a modern and highly volatile business environment,
with changing market needs, company policies and technological advances, nei-
ther the data structure nor the analytical needs remain stable. It has recently
been stressed that the incessant pressure of schema change is impacting every
database [1]. Moreover, schema changes pose a threat to the accuracy of current
applications and queries regarding the consistency of query answering, deciding
schema equivalence, schema mapping composition and inversion. In addition,
DW designers often lack the intuition of the performance and cost impact of dif-
ferent schema change implementations, while at the same time some dimensional
modeling pitfalls may even compromise the original DW system [2]. Nonethe-
less, to our best knowledge, there is no existing implemented tool facilitating
effectiveness and automation in DW schema change operations and analysis.

We thereby present SCIT, a flexible schema change interpretation tool for
DW designers, supporting the improvement of logical system modeling. In its

Final edited form was published in "Databases Theory and Applications: 26th Australasian Database Conference.
Melbourne 2015", S. 323–327, ISBN 978-3-319-19548-3

http://dx.doi.org/10.1007/978-3-319-19548-3_28

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 1. SCIT framework

design, SCIT balances the need to interpret a wide range of schema changes with
the imposed complexity of providing design alternatives for special dimensional
structures. The main contributions of SCIT are summarized as follows:

– SCIT facilitates the interpretation of DW schema changes in a practical
implementation where users are guided through a sequence of button clicks
on an intuitive user interface. A representative set of thirty structural changes
and eight basic integrity constraint changes, as well as their combinations,
are supported by our tool, which automatically interprets them and gener-
ates executable SQL scripts containing equivalent Data Definition Language
(DDL) statements. DW designers benefit from this time-saving function,
especially during massive schema modification implementation tasks.

– SCIT employs an iterative mechanism to facilitate the design of alternative
schemata. At every step, changes are assessed. And according to the satisfac-
tion of specific dimensional structure conditions, SCIT recommends possible
alternative designs based on best-practices. By comparing and simulating
such alternatives, DW designers can obtain enhanced solutions regarding
performance and cost.

– SCIT offers schema evolution traceability by maintaining files, which record
the sequence of schema changes. Thus, it enables schema evolution analysis
where designers can further explore potential issues, e.g., identifying and
rewriting queries invalidated by schema changes and maintaining structural
understandability.

2 System Overview

In this section, we introduce the functions and underlying mechanisms that make
SCIT an efficient and flexible schema change interpretation tool. A high level
view of our system architecture can be seen in Fig. 1 showing the process of
using SCIT.

We build our tool to operate on a relational star schema, since DW systems
are usually implemented following the star schema pattern, and according to
Kimbal’s recommendation [2], detailed and atomic information should be loaded
into a star schema database. Below we describe the main system functionalities,

Final edited form was published in "Databases Theory and Applications: 26th Australasian Database Conference.
Melbourne 2015", S. 323–327, ISBN 978-3-319-19548-3

http://dx.doi.org/10.1007/978-3-319-19548-3_28

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

showing how SCIT takes a user selection from a wide range of schema changes
as input and generates equivalent SQL scripts as output, as well as intelligently
providing design alternatives for improving logical system design:

Supported Schema Changes. SCIT supports a comprehensive set of Schema
Modification Operators (SMOs) and Integrity Constraint Modification Opera-
tors (ICMOs) to represent atomic structural schema changes and keys or other
dependencies, respectively. Interested readers can refer to [1,3] for formal rep-
resentation and characteristics of those operators. The enhancement of SCIT is
that we extend the original set from 18 [1] to 38 operators (30 atomic structural
changes and 8 integrity constraint changes) and their combinations. This set
includes operators for special design alternatives, e.g., pivot a row-based table
into an Entity-Attribute-Value (EAV) model (column-based model).

Special Design Alternatives. Based on [2,4], SCIT supports a representa-
tive, practical set of twelve common design alternatives corresponding to spe-
cific dimensional structures, e.g., mini-dimensions for fast-changing attributes,
EAV model for highly sparse dimensions and bridge tables for ragged variable
depth hierarchies and multi-valued attributes. When schema changes satisfy cer-
tain predefined conditions, SCIT recommends the implementation of such alter-
natives to users, while automatically generating the corresponding executable
SQL script for each suggestion, which supports users to choose desirable design
regarding further performance test results or specific system requirements. As
an example, let us consider a schema change scenario where a user inputs add
new attributes as desired schema change and the following conditions also stand:
(1) new attributes are text attributes (e.g., comment fields) and (2) the target
table is a fact table. Then, SCIT will suggest the usage of Garbage dimension
by putting the text attributes in a new dimension table, adding a new column
in the fact table and connecting the dimension table to the target fact table by
a foreign key constraint. In case these attributes are highly sparse, SCIT addi-
tionally suggests the application of an EAV model to the new dimension table.
Designers are then able to conduct performance testing to compare the original
design and alternative recommendations.

