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Abstract. Lightweight data compression is frequently applied in main
memory database systems to improve query performance. The data
processed by such systems is highly diverse. Moreover, there is a high
number of existing lightweight compression techniques. Therefore, choos-
ing the optimal technique for a given dataset is non-trivial. Existing
approaches are based on simple rules, which do not suffice for such a
complex decision. In contrast, our vision is a cost-based approach. How-
ever, this requires a detailed cost model, which can only be obtained from
a systematic benchmarking of many compression algorithms on many
different datasets. A näıve benchmark evaluates every algorithm under
consideration separately. This yields many redundant steps and is thus
inefficient. We propose an efficient and extensible benchmark framework
for compression techniques. Given an ensemble of algorithms, it mini-
mizes the overall run time of the evaluation. We experimentally show
that our approach outperforms the näıve approach.

Keywords: Lightweight data compression · Main memory database sys-
tems · Efficient benchmarking

1 Introduction

Nowadays, main memory-centric column-oriented database management systems 
are the prevailing technology for data processing [5,7,12]. Many of these systems 
reduce the amount of data they have to store and process by making use of 
lossless lightweight compression [1,3]. Owing to its reduced size, compressed data 
offers several advantages such as less time spent on load and store instructions, 
a better utilization of the cache hierarchy and less misses in the translation look-
aside buffer. Moreover, many plan operators in database systems can be modified 
to directly process compressed data, which can be faster than processing the 
original data [1,16]. On the other side, compression and decompression introduce 
a certain computational overhead. For that reason, it is crucial to implement 
these algorithms as efficient as possible.

The data being stored and processed by in-memory column stores is as diverse 
as the application domains of such systems. It is characterized by a multitude of
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properties, such as data types, value distributions – including value ranges and
the number of distinct values – and correlations between subsequent values –
e.g., multiple subsequent occurrences of the same value. All these different kinds
of data must be compressed appropriately, since databases are expected to be
generic regarding the application area. At the same time, several decades of
research in the field of lossless compression yielded a multitude of different com-
pressed formats and compression algorithms to choose from. Some of these use
completely different approaches, i.e., address different sources of redundancy in
the original data, while others just differ in minor – but perhaps decisive –
details of the memory layout of their outputs. Some are tailored to fit certain
characteristics of modern hardware, while others are kept more generic.

When integrating compression into a database management system, it is cru-
cial to know which compression technique is suited best for what data. In that
respect, suited best can have different meanings ranging from lowest latency or
highest throughput over best compression rate to optimal for further processing
by plan operator X. Not leveraging such knowledge during the integration leads
to a suboptimal improvement of the database performance, in the best case. It
might, however, even cause a degradation of the performance, since most com-
pression techniques increase the size of the data if it does not exhibit appropriate
characteristics.

In the literature, several approaches exist attempting to identify a good com-
pression technique for some given data using rule-based strategies. One example
of these is the decision tree provided by Abadi et al. in [1]. However, rule-based
approaches are too coarse-grained and can hardly capture all imaginable data
characteristics. In contrast, we believe that a cost-based approach should be used
instead. For this, an underlying cost model is required, which must be obtained
from a systematic and exhaustive benchmarking and evaluation of numerous
compression algorithms on multitudes of different original data and on different
hardware. This systematic benchmarking is the scope of this paper. Thus, our
contribution is a benchmark framework for data compression techniques with
the following key features:

– It minimizes the overall evaluation run time for an ensemble of algorithms by
identifying and eliminating redundant steps and making use of today’s large
main memories.

– It efficiently verifies the correctness of the results of the evaluated algorithms.
– It is highly extensible; in particular, it allows the integration of third-party

compression algorithms and data generators, e.g., via a wrapper.

The rest of this paper is organized as follows: In the next section, we give an
overview of existing lightweight compression techniques and state more precisely
which classes of algorithms are relevant to our benchmarking. After that, Sect. 3
provides a high-level description of our benchmark framework. Section 4 discusses
the execution of compression algorithms in detail. Our experimental results are
presented in Sect. 5. We discuss related work in Sect. 6. Finally, we conclude our
paper in Sect. 7.
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2 Compression Techniques

In the context of database-oriented data compression, there are three classes of
algorithms relevant to our benchmark framework. The first two – compression
and decompression – are discussed in Sect. 2.1. The third one – transformation
– is discussed in Sect. 2.2. We only consider lossless techniques. Furthermore, we
only investigate 32-bit integers as the data type of the uncompressed data at
the current status. However, this limitation is not too strict, since integers can
be obtained from values of any data type by applying dictionary coding [1,11],
first. Our framework itself is generic in terms of data types.

