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Abstract. The sheer volume as well as the schema complexity of today’s
graph databases impede the users in formulating queries against these
databases and often cause queries to “fail” by delivering empty answers.
To support users in such situations, the concept of differential queries can
be used to bridge the gap between an unexpected result (e.g. an empty
result set) and the query intention of users. These queries deliver missing
parts of a query graph and, therefore, work with such scenarios that re-
quire users to specify a query graph. Based on the discovered information
about a missing query subgraph, users may understand which vertices
and edges are the reasons for queries that unexpectedly return empty
answers, and thus can reformulate the queries if needed. A study showed
that the result sets of differential queries are often too large to be manu-
ally introspected by users and thus a reduction of the number of results
and their ranking is required. To address these issues, we extend the con-
cept of differential queries and introduce top-k differential queries that
calculate the ranking based on users’ preferences and therefore signifi-
cantly support the users’ understanding of query database management
systems. The idea consists of assigning relevance weights to vertices or
edges of a query graph by users that steer the graph search and are used
in the scoring function for top-k differential results. Along with the novel
concept of the top-k differential queries, we further propose a strategy for
propagating relevance weights and we model the search along the most
relevant paths.

Keywords: Graph databases, Top-k Differential Queries, Flooding.

1 Introduction

Following the principle “data comes first, schema comes second”, graph databases 
allow to store data without having a predefined, rigid schema and enable a gra-
dual evolution of data together with its schema. Unfortunately, schema flexibility 
impedes the formulation of queries. Due to the agile flavor of integration and 
interpretation processes, users very often do not possess deep knowledge of the 
data and its evolving schema. As a consequence, issued queries might return
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unexpected result sets, especially empty results. To support users to understand
the reasons of an empty answer, we already proposed the notion of a differential
query [15]; a graph query (for example see Figure 1(a)) that has a result con-
sisting of two parts: (1) a discovered subgraph that is a part of a data graph
isomorphic to a query subgraph like in Figure 1(b), and (2) a difference graph
reflecting the remaining part of a query like in Figure 1(c). Differential queries
work in scenarios, where users need to specify a query in the form of a graph,
such as subgraph matching queries. Although the approach in [15] already sup-
ports users in the query answering process, it still has some limitations: the
number of intermediate results can be very large, e.g. it can reach up to 150K
subgraphs for a data graph consisting of 100K edges and a query graph with
10 edges. Optimization strategies reducing the number of traversals for a query
based on cardinality and degree of a query’s vertices could prune intermediate
results, but, as a side effect, they also could remove important subgraphs, since
these strategies do not consider the users’ intention.

Contributions

To cope with this issue, we extend the concept of differential queries with a
top-k semantic, resulting in so-called top-k differential queries that are the main
contribution of this paper. These queries allow the user to mark vertices, edges,
or entire subgraphs of a query graph with relevance weights showing how im-
portant specified graph elements are within a query. To make the search of a
top-k differential query with multiple relevance weights possible, we present an
algorithm for the propagation of relevance weights: relevance flooding. Based on
the propagated weights, the system decides automatically how to conduct the
search in order to deliver only the most relevant subgraphs to a user as an alter-
native result set of the original query. The initial weights are used to rank the
results. The concept of top-k differential queries allows us to reduce processing
efforts on the one side and allows to rank individual answers according to the
user’s interest on the other side.

The rest of the paper is structured as follows. In Section 2 we present the state
of the art related work. The property graph model and differential queries are
introduced in Section 3. Section 4 describes the relevance-based search and its
application to top-k differential queries. We evaluate our approach in Section 5.

2 Related Work

In this section we present solutions for “Why Not?” queries and for the empty-
answer problem, ranking of query results, and flexible query answering.