Schema Change Interpretation. Considering the required processes after
schema modifications, such as rewriting invalid queries, which requires infor-
mation preserving, necessary actions are automatically taken by the system. All
thirty atomic structural implementation changes are embedded with foreign keys,
which hides dimensions or facts supposed to be dropped, by cutting all existing
foreign key constraints and renaming the target table. Taking split a dimension
table vertically as an example, each new sub-table will get a newly generated
surrogate key as primary key, as well as equivalent constraints mapped from the
original dimension table. In the original table, all the foreign key constraints are
dropped and the table is renamed to be hidden from the schema.

Final edited form was published in "Databases Theory and Applications: 26th Australasian Database Conference.
Melbourne 2015", S. 323–327, ISBN 978-3-319-19548-3

http://dx.doi.org/10.1007/978-3-319-19548-3_28

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 2. SCIT User Interface

3 Demonstration Scenario

The demonstration will illustrate the basic use of SCIT as an effective schema
change interpretation tool, highlighting its role as an alternative design adviser.
The following scenarios will be running on Microsoft SQL server 2014:

Initial Schema Set Up. We use the TPC-DS benchmark1 for our demon-
stration, which has a relatively complex schema of a retail model, as our initial
schema. Visualization of the whole or partial schema is presented on the main
screen (shown in the left section of Fig.2). By clicking on one dimension/fact
table, users can obtain basic structural information of the chosen element(s).

Schema Change Selection. In this scenario we demonstrate the implementa-
tion of certain schema changes. Possible structural or integrity constraint changes
regarding the chosen dimension/fact will be automatically listed in the middle
of the main screen. After choosing a desired schema modification from the list,
users need to further input corresponding parameters, as shown in the middle
section of Fig.2 (attribute name, data type, etc.).

Special Scenarios for Design Alternatives. In this scenario we select changes
that trigger the suggestions of alternative designs. Users will observe the visu-
alized sub-schema of each alternative and performance test results with config-
urable size of data loaded into the RDBMS. We measure the query elapsed time
for the original design and a chosen alternative. Thus, we illustrate how users can
obtain an estimation of performance comparison between alternative designs. In
the right section of Fig.2, we show the performance comparison between a basic
schema change implementation and SCIT suggested design alternative (Garbage
dimension + EAV) based on 1GB data.

Acknowledgments. This research has been funded by the European Commission
through the Erasmus Mundus Joint Doctorate “Information Technologies for Business
Intelligence - Doctoral College” (IT4BI-DC).

1 http://www.tpc.org/tpcds/

Final edited form was published in "Databases Theory and Applications: 26th Australasian Database Conference.
Melbourne 2015", S. 323–327, ISBN 978-3-319-19548-3

http://dx.doi.org/10.1007/978-3-319-19548-3_28

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

 http://www.tpc.org/tpcds/

References

1. Curino, Carlo, et al.: Automating the database schema evolution process. The VLDB
Journal The International Journal on Very Large Data Bases 22(1), 73–98 (2013)

2. Kimball, R., Ross, M.: The data warehouse toolkit: The definitive guide to dimen-
sional modeling. John Wiley & Sons (2013)

3. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

4. Ballard, C., et al.: Dimensional Modeling: In a Business Intelligence Environment.
IBM Redbooks (2012)

Final edited form was published in "Databases Theory and Applications: 26th Australasian Database Conference.
Melbourne 2015", S. 323–327, ISBN 978-3-319-19548-3

http://dx.doi.org/10.1007/978-3-319-19548-3_28

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	SCIT: A Schema Change Interpretation Tool for Dynamic-Schema Data Warehouses
	1 Introduction
	2 System Overview
	3 Demonstration Scenario
	References

	ADP6E70.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Rihan Hai, Vasileios Theodorou, Maik Thiele, Wolfgang Lehner