2.1 Compression and Decompression

The general idea of compression is to represent some given original data in
another format in which the data has a smaller size. Thereby, the information
necessary to re-obtain the original data must be preserved, in order to allow a
lossless decompression. There are two classes of compression techniques: heavy-
weight and lightweight. Heavyweight techniques, such as Huffman encoding [6],
arithmetic coding [17], or LZW [10] compress the given data close to its entropy.
However, they require a lot of computation and are, hence, rather suited for disk-
centric DBMS. For main memory-centric systems, there are lightweight compres-
sion techniques which require much less computation. As a consequence, they
achieve much higher throughputs, while still yielding good compression rates.

The basic types of lightweight compression are dictionary coding (DICT)
[1,11,18], delta coding (DELTA) [9,13], frame-of-reference (FOR) [4,18], null
suppression (NS) [1,13], and run-length encoding (RLE) [1,13]. DICT maps
each distinct value to a unique key. DELTA and FOR represent each value as
the difference to its predecessor or a certain reference value, respectively. The
aim of these three techniques is to obtain a sequence of small integers from the
original data. After that, a scheme from the family of NS is typically applied
to achieve the actual compression. NS eliminates leading zeros in small integers.
RLE compresses uninterrupted sequences of occurrences of the same value, so-
called runs, by representing them by just one occurrence followed by the length.

Recent research in the field of lightweight compression has especially investi-
gated the efficient implementation of these classic schemes on modern hardware.
For instance, Zukowski et al. [18] introduced the paradigm of patched coding,
which especially aims at the exploitation of pipelining in modern CPUs. Another
promising direction is the vectorization of compression techniques by using SIMD
instruction set extensions such as SSE and AVX. Numerous vectorized techniques
have been proposed in recent years, e.g., in [9,14,15].

Besides compression and decompression algorithms for different compressed
formats, we explicitly consider different variants of the compression to and
decompression from a single compressed format. Such variants exist at both,
the algorithmic and the implementation level. Two implementations of the same
compression algorithm could, e.g., differ in whether they use SIMD extensions
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or not. We show an example of this case in Sect. 5. Furthermore, when compos-
ing two distinct compression algorithms, e.g., DELTA followed by NS, there are
several variants regarding the degree of integration. Our benchmark framework
especially optimizes the comparison of different variants of one algorithm.

2.2 Transformation

Beyond compression and decompression, we are also concerned with a third class
of algorithms: transformation, which we recently introduced in [2]. A transforma-
tion is a lossless change of the (compressed) format some data is represented in.
It expects data of a certain source format and outputs the representation of that
data in its destination format. Thus, transformation is a generalization of com-
pression and decompression. Henceforth, we use the term transformation to refer
to those transformations which are neither a compression nor a decompression,
i.e., that do not involve uncompressed data as their input or output.

There are two possible ways to transform some data represented in a com-
pressed format A to a compressed format B. A näıve approach, which we call
indirect transformation, first applies the decompression algorithm of its source
format to its entire compressed input data and materializes the result in main
memory. After that, it uses the compression algorithm of its destination for-
mat. While indirect transformations can easily be implemented for arbitrary
pairs of a source and a destination format, they are very inefficient due to their
many accesses to main memory. In contrast, there are direct transformation tech-
niques which do not materialize any intermediate data in main memory. Instead,
intermediate data stays in CPU registers or at worst in the L1 cache. In gen-
eral, direct transformations can be implemented by interleaving the code of the
decompression of the source format with the compression of the destination for-
mat. Thereby, the intermediate store and load instructions are omitted. In many
cases, even more optimizations are possible, which we described in detail in [2]
for some direct transformation techniques. In [2] we also experimentally showed
that direct transformations outperform their indirect counterparts in most cases.