“Why Not?” Queries and Empty-Answer Problem

The problem of unexpected answers is generally addressed by “Why Not?” que-
ries [3] determining why items of interest are not in the result set. It is assumed
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that the size and complexity of data prevent a user from manually studying the
reasons in a feasible way. A user specifies the items of interest with attributes or
key values and conducts a “Why Not?” query. The answers to such a query can
be (1) an operator of a query tree, removing the item from processing [3], (2) a
data source in provenance-based “Why Not?” queries like for example in [6], or
(3) a refined query that contains the items of interest in the result set like in [14].
In contrast to approaches tailored for relational databases, we do not operate on
a query tree constructed for a query execution plan, but we deal with a query
graph, for which we search corresponding data subgraphs by a breadth-first or
depth-first traversal considering user-defined restrictions with respect to vertices
and edges based on their attribute values. It is important to understand, which
query edges and vertices are responsible for the delivery of an empty result set.

Query rewriting for the empty-answer problem can also be enhanced by user
interaction [10]. This interactive query relaxation framework for conjunctive
queries [10] constructs a query relaxation tree from all possible combinations
of attributes’ relaxations. Following the tree top-down, a user receives proposals
for query relaxations and selects preferred ones. This approach [10] has only a
single objective function. In our settings, it would be only a single vertex of
interest. To model multiple relevant elements and to detect the optimal path
between them cannot be achieved by this approach proposed in [10].

Ranking of Query Results

The concept of top-k queries derives from relational database management sys-
tems, where the results are calculated and sorted according to a scoring func-
tion. In graph databases top-k queries are used for ranking (sub)graph match-
ers [16,17]. These ranking strategies differ in regard to how a data graph is
stored in a graph database. If a database maintains multiple data graphs, for
example chemical structures, then a similarity measure based on a maximum
common subgraph between a query and an individual data graph can be used as
a scoring function [16]. If a database maintains a single large data graph, then
the approach of top-k subgraph matchers [17] can be applied. In this context,
it is assumed that a data graph has naturally a hierarchical structure that can
be used for index construction and clustering of data subgraphs enabling effec-
tive pruning. These solutions do not consider any relevance function for a query
graph which is paramount in our setup.

To rank the results, an “interesting” function [5], relevance and distance func-
tions [4], or estimation of confidence, informativeness, and compactness [7] can
be used. In the first case [5], such an “interesting” function is defined in advance
by a use case, for example, it can be a data transfer rate between computers
in a network. Up front, we do not have any “interesting” function in a data
graph. In the second case [4], the matching problem is revised by the concept of
“output node”, which presents the main part of a query answer to be delivered
to a user. In our settings, this approach could be compared to a single vertex
with a user-specified relevance weight. In the third case [7], additional semantic
information is used to estimate scoring functions. In contrast, we assume that
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the data graph has the maximal confidence, our user is interested in subgraph
matching queries without accounting for additional semantic information. The
compactness of answers is not considered in our work, because we deal with
exact matching, and the answers containing more relevant parts matching to
the initial query are ranked higher. Our approach can be further improved by
estimating the informativeness, which should be based on a user’s preferences.
This question is left for future work.

In [1] the top-k processing for XML repositories is presented. The authors
relax the original query, calculate the score of a new query based on its content-
and structure-based modifications, and search for the matches. While Amer-
Yahia et al. relax the query and search for a matching document, we process a
data graph without any changes to the original query. Instead we do search for
exact subgraph matches. Subgraphs can also be matched and ranked by approxi-
mate matching and simulation-based algorithms, which can result in inaccurate
answers with a wrong graph shape or non matching vertices. Since we provide
exact matches, the class of inexact algorithms is not considered in our work.

Flexible Query Answering

A different approach tackling the problem of overspecified queries can be modeled
by the SPARQL language [11]. SPARQL provides the OPTIONAL clause, which
allows to process a query graph if a statement or an entire subgraph is missing in
a data graph. The UNION clause allows to specify alternative patterns. Defining
a flexible query is not straight-forward: a user has to produce all possible com-
binations of missing edges and vertices in a query graph to derive results, this
requires good knowledge of SPARQL. Moreover, this language does not support
relevance weights on a query graph directly, and a user cannot have a direct
impact on the search within the database. Furthermore, it does not support the
calculation of difference graphs.