Our benchmark framework supports the evaluation of transformation algo-
rithms and makes use of them, in order to minimize the overall evaluation run
time. How this is done is described in detail in Sect. 4.

3 Framework Overview

In this section, we provide a high-level view of our benchmark framework1.
Section 3.1 describes the general workflow of the framework. After that, Sect. 3.2
explicitly explains our design principles.

1 The source code of our framework can be downloaded at https://wwwdb.inf.
tu-dresden.de/team/staff/patrick-damme-msc/.

Final edited form was published in "Performance Evaluation and Benchmarking: Traditional to Big Data to  
Internet of Things: 7th TPC Technology Conference. Kohala Coast 2015", S. 77–93, ISBN 978-3-319-31409-9 

http://dx.doi.org/10.1007/978-3-319-31409-9_6 

4 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://wwwdb.inf.tu-dresden.de/team/staff/patrick-damme-msc/
https://wwwdb.inf.tu-dresden.de/team/staff/patrick-damme-msc/


3.1 General Workflow

The general workflow of our benchmark framework is shown in Fig. 1. The appli-
cations performing the individual steps are invoked by a script. In the following,
we briefly present each step.

Benchmark Specification. Before the framework can start, the user needs to spec-
ify a benchmark. She decides which algorithms shall be evaluated and subdivides
these into several, possibly overlapping sets. The algorithms in one set will be
evaluated on the same data. For each set of algorithms, the user specifies the
data characteristics by choosing (1) a data generator, (2) one data property to be
varied, including the distinct values to be assigned to it, and (3) the configura-
tion of the remaining, fixed data properties. For instance, the user could specify
to generate 100M values using generator simpleGen, whereby the values follow
a uniform distribution over the interval [28, 216 − 1], while the data consists of
runs, whose lengths follow a normal distribution with a standard deviation of 5
and a mean that is varied from 20 to 200 in steps of 10. Varying a data property
allows to investigate the influence of that property on the performance of the
algorithms. If the user wants to vary more than one data property or she wants
one data property to be varied in conjunction with multiple configurations of
fixed properties, then she must provide multiple specifications of the input data
for that set of algorithms, since only one property can be varied at a time. The
specification of the benchmark is passed to the framework as a file with a very
simple text-based format, an example of which is presented in Fig. 2.

Parsing. The first step of the framework is parsing the benchmark specification.
After that, it knows which algorithms the user wants to evaluate on what data.

Fig. 1. An overview of our benchmark framework.

Fig. 2. Example benchmark specification using our minimalistic specification language.
One benchmark may contain several of such pairs of data and algorithm specifications.
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Algorithm Execution. This is the core step of the framework. It is invoked once
for each specified pair of a set of algorithms and a configuration of data proper-
ties. It iterates over all values to be assigned to the varied data property. In each
iteration, the data is generated using the specified generator parameterized with
the specified data properties. After that, the specified algorithms are run on the
generated data. The framework also checks the output buffers of the algorithms
for correctness. The approach the evaluation follows is crucial for its efficiency.
We describe a näıve as well as our sophisticated approach in detail in Sects. 4.1
and 4.2, respectively. Since performance is crucial in this step, it is implemented
in C++. The output is a set of CSV files. Each of these contains some meta data
regarding the evaluation and a table containing only actual measurements, i.e.,
no derived results. For instance, for all algorithms we measure their run time
and for each format, we measure the size of the data in that format.

Result Enrichment. In this step, the measured results output by the previous
step are enriched with derived columns. We differentiate between two types of
enrichment. The first one provides additional representations of the measure-
ments for a single algorithm or compressed format. Examples include the exe-
cution speed of all algorithms or compression rates for all formats. The second
kind of enrichment is concerned with the relation between the measurements of
different algorithms or formats. These could, for instance, be speed ups of one
algorithm compared to another one. Separating the result enrichment from the
algorithm execution was an explicit decision. That way we can easily calculate
new derived results from existing measurements without having to re-run the
evaluation at a later point in time as a part of the framework’s workflow.

Result Analysis. After the benchmark framework is done, the collected results
can be analyzed. Our vision is the creation of a cost model for the investigated
compression, decompression, and transformation algorithms. The analysis could,
however, also simply be the generation of diagrams visualizing the results.

3.2 Design Principles

When designing our benchmark framework, we tried to adhere to three major
design principles:

Simplicity. Our framework uses a simple and yet expressive language to specify
a benchmark. Instead of describing it in detail, we just provide an example
in Fig. 2. Moreover, the steps of the framework are easily repeatable. Once a
benchmark has been specified, it can be run arbitrarily often, e.g., on different
hardware.

Efficiency. The framework minimizes the overall run time of the evaluation.
Our main focus is on the avoidance of redundant steps during the algorithm
execution. To achieve this, we utilize today’s large main memories by keeping
outputs instead of recomputing them. Details are provided in Sect. 4.
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Extensibility. The framework can be extended at several crucial points. In par-
ticular, it allows the integration of third-party compression, decompression and
transformation algorithms. The framework defines a common interface for these.
To use an existing algorithm with our framework, the algorithm must implement
that interface. Alternatively, a wrapper can be provided which translates our
interface to that of the third-party algorithm. In fact, we implemented a wrap-
per for the compression and decompression algorithms of the FastPFor library by
Lemire et al. [8]. In a similar way, third-party data generators can be integrated.
One particular extension could be a data generator which does not produce
synthetic data, but provides the system with data from a real world dataset.

4 Efficient Execution of Compression Techniques

Since it is the most critical step for the evaluation efficiency, the algorithm exe-
cution from Sect. 3.1 is explained in detail here. Its input is a specification of the
data properties along with a set A of algorithms to be evaluated on that data.
We assume that (1) the original data has a non-trivial size, e.g., several hundreds
of megabytes, and (2) the value of one data property is varied within a range
of a non-negligible cardinality, e.g., several hundreds or thousands of different
values. Otherwise, the evaluation would not take much time and therefore not
offer much potential for optimization.

When applying a compression or transformation algorithm to some data, it
must be ensured that a sufficiently large output buffer was allocated to prevent
buffer overflows. However, in general, it is impossible to know the exact size
of the output beforehand. Thus, a pessimistic estimation of the result size is
required. If nothing about the characteristics of the original data is known, such
an estimation can only be based on the number of original values. Unfortunately,
for most compressed formats, the size of the data increases, in the worst case. For
instance, data compressed with RLE is twice as large as the uncompressed data,
if it does not contain any run of a length greater than one. As a consequence,
the system could end up allocating to much memory. While this might be a
problem in a DBMS, we can circumvent it in our framework, since we know
the properties of the original data from the user’s specifications. Our estimation
uses this information to find a tighter fit for the actual result size, while never
underestimating it. Note, that this information is not made available to the
algorithms under investigation, since this could be considered unfair.

During the evaluation, we also check the result of each algorithm for cor-
rectness. Each result is compared to the original data, which might require a
decompression, first. Moreover, we place some random bytes after the end of
each output buffer, in order to be able to detect buffer overflows. Note that we
assume that all algorithms have been designed, implemented, and tested care-
fully before the benchmark. Hence, the purpose of the checks is only the detection
of errors, not the generation of detailed information for debugging.

While a certain overhead for the evaluation cannot be avoided, different eval-
uation approaches differ in the implied amount of overhead. In the following, we
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Table 1. The notations used in this section.

Symbol Meaning

S, D, X, Y ; U arbitrary formats; the uncompressed format

O; OX the original data; the representation of O in the format X

A; A an algorithm; the set of all algorithms specified by the user

describe a näıve evaluation approach in Sect. 4.1. After that, we present our
sophisticated approach in Sect. 4.2. Finally, we compare the two of them in
Sect. 4.3. Table 1 presents the notations used in those sections. As a running
example, we assume the user wants to benchmark two variants of the com-
pression of RLE (RleSeq-Co., RleSimd-Co.), the decompression of a dictionary
scheme (Dict-De.) as well as the transformation from the format of 4-Wise Null
Suppression [14] to that of 4-Gamma Coding [14] and vice versa (4Ns-2-4G,
4G-2-4Ns).