3 Preliminaries

In this section we present a general overview on the used graph model and
differential queries in graph databases.

Property Graph

A graph database stores data as vertices and edges. Any query to a graph
database and corresponding results may be understood as graphs themselves.
As an underlying graph model we use the property graph model [12], a very ge-
neral model, describing a graph as a directed multigraph. It models entities via
vertices and relationships between them via edges. Each graph element can be
characterized by attributes and their values, allowing the combination of data
with different structures and semantics. The mathematical definition and the
comparison of this model with other graph models are provided in [12,15].
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(b) Discovered subgraph
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(c) Difference graph

Fig. 1. Differential query and its results

Differential Queries

If a user receives an empty result set from a graph database, a differential query
can be launched that investigates the reasons of an empty result [15]. The dif-
ferential query is the initial graph query delivering an empty answer, marked
by a specified keyword. In order to provide some insights into the “failure” of
a query, a user receives intermediate results of the query processing consisting
of two parts: a data subgraph and a missing part of the original query graph.
The first part consists of a maximum common subgraph between a data graph
and the query graph that was discovered by any maximum common subgraph
algorithm suitable for property graphs. This can be for example the McGregor
maximum common subgraph algorithm [8]. The second part reflects a difference
graph - a “difference” between a query graph and a discovered maximum common
subgraph. It shows the part of a differential query that is missing from a data
graph and therefore displays the reason why the original query “failed”. The
difference graph is also annotated with additional constraints at the vertices,
which are adjacent to the discovered subgraph as connecting points.

As an example, imagine a data graph derived from text documents that con-
tains information about patients, their diagnoses, and medical institutions. We
store the data graph together with a source description in a graph database to
allow its collaborative use by several doctors. Assume a doctor is interested in
names of all patients (P ), their diseases (I), their cities of residence (C), medical
institutions (O), and information documents (D) like in Figure 1(a). If the query
does not deliver any answer, the doctor launches the query as a differential query
and receives the following results:

– The discovered subgraph in Figure 1(b): A person, called Bob, living in
San Francisco, whose information was described in “Report”, which is about
osteosclerosis.

– The difference graph in Figure 1(c): There is no information about any me-
dical institution located in San Francisco, which provided the “Report”.

Differential Query Processing

The processing of a differential query is based on the discovery of maximum
common subgraphs between a query and a data graph as well as on the com-
putation of difference graphs. Firstly, the system selects a starting vertex and
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edge from a query graph. Secondly, it searches a corresponding data subgraph in
a breadth-first or depth-first manner. If a maximum possible data subgraph for
a chosen starting vertex is found, then the system stores this intermediate re-
sult, chooses a next starting vertex, and searches again. This process is repeated
with every vertex as a starting point. If the search is done only from a single
starting vertex, then the largest maximum common subgraph might be missing,
because not all edges exist in a data graph. In a final step, the system selects
the maximum common subgraphs from all intermediate results, computes the
corresponding difference graphs, and returns them to a user.

Due to the nature of the differential queries, redundant intermediate sub-
graphs and their multiple processing create a potentially significant processing
overhead. The number of intermediate results can reach up to 150K subgraphs
(Figure 5(d)) for a data graph of 100K edges. In order to cope with this issue, we
already proposed different strategies for the selection of a starting vertex [15]:
based on cardinality or degree of vertices. Although the number of answers is
reduced, it can still remain large to be processed manually. As a side effect,
some subgraphs, which are potentially relevant for a user, might be excluded
from a search, because the strategies do not take a user’s intention into account.
To avoid this, we propose an extended concept of differential queries – top-k
differential queries, which process a query graph and rank results according to
user-defined relevance weights.

4 Top-k Differential Query Processing

In this section we describe the core of our approach – the relevance-based search
with relevance flooding and the detection of an optimal traversal path through
a differential query, and ranking of results.