4.1 A Näıve Evaluation Approach

When conducting the benchmark näıvely, every algorithm is evaluated in isola-
tion, i.e., as if it was the only algorithm to be investigated. For each algorithm
A in A with source format S and destination format D, the following steps have
to be performed for every value to be assigned to the varied data property:

1. Generate the original data OU using the specified data generator and data
characteristics, including the current value of the varied data characteristic.

2. If S �= U : Obtain OS by applying a compression algorithm for S to OU .
3. Apply A to OS . Let the output of A be RD.
4. If D �= U : Obtain RU by applying a decompression algorithm for D to RD.
5. Compare RU and OU byte by byte to check whether all involved algorithms

worked correctly.

Figure 3 illustrates these steps for the example A given above. This procedure
is very simple and thus easy to implement. However, it is very inefficient in
general, since it implies multiple invocations of the same algorithms on the same

Fig. 3. The steps of a näıve evaluation strategy.
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data. In our example, the decompression of RLE is applied twice and the data
generation is done five times using the same properties.

4.2 Our Sophisticated Evaluation Approach

The basic idea of our sophisticated approach is the avoidance of redundant steps
in the evaluation. That is, no algorithm is invoked twice with the same input.
This holds for the algorithms and for the data generation. The key to this is
keeping the result buffers of all algorithms, as long as they are needed by another
algorithm being executed later. These are the high-level steps of our approach:

1. Find out which additional algorithms are needed for preparations and checks.
2. Determine a valid execution order of the algorithms.
3. Run the algorithms one by one and take the measurements.

Step 3 is re-executed for each value to be assigned to the varied data property,
step 2 is only re-run if otherwise the memory consumption would be too high
and step 1 is done only once in advance for A. In the following, we explain each
of these steps in detail. Figure 4 illustrates them for the example given above.

Finding Required Additions for Preparations and Checks. For this step,
we formalize the benchmark as a directed graph. The vertices of that graph rep-
resent formats, while an edge (X,Y ) represents an algorithm with source format
X and destination format Y . Since we explicitly consider different variants of a
certain algorithm, multiple edges between two nodes are allowed.

First, we build a graph representing the user’s benchmark. For each algorithm
A in A with source format S and destination format D, we add the two nodes
S and D as well as an edge (S,D) to the graph. That is, we initialize the graph
such that it contains only the algorithms in A as well as the formats involved in
them. If the uncompressed format is not already included as a node, we explicitly
add it. The result of this step for our example A is shown in Fig. 4 (a).

Fig. 4. The steps of our sophisticated evaluation strategy.
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Next, we ensure that the source format of each algorithm A in A can actually
be reached from the uncompressed format by a sequence of transformations. This
is important, since otherwise the input data for A might not be available. To
achieve this, we iterate the following two steps until all nodes are reachable (see
Fig. 4 (b) for a possible resulting graph for our example A):

1. Identify an unreachable node X. If the graph contains a source, i.e., a node
without ingoing edges, we select this one. If there are no sources, there could
still be nodes on cycles unreachable from the node of the uncompressed for-
mat. To find these, we perform a cycle-aware depth-first search. If the search
does not find all nodes, we randomly pick one of the nodes not found.

2. Make X reachable. For doing so, there could be multiple possibilities. For
simplicity, we always connect X by adding a compression from U to X.2

Since we also want to check the algorithms in A for correctness, we need to
decompress the representation of the data in each involved format in order to
be able to compare it to the original data. Consequently, for each node in the
graph we add an edge to the node of the uncompressed format, if there is not
already one. The result of this step for our example A is depicted in Fig. 4 (c).
We denote the set of algorithms resulting from this step by A+.

Determining the Execution Order. After it is clear which additional algo-
rithms must be performed, the second step is to determine the order in which
the algorithms shall be applied. A valid execution order must fulfil two require-
ments: (1) it must contain each algorithm in A+ exactly once, and (2) before
an algorithm with a source format X other than the uncompressed format is
applied, an algorithm with destination format X must have been applied. The
latter condition ensures that the appropriate input data is available for each
algorithm, whereby in the beginning, only the uncompressed data is present.