4.1 Top-k Differential Queries

We define a top-k differential query as a directed graph Gk
q = (V,E, u, f, g, k)

over attribute space A = AV ∪̇AE , where: (1) V,E are finite sets of N vertices and
M edges, respectively; (2) u : E → V 2 is a mapping between edges and vertices;
(3) f(V ) and g(E) are attribute functions for vertices and edges; (4) AV and
AE are their attribute space, and (5) k is a number of required results.

The goal of a top-k differential query is to search subgraphs based on rele-
vance weights and to rank the discovered subgraphs according to a relevance-
based scoring function. For this, we introduce so-called relevance weights for
vertices ω(vi) and edges ω(ej) in a query graph, which annotate graph elements,
vertices and/or edges, in a query graph with float numbers ∈ [0; 1]. A weight
ω = 0 denotes low relevance and thus reflects the default of a vertex and an
edge. In our work we do not concern negative evidence, because if a graph ele-
ment is not interesting to a user, then it would not be included in the query.
Graph elements with higher relevance weights in a query are more important to
a user than those with lower values. The introduction of relevance weights does
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Fig. 2. Top-k differential query processing

not affect the definition of top-k differential queries, this is just an additional
property for edges and vertices: ω(V ) ⊆ f(V ) and ω(E) ⊆ g(E).

The relevance weights are used for several purposes, e.g. (1) for steering our
search in a more relevant direction, (2) for earlier processing of elements with
higher relevance, and most importantly (3) in a scoring function for the rank-
ing itself. The values facilitate the discovery of such subgraphs that are more
interesting to a user, and the elimination of less relevant subgraphs.

The processing of top-k differential queries is performed as depicted in Figu-
re 2. After a user has annotated a query with the relevance weights, a relevance-
based search is started. When no new data subgraphs can be found, the system
stops the search, calculates the rank of discovered subgraphs, and returns results
to a user. In the following, we describe all these processing steps in more detail.

4.2 User and Application Origin of Relevance Weights

Relevance weights described in the previous paragraph can be determined based
on a user’s preferences or based on a particular use case. If relevance weights are
assigned by a user, then the more important graph elements get higher weights.
With reference to our running example (Figure 1(a)), if a doctor is more inte-
rested in the names of patients and their diseases, then he provides the highest
relevance to corresponding vertices: ω(vP ) = 1 and ω(vI) = 1.

If relevance weights are determined by a particular use case, then they are
defined considering specific features of the use case – an objective function, which
the use case tries to minimize or maximize. Some examples of objective functions
would be the data transfer rate in networks of hubs or traffic in the road networks.
If a user aims to maximize the objective function, then graph elements with
higher values of the objective function are annotated by higher relevance weights.
In our approach, we do not assume any specific use case and expect that relevance
weights are defined by a user.

4.3 Relevance-Based Search

After a user has annotated the query graph, the relevance-based search is con-
ducted, which is outlined in the dashed box in Figure 2. At the stage of pre-
processing, the relevance weights are transformed into the format required by
the relevance flooding: edge relevance weights are converted into the relevance
weights of incident vertices. Afterwards, the relevance flooding propagates the
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weights along the query graph, if at least one vertex does not have a user-defined
relevance weight. Then, relevant subgraphs are searched in a data graph. After
the search the post-processing is executed over relevance weights to prepare them
for the further ranking.

Pre-processing and Post-processing of Relevance Weights. Relevance
flooding considers relevance weights only on vertices. To account for the relevance
weights on edges, we transform them into the weights of incident vertices before
the flooding. The pre-processing consists of two steps: assignment of missing
relevance weights and transformation of relevance weights. If a graph element
is not annotated by a relevance weight, then the default value is assigned to
it. Afterwards, the system distributes the relevance weights of edges to their
incident vertices as follows: (1) The user-defined relevance weight of an edge is
distributed equally across its ends: the source and target vertices. (2) Given a set
of K incident edges to a vertex vi, the relevance weight of a vertex ω(vi) is the
sum of the square root of edges’ relevance weights ω(ej), which are incident to
the vertex vi, and its initial relevance weight ωinit(vi) (if any) like in Equation 1.

The post-processing is conducted after the subgraph search; it prepares the
weights for the ranking. By default, the user-defined weights are used in the
ranking, therefore, the weights changed during the relevance flooding have to be
reset to values derived at the pre-processing step. Non-annotated graph elements
are specified by the minimal weights (see Equations 2 – 4). If we want to use
the relevance flooding weights for the ranking, we have to derive the weights for
edges by multiplying the weights of their sources and targets (Equation 3).

ω(vi) =

K∑

j=1

√
ω(ej) + ωinit(vi) (1) ωmin(ej) = 1/M (2)

ω(ei) = ω(esourcei ) ∗ ω(etargeti ) (3) ωmin(vi) = 1/N (4)

Relevance Flooding. The goal of relevance flooding is to annotate all vertices
in a query graph by relevance weights. It takes place if not all vertices of a
query graph have user-defined relevance weights. This is necessary to allow the
subgraph search based on relevance weights and to facilitate the early detection
of the most relevant parts of a query graph, which are specified by relevance
weights. The algorithm for relevance flooding is based on similarity flooding [9],
where two schemes are matched by comparing the similarity of their vertices.
We extend this algorithm to propagate the relevance weights to all vertices in a
query graph and to keep the initial user-defined relevance weights.

The relevance flooding takes several observations into account: locality and
stability of relevance. The locality assigns higher relevance weights to the direct
neighbors and lower relevance weights to remote vertices. The stability keeps
the relevance weights provided by a user and prevents the system from reducing
them during the flooding.
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Algorithm 1. Relevance Flooding
1: for all vertex vi in query graph Gq do
2: if vi.getWeight() > 0 then � if a vertex has a weight
3: ω = vi.getWeight() � store a weight in ω
4: neighbors = getNeighbors(vi) � take all direct neighbors
5: Δω = ω/neighbors.size() � calculate a propagation weight
6: for all neighborsj in neighbors do
7: neighborsj .addPropWeight(Δω) � store a propagation weight
8: for all vertex vi in query graph Gq do
9: vi.increaseWeight() � increase all weights with propagation weights

10: max(ω) = 0
11: for all vertex vi in query graph Gq do
12: if max(ω) < vi.getWeight() then
13: max(ω) = vi.getWeight() � find a vertex with the maximal weight
14: for all vertex vi in query graph Gq do
15: if vi.getInitWeight() > 0 then � if a vertex has a user-defined weight
16: vi.setWeight(vi.getInitWeight()) � reset to an initial weight
17: else
18: vi.setWeight(vi.getWeight()/max(ω)) � normalize a weight
19: sum = 0
20: for all vertices vi in Gq do � calculate a difference between iterations
21: sum = sum+ (vi.getPrevWeight()− vi.getWeight())2

22: if sum <= ε OR κ >= longestPath then
23: terminateF looding() � check termination conditions

Relevance flooding works as described in Algorithm 1. In the main part at
lines 1- 9, each vertex broadcasts its value to direct neighbors according to the
locality property. Afterwards, the values are normalized to the highest value at
line 18 and user-defined relevance weights are set back to ensure the stability
of given relevance weights at line 16. If a termination condition is satisfied, the
propagation is interrupted at line 23. As the termination condition we can use
a threshold ε for the difference of relevance weights of two subsequent iterations
or the number of iterations κ, which corresponds to the size of the longest path
between two vertices in a query graph.