One strategy to obtain a valid order is the following: First, all compressions in
A+ are executed. Second, all transformations are run. Finally, all decompressions
are applied.3 One possible outcome for our example A is shown in Fig. 4 (d). For
general A+, this strategy requires a lot of main memory, since the compressed
buffers of each format allocated in the first phase must be kept in memory until
after the respective decompression in the third phase. Thus it is obvious that –
while it does not affect the run time – the execution order is decisive for the

2 Note that, alternatively, a transformation from some already reachable node to X
could be added. This could be especially useful, since transformations are faster than
compressions in many cases. However, finding the fastest way to make X reachable
would require a cost model for the algorithms, which can only be available after the
systematic benchmarking.

3 The compressions can be executed in an arbitrary order. The same applies to the
decompressions. However, the transformations cannot be applied in an arbitrary
order in general, since a transformation could require a source format that is not
present after all compressions in A+ have been executed, as it is the case for 4G-2-
4Ns in our example.
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maximum memory requirement of the evaluation. There are simple memory-
efficient solutions for certain special cases. For instance, if A+ contains only
compressions and decompressions, we simply determine the order the following
way: We process the compressed formats involved in A+ one by one. For each
compressed format X, we first execute all compressions to X in A+, then we
perform all decompressions from X in A+. That way, there is no point in time
when OX and OY are both in memory, for any compressed formats X and Y ,
with X �= Y . If A+ also contains transformations, finding an optimal order – or
a sufficiently good order with respect to some upper bound for the maximum
memory consumption – is non-trivial and might itself take considerable time.
However, our framework can easily be extended at that point by implementing
an appropriate order strategy.

Evaluating the Algorithms. When the order of the algorithms is fixed, the
actual evaluation begins. In this step, two auxiliary data structures are main-
tained: (1) a map m mapping each format X to a buffer containing OX , and
(2) a set of reference counters, one for each format involved in A+. Initially, m
is empty and for each format X involved in A+, the reference counter of X is
the number of algorithms in A+ with source format X plus the number of those
with destination format X. Thus, the reference counter of X is the number of
times, OX is needed either as input data or for a comparison. In the beginning,
a buffer for the original data is allocated. Then the original data is generated
according to the user’s specifications and put into m with the key U .

Then, the algorithms are executed. A loop iterates over all A in A+ with
source format S and destination format D using the order determined in the
previous step and does the following:

1. A buffer b that fits OD is allocated.
2. A is executed on OS , which is looked up in m. Note that OS is always available

if the execution order is valid.
3. It is checked, whether m already contains a buffer for D.

(a) If this is not the case, i.e., if A is the first algorithm producing a copy of
OD, then b is put in m with key D.

(b) Otherwise, i.e., if there is already a copy of OD, the content of b is com-
pared to that copy byte by byte. If they are not the same, this means an
error at some point. After the comparison, b is released.

4. The reference counters of both, S and D are decremented. If any of them
reaches 0, i.e., if no algorithm executing later will need them any more, then
the corresponding buffer is fetched from m and released to free memory.

This procedure guarantees that each required buffer is allocated as late as
possible and released as early as possible. Note that all checks are covered by step
3b. If D is a compressed format, the check is performed in the compressed space.
If D is the uncompressed format, it is not possible that step 3a is executed. This
is due to the fact that OU is in m right from the beginning onwards. It might be
released before the end of the evaluation, but not before the last decompression,
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otherwise the reference counter for U cannot become 0. Thus, a decompression
is always followed by a check with the uncompressed data.

4.3 Comparison of the Two Approaches

Our sophisticated approach avoids redundant executions of algorithms at several
points. In particular, these are:

– The näıve approach generates the original data anew for each algorithm in A.
Our approach generates it only once for the entire ensemble of algorithms.

– If multiple algorithms in A share the same compressed source format X, then
the näıve approach performs a compression to X for each of these, while our
approach performs it just once. If some compression to X is already included
in A, our approach causes no overhead for the preparation regarding X.

– If several algorithms in A share the same compressed destination format Y ,
then the näıve approach executes a decompression from Y for each of these,
whereas our approach runs it just once. Again, if this decompression is already
part of A, our approach causes no overhead.

– The näıve approach performs all checks in the uncompressed space, i.e., com-
pares large buffers. In contrast, our approach does as many checks as possible
in the compressed space, i.e., compares smaller compressed buffers.

To summarize these points, our approach is especially well-suited if A con-
tains many algorithms with shared source and/or destination formats. This is,
for instance, the case when different variants of the same algorithm are eval-
uated. Even if none of the algorithms in A have any formats in common, our
approach can still save the time for the redundant data generation. If A contains
only one algorithm, then both approaches do exactly the same. We investigate
the quantitative differences between the two approaches in the next section.

5 Experimental Evaluation

We implemented our framework as well as several compression, decompression,
and transformation algorithms in C++ and compiled them with g++ 4.8 using
the optimization flag -O3. Our experiments are conducted on a machine equipped
with an Intel Core i7-4710MQ CPU at 2.5 GHz and 16 GB of RAM. Section 5.1
focuses on the comparison of the näıve and our sophisticated evaluation app-
roach. After that, Sect. 5.2 reports some results output by our framework.

5.1 Näıve Approach vs. Our Sophisticated Approach

We compare the näıve approach as described in Sect. 4.1 (N) to our sophis-
ticated approach as described in Sect. 4.2 (S). Regarding the execution order
in S, we use the second idea described in Sect. 4.2 whenever possible and the
first idea, otherwise. Additionally, we investigate a variant of the näıve approach
that generates the original data only once for the ensemble of algorithms (N+),
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Table 2. The example benchmarks used in this section. C, D, and T stand for com-
pression, decompression, and transformation algorithms, respectively.

Benchmark Varied property #variations Algorithms

B1 avg. run length 1.000 C: RleSeq, RleSimd

B2 max. bit width 24 C: 4Ns, 4G, Dict; D: 4Ns, 4G, Dict

B3 avg. run length 200 C: RleSeq, RleSimd; D: Dict;
T: Rle-2-Dict, 4Ns-2-4G, 4G-2-4Ns

B4 max. bit width 24 C: 4G; D: Dict; T: 4Ns-2-Rle

B5 avg. run length 1.000 C: RleSimd

since this is an obvious and easy-to-implement improvement of N . We define five
different example benchmarks (B1 to B5), representing different cases of sets of
algorithms. Their specifications are summarized in Table 2. We consider the com-
pression schemes 4-Wise NS (4Ns) [14], 4-Gamma (4G) [14], dictionary coding
(Dict), a sequential and our vectorized variant of RLE (RleSeq and RleSimd)
as well as transformations between these. The original data consists of 125M
uncompressed 32-bit integers, i.e., 500 MB for each benchmark. We ran each of
the three evaluation approaches for each of the five example benchmarks.

Figure 5 (a) presents the overall run times of the benchmarks as well as the
time spent on the specified algorithms, the data generation, and the remaining
overhead. Naturally, the execution of the algorithms specified in the benchmark
takes equally much time, independent of the evaluation approach. N+ and S need
the same time for the data generation, since they generate it only once for the
entire ensemble per value of the varied data property. In contrast, N re-generates
the data for each algorithm, which is its major inefficiency. Due to that, it is never
faster than any of the other two. The remaining overhead, i.e., preparations,
decompressions added by the framework, and checks, is subject to the approach
and the ensemble of algorithms. When A contains many algorithms with formats
they have in common (B1 to B3), S can eliminate the redundant steps and thus
outperforms the other two approaches. These cases are especially relevant to us.
The more algorithms with formats they have in common A contains, respectively
the longer these take, the higher the speed up of S. In B4, the specified algorithms
have no compressed formats in common. Additionally, a compressed format is
only used as the input of a transformation in A, namely 4Ns. In this special
case, S is slightly slower than N+, because S also performs a check for 4Ns,
which N+ does not. In all other cases, S is not slower than any of the other two
approaches. If only one algorithm is evaluated (B5), all three approaches require
the same amount of time, since they do exactly the same then.

Figure 5 (b) reports the maximum memory consumption of each of the
approaches during each of the benchmarks. It can be seen that the speed up
of S in B1 and B3 is bought at the cost of a higher memory demand. However,
in B2, S outperforms N and N+ without requiring more memory. This is due
to the execution order used by S in B2. Since A contains only one compression
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Fig. 5. A comparison of the three evaluation approaches for the different example
benchmarks: (a) run times, subdivided into the time consumed by the specified algo-
rithms (bottom), the data generation, and the remaining overhead (top), (b) maximum
memory consumptions.

and one decompression algorithm for some formats, S does not need to keep the
compressed buffers of any format longer than N and N+. However, in certain
cases (B4) S requires more memory without being faster.