Following our example in Figure 1(a) and assigned relevance weights ω(vP ) =
ω(vI) = 1, at each iteration we propagate the equal relevance weights to all
direct neighbors (an exemplary weight propagation during the second iteration
is shown in Figure 3(b)). During the flooding we do not consider the direction
of edges, because the processing of a graph can easily be done in both directions
without any additional efforts. After the first iteration, vertices D,C get the
propagated relevance weights from P, I according to the locality property (Figu-
re 3(a)). Vertex O still remains without relevance weight. After each iteration,
we normalize the relevance weights to the highest value and set those of them
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(c) Flooding

Fig. 3. Relevance flooding: gray relevance weights show the case, where the initial
relevance weights are not set back

back to initial values that have weights defined by the user. The gray relevance
weights in brackets for vertices P, I show the weights without reset. We repeat
the process, until it converges according to the specified threshold ε or when
the number of iterations κ has exceeded the longest path between two vertices
(κ = 4). The results of relevance flooding are presented in Figure 3(c).

MaximumCommonSubgraph DiscoverywithRelevanceWeights. User-
defined relevance weights represent an interest of a user in dedicated graph ele-
ments: such elements have to be processed first. We treat a traversal path between
all relevant elements in a query graph as a cost-based optimization, where we max-
imize the relevance of a path.

The search of subgraphs is modeled by the GraphMCS algorithm [15], a depth-
first search for property graphs, discovering maximum common subgraphs bet-
ween a query and a data graph. First, we choose the first vertex to process.
The vertices with highest relevance weights are prioritized and processed first.
Second, we process such an incident edge of the selected starting vertex that
has a target vertex defined by the highest relevance weight. Finally, this process
continues till all vertices and edges in a query graph are processed. If a query
edge is missing in a data graph, then the system adjusts the search dynamically:
it selects the incident edge with the next highest relevance weight or revises the
search from all possible target vertices.

The relevance-based search chooses a next edge to process dynamically based
on relevance weights of edges’ ends. If several vertices have the same weight, then
the edge that has a vertex with minimal cardinality or minimal degree is chosen
to be processed. The proposed strategy steers the search in the most relevant
direction first, guaranteeing the early discovery of the most relevant parts.

4.4 Rank Calculation

The ranking is based only on the discovered subgraphs, the difference graph
does not influence the rating score. The answers with higher relevance weights
are ranked higher. A rating score is calculated based on the values of edges and
vertices a result comprises. After ratings of all results are computed, they are
normalized to the highest discovered rating score. Given N vertices and M edges
in a query graph Gq, the rating of discovered subgraph G′

d is calculated as follows
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rating(G′
d) =

i=N∑

i=1

{
ω(vi) , if vi ∈ G′

d

0 , otherwise
+

j=M∑

j=1

{
ω(ej) , if ei ∈ G′

d

0 , otherwise
(5)

Following our example in Figure 1, the rating of the discovered subgraph in Figu-
re 1(b) before normalization equals to rating = 3 by default or rating = 5.68 by
using the relevance flooding weights from the fourth iteration (see Figure 3(c)).

5 Evaluation

In this section, we compare top-k differential queries and unranked differential
queries. We describe the evaluation setup in Section 5.1 and compare both ap-
proaches in Section 5.2. Then, we present and interpret the scalability of the
top-k differential queries in Section 5.3.

5.1 Evaluation Setup

We implemented a property graph model on the top of an in-memory column
database system with separate tables for vertices and edges, where vertices are
represented by a set of columns for their attributes, and edges are simplified
adjacency lists with attributes in a table. Both edges and vertices have unique
identifiers. To enable efficient graph processing, the database provides optimized
flexible tables (new attributes can efficiently be added and removed) and com-
pression for sparsely populated columns like in [2,13]. This enables schema-
flexible storage of data without a predefined rigid schema. Our prototypical
graph database supports insert, delete, update, filter based on attribute values,
aggregation, and graph traversal in a breadth-first manner in backward and
forward directions with the same performance.

Data and queries are specified as property graphs. In a query, each graph
element can be described with predicates for attribute values. To specify a dedi-
cated vertex, we use its unique identifier.

As a data set, we use a property graph constructed from DBpedia RDF triples,
where labels represent attribute values of entities. This graph consists of about
20K vertices and 100K edges. We have tested each case for each query ten times
and have taken the average runtime as a measure.

5.2 General Comparison

We constructed an exemplary query shown in Figure 4(a) and marked three edges
of the type “deathPlace” with relevance weight ω = 1. The unranked differential
query delivers results with a lower maximal rating and exhibits longer response
times than the top-k differential query (Figure 4(b)). The top-k differential query
discovers more subgraphs of higher ratings than the unranked differential query
(Figure 4(c)). The unranked query also discovers the graphs with low ratings.
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(b) Performance
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(c) Ranking

Fig. 4. Evaluation of unranked and top-k differential queries

5.3 Performance Evaluation

We evaluate two kinds of query graphs, one for the path topology and one for
the zigzag topology. The query for the path topology consists of edges of the
same type “successor”, and the first edge is marked by a relevance weight. The
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(a) Ranking for the path (10 edges)
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(b) Ranking for the zigzag (10 edges)

�

���

���

���

���

���

� � � � � � 	 
 � ��

�
��
��
��
�
	�


�
�

��
�

���� ��������

��������	�
������	���������������

(c) Intermediate results for the path
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(d) Intermediate results for the zigzag
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(e) Response time for the path
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(f) Response time for the zigzag

Fig. 5. Performance evaluation for the differential query and top-k differential query
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query for the zigzag topology consists of edges of two types “birthPlace” and
“deathPlace”. It starts with “birthPlace” marked by a relevance weight and is
extended incrementally by a new edge for “deathPlace”, then “birthPlace” etc.

We compare rating distributions for the largest query (ten edges in a query
graph) in Figures 5(a)-5(b). The most of the results delivered by the unranked
differential query have low ratings, while the proposed solution provides at least
60% of its results with the highest ratings. We increase the size of a query graph
from one edge up to ten edges and evaluate the scalability of the proposed solu-
tion. The size of intermediate results grows linearly with the number of edges in
a query graph (Figures 5(c)-5(d)), and it is lower than at least one order of mag-
nitude for the top-k differential query. This can be explained by the elimination
of low-rated subgraphs from the search. The response time evaluation exhibits the
steep decrease for the top-k differential query (Figures 5(e)-5(f)). From this we can
conclude, the top-k differential query is more efficient than the unranked differen-
tial query: it delivers results with a higher rating score, omits low-rated subgraphs,
and consumes less processing time.

6 Conclusion

Heterogeneous, evolving data requires a new kind of storage supporting evol-
ving data schema and complex queries over diverse data. This requirement can
be implemented by graph databases offering the property graph model [12]. To
express graph queries correctly over diverse data without any deep knowledge
of the underlying data schema is a cumbersome task. As a consequence, many
queries might return unexpected or even empty results. To support a user in such
cases, we proposed differential queries [15] that provide intermediate results of
a query processing and difference graphs as the reasons of an empty answer.

In [15] we showed that the result of a differential query can be too large to be
manually studied by a user. Therefore, the number of results has to be reduced,
and the differential queries have to provide a ranking of their results based on
a user’s intention. To address these issues, we extend the concept of differential
queries and introduce top-k differential queries that rank answers based on a
user’s preferences. These preferences are provided by a user in a form of rele-
vance weights to vertices or edges of a query graph. Top-k differential queries (1)
allow marking more relevant graph elements with relevance weights, (2) steer the
search so that more relevant parts of a query graph are discovered first, (3) adjust
the search dynamically in case of missing edges based on relevance weights, and
(4) rank results according to the relevance weights of discovered elements. The
evaluation results showed that more meaningful results are discovered first ac-
cording to a user’s preferences. Our proposed solution delivers results only with
high rating scores and omits the graphs with low ratings. Our approach also
shows good scalability results with an increasing number of edges in a query
graph. In the future, we would like to speedup top-k differential queries with
database techniques like indexing and pre-sorting to allow even faster process-
ing. We also want to enhance the system with an online adaptive propagation
of relevance weights based on a user’s feedback.
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