5.2 Example Benchmark

Independent from the evaluation approach, our framework gives us insights into
the performance of the investigated algorithms. To show just one example of the
outputs of our framework, we choose B3 from the previous section. In B3, the
data was generated such that it consists of runs. The individual run lengths were
chosen uniformly from the interval [x − 5, x + 5] whereby x was varied from 6
to 404 in steps of 2. The run values are uniformly distributed within the inter-
val [0, 255]. In order not to overload the diagrams, we limit the presentation to
our two variants of the compression of RLE (RleSeq and RleSimd) as well as
the transformations 4Ns-2-4G and 4G-2-4Ns, respectively their involved formats.
Figure 6 (a) reports the speeds of the algorithms. It can be seen that the speeds
of RleSeq and RleSimd are subject to the run length, while those of the trans-
formations between 4Ns and 4G are not. Furthermore, the vectorized algorithm
RleSimd outperforms the sequential one for all run lengths. Figure 6 (b) presents
the achieved compression rates of the formats. As expected, the compression rate
of RLE decreases, i.e., gets better, as the run length increases. Interestingly, the
compression rate of the format of 4-Gamma [14] is also slightly better for longer
runs. This is due to the fact that 4G uses a shared bit width for four values at
a time. With longer runs, there are more blocks consisting of four equal values,
which have the same bit width, and thus waste less bits.
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Fig. 6. The processing speeds in million integers per second (mis) (a) and compression
rates (b) of some of the algorithms and formats included in B3.

6 Related Work

While we intend to base the decision for a compression technique on a cost model
created from the output of our framework, there already exist other approaches
to identify an optimal technique in the literature.

Abadi et al. [1] integrate several compression techniques into the column-
oriented DBMS C-Store. Their aim is to improve the query performance by
compressing every column appropriately. From their experiments, they manually
derive a decision tree, which is based on certain data characteristics and on the
access patterns of a column. However, they consider only a small number of
compression schemes. We intend to consider a high number of techniques and
automatically create a cost model.

Another interesting approach was proposed by Paradies et al. [11]. They
intend to decrease the space requirement of the column-oriented SAP BW Accel-
erator. Being committed to dictionary coding, their goal is not to decide how,
but what to compress. They observe that correlated columns can be stored more
efficiently if their corresponding values are coded in pairs. To identify the most
promising pairs of correlated columns, they propose an efficient algorithm, which
employs sampling and pruning and is aware of additional compression techniques
already applied to the data.

7 Conclusions and Future Work

We described our highly extensible benchmark framework for compression,
decompression, and transformation algorithms. Based on a benchmark speci-
fication by a user, it generates synthetic data with certain characteristics and
automatically runs the specified algorithms on it. We proposed a highly efficient
evaluation approach, which is based on the elimination of redundant steps during
the benchmark execution and thus minimizes the overall benchmark run time.
Our experiments proved the superiority of our approach over a näıve approach.

Our ultimate research goal is to employ lightweight compression for the inter-
mediate results in an in-memory DBMS and to make compression subject to
query optimization. We intend to implement compression, decompression, and
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transformation as plan operators. Like for any other operator, the query opti-
mizer must be able to estimate their costs (additionally, it needs to know, how
efficient other plan operators can process the compressed data of a certain for-
mat). Simply knowing the best compression scheme for a given dataset does not
suffice in our case, since we will need to know the overall costs of multiple alterna-
tive query executions plans, each of which might contain compression operators
at several points. Hence, we need a cost model for compression techniques. To
obtain this cost model, we need to benchmark a high number of algorithms on
many different datasets in a structured and highly efficient way. Our framework
enables us to do precisely that. Besides the execution of a single compression
algorithm, we also intend to consider compositions of such algorithms as well as
direct transformations between two formats. Both of these further increase the
size of the benchmark space and thus stress the importance of our framework.
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(DFG) in the context of the project “Lightweight Compression Techniques for the
Optimization of Complex Database Queries” (LE-1416/26-1).
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